') GAUHATI UNIVERSITY

Institute of Distance and Open Learning

Semester-1

MSc-IT
Paper: INF 1016
(under CBCS)

Advanced Concepts in
Object Oriented Programming

ONINANVEOOdd AILN3I-HO 1093rd0 NI SLdIONOD AIONVAAV

www.idolgu.in

GAUHATI UNIVERSITY
Institute of Distance and Open Learning

First Semester
(under CBCS)

M.Sc.-IT

Paper: INF-1016

ADVANCED CONCEPTS IN OBJECT
ORIENTED PROGRAMMING

Contents:

BLOCK I: OBJECT ORIENTED PROGRAMMING
Unitl : Introduction to Object Oriented Programming
Unit2 : Introductionto C++

Unit3 : Control Statements in C++

Unit4 : Array and Strings in C++

Unit5 : Pointers and Reference Variables in C++
Unit6 : Concept of Function in C++

Unit7 : Data abstraction

Unit8 : Inheritance

Unit9 : Polymorphism
Unit 10 Exception handling
Unit11 : Filehandling

BLOCK II: OBJECT ORIENTED DESIGN
Unit1 : Introduction to OO Design

Unit2 : Object Modeling Techniques (OMT) tools
Unit3 : Phases of Object-Oriented Development

Contributors:

Dr. Swapnanil Gogoi (Block I : Units- 1,4,5 and 9)
Assistant Professor, GUIDOL

Dr. Khurshid Alam Borbora (Block I: Units- 2,6,7 and 10)
Assistant Professor, GUIDOL

Dr. Ridip Dev Choudhury (Block I : Unit- 3)
Associate Professor, HCB School of Science and Technology
Krishna Kanta Handiqui State Open University, Assam

Dr. Dipen Nath (Block I : Unit- 8)
Assistant Professor, Mangaldai College

Dr. Naba Jyoti Sarma (Block I: Unit- 11)
Assistant Professor, Nalbari Commerce College (Block II: Unit-3)

Mr. Bireswar Banik (Block II:Units- 1 and 2)
Assistant Professor, Nalbari Commerce College

Content Editor:

Dr. Pranab Das
Asst. Prof. (Senior), Assam Don Bosco University
Azara, Guwahati

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof,, Dept. Computer Science, GU.

Cover Page Designing:
Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

(2)

BLOCKI:
OBJECT ORIENTED PROGRAMMING

UNIT 1: INTRODUCTION TO OBJECT ORIENTED
PROGRAMMING

UNIT STRUCTURE

1.1 Introduction

1.2 Objectives

1.3 Procedural Programming
1.4 Structured Programming

1.5 Object Oriented Programming (OOP) Paradigm
1.5.1 Differences between OOP and Procedural
Programming
1.6 Properties of Object Oriented Programming
1.6.1 Encapsulation
1.6.2 Data Abstraction
1.6.3 Inheritance
1.6.4 Polymorphism
1.7 Concept of Class and Object
1.8 Dynamic Binding
1.9 Message Passing
1.10 Advantages and Disadvantages of Object Oriented
Programming
1.11 Applications of Object Oriented Programming
1.12 Object Based Language
1.13 Summing Up
1.14 Possible Questions
1.15 References and Suggested Readings

1.1 INTRODUCTION

The concept of structured programming was introduced in the
later part of 1960s. Procedural programming with structured
programming approach became very popular in 1970s and 1980s. It was
observed that the complexity of software development with procedural
programming had increased all the time. It happened due to the
requirement of more dynamic approach for software development. At

1|Page

that time, a new programming paradigm was explored for the
development of software systems with greater extensibility, reusability,
reliability and maintainability. As a result, Object Oriented
Programming paradigm was introduced to the computer software
industry.

The basic concepts of procedural programming and structured
programming are discussed in the first part of this unit. The main aim
of this unit is to introduce the Object Oriented Programming (OOP)
paradigm. The basic properties and features of OOP are discussed along
with the advantages and applications of OOP.

1.2 OBJECTIVE

After reading this unit you are expected to be able to learn:

* What is Procedural Programming?

= What is Structured Programming?

= What is Object Oriented Programming?

= Different between Object Oriented Programming and
Procedural Programming.

= Different properties of Object Oriented Programming.

= The concept of class and object.

= The concept of dynamic binding and message passing.

= About the advantages and applications of Object
Oriented Programming.

= What is Object Based Language?

1.3 PROCEDURAL PROGRAMMING

Procedural programming is a type of Imperative programming.
In Imperative programming, a program consists of clearly defined step
by step commands to computer. Computer executes these commands or
instructions to perform a specific computational task and obtain the
desired outputs.

2|Page

In Procedural programming, a program is organized as a set of
sub-programs or procedures termed as functions. Each function is a
collection of step by step instructions to perform some specific task.
Functions have to use different data as per requirement of their part of
job and these data are stored in different variables or memory locations.
One of these functions is termed as main function where the program
execution starts. Functions other than the main function may be called
at any time of the program execution by the main function or other
functions or itself to obtain the desired output.

Local | Programming Local | Programming

Data Statements — | Daa Statements
Subprogram 1 Subprogram 2
Global Data
Local | Programming _
D Local | Programming
ata Statements - D
ata Statements
Subprogram 3
Subprogram 4

Figure 1.1: General Structure of Procedural Programming

Example of Procedural programming language:
FORTRAN, COBOL, ALGOL etc.

Some other important features of Procedural programming are
stated as follows:

1) Top down approach of program design is followed in
Procedural programming.

2) More importance is given on the algorithms or functions
than the data in Procedural programming.

3) Variables are broadly categorized into two groups namely
local and global. A local variable is declared inside a

3|Page

4)

5)

7)
8)

function and its scope is limited to that function. On the
other hand, global variables are not declared inside any of
the function available in the program. So, all available
functions can access the declared global variables.

Data can be passed from function to function using
parameter passing mechanism.

Maintenance of data security is difficult as data are stored in
global variables.

Built-in or library or predefined functions may available for
specific computational task.

Extensibility and reusability are difficult to achieve.

It is difficult to characterize real world objects in the
program design.

1.4 STRUCTURED PROGAMMING

Structured programming was introduced to handle the
complexity of large software projects. In this approach, a program is
divided into independent sub-programs or modules. Each module
consists of a set of interrelated functions. Three types of control
structure are used in structured programming to control the execution of
a program. These three control structures are mentioned as follows:

1y
2)

3)

Sequence control structure: It allows execution of the
instructions one by one in an orderly manner.

Selection control structure: It allows program to opt for a
particular control flow from two or more available flows.
Iteration control structure: It allows execution of one or
more instructions repeatedly two or more times as required
by the program.

Example of Structured programming language: C, Ada,

Pascal etc.

Some other important features of Structured programming are
stated as follows:

1)
2)

4|Page

Programs are easy to understand and maintain.
It is a programmer friendly approach and so program
development becomes easier.

3) Error detection and correction in a program are easier.

4) Algorithm is more important than data in this programming
approach.

5) Global data are shared by all modules of a program. As a
result, data security and integrity may be compromised in
this programming approach.

6) Each module may have local data as per requirement of its
computational job.

7) Information can be passed from procedure to procedure.

8) Modification of a program or inclusion of new features to a
program is difficult to carry out.

9) Reusability is also difficult to achieve in Structural
programming.

STOP TO CONSIDER
Most of the Structured Programming languages can also be considered as
Procedural Programming. For example: C language can also be considered
as an example of Procedural programming.

1.5 OBJECT ORIENTED PROGRAMMING
PARADIGM

The concept of Object Oriented Programming was introduced
in 1960s and it became very popular in 1990s. The core intend of this
concept 1S to increase extensibility, reusability, reliability and
maintainability of software systems. In this way of programming,
relationship between real world objects with the program design is
established to solve a computational problem.

Object oriented programming (OOP) can be defined as a
programming paradigm that is based on the concept of class and object.
An object is an instance of some class and it contains data and
functions. In OOP, programs are organized as a collection of
cooperative objects.

S5|Page

Data Data
Members Members
Member Member
Functions Functions
Object 1 Object 2

Data Mgrii[)aers
Members
Member Memb cr

. Functions
Functions
Object 3 Object 4

Figure 1.2: General Structure of Object Oriented Programming

Examples of OOP languages: C++, Java, C#, Python, R,
Visual Basic.NET etc.
Some other important features of Object Oriented Programming

are stated as follows:

Y
2)

3)
4)

5)

6)

6|Page

Program development is easier using OOP.

In OOP, importance is given more on data than the function
or algorithm.

In OOP, data can be hidden within a class to confirm
limited or restricted data access.

Data security and data integrity can be maintained in OOP
with the help of the mechanism termed as data hiding.
Modification of an existing program or inclusion of new
features to a program can be easily performed using the
concept of inheritance in OOP.

Partion work in a project based on objects.

7) Message passing strategies simplify the interface
specification with external applications by allowing objects
to communicate with one another.

1.5.1 Differences between OOP and Procedural Programming

Main differences between OOP and Procedural Programming

are stated as follows:

1) In case of procedural programming, functions have been
given more importance than data and a program is divided
into functions. On the other hand, in case of object oriented
programming, data are more important than functions and a
program is divided into objects.

2) In procedural programming, access specifiers are not
available and as a result data hiding is not possible. On the
other hand, in object oriented programming, data hiding is
possible with the help of access specifiers like private and
protected. So, data are more secured in object oriented
programming.

3) In case of procedural programming, modification of
programs by adding new functions and data is a complex
process. On the other hand, in case of object oriented
programming, modification of programs can be easily
performed by using inheritance. So inclusion of new
functionality and data can be easily performed in object
oriented programming.

1.6 PROPERTIES OF OBJECT ORIENTED
PROGRAMMING

Object Oriented Programming (OOP) paradigm has four key
properties that are Encapsulation, Abstraction, Inheritance and
Polymorphism.

1.6.1 Encapsulation

Data security and data integrity are two most important goal of
OOP. Now, the question is how it can be achieved in OOP? The answer
of this question is Encapsulation. Encapsulation is one of the core

7|Page

properties of OOP by which data are kept together with the methods or
functions that operate on those data in a single unit. In this process, data
access can be restricted from the outside world of the corresponding
unit.

Encapsulation is implemented using the concept of

‘class’. Creating a class in OOP provide the mechanism to combine
data and related functions in a single unit. A class can hide its data from
any outside unauthorized access.

1.6.2 Abstraction

In Object Oriented Programming, Abstraction is the second core
property. It provides users a mechanism that represents only the
essential elements to them and hides irrelevant background details from
them. It helps user to implement complex software systems without
considering the hidden complexity. There are two types of abstraction
available in OOP that are Data abstraction and Control abstraction.
Hiding the details about data is called as Data abstraction and hiding the
implementation details is referred as Control abstraction.

In OOP, Abstraction can be provided to the users by the process
of Encapsulation. A class is created to provide abstraction by hiding all
the necessary elements or information from the outside world of that
class. So, in OOP, classes use the concept of data abstraction and as a
result they are also termed as Abstract Data Types (ADTs).

1.6.3 Inheritance

Inheritance is the third basic characteristic of OOP. In Biology,
inheritance refers the process of receiving features or qualities by
children genetically from their parents. Similarly, in OOP, inheritance
refers to the process of obtaining the properties of one class by another
class. So, we can state that a child class inherits some or all properties
of its parent class. Parent class can also be termed as base class and
child class can also be referred as derived class or sub class. Now
consider a situation where it may happen that different types of objects
are available from different classes which share some common
properties. In such situation, the concept of inheritance can be used
where one parent class can be created with the common properties and
child classes will inherit these properties.

8|Page

/ University \

Academic Administration
Department Research Examination Registration

A 4

Faculty Course Student

Figure 1.3: Example of Inheritance

Now consider figure 1.3 as an example of inheritance. In this
example, Academic and Administration are the derived classes or sub
classes of University class. So, both of these sub classes inherit some
common characteristics of University class like different basic details of
the University. Department and Research are the sub classes of Academic
class. Again Faculty, Course and Student are the sub classes of Department
class.

As inheritance allows the access of some or all properties of an
existing class by a newly created derived class, we can say that reusability
of code and information can be possible with the help of inheritance. On
the other hand, new features can be added to a software system by creating
new sub classes to existing classes. In this process, modifications of
existing classes are not required and new derived classes possess new
properties as well as the properties of their parent classes. So extensibility
is easier in OOP with the help of inheritance.

1.6.4 Polymorphism

Polymorphism is is another important OOP concept.
Polymorphism provides the mechanism to use one function name for
the implementation of more than one computational job. For example, a
function name ‘Summation’ can be used to estimate the summation of
two integer numbers and it can also be used to estimate the summation
of two real numbers using the concept of polymorphism. It means that

9|Page

in a particular program, multiple functions with same name but
different computational jobs are possible. An operator can also be used
for different purposes using this feature. For example, operator ‘+’ can
be used to perform arithmetic addition of two numbers and it can also
be used to concatenate two strings using the concept of polymorphism.

There are two types of Polymorphism available in OOP that are
Compile time polymorphism and Runtime polymorphism. Compile
time polymorphism can be divided into two types that are Function
overloading and Operator overloading. On the other hand, Runtime
polymorphism can be termed as Function overriding or Virtual
function.

1.7 CONCEPT OF CLASS AND OBJECT

We have already learnt that encapsulation is implemented by the
concept of ‘class’ in OOP. We can define ‘class’ as a model or an
outline that combine functions or operations with related data in a
single unit. So a class can be referred as a user defined data type which
contains one or more functions and related data or properties. A class
can also be considered as an abstract data type. Accessing information
in a class can be restricted from external entities by using access
specifiers like private and protected. This feature is called data hiding
in OOP. Data security and integrity can be maintained using data hiding
in OOP.

In general, classes can be categorized into two types that are
abstract class and concrete class. If a class contains one or more
function declarations but the implementation or code of these functions
are not available, then the class is referred as abstract class. Derived
classes of an abstract class contain the implementations of such
functions. On the other hand, if a class contains the implementations of
all its functions then it is termed as concrete class.

In OOP, object can be defined in many ways, in the simplest
term, it is actually instantiation of a class. So, we can state that an
object is nothing but a variable of a class. In this way, an object can be
defined as a block of memory locations which store code of one or
more functions and related information. Functions of an object perform
their task by accessing the information available inside the object.

10| Page

Object of a class is used to represent real-world entities in computer

memory to develop a software system.

For example: Consider a class ‘Student’ with the following

data members and functions.

Class name ¢ Student

Data members

Functions

1)
2)

Student Name
Student Roll Number
Student Address
Student Contact
Student Department
Student Course
Student Percentage

Input_Student Details()
Display Student Details()

Now, if we create instances or variables of class ‘Student’ like
‘Student1’, ‘Student2’, ‘Student3’ then these three are the objects of
class ‘Student’. Representation of object ‘Studentl’ is shown as

follows.

Input_Student Details()

\

Display Student Details()

Student Name
Student Roll Number
Student Address
Student Contact
Student Department
Student Course
Student Percentage

Figure 1.4: Representation of object ‘Student1’

11|Page

STOP TO CONSIDER

Object of an abstract class cannot be created.

1.8 DYNAMIC BINDING

Let us consider a situation where the function name is same in
both derived class and base class. Both these functions contains same
number and type of parameters. But the both functions have different
implementations or we can say that both perform different jobs.During
a function call , which function will be executed is depends upon the
object that is being referenced. If derived class object is referenced,
then function in the derived class will be executed otherwise the
function in the base class will be executed. So, which among the two
functions with the same name will be executed is identified only at
runtime. When linking of a function call to its actual code is identified
only at the run time then this process is called dynamic binding. In OOP
dynamic binding can be implemented with the help of inheritance and

function overriding.

1.9 MESSAGE PASSING

An object is a unit of one or more data and functions. In OOP, a
program is a collection of different objects from different classes. If
required, these objects may communicate each other by sending and
receiving messages. This process is called Message Passing. Message
Passing is implemented in OOP by calling a member function of an
object and the parameter passed to that function is the message or

information to be sent.

12|Page

1.10 ADVANTAGES AND DISADVANTAGES OF
oop

Advantages of OOP are stated as follows:

1) The complexity of developing programs is reduced in OOP
as it is similar to working with real-world objects. So,
complex and large systems can be easily implemented by
OOP.

2) OOP is more reliable and secured as data integrity and data
security can be maintained efficiently.

3) Error detection and correction is easy in OOP as each object
is an independent and isolated entity.

4) In OOP, modification can be made in any class without
affecting other portions of the program.

5) Re-usability of code is possible in OOP.

6) In OOP, new features can be included by writing new classes
and objects without modifying existing classes and objects.

7) In OOP, inheritance can be implemented that allows

derivation of new classes from existing classes.

Disadvantages of OOP are stated as follows:
1) In OOP, program size may be larger than procedural
programs and as a result object-oriented programs are slower.

2) OOP is not appropriate for all types of software development.

1.11 APPLICATIONS OF OOP

In the present era, Object Oriented Programming (OOP)
becomes very popular in the software industry and among software

13|Page

developers due to its different significant advantages. As a result, day
by day its application areas have been increased.

Some of the important application areas of OOP are stated as

follows:

R/ R/ R/ R/)
RIS XS IR X SR X QI X4

7
L X4

Object Oriented databases
Development of Real time system
Embedded systems

Client-Server systems

Decision support systems

Object oriented Operating Systems
Simulation and Modeling
Multimedia applications

Graphical User Interfaces

Office automation systems
Development of Expert Systems
Artificial Intelligence

Computer Aided Design and Computer Aided Manufacturing
systems

Software services related to Internet

OBJECT BASED LANGUAGE

Object Based languages are the programming languages which

support encapsulation and object identity but does not support

inheritance, polymorphism and message passing.

Examples of Object Based Languages: JavaScript, Visual

Basic (VB), Ada etc.

STOP TO CONSIDER

Object Oriented Programming languages support all the properties of
Object Based Programming languages. On the other hand, Object Based
Programming languages do not support all the features of Object Oriented
Programming languages.

14|Page

CHECK YOUR PROGRESS

1. Multiple choices

(A) Which of the following is not true in case of Procedural
programming?
(1) A program is organized as a collection of methods.
(i1) Reusability is difficult to achieve
(ii1) Data is more important than function.
(iv) None of the above

(B) Data security is difficult to maintain in Procedural
programming because .
(1) data are stored in local variable.
(1) data are stored in global variable.
(i11) data are not important.
(iv) None of the above.

(C) Which of the following is not a key control structure available
in Structured programming?
(1) Jump control structure
(i1) Sequence control structure
(i11) Selection control structure
(iv) Iteration control structure

(D) Which of the following is not a feature of Structured
programming approach?
(i) Programs are easier to understand
(i1) Error correction and detection are easier.
(ii1) Extensibility can be easily achieved.
(iv) None of the above.

(E) Which of the following is a feature of Object Oriented
programming approach?
(1) Reusability is easier to achieve.
(i1)) Method is important than data
(ii1) Maintenance of data integrity is difficult.
(iv) All of the above.

15|Page

(F) Which of the following is a key property of OOP?
(1) Encapsulation
(i1) Inheritance
(ii1) Polymorphism
(iv) All of the above

(G) In OOP, Encapsulation is implemented by the concept of
(1) object
(i1) class
(111) function
(iv) None of the above

(H) When a class acquires the properties of another class then the
class is referred as classes.
(1) base
(i1) derived
(1i1) parent
(iv) abstract

(I) Which of the following is an advantage of inheritance?
(1) Enhanced data security
(i1) Reusability
(ii1) Extensibility
(iv) Both (ii) and (iii)

(J) A derived class can access some or all properties of its
class.
(1) base
(i1) abstract
(ii1) child
(iv) None of the above

(K) allows using one function name for multiple
computational jobs.
(1) Encapsulation
(1) Inheritance
(ii1) Polymorphism
(iv) Abstraction

16| Page

(L) Which of the following is not a type of polymorphism?

M)

(N)

©)

(1) Function overloading
(i1) Function overriding
(ii1) Operator overloading
(iv) Operator overriding

Which of the following is not compile time
polymorphism?

(1) Function overriding

(i1) Function overloading

(1i1) Operator overloading

(iv) None of the above

Which mechanism provides linking of a function call to
its actual code only at the run time?

(1) Message passing

(11) Abstraction

(i11)) Dynamic binding

(iv) None of the above

Object Based languages do not support
(1) Inheritance

(i1) Polymorphism

(ii1) Message passing

(iv) All of the above

State whether true or false

(A) Object of an abstract class cannot be created.

(B) Concrete class does not contain the implementations of all its
declared functions.

(C) In OOP, data hiding is possible with the help of inheritance.

(D) Object Based languages support encapsulation.

(E) Object can be defined as a variable of a class.

17|Page

1.13 SUMMING UP

In this unit, the basic concepts of procedural programming and
structured programming were discussed followed by introduction to
Object Oriented Programming (OOP).

In Procedural programming, a program is organized as a set of
sub-programs or procedures termed as functions. In this approach, more
importance is given on the algorithms or functions than the data. In
Procedural programming, variables are categorized into two types that
are local and global. Extensibility, reusability and data security are
difficult to achieve in Procedural programming.

In Structured programming approach, a program is divided into
independent sub-programs or modules. Each module consists of a set of
interrelated functions. Sequence control structure, Selection control
structure and Iteration control structure are three types of control
structure that are used in structured programming to control the
execution of a program. Programs in Structured programming approach
are easy to understand and maintain. Error detection and correction in a
program are also easier. In this approach, algorithm is more important
than data. Reusability and extensibility are difficult to achieve in
Structural programming.

Object oriented programming (OOP) can be defined as a
programming paradigm that is based on the concept of class and object.
In OOP, importance is given more on data than on function or
algorithm. In this programming paradigm, data can be hidden within a
class to confirm limited or restricted data access and hence data security
and data integrity can be maintained in this programming approach.
Reusability and extensibility are easier to achieve in OOP.

Object Oriented Programming (OOP) paradigm has four key
properties that are Encapsulation, Abstraction, Inheritance and
Polymorphism. Encapsulation is the mechanism which combines
related data and the methods or functions in a single unit. In OOP,
Encapsulation is implemented using the concept of ‘class’. Abstraction
provides users a mechanism that represents only the essential elements
to them and hides irrelevant background details from them. Hiding the
details about data is called as Data abstraction and hiding the
implementation details is referred as Control abstraction. In OOP,

18| Page

inheritance refers the process of obtaining the properties of one class by
another class. Reusability and extensibility can be possible with the
help of inheritance in OOP. Polymorphism provides the mechanism to
use one function name for the implementation of more than one
computational job. It also provides the mechanism to use an operator
for different purposes. There are two types of Polymorphism available
in OOP that are Compile time polymorphism and Runtime
polymorphism. Function overloading and Operator overloading are
Compile time polymorphism and Function overriding or Virtual
function is the Runtime polymorphism.

A class can be defined as a model or an outline that combine
functions or operations with related data in a single unit. An abstract
class does not contain the implementations or code of one or more
declared functions. If a class contains the implementations of all its
functions, then it is termed as concrete class.

In OOP, an object can be defined as instantiation of a class.

Dynamic binding is the mechanism where linking of a function
call to its actual code can be identified only at the run time.

Message Passing is the process by which objects can
communicate each other by sending and receiving messages.

Some of the important application areas of OOP are Object
Oriented databases, Development of Real time system, Embedded
systems, Client-Server systems etc.

Object Based languages are the programming languages which
support encapsulation and object identity but does not support
inheritance, polymorphism and message passing.

ANSWER TO CHECK YOUR PROGRESS

L (A) i), B)), (C) (1), (D) (i), (E) @), (F) {iv),
(G) (i), (H) (i), @) Gv),) @), K) (i), (L) @iv),
M) (1), (N) (i), (O) (iv)

2. (A) True, (B) False, (C) False, (D) True,
(E) True

19|Page

1.14 POSSIBLE QUESTIONS

1)
2)

3)
4)

S)
6)
7)
8)
9)
10)
11)

Write down the important features of Procedural programming
and Structured programming.

Define Object Oriented Programming (OOP). Give example of
any two OOP languages.

Differentiate between OOP and Procedural programming.
Write down the advantages and disadvantages of Structured
programming.

Write down the advantages and disadvantages of OOP.

Explain different key properties of OOP.

Write down the advantages of Inheritance in OOP.

Define dynamic binding.

What is message passing?

Give any three application areas of OOP.

Differentiate between Object Oriented Programming and
Object Based Programming.

1.15 REFERENCES AND SUGGESTED READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering C++.

Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

20| Page

UNIT 2 : INTRODUCTION TO C++

Unit Structure:
2.1 Introduction
2.2 Unit Objectives
2.3 History of C++
2.4 Features of C++
2.5 Structure of a C++ Program
2.6 Writing, Compiling and Executing a C++ Program
2.7 Errors in C++
2.8 C++ Character Set
2.9 C++ Tokens
2.9.1 Keywords
2.9.2 Identifiers
2.9.3 Constants, Operators and Special Characters
2.10Data Types
2.10.1Primary/Built-in Data type
2.10.2 Derived Data Type
2.10.3 User Defined Data Type
2.10.4 typedef
2.11Variables& Storage Classes
2.120utput and Input in C++
2.130perators
2.13.1Assignment Operator
2.13.2 Arithmetic Operators
2.13.3 Relational Operators
2.13.4 Logical Operators
2.13.5 Increment and Decrement Operators
2.13.6 Conditional Operator
2.13.7 Bitwise Operators
2.13.8 Special Operators
2.14 Operator Precedence and Associativity
2.15 Summing Up
2.16 Answers to Check Your Progress
2.17 Possible Questions
2.18 References and Suggested Readings

21| Page

2.1 INTRODUCTION

C++ is an object oriented programming language. Because C++ is a
superset of C, most C constructs are allowed in C++ and have the
same meaning.Almost all C and C++ programmes are nearly
identical, with a few minor exceptions.The C++ language is case-
sensitive. This means that letters in uppercase and lowercase are
regarded to be distinct. A variable called sum is not the same as
Sum, which is not the same as SUM.C++'s object-oriented features
enable programmers to write complex programs that are clear,
scalable, and easy to maintain.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

e know history of C++ language and its features.

¢ understand the structure of a C++ program.

e know how to write, compile and execute a C++ program in
Windows and Linux operating system.

e Identify the different types of errorsthat program
compilation.

e Explain different types of tokens like keywords, identifiers,
constants, strings and operators in C++

e know about data types and its categories in detail.

e learnthe basic concepts of wvariables, Input/Output and
Functions in C++.

e explain different operators and their use.Also understand the
concept of operator precedence and associativity.

2.3 HISTORY OF C++

The C++ programming language has a history going back to 1979,
when Bjarne Stroustrup was doing work for his Ph.D. thesis. One of
the languages, Stroustrup had the opportunity to work with was a
language called Simula which is regarded as the first language to
support the object-oriented programming paradigm. Stroustrup
found that this paradigm was very useful for software development,
however the Simula language was far too slow for practical use.

Shortly thereafter, he began work on "C with Classes", which as the
name implies was meant to be a superset of the C language. His

22| Page

language included classes, basic inheritance, inlining, default
function arguments, and strong type checking in addition to all the
features of the C language.

In 1983, the name of the language was changed from C with Classes
to C++. The ++ operator in the C language is an operator for
incrementing a variable, which gives some insight into how
Stroustrup regarded the language.

In 1985, Stroustrup's reference to the language entitled The C++
Programming Language was published. That same year, C++ was
implemented as a commercial product.In 1990, The Annotated C++
Reference Manual was released. The same year, Borland's Turbo
C++ compiler was released as a commercial product. Turbo C++
added a plethora of additional libraries which had a considerable
impact on C++'s development. Although Turbo C++'s last stable
release was in 2006, the compiler is still widely used.

2.4 FEATURE OF C++

C++ Language is simple in terms of syntax and functionalities.
Following are the important features of C++ language.

o Robust language with a very rich set of operators and library
functions. C++ has provisions for creation of programmers’
own library of functions.

e Due to its variety in data-types and also rich set of powerful
in-built functions, the programs written in it are fast and
efficient.

e C++ is an object-oriented language, unlike C which is a
procedural language. This is one of the most important
features of C++. It employs the use of objects while
programming. These objects help you implement real-time
problems based on data abstraction, data encapsulation, data
hiding, and polymorphism.

o Although C++ is not platform-independent as compiled
programs on one operating system won’t run on another
operating system But in another term, portability refers to
using the same piece of code in varied environments.

23| Page

o It is important to note that C++ is a high-level programming
language, unlike C which is a mid-level programming
language. It makes it easier for the user to work in C++ as a
high-level language as we can closely associate it with the
human-comprehensible language, that is, English.

2.5 STRUCTURE OF A C++ PROGRAM

The structure of C++ program with its programming elements is
shown below:

Pre-processor directive
(e.g., Header File inclusion)

Global Variable(s)

User-defined Function/ClassDeclarations

Main Function

User-defined Function/Class Definitions

A simple C++ program that prints ‘Hello World” on the
monitor(output screen) is shown below.

#include<iostream.h>
void main()

{
}

cout<<“Hello World!”;

Now, let’s try to understand the above program as per the structure
mentioned above.

First line is the Pre-processor Directives. We know that natural
languages like Assamese, English etc. have their own
dictionary/library. Thus, C++ also has its library and it consists of
some pre-written files, known as header files. Here, in this
program, the header file, namely ‘iostream.h’ is included as it the
basic header file that needs to be included for a simple C++
program.

STOP TO CONSIDER
The extension of a header file in C++ is “.h’. The header file, iostream.h
contains the basic input/output functions and other items those are]
important for a simple C++ program.

24| Page

The program doesn’t have any declaration for Global Variable(s).

The program doesn’t have anyUser-defined Function/Class
Declaration.

Every C++ program must have a function, main () where the
execution begins. All the statements of the programs are written
inside the main() function enclosed within { }. The statement

cout<<“Hello World!”*;

will print the message, Hello World!, on the computer
screen/monitor. The necessity of the use of ‘void’ will be
understood in the following sections/units.

Each and every line in the above program is called a Statement. As
in English language a sentence is marked end with full-stop(.), a
C++ statement ends with a semicolon(;) except a few e.g., the
above mentioned Pre-processor Directives.

2.6 WRITING, COMPILING AND EXECUTING A
C++ PROGRAM

From writing a C++ program to its execution, various softwares are
required. These are namely: a Text Editor for editing; a Compiler
fortranslating C++ program to machine language instructions ; a
Debuggerto identify coding errors at various programming stages; a
Linkerto link object modules of a program into a single object file.

Source Code —————=1 Object Code F———"> Machine Code
Compiler Linker

Thus, each of the softwares is to be installed in your machine
separately for this purpose. There are software packages available
bundled with all the above-mentioned system softwares with
additional functionalities. Thus, these softwares enable a
user/programmer to write, compile, debug and execute (run) a C++
program. This kind of packages is generally termed as Integrated
Development Environment (IDE). Not only for C++,IDEsare also

25| Page

available for other programming languages. Turbo-C++ is an IDE
for C language.

For a C+ program to execute, the file (saved with the extension .cpp
or .CPP) containing statements written in C++ has to be translated
from a high-level language to a low-level language (executable
code). This task is accomplished with the help of compiler and
linker. A compiler takes in a source code and produces an object
code which is further passed to a linker. A linker links the source
program with the external entities such as the header files and other
user-defined files, if any, to produce the final executable code.

For Windows users, the procedure for writing and executing a
C++ program in Turbo-C++ is shown below.

1. Open the Turbo-C++ IDE.

S
Double-click the icon. It can be found in C:\TC\bin folder.
Once Turbo-C++ opens up, one should be able to see the
environment like below.

2. Select ‘New’ from the ‘File’ menu.

Write the program and save it in a location of your choice. The
default location where a program is saved is ‘C:\TC\bin’. To
save a program, press F2 or select ‘Save’ from the ‘File’ menu.
The extension of the file must be .cpp or .CPP for a C++
program.

3. To compile select ‘Compile’ from the ‘Compile’ menu. (or
press Alt+F9)

If there are some errors in the program, the error messages will
be displayed in the ‘Message’ box. In Example 1 a semi-colon is
missing at the end of the statement. Such compile-time errors
need to be corrected for a successful compilation.

4. After a program is compiled, it can be executed. To do so, select
‘run’ from the ‘run’ menu.

The output of the program will be displayed on the screen. For
our example, ‘Hello World’ will be displayed.

26| Page

2.7 ERRORS IN C++

There are various types of errors that may occur during compilation
and execution of a C++ program. These are:

Syntax Error

Such error occurs when a statement does not comply by the rules
of the language. Those errors are detected by the compiler and
need to be corrected before the code is executed. So, this kind of
errors is also known as a compile-time error. Some common
compile-time errors are statement missing semi-colon(s), mis-
spelt keywords, undefined identifier etc. The example below has
a statement missing semi-colon.

Example-1:

#include<iostream.h>
#include<conio.h>
void main()

{
clrser();
inta,b //semi-colon(;) missing
a=2;
b=3 //semi-colon(;) missing
cout<<“Sum="<<a-+b;
getch();

}

Compilation OQutput: Declaration syntax error, statement
missing semi-colon

Semantic Error

These errors violate the meaning or the logic of the language and
hence fail to produce the desired result. These errors are also
detected by the compiler most of the time. Consider the
following statements of C++ program.

int a=2, b=4, c;
at+tb=c;

Compilation Output: Lvalue required
Run-time Error

Even after successful compilation, there are times when a
program fails to execute properly. Some situations which may
generate run-time errors are:

27 |Page

- when a number is divided by zero,
- while trying to open a file that does not exist,
- accessing an array beyond its boundary etc.

Consider the following statements,

b = x-y;

c=al/b;

The symbols ‘-’ and ‘/’ means subtraction and division
respectively. Now, the above statements are correct. But if it
happens that for the first statement the value of bis 0. Then in
the second statement a will be divided by 0, a/0 which is an
invalid operation and will lead to termination of the program

execution.
2.8 C++ CHARACTER SET
C++ Character Set
Letters: Digits:
Lower Case: a.....z 0,1,.....9
Upper Case: A....Z
Symbols:
, Comma } Right brace
. Period [Left bracket
; Semicolon] Right bracket
: Colon <Opening angle bracket/
? Question mark or less than sign
¢ Apostrophe >Closing angle bracket/or
“ Quotation mark greater than sign
! Exclamation / Slash
Hash \ Backslash
$ Dollar sign | Vertical bar
A Caret = Equal sign
& Ampersand - Minus sign
* Asterisk _ Underscore
(Left parenthesis + Plus sign
) Right parenthesis ~ Tilde
{ Left brace
White Spaces:
Blanks New Line
Horizontal Tab Carriage Return
Vertical Tab Form Feed

Table-2.1: C++ Character Set

28| Page

A character denotes an alphabet, digit or special symbol. Like
natural languages, computer language will also have well defined
character set, which is useful to build the programs.

The C++ Character Set includes alphabets: a to z (lower case), A to
Z (upper case), digits: 0 to 9, special symbols: !, @, #, $, % and
many more. It also includes white spaces such as blank, tab, new
line, form feed etc. Table-2.1 list the C++ Character Set.

The C++ language follows the ASCII (American Standard Code for
Information Interchange) for representing characters where each
character has a unique 7-bit binary value representation. The
characters are coded from 0000000 to 1111111, forming a total of
128 characters.

There are few ASCII characters which are unprintable, i.e., they will
not be displayed on the screen. These are used only to perform some
specific functions aside from displaying text. Examples are
backspace, newline, alarm.

2.9 C++ TOKENS

In a C++ program, Tokens are the building blocks. A Token is the
smallest individual element or unit in a Program. Tokens are
composed of the characters, symbols etc. Programs are coded using
these tokens according to the rules of the language. In C++language,
tokens can be classified under five categories and they are:

= Keywords
= Identifiers
» Constants
» Operators
= Special Symbols/Characters
Let us consider the following C++ program.

Program-1:

void main()

{
int x;
cout<<“Enter a number:”;
cin>>x;
x=x+t12*x;
cout<<“Incremented value:”’<<x;

29| Page

Tokens used in the above Program-1 under different categories are
presented in the Table: 2.2.

Type of Tokens Tokens Used
Keywords int, void
Identifier X, main, printf

Enter a number:, 1.2, Incremented
Constant

value:

Addressof (&), Addition (+),
Operators Multiplication (*)
Special Symbols Gt S %, &,

Table: 2.2

2.9.1 Keywords

Keywords are the reserved words that have well-defined purposes.
A Keyword should be used carefully and not for any other purposes
like naming a variable or function. Keywords, when used in
programs, should not be modified or altered from their defined

format.
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
bool asm break class
catch delete explicit export
friend inline false true
mutable namespace private protected
public new operator try
catch typeid typename volatile
wchar t using template this
throw virtual endl

Table: 2.3

They are specific to programming languages, that is, every
programming language has their own set of keywords. Table-2.3
gives the complete set of keywords for the C++ language.

30| Page

2.9.2 Identifiers

Identifiers are the name given to the entities such as variables,
constants, functions, files, structures, classes etc. Just as persons,
cities or streets have names, the C++ entities such as variables,
functions, files etc. are given unique names (identifiers) for their
identification in a C++ program.

Rules for Naming Identifiers:

Identifiers are basically composed of alphanumeric characters i.e.
alphabets or digits. The basic rules for naming an Identifier are:

» A valid identifier can have letters, digits and underscores.

» The first character should be an alphabet or an underscore.

» No special symbols except the underscore, is allowed in an
Identifier.

» The Identifiers could be of any length but only the first 31
characters are significant.

» Keywords cannot be used as identifiers.

Following are some examples of identifiers-

Identifier Valid? Remark

Sum valid

char invalid keywords are not allowed
price# invalid special symbols not allowed
var 1 invalid blank space not allowed
avg num valid

Although any combination of letters, numbers and underscore is an
identifier, it is advisable to create an identifier that reflects the
meaning and purpose of the entity.

2.9.3 Constants, Operators and Special Characters

Constants can be defined as fixed values that do not alter during the
execution of a program. Following are the different types of
Constants:

¢ Integer Constants

e Real Constants

e Character Constants
e String Constants

31| Page

e Special Character Constants
e Symbolic Constants

Operators are one of the important building blocks in C++
language. Operators are used to perform specific mathematical and
logical computations/comparisons on operands. Few examples of
operators are: +, -, /, * etc. In later units Operators will be
discussed in detail.

Special Symbols are the symbols other than the operators. These
are used in programs for various purposes as and when necessary.
Refer to Table-2.2 for special symbols used in Program-1.

Now, let’s discuss different types of Constants one-by-one.

e Integer Constants:

Integer Constant is a whole number (without decimal point). It can
be defined as a sequence of digits (from 0 to 9). An Integer
constant can be preceded by — (for -negative value) or optional +
(for positive value). Following are some examples of Integer
constants,

é:)‘:;f:: . Valid? Remark

1 valid

300 valid

-20 valid

+15 valid

20.3 invalid Not a whole number

(without decimal point)

1,200 invalid Comma not permitted

between digits

e Real Constants:

Real Constant is a number containing fractional part (with
decimal point). 1t is also called Floating Point Constant. Like
Integer Constant it also can be preceded by — or optional +. For
example, following are some valid Real Constants.

205 -12.40 +2.67 -50

A Real Constant can also be expressed in exponential form. The
form is:

mantissa e exponent

32|Page

Mantissa can either be an integer or a real number. The Exponent
is an integer with — sign or + sign(optional). ‘e’ separates the
mantissa and exponent. Instead of ‘e’ we can write ‘E’ also.
Following examples illustrates this representation.

In Real Form In Exponential Form

1286.45 12.8645¢2 or 12.8645E2

0.034 3.4e-2 or 3.4E-2

1,200 Comma not permitted between
digits

e Character Constants:

A Character Constant is a single alphabet/digit/'symbol/blank
space enclosed in single quotes (°’). For example, ‘a’, ‘A’, ‘5°, ‘9’
are valid Character Constants. But do not confuse ‘5’ and 5 as
first one is a Character Constant and other one is an Integer
Constant.

e String Constants:

A String Constant consists of a sequence of characters
(alphabets/digits/symbols/blank spaces) enclosed in double quotes
(“ ™). Following are few examples of valid String Constants.

“A” “IDOL” “Hello! Welcome to IDOL” “1+2+3+4”

e Special Character Constants:

There are some Special Character Constants which are basically
used in functions that display data. These character constants
combine ‘\” with an alphabet/symbol. These character constants are
also termed as Backslash Character Constants. Following Table-
2.4 lists the different Special Character Constants available in C++
with their meaning.

Special
Character Meaning
Constants
“n’ adding new line
“\a’ adding an alert(bell)
‘\b’ applying backspace
P adding form feed
r’ adding carriage return
s applying horizontal tab
AV’ applying vertical tab
\? adding question mark in the output
AV adding back slash in the output

33|Page

\0° null value

\” adding single quote in the output

\” adding double quote in the output

Table-2.4

Program-2(in Turbo-C++): Using few of the above special
character constants

#include<iostream.h>

#include<conio.h>

void main()

{
clrscr();
cout<<“Courses offered by GUIDOL\a”;
cout<<‘“\nMA in Assamese”;
cout<<‘“\nMA in English”;
cout<<‘“\tMA in Economics”;
cout<<“\nMA in History”;
cout<<‘“\\ MA in Political Science”;
cout<<“\tand many other courses\?\?\?”’;
getch();

}

Now, before discussing the Program-2, we need to know some
basic statements in C++. In case of Turbo-C++ (in Windows) the
statements,

clrscr();
getch();

are necessary. But in case of the Unix/Linux, the above statements
are not necessary at places where they were put in the above
program.

The function clrser() is used to clear the screen. It is contained in
the header file ‘comio.h’. It is basically used in programs using
Turbo-C++ IDE(in Windows) as because while running the
programs the output screenmay contain the output from earlier
executed programs. So, here in the Program-2 this function is used
before the first output statement (i.e. cout).But in Unix/Linux, the
C++ library does not contain the header file ‘comio.h’ and so
clrscr() function cannot be used.

Like eclrser() function,the getch() function also contained in
‘conio.h’. So, in Unix/Linux this function does not work. This
function takes a character from the keyboard. In the Program-2 this
function is the mentioned as the last statement but logically it is not

34| Page

required.Calling the getch() function as the last statement keeps the
program waiting for a character input(i.e. a key to be pressed) to
complete execution. This, in turn, lets the users view the previous
outputs displayed on the screen.

The other statements except the last one will display the messages
put within “ ” (double quotes) on to the screen. The cout is used to
display data on to the screen. In later units, the concept of cout will
be discussed in detail. The << is known as insertion operator and it
is used along-with coutfor displaying data on to the screen.

Now let’s discuss the output of the above program.

Output:

Courses offered by GUIDOL

MA in Assamese

MA in English
MA in Economics

MA in History\ MA in Political Science
and many other courses???

Explanation:

v" First cout displays the message (within “).

v Second and third cout displays the messages (within “ ») in
new lines because of the special character constant ‘\n’.

v Fourth cout displays the message in new line but after a tab
space because of the special characters ‘‘n” and ‘\t’
respectively.

v' Fifth cout displays the message in new line because of the
special character “\n’.

v" Sixth cout displays the message in the same line just after the
last message in the same line printed with the symbol ¢\’ and a
single space before the message because of the special
character ‘\\’ followed by a space. This message is not
displayed in a new line for not using the “\n’ special character.

v" The last cout displays the message in new line but after a tab
space and three ‘?’ marks are at the end of the message
because of ‘\t’ and three “\?” special character constants.

e Svymbolic Constants:

A Symbolic Constant can be defined as the combination of a name
(except keywords) and a constant value.

The syntax of defining Symbolic Constant is

35| Page

#define symbolic-constant-name constant-value

and it should be defined before “main()”. In the process of
compiling a program, first there is a pre-processing step in which,
apart from other tasks, symbolic constants are processed, i.e.
wherever in the program the symbolic-constant-name appears it is
replaced by the constant value. Consider the following C program.

Program-3(in Turbo-C++): Demonstrates the use of Symbolic
Constant.

#include<iostream.h>
#include<conio.h>
#define PI 3.14
void main()

{
int rad;
float area;
clrser();
cout<<“Enter the value of Radius:”;
cout<<rad;
area = PI *rad*rad;
cout<<“The area of the circle’<<area;
getch();

}

In the above program (Program 3)PI is the symbolic constant with
the value 3.14. So, the statement,

area = PI*rad*rad;
during pre-processing, becomes,
area = 3.14*rad*rad;
i.e. PL is replaced by 3.14(as defined).

In the last cout statement, you have noticed the use of << operator
twice. In a coutstatement, we can display more than one data by the
repeating the << before each and every data. Suppose in the above
program, we need to display the value of PI and rad in a single
cout, then the statement will be:

cout<<Pl<<rad;

36| Page

2.10 DATA TYPES

In a Program, we can store/assign data and use the stored data along
with other functions. C++ offers a wide variety of “Data Types”.
C+ also allows creation of new Data Types and its customization as
per need of a program. Data Types in C++ can be broadly classified
in three classes (Fig-2.1), namely:

» Primary/Built-in Data Type,
» Derived Data Type and
» User-Defined Data Type.

Data Types

Built-in Derived Data User-Defined
Data Types Type Data Types
void Array Structure
Float lUnion
Character Class
Integer

Fig-2.1: Data Types in C++

2.10.1 Primary/Built-in Data Type

37| Page

The Built-in Data Types available in C++ are listed in Fig-2.2.C++
supports five fundamental typeschar, int, float, double and void.
The others are the extensions of the fundamental types.

Each of the fundamental type has its size (in bytes) and thus
depending on the size it has value range. The size in bytes (1 byte =
8 bits) and range of each of the fundamental types are listed in the
following Table-2.5.

Built-in Data Types

Character Integer Float void
char —> i.nt . float
signedchar —» signedint double
—» unsigned int longdouble

unsigned char
— shortint

— signed short int
— unsigned short int
— long int

—Psigned long int

— unsigned long int

Fig-2.2: Built-in Data Types in C++

Data Size
Type i i) Value Range
char 1 -128 to 127
int 2 -32,768 to 32,767
float 4 3.4e-38 to 3.4e+38
double 8 1.7¢-308 to 1.7e+308
Table-2.5

For a character data, the fundamental type is char and it is of
sizelbyte. It is to be noted that every alphabet/number/symbol is
associated with an ASCII value (a whole number). For example,
ASCII value for ‘A’ is 65, ‘a’ i1s 97, ‘=" 1s 104, ‘+’ is 43 etc.

38| Page

The fundamental type for an Integer data is int. The size of int type
depends on the word size for a particular machine. Aword is
defined as the maximum number of bits that a CPU can process at a
time. A word size can be as high as 64 bits(8 bytes). For our
discussion, let’s consider that the word size is of 16 bits(2 bytes).

The terms, short and long (from Fig-2.2), are called Modifiers, i.e.
they are used to modify/extend the size of the fundamental types
and thus the value range also increases.

e In case of short, the size is same as the size of the associated
fundamental type. For example, sizes of int data-type and
short int data-type are the same, i.e. 2 bytes.

e But the long modifier generally doubles (exception in few
cases) the size of the associated fundamental type. For
example, the size of the long int data-type is 4 bytes, i.e. the
double the size of int/short int type (2 bytes).

The terms, signed and unsigned (from Fig-2.2), are called
Qualifiers, which have no effect of the size of the type but have
effect on the value range.

e In case of signed data, the left-most bit is reserved for the
sign (positive ornegative), and so this will allow data to be
either negative or positive.

e In case of unsigned data, no bit is reserved for the sign and
thus all the bits are used for the data.

o If signed/unsignedis not mentioned then by default that
fundamental type will be treated as signed one.

And therefore, in signed data, the values ranges from a —ve to a
+ve value. But in unsigned data, the values ranges from 0 to a +ve
value. For example, in case of signed char data-type the size is 1
byte and value range is -128 to 127. But in case of unsigned char
data-type the size is also 1 byte but the value range is 0 to 255 as
for the maximum value (255) all the 8 bits will be 1s [11111111].

STOP TO CONSIDER
The maximum value in 8 bits is 255
(1%27)+ (1%20)+(1%2%)+ (1%24)+ (1%23)+ (1%22)+ (1*¥21)+ (1%20)
128+ 64 + 32 + 16 + 8 + 4 + 2 + 1

The following Table-2.6 illustrates these more clearly.

| Type | Size | Value Range

39| Page

(in bytes)
char/signed char 1 -128 to 127
unsigned char 1 0 to 255
int/signed int/short 2 -32,768 to 32,767
int/signed short int
unsigned int/unsigned short 2 0 to 65535
int
long int/signed long int 4 -2,147,483,648 to
2,147,483,647

unsigned long int 4 0 to 4,294,967,295
float 4 3.4e-38 to 3.4e+38
double 8 1.7e-308 to 1.7e+308
long double 10 3.4e-4932 to 1.1e+4932

Table-2.6

2.10.2 Derived Data Type

Array is the Derived Data Type supported in C++. Basically an
array is a list of continuous memory locations (in primary memory)
of same type. Array not only supports fundamental types or its
variations but also User Defined Types.

2.10.3User Defined Data Type

The term, “User Defined Data Type”, is self explanatory. This kind
of data type is created by the User (the programmer) according to
his/her need. These are three user defined data types and they are:
Class,Structure, Union and Enum.

Class, Structure and Union will be discussed in later units.

Lets’ discuss about Enum. We know that the set from where an
integer, real or character value can be considered. For example, an
integer(int) may be any value ranging from -32,768 to 32,767 (from
Table-2.6). But there may be situations where we need to restrict the
range/pool of values according to the need for a specific purpose.
So, Enum(enumeration) is a User Defined Data Type that can take
one value from the values those are predefined. enum keyword is
used to define the enumerated data type. The syntax for defining this

type is:
enum enum-name {value-1, value-2, , value-n};

where, enum-name is the name of type and value-1, value-2,.... is
the list of values.

2.10.4 typedef

40| Page

The typedef keyword is used to temporarily (in most of the cases)
assign an alias ie. alternative ~ name to a
fundamental/derived/user defined data type.

The syntax for using typedef is:
typedef existing-type-name alternative-name;

For example, in a program we have to work with a data-type
unsigned long int. This data type name is a long one. Now, we can
assign, say ulint, as a new name which is much shorter than name
of above the type using the typedef. So, we can do this by using the
following statement:

typedef unsigned long int ulint;

Now, in the program, when we have to declare a variable of type
unsigned long int we can use the new name ulint instead. Suppose
we want to declare a variable called SUM of the above type then we
can type,

ulint SUM;

STOP TO CONSIDER

typedef is used with user defined data types, when names of the data types|
become slightly complicated and too long to use in programs.

2.11 VARIABLES& STORAGE CLASSES

2.11.1 Variables

A variable is a named memory location (in main memory) where
one can store different values (of a particular #ype) at different
times. In Program-1, the identifier ‘x’ is a variable which can
store an integer value. Now, you may think of how you we can say
that variable ‘x’ is an integer variable!!!

int x;

The above statement in the Program-1 ensures that ‘x’ is an integer
variable as int is mentioned before ‘x’.

Like registering (declaring) a name to a newly created company
before it starts operating, avariable should also be declared (i.e.
named) before its use.

The syntax for declaring a variable is:

41| Page

data-type variable-name;

Here, data-type refers to the type values the variable can store at a
time. This kind of statement is known as Variable Declaration
Statement.

The rules for naming a variable is the same the rules for naming an
identifier as already discussed in Section 2.9.2.

There are different ways for declaration of variable(s) in a C+
program and these are:

v A variable should be declared as in the syntax mentioned
above.

v For declaring more than one variable of same type in one
statement, the syntax is:

int a, b, ¢, sum;

where a, b, ¢ and sum are integer variables. We may also
declare the above four variables individually like,

int a;

int b;

int c;

int sum;

v For variables of different types, different statements are

required for each of the types. Suppose you want to declare
a, b as integer variables and x, y as floating point variables.
Then we have to declare them as:

int a, b;
float x,y;

2.11.2 Storage Classes

As mentioned earlier a variable is a storage areaof primary memory
where we can store/assign a value. Apart from primary memory, the
CPU registers are also a kind of memory locations for the variables
declared in a C++ program. Here comes the concept of Storage
Class.

Storage Class is basically related with declaration of variables. It
basically specifies the part of storage space (memory/registers) to
allocate memory for variables declared in C++ program. It also
specifies the scope of a variable i.e. the lifetime of a variable during

42 | Page

execution. Lifetime means that whether the declared variable will
exist during the execution of the program or will exist only within
the block (generally related with Function) in which the variable is
declared. These two kinds of lifetime are termed as Global and
Local. The Storage class also determines the variable visibility level
i.e. a variable may have global lifetime but only visible from within
the block in which it is defined.

Four storage classes are provided in C++and they are listed in the
Table-2.7 with their meaning.

s:;nge Meaning

auto Local variable with Local lifetime, i.e. only to
Function(block) in which it is declared. It is the
default specifier.

static Local variable with Global lifetime.

extern Global variable with Global lifetime, i.e., accessible
from everywhere in a C++ program.

register | Local variable whose storage space is the CPU
register.

Table-2.7
Thus, the syntaxfor a variable declaration that uses a storage class
is:

Storage Class_Specifier Data_Type Variable Name;

Following are the few variable declaration statements that use the
storage class specifiers.

auto int a; < Automatic Storage Class
static intb; < Static Storage Class
extern char c; €External Storage Class
register int d;<Register Storage Class

2.12 OUTPUT & INPUT IN C

In a C++ program to display output on to the screen and as well as
to take input during the execution. There are functions which are
used for output and input in C++.

43 | Page

Output in C++:

As discussed earlier, cout along with the << operator is used to
display message, e.g., the statement

cout<<“Welcome to IDOL”;

will display the message, Welcome to IDOL, on to the screen. The
syntax of the cout is(in a simplified form):

cout<<Variable-1<<Variable-2<<...;

Input in C++:

In Program-2, the statement

cin>>rad;

is an input statement. Here cin is used to take input during the
execution of the program. The >> operator is known as extraction
operator which is to be used along-with cin. Syntax of cin is,

cin>>Variable-1>>Variable-2>>...;
Consider the following C program.
Program-3: Program which takes a number as input and displays it.

#include<iostream.h>
#include<conio.h>

void main()

{ .
int a;
clrser();
cout<<“Enter an Integer Value: ”;
cin>>a;
cout<<““The Value = "<<a;
getch();

h
Output:

Enter an Integer Value: 50

The Value = 50

Explanation:

v When the first cout executes, it will display the message “Enter
an Integer Value:”

44| Page

v' The execution of cin will display the cursorblinking at the end
of the above message. The blinking cursor means the
requirement of a value to be typed-in

v" The last cout will now display the message with the value of a,
i.e. 50, as in the mentioned in the output.

Program-4: Program which takes two numbers as input and display
them.

#include<iostream.h>
#include<conio.h>

void main()

{
int a, b;
clrser();
cout<<“Enter two numbers: ’;
cin>>a>>b;
cout<<““The Values are "<<a<<“and”<<b;

getch();

Output:

Enter two numbers: 5 100
The Value are 5 and 100

Or, the program can also be written as:

#include<iostream.h>
#include<conio.h>

void main()

{
int a, b;
clrser();
cout<<“Enter a number: ”*;
cin>>a;
cout<<“Enter another number: ”’;
cin>>b;
cout<<““The Values are ’<<a<<“and ”<<b;
getch();

h
Output:

Enter a number: 5

45| Page

Enter another number: 100
The Values are 5 and 100

2.13 OPERATORS

Operators in C++ are classified into the following categories:

Assignment Operator

Arithmetic Operators

Relational Operators

Logical Operators

Increment and Decrement Operators
Conditional Operators

Bitwise Operators

Special Operators

e A ol e

Before discussing about the above categories of operators, let’s
first discuss about Expressions and the Assignment Operator ‘=’.

2.13.1 Assignment Operator

Assignment operator is represented using the symbol ‘=’. This
operator is used to store value in a variable, i.e. Assignment
operator is also used for

e assigning value of a variable to another variable,

e assigning the result of an expression to a variable (will be
discussed in 2.5.2) and

e assigning the return value form a function call to a variable,
which will be discussed in later units.

Few examples of assignment operator are mentioned the Table-2.8
below:

Examples Meaning

_ 100 is assigned to the variable A (i.e., A now
A=100 .
contains 100)
value of A is assigned to the variable B (i.e.,
B now also contains 100)
values of A and B are added and the total is
assigned to the variable C
the result of function ‘sum()’ is assigned
VAL=sum(10, 20) | to variable VAL (will be discussed in Unit:
4: Functions)

Table-2.8

B=A

C=A+B

46 | Page

2.13.2 Arithmetic Operators (and Expression)

In the following Table-2.9, the arithmetic operators are listed.

Operators Meaning
+ Addition
- Subtraction or Unary Minus
* Multiplication
/ Division
% Modulo (Remainder after division)

Table-2.9: Arithmetic Operators

The uses of arithmetic operators are illustrated in the Table-2.10.
Suppose, A and B two integer variables and they contain the values
50 and 10 respectively.

Operator Example Meaning Result
+ A+B Add A with B 60
A-B Subtract B from A 40
* A*B Multiply A with B 500
/ A/B Divide A by B 5
Remainder from A 0
Vo A%B] Givide by B
Multiply A with -1, -50
- (unary) - A i.e., will changes

A’s sign.

Table: 2.10

Suppose we have to use a mathematical formula “a+b+2ab” in a
C++ program. Now, consider the value of ais 2 and b is 3. So, in a
program, for the above tasks we can write statements:

int a, b, res;

a=2;
b=3;

res = at+b+2*a*D;

Except the first one, all the other three statements are Assignment
Statements. But in the last statement, the left-hand side of = is a
variable and right-hand side is the mathematical operation. \The
mathematical formula ‘a+b+2*a*b’ is an expression.

2.13.3 Relational Operators

47 |Page

Relational Operators are used for comparison of two values (also
stored in variables). Table-2.11 presents the relational operators in
C++ and their meanings.

Operators Meaning
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
1= not equal to

Table-2.11: Relational Operators

Relational operators are used in decision making/control statements
such as if-else-elseif, do-while, while, for etc. You will get
acquainted with these kinds of statements in the following units.

Operator Example Meaning Result
< A<B is A less than B FALSE
> A>B is A greater than B TRUE

<= A<=B is A less than or equal | FALSE
to B
>= A>=B is A greater than or TRUE
equal to B
== A== is Aisequal to B FALSE
1= A!=B is A is not equal to B TRUE
Table-2.12

The uses of relational operators are illustrated in the Table-2.12.
Suppose A and B are two integer variables having values 50 and 10
respectively. As you can see that the result of each of the
expressions is either TRUE or FALSE, which means that if an
expression satisfies the condition then it is TRUE otherwise FALSE.

2.13.4 Logical Operators

Logical operators operate only on Boolean values and yield a
Boolean result of their own.

Operators Meaning
&& logical AND
I logical OR
! logical NOT

48 |Page

Table-2.13: Logical Operators

The Table-2.13 presents the Logical Operators defined in C++. The
uses of logical operators are illustrated in the Table-2.14 where
suppose A contains 28 and B contains 50.

Operator Example Meaning Result

&& A>30 && B>30 | Is A and B greater than 30 | FALSE
A>30 || B>30 is A greater than 30 OR B TRUE
| greater than 30/both A and
B greater than 30

Table-2.14

The use of ‘!’ logical operator will be discussed in the following
unit while working with different programs.

2.13.5 Increment and Decrement Operators

Like Arithmetic Operators, C++ offers Increment and Decrement
Operators. These operators are illustrated in the following Table-
2.15.

Operators Meaning

adds 1 to the value of the associated operand
and update it

subtracts 1 from the value of the associated
operand and update it

Table-2.15

++

The uses of these operators are illustrated in the Table-2.16 where
suppose both x and y contains 10.

Operator | Example Meaning Result
X+t adds 1 to the value of x value of x
g
++x and update x becomes 11
_ y-- subtracts 1 from the value of y
-y value of y and update y | becomes 9
Table-2.16

Basically, the expression ‘x++’ is same as the expression ‘x=x+1".
From the Table-2.16 it is clear that if x contains the value 10, then
the expression ‘x++’ will increment the value of x by 1 i.e., value of
x will now be 11. Same as in case of the expression ‘y--’ but here
the value of y will be decremented by 1.

2.13.5.1 Postfix Increment & Decrement Operations

49 | Page

Consider the following statement which contains a Postfix
Increment Expression.

C=X++;

Here, the value of X will first be assigned to C and then X will be
incremented. Assuming the value of X to be 10, the final output
after the statement is executed will have C value as 10 and X value
as 11.

Consider the following statement which contains a Postfix
Decrement Expression.

C=X-;

Here, the value of X will first be assigned to C and then X will be
decremented. Assuming the value of X to be 10, the final output
after the statement is executed will have C value as 10 and X value
as 9.

2.13.5.2 Prefix Increment & Decrement Operations

Consider the following statement which contains a Prefix
Increment Expression.

C=++X;

Here, the value of X will first be incremented and then it will be
assigned to C. Assuming the value of X to be 10, the final output
after the statement is executed will have C value as 11 and X value
as 11.

Consider the following statement which contains a Prefix
Decrement Expression.

C=-X;

Here, the value of X will first be decremented and then it will be
assigned to C. Assuming the value of X to be 10, the final output
after the statement is executed will have C value as 9 and X value as
9.

2.13.6 Conditional Operator

?: operator is known as Conditional Operator in C++. This
operator is also called Ternary Operator.

50| Page

The form of an expression which uses ?: operator is mentioned
below:

exp-1 ? exp2 : exp3

where, exp-1, exp-2 and exp-3 may be single variables, may be
expressions or may be combinations of both. Let’s understand the
above form with the help of an example. Consider a, b and res are
three integer variables. Now, suppose we want to find the maximum
value between a and b. The following statement will do this task,
which uses the ?: operator.

res = (a>b) ?a: b;

Here, (a>b) is the exp-1, a is the exp-2 and b is the exp-3. Now,
you may be getting puzzled how this whole expression will be
performed! Here is the answer given below:

v' First, (a>b), the exp-1 is performed.

v' Now, if exp-1 satisfies, i.e. a is greater than b, then the value
of exp-2 is the result,

v But if exp-1 does not satisfy, i.e. a is not greater than b, then
the value of exp-3 is the result.

v' And the result of the expression will be assigned/stored to
variable res.

And thus we will get the value of the maximum between a and b in
the variable res.

Now, suppose variable a contains the value 10 and variable b
contains the value 50. Then, after the execution of the statement
value of b will be stored in variable res as value of b is the
maximum which is 50.

Example-8: Program to demonstrate the use of conditional operator
for finding maximum of two input numbers.

#include<iostream.h>
#include<conio.h>

void main()

{
int a, b, max;
clrser();
cout<<“Enter the value of a=";

51| Page

}

cin>>a;

cout<<“Enter the value of b=";
cin>>b;

max=(a>b) ?a: b;
cout<<“Maximum Value:”<<max;
getch();

Output:

Enter the value of a=100
Enter the value of b=50
Maximum Value: 100

Explanation:

v

v

Suppose, the two cinstatements take input 100 for a and 50 for
b.

In the statement, max=(a>b) ? a : b, the condition (a>b) is
evaluated and

o 1if condition satisfies, means a is the maximum, the value
of a is assigned to max.

o if condition not satisfied, means b is the maximum, the
value of b is assigned to max.

The lastcout will display the value of the variable max, which is
100 along with the set message.

2.13.7 Bitwise Operators

Following Table-2.17 lists the Bitwise Operators in C++ language.
These operators are used for bitwise manipulation of data.

Operators Meaning
& bitwise AND
| bitwise OR
A bitwise XOR
<< shift bits left
>> shift bits right
Table-2.17

These operators are my not be applied to float or double type of
data.

2.13.8 Special Operators

52| Page

Apart from the operators discussed above, there are other operators
in C++ and they are:

sizeof Operator

Type-Cast Operator: (type)

Pointer Operators: & and *

Member Selection Operators: . and -

The sizeof operator is used to get the number of bytes occupied by
an operand/type. For example, A and S are integer variables.
Consider the statement mentioned below:

S =sizeof(A);

Here the sizeof operator will return the value 2 as A is of int
(integer) type and the size of int data-type is 2 bytes. So, value in S
is 2 after execution of the above statement.

Now, what is Type-Cast Operator, (type)? Basically this operator
is used to convert the type of a data to another compatible type
temporarily.

To understand this operator let’s first consider the following
statements.

int a=7;
float res;
res = a/2;

So, the variable a is assigned with 7. After the execution of these
statements, you may think that the value in res will be 3.5. But the
result will be 3. Since, we are dividing a by 2 where a is an integer
and therefore instead of getting 3.5 we will get 3 though the variable
res is of type float.

But we are expecting that the last statement would assign 3.5 to the
variable res. So, how to get 3.5 as a result of the above expression?
The use of Type-CastOperator will give us our expected result, i.e.
3.5. So, we have to replace the expression in the last statement with
the expression ‘(float) a / 2’ and so the last statement to be written
as,

res = (float)a/2;

53| Page

This means that the value of a (i.e. 7) is temporarily converted to
float type (i.e. 7.0) without effecting a and then the converted value
(i.e. 7.0) is divided by 2. Thus the result 3.5, will be assigned to res.

The use of Pointer Operator* and Member Selection Operators.
and > will be discussed in the following units.

The Pointer Operator & which is known as Address-of Operator
is used to get the address of a location.

Example-9: Program to demonstrate the use of the sizeof() and
(type) type-cast-operator.Here in the program the three integer
variables subl, sub2 and sub3 are for storing the marks of three
subjects.

#include<iostream.h>
#include<conio.h>

void main()

{

}

int subl, sub2, sub3;

float average;

int size;

clrscr();

cout<<“Enter marksforsubject-1, subject-2 and subject-3:”;
cin>>sub1>>sub2>>sub3;
average=(float)(subl-+sub2+sub3)/3;

cout<<“The average mark is: ”<<average);
size=sizeof(int);

cout<<*“AnThe size of int data-type is: ’<<size<<* bytes”;
getch();

Output:

Enter marks for subject-1, subject-2 and subject-3: 50 65 45
The average mark is: 53.3333
The size of int data-type is: 2 bytes

Explanation:

v

v

The cin statement take three inputs, suppose 50, 65 and 45 for
subl, sub2 and sub3 respectively.

In the statement next to cin the average of the three marks,
taken as inputs(50, 65 and 45), is calculated. The average may
definitely in the form of a floatingpoint number. But, all the
three variables containing marks are of data type int. The
expression “(subl+sub2-+sub3)/3” will give an integer but not

54| Page

a floating point number. So, to get a floating point number
the result of the above expression is temporarily converted into
float using the (float) operator. Now, the result of the
expression “(float)(sub1+sub2+sub3)” becomes a float value
and this is divided by 3 resulting a float value and it is
assigned to the float variable average. Thus the variable
average contains the value 53.3333.

In the statement,
size=sizeof(int);

the sizeof() operator will give the size of int data type in bytes
and this value(i.e. 2) is assigned to the variable size.

kW=

type
6.

State True or False:
7. sizeof() operator gives the size of a given type.

8.
operators.

9. If x=110, then the output of the following statement is 111.

10. In postfix increment operation expression, the ++ operator
is placed before the operand.

CHECK YOUR PROGRESS

IDE stands for

ASCII stands for .
Division by zero (0) is a error
The size of the char data type is .
Structure is an example of data

% arithmetic operator is used to

— (minus) operator can be used as binary and unary

cout<<x++;

2.14 OPERATOR PRECEDENCE AND

ASSOCIATIVITY

When an expression contains more than one operator then the
concept of Operator Precedence applies. Operator Precedence
can be defined as the rule for determination of which operation to be

55| Page

performed first, which to be second and so on in case of an
expression with more than one operator.

Consider the following statement, where a=2, b=5 and c¢=3.
x=a+b*c;
Now, you can think of how the expression part (right-hand side of
=) will be evaluated. Here the evaluation may take place in two
possible ways:
WAY-1:
e At first the values of a and b will be added and then

e the total value will be multiplied by the value in c.
re. x=2+5)*3

=7%3

=21

WAY-2:
e At first value of b is multiplied with the value of ¢ and then

e the total value is added with the value in a.
ie. x=2+(5*%3)
=2+15
=17
We know that WAY-2 is the actual way of evaluating this
expression as according to mathematics, first multiplication(*)
operation will take place and then the addition(+). Thus the value in
x will be 17. This is an example of application of Operator
Precedence.

In case of Arithmetic Operators, there are two distinct levels of
priority in C and they are:

High Priority Operators: * / % (same precedence)

Low Priority Operators: + - (same precedence)

STOP TO CONSIDER

While writing a mathematical expression that contains more than
one operator with different precedence (or with same
precedence), use brackets () to specify the evaluation more
precisely. Consider the expression a+b*c and suppose you want
the evaluation as a+b and then multiply with ¢, so to be precise
write the expression as (a+b)*c.

56 |Page

Now, let’s try to understand what does Associativity mean??
Associativity also can be defined as the rule which needs to be
applied for evaluation when an expression contains more than one
operator with the same precedence. Associativity can be either Left-
to-Right or Right-to-Left.

The Associativity of Arithmetic Operators with same precedence is
Left-to-Right. We know that the operators, + and —, have the same
precedence. Now, let’s see how the arithmetic expression in the
following C statement will be evaluated.

X=10+2-3
Here in the above example, the evaluation of the expression ‘10 + 2

- 3’ will start from Left-to-Right(because of associativity). So, the
evaluation will be in the form mentioned below:

10+2)-3
1.€.

e first evaluation of ‘10+2” will take place, then

e the value 3 will be subtracted from the result value of
‘10+2°.

So, after execution of the above statement, the variable X will
contain the result of the evaluation which is 9.

The following Table-2.14 lists the Precedence and Associativity of
the Operators present in C++.

Operator Description Associativity

) Parentheses
[] Brackets (related to Array)
Member Selection (using Object Name) left-to-right

-> Member Selection (using Pointer)
++ - Postfix Increment/Decrement
++ -- Prefix Increment/Decrement

+ - Unary Plus/Minus

I ~ Logical negation/bitwise complement)
right-to-left
(type) |Cast (convert value to temporary value of

type)

& Dereference (related to Pointer)

57| Page

sizeof [Address of Operand
For Size in Bytes
* / % |Multiplication/Division/Modulus left-to-right
+ - Binary Addition/Subtraction left-to-right
<< >> |Bitwise Left-Shift, Bitwise Right-Shift left-to-right
Relational is Less Than/Less Than or
< <= |Equal To .
> >= |Relational is Greater Than/Greater Than fefl-to-right
or Equal To
== |= [Relational is Equal To/is Not Equal To left-to-right
& Bitwise AND left-to-right
A Bitwise Exclusive OR left-to-right
| Bitwise OR left-to-right
&& Logical AND left-to-right
| Logical OR left-to-right
?: Ternary (Conditional) right-to-left
= Assignment right-to-left
, Comma (for separation of expressions) left-to-right

Table-2.14: Operator Precedence and Associativity

2.15SUMMING UP

In this Unit, the history of C++ language is briefly described.
Different steps starting from writing a C++ program to its execution
is described in this Unit. These steps are described here in a very
well-organized manner using different screen-shots. The steps
shown are for Windows operating system. The structure of C++
program is also described in detail.

This Unit describes the errors generally occur during compilation
and execution of a C++ program with the help of examples. The
errors described here are namely Syntax Errors, Semantic Errors and
Run-time Errors.

58| Page

Here, in this Unit the list of C++ character set is also given with
different characters, numbers and symbols with their names.

A C++ program consists of tokens which can be categorically
classified into namely: Keywords, Identifiers, Constants, Operators
and Special Characters. All these different types of C++ tokens are
very elaborately described in this Unit.

The concept of data type is described here in this Unit.There are
three categories of data type and they are: Primary/Built-in (e.g.,
char, int), Derived (e.g., Arrary) and User Defined (e.g., Structure,
Class). The size of each of the type is clearly discussed with
different examples.

A variable as discussed in this Unit, is a storage space into which
one can store data. It needs to be declared before its use. In
declaration statement, the data type of the variable should be
mentioned. As C++ language is case sensitive, the case in which a
variable is declared should remainthe same during its use in a
program.

Input and Output are basic requirements of a C++ program. The
‘cout’ function is used to display data/message on to the screen. The
‘cin’ function is used to take input from keyboard. The syntaxes of
these two functions are described in this Unit.

There are different types of operators defined in C++. Few operators
are necessary for arithmetic expressions while few are useful for
conditional expressions and so on. The operators have precedence
and associativity. This Unit gave a detailed description regarding the
operators’ precedence and associativity.

2.16 ANSWER TO CHECK YOUR PROGRESS

Integrated Development Environment

American Standard Code for Information Interchange
run time error

1 byte

User defined

find remainder after division

True

True

False

0. False

e AR ol

59| Page

2.17 POSSIBLE QUESTIONS

1. Who developed the C++ language?

2. What is a header file?

3. What do you understand by errors in C++?

4. What is keyword? Write down five keywords available in C++.
5. Write down the rules for naming identifiers in C++.

6. What do you understand by Data Type? Mention its different
categories.

7. Mention the fundamental data types in C++ with their respective
size.

8. What is typedef?

9. What is Variable? Write down the syntax for declaring a
variable.

10. Mention the use of cout in C++.

2.18 REFERENCES AND SUGGESTED READINGS

1. Stroustrup, Bjarne.The C++Programming Language.
2. Kanetkar, Y. P.. Let us C++. BPB publications.

60| Page

UNIT 3 : CONTROL STATEMENTS IN C++

Unit Structure

3.1 Introduction
3.2 Unit Objectives
3.3 Conditional Statement
3.3.1 The if statement
3.3.2 The if else statement
3.3.3 Multiple if else statement
3.3.4 Nested if else statement
3.3.5The Switch statement
3.4 Loop Control Statement
3.4.1 for loop
3.4.2 while loop
3.4.3 do while loop
3.5 Comparison of the loop statements
3.6 Nested loop
3.7 goto statement
3.8 break statement
3.9 continue statement
3.10 exit() function
3.11 Summing Up
3.12 Answers to Check Your Progress
3.13 Possible Questions
3.14 References and Suggested Readings

3.1 INTRODUCTION

In C++, all statements written in a program are executed from top to
bottom one by one. In some cases, there may arise some situations
where depending upon a logical condition, some actions have to be
carried out. Control statements are used to execute/transfer the
control from one part of the program to another depending on a
condition. These statements are also called conditional statements.

Control statements are of the following two types:
e Conditional control
e Loop control

6l|Page

C++ has three major conditional control statements:
(a) ifstatement (b) if-else statement and (c) switch statement

On the other hand, in a program, there may arise some situations
where a repetitive work has to be carried out until a specific
condition is fulfilled. In that case, loopcontrol statements are used in
a program. C++ has three loop control statements: (a) for (b) while
and (c) do while

This unit introduces you the different conditional and loop control
statements with some suitable examples.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

e use of different decision control statements
e work with different loop control statements in a program
e use goto, break and continue statement in a program

3.3 CONDITIONAL STATEMENT

Conditional statements are used to execute statement or group of
statements based on some condition.

C++ supports following conditional statements.

(a) if statement (b) if else statement (c) if else if ladder
(b) nested if

3.3.1 The if statement

The if statement is a control statement that tests a particular
condition. Whenever, the evaluated condition comes out to be true,
then that action or the set of actions are carried out. Otherwise, the
given sets of action(s) are ignored.

The syntax of if statement is:

if(condition) {
//statement(s) will execute if the condition is true

62| Page

}

Example 3.1Write a program in C++ to display the message "You
have entered a +ve number" if the user inputsa +ve number.

Solution:

#include<iostream.h>
#include<conio.h>

void main()
{
int number;
clrscr();
cout<<"Enter an integer:\t";
cin>>number;
if (number > 0)
cout<<"You have entered a +ve number:";
getch();
}

When the above code is compiled and executed, it produces the
following result:

Output:
Enter a number: 10
You have entered a +ve number.

Example 3.2: Write a program in C++ to find the bigger of two
numbers.

Solution:

#include <iostream.h>
#include <conio.h>
void main()
{
int a,b,big;
clrser();
cout<<"Enter two numbers:\t";
cin>>a>>b;
big = a;
if (b>big)
big = b;
cout<<"\n The bigger number is: "<<big;
getch();

63| Page

Output:
Enter two numbers: 10 20
The bigger number is: 20

Example 3.3: Write a program in C++ to find the biggest of

threenumbers.
Solution:

#include <iostream.h>
#include <conio.h>
void main()
{
int a,b,c,big;
clrscr();
cout<<"Enter three numbers:\t";
cin>>a>>b>>c;
big = a;
if(b>big)
big = b;
if(c>big)
big=c;
cout<<"\n The biggest number is: "<<big;
getch();

}

Output:
Enter three numbers: 10 25 9
The biggest numbers is: 25

STOP TO CONSIDER

If more than one statements has to be executed in an If statement, you
should write those statements within { and }

3.3.2 The if else statement

if else statement is used to execute a statement block or a single
statement depending on the value of a condition.

64| Page

The syntax of if else statement is:

if(condition) {
/* statement(s) will execute if the condition is true */

}

else {

/* statement(s) will execute if the condition is false */

}

If the condition evaluates to true, then the statement(s) inside the if
block will be executed, otherwise, the statement(s) inside the else
block will be executed.

Example 3.4Write a program in C++ to find the bigger of two
numbers.

Solution:

#include <iostream.h>
#include <conio.h>
void main()
{
int a,b;
clrscr();
cout<<"Enter two numbers:\t";
cin>>a>>b;
if(a>b)
cout<<"The bigger number is: "<<a;
clse
cout<<"The bigger number is: "<<b;
getch();

}

Output:
Enter two numbers: 10 20
The bigger numbers is: 20

Explanation:

In this case, 10 will be assigned to the variable an and 20 will be
assigned to the variable b.

65| Page

Then the statement if(a>b) will be tested. Since it is false (as 10
<20), so the statement under the else part will be executed.

Example 3.5: Write a program in C++ to check whether a number
entered by the user is even or odd.

Solution:

#include <iostream.h>

#include <conio.h>

void main()

{

int n;

clrser();

cout<<"Enter a number:\t";

cin>>n;

if(n%2==0) /* Checking whether the remainder is 0 or not */
cout<<"The entered number is even.";

else
cout<<"The entered number is odd.";

getch();

}

Output 1:
Enter a number: 11
The entered numberis odd.

Output 2:

Enter a number: 14
The entered number is even.

Example 3.6: Write a program in C++ to check whether a character
entered by the user is vowel or consonant.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

char c;
clrscr();

66| Page

cout<<"Enter a character:\t";
cin>>c;
if(c=="al|c=="A"||c=="¢'||c=="E||c=="1'||c=="T||c=="0'"||c=="0"||c=="U"||c=="]
'
)
cout<<c<<" is a vowel.";
else
cout<<c<<" is a consonant.";
getch();

}

Output 1:
Enter a character: e
e 1s a vowel.

Output 2:
Enter a character: x
X 18 a consonant.

Explanation:In this program, user is asked to enter a character which
stored in variable ¢. Then, this character is checked, whether it is ar
one of these ten characters a, A, e, E, 1, [, 0o, O and u, U using logic
OR operator ||. If that character is any one of these ten characters, th
alphabet is a vowel; if not,then that character is a consonant.

Example 3.7: Write a program to check whether a character is
alphabet or not.

Solution:

#include<iostream.h>
#include<conio.h>

void main()
{
char c;
clrser();
cout<<"Enter a character: \n";
cin>>c;
if((c>="a'&& c<='7") || (c>='A"' && c<='Z"))
cout<<c<<" is an alphabet.";
clse
cout<<c<<" is not an alphabet.";
getch();

}

IS

67 |Page

Output 1:
Enter a character: g
g is an alphabet.

Output 2:
Enter a character: #
is not an alphabet.

Explanation: When a character is assigned to a variable, ASCII
value of that character is stored instead of that character itself. For
example: If 'g' is assigned to a variable, ASCII value of 'g' which is
103 is stored. If you see the ASCII table, the lowercase alphabets
are from 97 to 122 and uppercase letters are from 65 to 90. If the
ASCII value of number stored is between any of these two intervals
then that character will be an alphabet. In this program, instead of
number 97, 122, 65 and 90; we have used 'a', 'z, 'A' and 'Z
respectively which is basically the same thing.

3.3.3 Multiple if else statement

An if statement can be followed by number of else if else
statements, which is very useful to test various conditions.

The syntax is as follows:

if(condition 1) {
/* Statement(s) to be executedonly when condition 1 is true */

}

else if(condition 2) {
/* Statement(s) to be executed only when condition 2 is true */

}

else if(condition 3) {
/* Statement(s) to be executed only when condition 3 is true */
}
else {
/* Statement(s) to be executedonly when none of the above
conditionsare true */

}

68| Page

Example 3.8: Write a program in C++ to check whether an
character entered by the user is uppercase or lowercase.

Solution:

#include<stdio.h>
#include<conio.h>

void main ()

{

char a;
clrscr();
cout<<"Enter a character: \t";
cin>>a;
if (a> 64 && a <=91)
cout<<"The character is an upper-case letter.";
else if (a > 96 && a <=123)
cout<<"The character is alower-case letter.";
clse
cout<<"This is not an character.";
getch();

}

Output 1:
Enter a character: a
The character is a lower-case letter

Output 2:
Enter a character: B
The character is anupper-case letter

Output 3:
Enter a character: 10
This is not an character

Example 3.9: The marks obtained by a student in 5 different
subjects are inputted through the keyboard. The student gets a
division as per the following rules:

(1) Percentage above or equal to 85 - Distinction

(i1) Percentage above or equal to 75 - Star

(iii1) Percentage above or equal to 60 - First division

(iv) Percentage between 50 and 59 - Second division

(v) Percentage between 30 and 49 - Third division

69| Page

(vi) Percentage less than 30 - Fail

Write a program in C++ to calculate the division obtained by a
student.

Solution:

#include<iostream.h>
#include<conio.h>

void main()
{
int m1, m2, m3, m4, m5, per;
clrscr();
cout<<"Enter marks obtained by a student in five subjects:\t";
cin>>m1>>m2>>m3>>m4>>mS5;
per = (m1+m2+m3+m4+m5)/5;
if(per>=85)
cout<<"The result is: Distinction";
else if ((per>=75) && (per<85))
cout<<"The result is: Star";
else if ((per>=60) && (per<75))
cout<<"The result is: First division";
else if ((per>=50) && (per<60))
cout<<" The result is: Second division";
else if ((per>=30) && (per<50))
cout<<"The result is: Third division";
else
cout<<"The result is: Fail";
getch();

}

Example 3.10:Write a program in C++ to display the day in a week
depending upon the number entered by the user.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int day ;

clrscr();

cout<<"Enter a number between 1 and 7:\t";
cin>>day;

70| Page

if(day==1)

cout<<"The day is Monday.";
else if(day==2)

cout<<"The day is Tuesday.";
else if(day==3)

cout<<"The day is Wednesday.";
else if(day==4)

cout<<"The day is Thursday.";
else if(day==5)

cout<<"The day is Friday.";
else if(day==06)

cout<<"The day is Saturday.";
else

cout<<"The day is Sunday.";
getch();

}

3.3.4 Nested if else statement

Nested if else is when an if else statement appears within the body
of another "if" or "else" statement.. There may be any number of if
statements in the nested form.

The syntax of nestedifstatement is:

if (condition 1)
if (condition 2)

{
<true block 1>
}
else
{
<false block 1>
}
else
if (condition 3)
{
<true block 2>
}
else
{
<false block 2>
}

71| Page

Example 3.11:Write a program in C++ to find the biggest of any
three numbers entered by the user using nested if else statement.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{
inta, b, c, big;
clrser();
cout<<"Enter the first number:\t";
cin>>a;
cout<<"\nEnter the second number:\t";
cin>>b;
cout<<"\nEnter the third number:\t";
cin>>c;
if (a>b)
{
if (a>c)
big = a;
else
big=c;
H
else
{
if (b > c¢)
big =b;
else
big=c;
§
cout<<"The biggest number is: "<<big;
getch();
§

Example 3.12: Write a program in C++ to check whether a year is
leap year or not.

Solution:

#include <iostream.h>
#include <conio.h>

void main()

{

int year;

clrscr();

cout<<"Enter a year: \t";

72| Page

cin>>year;
if(year%4==0)
{
if(year%100==0) // Checking for a century year
{
if (year%400==0)
cout<<year<<" is a leap year.";
else

}

cout<<year<<" is not a leap year.";

else
cout<<year<<" is a leap year.");

}

else
cout<<year<<" is not a leap year.";
getch();

}
Output 1:

Enter year: 1900

1900 is not a leap year.
Output 2:

Enter year: 2012

2012 is a leap year.

Check your progress 1

1. Differentiate between if and if else statement.

73| Page

3. What will be the output of the following C++ code?
void main()
{
int a=20,b,c;
if (a>35)
{
b=10;
c=6;
}
else
{
b=20;
c=5;
}
cout<<"The value of b and ¢ will be: <<b<<c;
}

3.3.5 The switch statement

Instead of using the if else statement, the switch statement can be
used in its place. switch statement is used to execute a block of
statements depending on the value of a wvariable or an
expression.The syntax of the swifch statement is as follows:

switch(<expression>) {

case<label 1>:
statement(s);
break;

case<label 2>:
statement(s);
break;

case<label 3>:
statement(s);
break;

// 'you can have any number of case statements
default :

74| Page

statement(s);
break;

Let us discuss about the above syntax of the switch statement.

e The control statement switch begins with the switch keyword
followed by blocks containing different cases. Each case
handles the statements corresponding to an option i.e. <label
1>, <label 2> etc. and ends with the break statement which
transfers the control out of the switch structure to the original
program.

e The compiler checks the values of the expression or variable.
If this value matches with any one of the labels given in
<case> value, then that statement block will be executed.

o The braces { } can be omitted when there is only one
statement available in the statement block.

e Here the variable between the parentheses following the
switch keyword is used to test the condition and is called the
control variable.

e breakis a statement which will transfer the control to the end
of switch statement. (The details about the break statement
will be discussed in the next section)

e The default block is optional i.e. this may be omitted while
writing a program.

STOP TO CONSIDER

The control variable of the switch statement can only be of the type
int, long or char. Switchstatement is compact and can be used to
replace a nested if statement.

Example 3.13: Using switch statement, write a program in C++ to
display the day of a week. When the user types 1, Monday should
be displayed, for 2 Tuesday....etc.

75| Page

Solution

#include<iostream.h>
#include<conio.h>

void main()

cout<<"Enter your choice between 1 and 7:\t";

cout<<"Monday";
break;

cout<<"Tuesday";
break;

cout<<"Wednesday";
break;

cout<<"Thursday";
break;

cout<<"Friday";
break;

cout<<"Saturday";
break;

cout<<"Sunday";
break;

{

int choice;

clrscr();

cin>>choice;

switch(choice)

{
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
default:

between 1 and 7";

}
getch();

76 |Page

cout<<"Invalid choice. Enter your choice

break;

Example 3.14:Write a program in C++ which will read two
numbers from the user. Now perform the addition, subtraction,
multiplication and division operations according to the user input.

Solution:
#include<iostream.h>
#include<conio.h>

void main()

{
int a,b,choice;
clrscr();
cout<<"Enter two numbers:\t";
cin>>a>>b;
cout<<"\nEnter your choice between 1 and 4:\t";
cout<<"n[1]. Addition\n";
cout<<"[2]. Subtraction\n";
cout<<"[3]. Multiplication\n";
cout<<"[4]. Division\n";
cin>>choice;

switch (choice)

{

case 1:
cout<<"The addition of the two number is:"<<a-+b;
break;

case 2: cout<<"The Subtraction of the two number is:"<<a-b;
break;

case 3:
cout<<"The Multiplication of the two number is:"<<a*b;
break;

case 4:
cout<<"The Division of the two numbers is:"<<a/b;
break;

default:
cout<<"Invalid choice. Enter your choice between 1 and 4";
break;

}
getch();

}

77 |Page

STOP TO CONSIDER

The default block is executed when none of the case labels matches
with the value of the expression/variable

Check Your Progress 2

4. State whether the following statements are true or false:

a) Every if statement can be converted into an
equivalent switch statement.

b) 'default' case is mandatory in a switch statement.

c) An if statement may contain compound statements
only in the else clause.

d) A break statement must be used in a switch
statement.

e) The control variable of the switch could be of type
int, long or char.

3.4 LOOP CONTROL STATEMENT

In programming, there may arise some situations where a repetitive
work has to be carried out. For example, suppose we want to display
the sentence "IDOL, Gauhati University" 100 times. What will we
do? We can display the sentence by writing 100 cout statements.
But, it will be a time consuming process. Similarly, suppose we
want to display the numbers between 1 and 1000. So far we have
learnt only one solution, displaying the numbers with 1000 cout
statements. But, this is not a solution. The solution is, we have to
use loop.

Loop control structures are used to execute and repeat a block of
statements depending upon the loop value..In C++, there are three
types of loop control statements.

e for loop
e while loop
e do while loop

In the following sections, we will discuss the use of these three
loops with some examples.

78 | Page

3.4.1 The for loop

The syntax of forloop is:

for (expression-1; expression-2; expression-3)
{
statement 1;
statement 2;

................... > body of the loop

statement n; _/

}

expression-lisinitializationstatement.

Thestatement(s) are assignment statement(s) used to set the loop
control variable/variables. These statement/statements will
execute before the first iteration of the loop.

expression-2is condition.

The condition determines the termination of the /oop. Before
every iteration, the condition is/are checked and if found true
then the next iteration will take place.

expression-3is increment or decrement statement.
The statement denote how to change the states of the control
variable(s) after each iteration.

the section within “{” and “}” is called as the body of the loop.

Example 3.15: Write a program in C++ to display all the numbers

between 1 and 100.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int 1;

79| Page

clrser();

cout<<"The nos. between 1 and 100 are: \n";
for(i=1; i<=100; i++)

cout<<i;

getch();

H

Explanation:

In the “for” loop,

e inexpression-1, the variable “i’ is initialized tolas the
starting no. of the range.

e inexpression-2, the condition is set as “i<=100" because the
loop will continue as long as the value of “i” remains less
than or equal to 100.

(1342
1

e inexpression-3, the value of is incremented by 1 after

each iteration.

e in the body of the loop, the “cout<<” will display the current
value of “i” with a tab space in between(\t means a space

with tab).

Thus the numbers betweenland 100 will be displayed.

Example 3.16: Write a program in C++ to display all the numbers
between 1 and 100 those are divisible by 3.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int 1;

clrscr();

cout<<"The nos. between 1 and 100 those are divisible by 3 are:\t";
for(i=1; i<=100; i++)

{

if(1%3==0)

cout<<"\t"<<i;

b
getch();

80|Page

Explanation:

In the “for” loop,

(1332
1

inexpression-1, the variable is initialized tolas the

starting no. of the range.

inexpression-2, the condition is set as “i<=100" because the
loop will continue as long as the value of “i” remains less
p

than or equal to 100.

[13%2)
1

inexpression-3, the value of
each iteration.

is incremented bylafter

In the body of the loop,

[13%3)
1

the remainder of the division, by 3is calculated and
compared equality to 0 using “if” statement.

and if the condition satisfies, i.e. the current value of “i” is
divisible by 3, then “cout<<” will display the current value
of “i” with a tab space in between. (\t means a space with
tab)

Thus the numbers, those are divisible by 3, between 1 and 100 will
be displayed.

Example 3.17: Write a program in C++ to find the sum of first n
natural numbers where # is entered by user. (Note: 1,2,3... are called
natural numbers.)

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int n, 1, sum=0;

clrscr();

cout<<"Enter the value of n: \t";

cin>>n;

for(i=1; i<=n; i++) //for loop terminates if i>n

{

sum=sum + i;

}

8l|Page

cout<<"The summation of the numbers between 1 and "<<n<<" is:
"<<sum;

getch();

}

Output:

Enter the value ofn: 19
The summation of the numbers between 1 and 19 is: 190

Explanation: In this program, the user is asked to enter the value of
n. Suppose, you have entered 19 then; i will be initialized to 1 at
first. Then, the test expression in the for loop, i.e., (i<= n) becomes
true. So, the code in the body of for loop will be executed which
makes sum to 1. Then, the expression i++will be executed and again
the test expression is checked, which becomes true. Again, the body
of for loop will be executed which makes sum to 3 and this process
will continue. When count will be 20, the test condition becomes
false and the for loop will be terminated.

Example 3.18: Write a program in C++ to display all the even and
odd numbers between 10 and 100. Also display the summation of all
the even and odd numbers separately within that range.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int 1, sum=0;

clrscr();

cout<<"\nThe even numbers between 10 and 100 are: ";
for(i=10; i<=100; i++)

{
if(1%2==0)
{
cout<<"\t"<<i;
sum=sum + i;
h
}

cout<<"\nThe summation of all the even numbers between 1 and
100 is:"<<sum;

82|Page

/* sum is again initialised to 0 to calculate the summation of all odd
numbers between 1 and 100 */

sum = 0;

cout<<"\nThe odd numbers between 10 and 100 are:";

for(i=10; i<=100; i++)

{
if(1%2!=0)
{
cout<<"\t"<<j;
sum=sum + i;
H
H

cout<<"\nThe summation of all the odd numbers between 1 and 100
18:"<<sum;

getch();

}

Example 3.19: Write a program in C++ to display all the even and
odd numbers between a range of numbers where the starting number
and the ending number of that range will be entered by the user.
Also display the summation of all the even and odd numbers
separately within that range.

Solution:

This program is same as the Example 3.18. Here the only
modification is that the starting number and ending number of the
for loop is not fixed. Those two numbers of the range will be
entered by the user. Let us solve the problem as below:

#include<iostream.h>
#include<conio.h>

void main()
{
int start_no, end no, i, sum=0;
clrser();
cout<<"Enter the starting no. and ending no. of the range: ";
cin>>start no>>end_no;
cout<<"\nThe even numbers between "<<start no<<" and
"<<end no<<" are:";
for(i=start_no; i<=end no; i++)
{
1f(1%2==0)
{

83|Page

cout<<"\t"<<j;
sum=sum + i;
b

iout<<"\nThe summation of all the even numbers between
"<<start no<<" and "<<end no<<" is:"<<sum;
/* sum is again initialised to 0 to calculate the summation of all odd
numbers between starting number and ending number of the range
*/
sum = 0;
cout<<"\nThe odd numbers between "<<start no<<" and
"<<end no<<" are:";
for(i=start_no; i<=end no; i++)

{
if(1%2!=0)
{
cout<<"\t"<<i;
sum=sum + i;
}
}

cout<<"\nThe summation of all the odd numbers between
"<<start no<<" and "<<end no<<" is:"<<sum;

getch();

}

Example 3.20:Write a program in C++ to find the factorial of a
number.

Solution:

#include<iostream.h>
#include<conio.h>

void main()
v
intn, 1;
long int fact;
clrscr();
cout<<"Enter a number:\t";
cin>>n;
if(n==0)
cout<<"\nFactorial of 0 is 1\n";
else
{
fact=1;
for(i=1; i<=n; i++)

84|Page

fact = fact * i;
cout<<"The factorial of "<<n<<" is:"<<fact;

}
getch();

}

Output:

Enter a number: 3
The factorial of 3 1s: 6

Explanation: For any positive number 7, its factorial is calculated
as factorial = 1*2*3*4.. *n

Example 3.21:Write a program in C++ to check whether a given
number is prime or not.

Solution:

#include<iostream.h>
#include<conio.h>

void main()
{
int n, 1, flag=0;
clrscr();
cout<<"Enter a positive integer: ";
cin>>n;
for(i=2;i<=n/2;++i)
{
1f(n%i==0)
{
flag=1;
break;
b
}
if(flag==0)
cout<<n<<" is a prime number.";
else
cout<<n<<" is not a prime number.";
getch();

}

Output

Enter a positive integer: 5

85| Page

5 is a prime number.

Explanation: This program takes a positive integer from user and
stores it in variable n. Then, for loop is executed which checks
whether the number entered by user is perfectly divisible by i or not
starting with initial value of i equals to 2 and increasing the value of
iin each iteration. If the number entered by user is perfectly divisible
by i then, flag is set to 1 and that number will not be a prime number
but, if the number is not perfectly divisible by i until test condition
i<=n/2 is true means, it is only divisible by 1 and that number itself
and that number is a prime number.

3.4.2 The while loop

The syntax of whileloop is:

expression-1;

while(expression-2)

{
statement-1; ~
statement-2;
................... > body of the loop
statement-n;
expression-3; .
H

= expression-1 contain initializationstatement(s) which is/are is
mentioned before the starting of the while loop.
The statement(s) are assignment statement(s) used to set the loop
control variable(s). These statement(s) will execute before the
first iteration of the loop.

= expression-2 contain condition(s).
The condition(s), that determine the termination of the loop.
Before every iteration, the condition(s) is/are checked and if
found #rue then the next iteration will take place.

86| Page

= expression-3 contain increment/decrement statement(s).
The statement(s) denote how to change the states of the control
variable(s) in each iteration.

= The section within “{” and “}” is called as the body of the loop.

Example 3.22: Write a program in C++ to display all the numbers
between two input numbers using while loop.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int start no, end no, i;

clrser();

cout<<"Enter the starting no and ending no of the range:\t");
cin>>start no>>end_no;

cout<<"The numbers between "<<start no<<" and "<<end no<<"

are:\t";

i=start_no;

while(i<=end no)

{
cout<<"\t",1);
1++;

H

getch();

H

Example 3.23: Write a program in C++ to display the sum of all the
digits of a number entered by the user using while loop.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

int num, rem, quo,sum=0;
clrscr();

cout<<"Enter a number:\t";
cin>>num;

87|Page

while(num>0)
{
rem = num%10;
quo = num/10;
sum = sum + rem;
num = quo;
H
cout<<"The sum of digits of the number is: "<<sum;
getch();

}

Output:
Enter a number: 12345
The sum of digits of the number is: 15

Example 3.24:Write a program in C++ to displaythe factorial of a
number using while loop.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

int num,fact;

clrscr();

cout<<"Enter a number:\t";
cin>>num;

fact=1;

while(num>0)

{

fact=fact*num;

--num,;

H

cout<<"Factorial of the number is: "<<fact;
getch();

}

Output:

Enter a number.3
Factorial of the number is: 6

88|Page

Example 3.25:Write a program in C++ to display the number of
digits of an input number.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

{

long int n, count=0;

clrscr();

cout<<"Enter an integer: \t";
cin>>n;

while(n!=0)

{

n=n/10;

++count;

}

cout<<"Number of digits="<<count;
getch();

}

Output

Enter an integer: 34523
Number of digits=5

Explanation: This program takes an integer from user and stores
that number in variable n. Suppose, user enters 34523. Then, while
loopwill be executed because n!=0 will be true in first iteration. The
codes inside the while loop will be executed. After the first iteration,
value of n will be 3452 and count will be 1. Similarly, in second
iteration n will be equal to 345 and count will be equal to 2. This
process will go on and after fourth iteration, n will be equal to 3 and
count will be equal to 4. Then, in the next iteration n will be equal to
0 and count will be equal to 5 and program will be terminated as
n!=0 will become false.

Example 3.26:Write a program in C++ to display the characters
from A to Z using while loop.

Solution:

89| Page

#include<iostream.h>
#include<conio.h>

void main()

{

char c;

clrscr();

C:'A';

cout<<"The letters from A to Z are:\n";
while(c<='Z")

{

cout<<" "<<c;

++c;
H
getch();
}

Output

ABCDEFGHIJKLMNOPQRSTUVWXY?Z

Example 3.27: Write a program in C++ to display the reverse of a
number input by the user using while loop.

Solution:

#include<iostream.h>
#include<conio.h>

void main()

long int num, rem,reverse=0;
clrscr();

cout<<"Enter a number:\t";
cin>>num;

while(num!=0)

rem = num%]10;

reverse = reverse*10 + rem;

num = num/10;
cout<<"\nThe reverse number is: "<<reverse;
getch();

}

90| Page

3.4.3 The do while loop

The syntax of do-whileloop is:
expression-1;
do
{
Statement 1; ~
Statement 2;

................... —

................... body of the loop

Statement n; _/
expression-3;
} while(expression-2);

= expression-1 contain initialization statement(s) which is/are
mentioned before the starting of the while loop.
The statement(s) are assignment statement(s) used to set the loop
control variable(s). These statement(s) will execute before the
first iteration of the loop.

= expression-2 contain condition(s). The condition(s), that
determine the termination of the loop. After every iteration, the
condition(s) is/are checked and if found frue then the next
iteration will take place.

= expression-3 contain increment/decrement statement(s).
The statement(s) denote how to change the states of the control
variable(s) in each iteration.

= The section within “{” and “}” is called as the body of the loop.
Example 3.28: Write a program in C++ to check whether an input

character is a vowel or not (using do while loop).

Solution:

91| Page

#include<iostream.h>
#include<conio.h>
void main()

{

char c, ans;

do
{

clrscr();

cout<<"Enter the Character to check:\t";
cin>>c;

switch(c)

{

}

case 'a':

case 'A":

case'e':

case 'E"

case 'i":

case 'I':

case '0':

case 'O":

case 'u':

case 'U": cout<<"The input character is a vowel";
break;

default: cout<<"The input character is not a vowel";

cout<<"\nDo you want to continue(y/n):";
cin>>ans;

} while(ans=="y");

getch();

}

Explanation:

Inside the do-while loop

92| Page

First the character to be checked is taken input in
variable “c”.

In the “switch” statement, since the output will the same
for all the vowels [i.e. ‘a’, ‘A’, ‘e’, ‘E’, ‘1’, ‘I’, ‘0’, ‘O’,
‘w’, ‘U’], the cases with all the vowels(small letter and
capital letter) are mentioned serially and in the last case,
i.e., “case ‘U’, the display statement is mentioned for
displaying “The input character is a vowel”. And then
because of the “break” statement, the “switch” statement
will end.

The case “default” will satisfy if all the above cases do
not satisfy and “The input character is not a vowel” will
be displayed and the “switch” statement will end.

e After “switch” statement, the user is asked whether
he/she wishes to continue by taking a character input to
variable “ans”.

e In the condition inside “while”, the value of variable “ans”
is compared with character ‘y’ for equality and if it satisfies
then the “do-while” loop will continue otherwise the “do-
while” loop will terminate and thus the program ends.

N.B. The programs that are shown using for loop and while loop can
be easily converted using the do while loop.

3.5 COMPARISION OF THE LOOP STATEMENTS

for loop

while loop

do-while loop

A for loop is used
to execute a block
of statements
depending on the
condition which is

A while loop is
used to execute a
block of statements
depending on the
condition which is

A do-while loop i
used to execute 4
block of statement
depending on th¢
condition which i

evaluated at the | evaluated at the | evaluated at the end
beginning of the | beginning of the | of the loop.

loop. loop.

The block of | The block of | The block 0

statements will not
be executed when
the condition does
not satisfy, i.e.,
value of the
condition is false.

statements will not
be executed when
the condition does
not satisfy, i.e.,
value of the
condition is false.

statements will no
be executed when th¢
condition does no
satisfy, i.e., value o
the condition is falsg
but the block wil
execute at-least oncg

irrespective of th¢
value of the
condition.

93| Page

3. | Variable(s) is/are | Variable(s) is/are | Variable(s) is/ar¢
initialized at the | initialized before | initialized before th¢
beginning of the | the starting of the | starting of the loop
loop which is/are | loop which is/are | which is/are used tq
used to control the | used to control the | control the loop.
loop. loop.

4. | The statements to | The statements to | The statements tq
change the state of | change the state of | change the state of
the control | the control | the contro|
variable(s) is/are | variable(s) is/are | variable(s) is/ar¢
mentioned within “(| mentioned just | mentioned just
)” in expression-3. | before the end of | before the end of th¢

the body of the | body of the loop.
loop.

3.6 NESTED LOOP

A loop may contain another loop within its body. This form of loop
inside a loop is called nested loop.In a nested loop, the inner loop
must terminate before the outer loop can be ended.

Example 3.29: Write a program in
multiplication table of 1 and 2.

C++ to display the

Solution:

#include<iostream.h>
#include<conio.h>

void main()
{ . ..
nt 1,];
clrser();
cout<<"The multiplication table of 1 and 2 are:\n";
for(i=1;1<=2;i++)

for(j=1;j<=10;j++)
Cout<<i<<"X"<<j<<":"<<i*j<<"\n";
cout<<"\n";

94| Page

getch();

3.7 GOTO STATEMENT

The goto statement is used to transfer the control in a program from
one point to another point unconditionally. This is also called
unconditional branching. The syntax of the goto statement is:

goto label;

wherelabel is a valid identifier to indicate the destination where a
control can be transferred.

3.8 break STATEMENT

The break statement causes an immediate exit from the innermost
loop. When the keyword break is encountered inside any loop,
control automatically passes to the statement after the loop. The
break statement can also be used with switch statement that we
studied earlier.

Example3.30:

#include <iostream.h>
#include <conio.h>

void main()

{

nt 1, num;

clrscr();

for (i=1;i<=5;i++)

{

cout<<"\n\nEnter a number:\t";
cin>>num;

if(num<0)

{

95| Page

cout<<"\nYou have entered a -ve number.\n";
break;

b

cout<<"\nThe value of i in the loop is:"<<i;
cout<<"\nThe number you have entered is:"<<num;
H

cout<<"\nGood bye";

getch();

}

Output:

Enter a number: 10

The value of i in the loop is:1

The number you have entered is: 10
Enter a number: 20

The value of i in the loop is: 2

The number you have entered is: 20
Enter a number: -5

You have entered a -ve number.
Good Bye

Explanation:

In this case, when we put the value as -5, the statement “if(num<0)”
returns true, so the statement “You have entered a -ve number.” is
displayed. Since we have used a break statement after that
statement, the program control terminates the loop immediately. So,
the statements i.e. cout<<"\nThe value of i in the loop is:'"<<i;
and cout<<'"\nThe number you have entered is:"<<numjare not
displayed and the statement cout<<"\nGood bye";is displayed.

3.9 continue STATEMENT

Sometimes we want to take the control to the beginning of the loop
by passing the statements inside the loop which have not yet been
executed. The continue statement forces the next iteration of the
loop to take place, skipping any statement(s) following the continue
statement in the body of the loop. The syntax of the continue
statement is:

96| Page

continue;

STOP TO CONSIDER

continue statement is not used with switch statement

Example 3.31:

#include <iostream.h>
#include <conio.h>

void main()

{

int 1, value;

clrscr();

for(i=1;i<=4;i++)

{

cout<<"\n\nEnter a number:\t";

cin>>value;

if(value<=0)

{
cout<<"\nZero or -ve value found\n";
continue;

}

cout<<"\nThe value of i in the loop is:"<<i;

cout<<"\nThe entered number is:"<<value;

}
getch();

b
Output:

Enter a number: 10

The value of i in the loop is: 1
The entered number is: 10
Enter a number: 20

The value of i in the loop is: 2
The entered number is: 20
Enter a number: -5

Zero or -ve value found

Enter a number: 30

The value of i in the loop is: 4

97| Page

The entered number is: 30

Explanation:

In the above example, when we put the value as -5, the if condition
returns true and the statement inside the if block " Zero or -ve value
found " is displayed. But since there is a continue statement after
that statement, the program control skips the next two cout
statements and goes to the next iteration of the loop.

3.10 exit () function

The function exit() is used to terminate the program execution
immediately. The syntax is:

exit(status);
where 'status' is the termination value returned by the program and
is an integer. Normal termination usually returns 0.

Check Your Progress 3

5. State whether the following statements are #rue or false

a) The while and for loops cannot be nested loops the way
if statement can be nested.

b) Loop is a mechanism to execute a set of statements a
number of times.

c) The break statement helps immediate exit from any part
of the loop.

d) A while loop may always be converted to an equivalent
for loop.

e) In a C program, use of goto statement is generally not
recommended.

f) You can use one break statement in one loop.
g) The exit() function causes an exit from a function.

h) It is not possible to have a switch statement nested within
while or for loops.

i) A continue statement causes an exit from a loop.

98| Page

3

k)

D

m)

n)

0)

p)

Q)

a)

b)

c)
d)

g)

h)

i)

A do while loop is useful when the body of the loop will
be executed at least once.

Multiple increment expressions in a for loop expression
are separated by commas.

If a loop does not contain any statement in its loop body
it is said to be an empty loop.

A loop can contain another loop in its body.

The while loop evaluates a test expression before
allowing entry into the loop.

In nested loops, the inner loop must terminate before the
outer loop terminates.

Statements inside a do while loop will be executed at
least once.

The continue statement is used to skip some statements
within a loop and start next iteration.
The break statement is used when it is required to exit

from a loop other than by testing of termination
condition.

6. Fill in the blanks:

The initialisation, testing and increment can be done in
the statement itself.

Nesting can be done upto level for while loop.
Example of an infinite loop is

A is used to separate the three parts of the
loop expression in a for loop.

When the statement is executed, the program
skips the remaining statements in the loop and goes back
to test the loop condition.

An infinite for loop has missing expression.

A loop can also be an empty loop, if it
contains just a null statement in its body.

The is executed at least once always before
it evaluates the test expression.

statement exits from some deeply nested
structure at once.

function forces exit from a program.

99| Page

3.11 SUMMING UP

There are three ways for taking decisions in a program. First way is
to use the if else statement, second way is to use the conditional
operators and third way is to use the switch statement. The default
scope of the if statement is only the next statement. So, to execute
more than one statement they must be written in a pair of braces.

A if block need not always be associated with an else block.
However, an else block is always associated with an if statement.

Loop structures are used to execute a statement/block of statements
repeatedly a number of times. Three types of loops are used in C++:
for, while and do while. In both for and while loop, the condition is
checked before each iteration of the loop. But in case of do while
loop, the condition is checked after each iteration of the loop.

The goto statement transfers control to a label. The break statement
terminates the execution of the nearest enclosing do, for, while or
switch statement in which it appears.

The continue statement passes control to the next iteration of the
nearest enclosing do, for or while statement in which it appears
bypassing any remaining statements in the do, for or while
statement body.

3.12 ANSWERS TO CHECK YOUR PROGRESS

1.The if statement is a control statement that tests a particular
condition. Whenever, the evaluated condition comes out to be true,
then that action or the set of actions are carried out. Whereas, if else
statement is used to execute a statement block or a single statement
depending on the value of a condition.If the condition evaluates to
true, then the statement(s) inside the if block will be executed,
otherwise, the statement(s) inside the else block will be executed.

2.An if statement may have another if statement in the true
condition block and false condition block. This compound statement
is called nested if statement.

3.205

100 | Page

a) False
b) False
c) False
d) False

e) True

a) False
b) True
c) True
d) True
e) True
f) False
g) False
h) False
1) False
j) True
k) True
1) True
m) True
n) True
0) True
p) True
q) True
r) True

a) for
b) 3
c) while(1)
d ;

e) continue

f) test

g) while or for
h) do while

i) goto
J) exit()

101 |Page

3.13 POSSIBLE QUESTIONS

Short answer type questions:

1.

What is the effect of absence of break in switch case
statement? What is the purpose of default?

What is the similarity and difference between break and
continue statement?

What is the function of break statement in a loop?
Differentiate between while and do while loop.

Differentiate between break and exit ().

Long answer type questions:

10.

11

12.

13

Explain the various if structures with suitable examples.
Differentiate between if else and switch structures with an
example.

What is nested if statement? Explain with an example.

Write a program in C++ to display the smallest of three
numbers entered by the user.

Explain the loop control structures used in C++ with
examples.

Write a program in C++ to convert a binary number into a
decimal number.

Write a program in C++ to convert a decimal number into its
equivalent binary number.

Write a program in C++ to check whether a number is
palindrome or not.

Write a program in C++ to display the multiplication table of
5.

Write a program in C++ to display all the numbers divisible
by 7 between 20 and 200.

. Write a program in C++ to generate the first 100 positive

integers divisible by 5.
Write a program in C++to display the prime numbers
between 10 and 100.

. Write a program in C++to display the factorial of all the

numbers between 1 and 10.

102 | Page

3.14 REFERENCES AND SUGGESTED READINGS

1. Kanetkar, Yashavant P. Let us C++. BPB publications,
2020.

2. E Balagurusamy, Object-Oriented Programming with C++,
Mc Graw Hill Publications, 2020

103 | Page

UNIT 4: ARRAYS AND STRINGS IN C++

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Definition of Array

4.4 Types of Array and Declaration
4.4.1 One Dimensional array
4.4.2 Multi-Dimensional array

4.5 Operations on One Dimensional Array
4.5.1 Initialization
4.5.2 Read and Access Array Elements
4.5.3 Searching and Sorting

4.6 Operations on Two Dimensional Array
4.6.1 Initialization
4.6.2 Read and Access Array Elements

4.7 Definition of String

4.8 Input and Display a String

4.9 Operations on Strings

4.10 Array of Strings

4.11 String Library Functions

4.12 Summing Up

4.13 Answers to Check Your Progress

4.14 Possible Questions

4.15 References and Suggested Readings

4.1 INTRODUCTION

We have already learnt how to declare a variable and assign
a value to it. Sometimes in a C++ program, multiple inputs of
similar type are required. In such cases, it may happen that the
number of input data is very large so in such cases, it is not possible
to declare multiple variables for all the input data. Here, we can use
the concept of Array in C++ programming.

We have also learnt how to input a character. Sometimes, in
a C++ program, we are required to input a word or a collection of
some words or some sentences. In such cases, we can use character
arrays to input strings.

104|Page

4.2 UBIT OBJECTIVES

After reading this unit you are expected to be able to learn:

= What are Arrays?

= Different types of Arrays.

= How to declare and initialize an Array?

= Different operations on one dimensional array and
two dimensional array.

* What is string?

* How to input and display a string?

= Different operations on strings.

= What is array of strings?

= Different library functions on strings.

4.3 DEFINITION OF ARRAY

An array is a collection of homogeneous pieces of data that are all
identical in type and stored in consecutive memory locations. For
example, in Fig.4.1, A is an integer array storing 10 integer
numbers.

A |23 145 |32 |67 |8 12 | 123 |89 |90 |22

Fig.4.1

Now let us consider the base address of A as 5012. Base
address of an array is the memory address of the first element in the
array. So, 5012 is the memory address of 23. Now according to the
definition of array, the memory address of the second element of A
is 5014 as the memory size of int type variable is 2 bytes. In this
way, the memory address of the third and fourth element of A is
5016 and 5018 respectively as the array elements are stored in
consecutive memory locations.

105|Page

4.4 TYPES OF ARRAY AND DECLARATION

There are two types of array available in C++ programming that is
explained as follows:

4.4.1 One Dimensional Array

The declaration syntax of one dimensional array is
Datatype arraynm [N [;

Here datatype specifies type of the data to be stored in the array and
arraynm is the name of the array. [N] specifies that arraynm is a
one dimensional array and it can store maximum N number of
elements.

For example: int arr[30] ;

Here, int specifies that the array will store int type of data and arr is
the name of the array. The array arr can store maximum 30 number
of int type data.

4.4.2 Multi-dimensional array

The declaration syntax of multi dimensional or N dimensional array
is
Datatype arraynm [sizel][size2][size3]........[sizeN]

For example: example of declaring a 2 dimensional array is
float arrtwo [30][20] ;

Here [30][20] means arrtwo is a 2 dimensional array and it can store
maximum 30%x20 = 600 number of float type data. A two
dimensional array also can be called as a matrix.

Again example of declaring a 3 dimensional array is
int arrthree[10][20][10];

Here arrthree is a three dimensional array which can store maximum
10X20X10 = 2000 number of int type data.

106 |Page

4.5 OPERATIONS ON ONE DIMENSIONAL
ARRAY

There are different operations that can be performed on one
dimensional arrays as explained in the following sections.

4.5.1 Initialization

A one dimensional array can be initialized by using the following
statements.

intarrl[5]=1{4,7,8,23,56};
intarr2[1=4{2,7,1,9};
chararr3[] = {‘A’, ‘H’, J’, ‘B’};

By initializing a one dimensional array, we can store some initial
values into the array at compile time. From the above statements,
the array arrl is initialized with the values 4, 7, 8 , 23 , 56 as first,
second, third, fourth and fifth element of arrl respectively. Now if
an array is not initialized then it contains garbage values because by
default the storage class of array is auto. So if the storage class of an
array is declared to be static then all the array elements will be
initialized to zero.

4.5.2 Read and Access Array Elements

We have to learn how to access individual element in a one
dimensional array and how array elements can be read from
standard input device. Accessing of array elements can be
performed with the number in the brackets (for example: [4])
following the array name. This number is called as subscript. This
number specifies the element’s position in the array. In C++
programming, all the array elements are numbered, starting with
subscript value 0. So, an array of size 20 has subscript values
starting from 0 to 19. So if we want to access the 5™ element of an
array ‘arr’ then we can use ‘arr[4]’ . Now we can read and display
the 5" element of an integer array ‘arr’ with the help of the
following programming statements.

int arr[30];

107|Page

cin>>arr[4]; /* an int type data is read from the standard
input device into the 5 position of arr */

cout << arr[4]; /* the 5" element of arr is displayed in the
standard output device®/

Now from fig. 4.1, A[0] will refer to the first element of A which is
23 and in this way A[9] will refer to the 10® element of A which is
22.

Here, we have an important point to note that is what happens when
the subscript value used at the time of reading an array element is
greater than or equal to the size of the array. In such cases, for C++
programming, data will be entered into the memory space outside
the memory space allocated for the array.. So there should be a
conditional statement in our C++ programs to check that the
subscript value never exceed the array size at the time of reading
array elements.

STOP TO CONSIDER

Direct access or random access of array elements is possible because
the array elements are stored in consecutive memory locations.

Now, a C++ program to input and display » elements in an integer
array is given below.

include <iostream.h>
include <conio.h>

int main()

{
int arr[30];
inti,n;
clrser();

cout << "\nHow many numbers you want to enter(maximum 30)="};
cin >> n;

if(n>30)
{

cout << "\nYour entered value exceeds the size of the array";

108 |Page

else

{
for(i=0;i<n;it++)
{
cout << "\nEnter the ” <<i+1 << “th number =";
cin >> arr[i] ;
}
for(i=0;i<n;it+)
{
cout << '"\nThe << i+1 << “th number in the array is=" <
b
}
getch();
return 0;

4.5.3 Searching and Sorting

Searching a particular element in an array is another important
operation performed on arrays. This can be performed by
comparison operation between the element to be searched and
elements available in the array. Two fundamental searching
algorithms are Linear search and Binary search.

Arranging array elements in ascending or descending order in an
array is called the sorting operation. There are different algorithms
available for sorting operation. For example: Bubblesort, Selection
sort, Insertion sort etc.

A C++ program to search an element in an integer array using
Linear search technique and display the subscript value where the
element is present in the array is given as follows.

include <iostream.h>
include <conio.h>

int main()

{
int arr[30];
inti,n,sno, flag=0;
clrser();

109|Page

arr[i];

cout << "\nHow many numbers you want to enter(maximum 30)="|;
cin >> n;
if(n>30)
{
cout << "\nYour entered quantity of numbers exceeds the size of the array";
}
else
{
for(i=0;i<n;it+)
{
cout << "\nEnter the ” <<i+1 << “th number =",
cin >> arr[i] ;
}
cout << "\n Enter the number to be searched in the array =";
cin >> sno;
forG=0;i<n;it+)
{
if(sno = = arr[i])
{
cout << “\n” <<sno << *“ is present in the array'[;
cout << “An Subscript value of the searched element is ="<<
i
flag=1;
break;
}
}
if(flag == 0)
{
cout << “An” <<'sno <<" is not present in the array";
}
}
getch();
return 0;
}

110|Page

Example 4.1: Write a C++ program to search a specific data in a
one dimensional array using Binary search algorithm.

include <iostream.h>
include <conio.h>

int main()
{
int arr[50] , i, n, start, mid , end , src_data;
clrser();
cout << "\n Enter the total number of data in the array:";
cin >> n;
if(n <=50)
{
cout << "\n Enter data into the array:";
for(i=0;i<n;it+t+)
{
cout <<"\n Enter 7<<i+1 << “th data:";
cin >> arr[i];
H
cout << "\n Enter the data to be searched:";
cin >> src_data;

cout << "\n The array data are:\n";
for(i=0;i<n;it+)
cout << “\t” << arrf[i];

start = 0;

end = n-1;

while(start <= end)

{
mid = (start + end)/2;
if(arr[mid] = = src_data)

e array"';
bnt is =7 <<

{
cout << “\n” << src_data <<“ is available in th
cout <<*\n Subscript value of the searched elemg
mid;
break;
}
else if(arr[mid] < src_data)
start = mid+1;

111 |Page

else

end = mid-1;
}
if(start > end)
cout << “\n” << src_data << *“ is not available i
array;
}
else
{
cout << "\n The total number of data exceed the size of {
}
getch();
return 0;
}

Example 4.2: Write a C++ program to find out the minimum and
the maximum number in an integer array.

#include<iostream.h>
#include<conio.h>

int main()

{

30

int arr[30]; //arr is a one dimensional integer array with size

inti,n, min, max;
clrser();

cout << "\nHow many numbers you want to enter(maximum 30)="
cin >> n;

if(n > 30)

{

cout <<"\nYour entered quantity of numbers exceeds the size of

}

else

{
for(1=0;i<n;it+)

{

n the

he array";

" the array";

cout << "\nEnter the << i+l << “th number ="

112|Page

cin >> arr([i];
H
min = arr[0];
max = arr[0];
for(i=1;i<n;it+)

{
if(arr[i] < min)
min = arr[i];
if(arr[i] > max)
max = arr[i];
h

cout <<"\nThe minimum of the numbers present in the array is
cout <<"\nThe maximum of the numbers present in the array is

§
getch();
return 0;

H

Example 4.3:

Write a C++ program to find out the summation of all the numbers
present in an integer array.

#include <iostream.h>
#include <conio.h>

int main()

{

int arr[30];
inti, n,sumarr=0;
clrser();

—_n

cout <<"\nHow many numbers you want to enter(maximum 30)
cin >>n;

if(n > 30)
{

= "<<min;
= ""<<max;

113|Page

cout<<"\nYour entered quantity of numbers exceeds the size of the

array";
h
else
{
for(i=0;i<n;it+t)
{
cout << "\nEnter the ” << “th number =" <<i+l;
cin >> arr[i];
sumarr = sumarr + arr[i];
h

cout << “AnThe summation of the numbers present in the array is¥"<< sumarr;

getch();
return 0;

Example 4.4: Write a C++ program to sort some integer numbers
stored in a one dimensional array using Selection sort algorithm

#include <iostream.h>
#include <conio.h>

int main()
{
int arr[50] ,1,j,n, index , min;
clrser();
cout <<"\n Enter the total number of data in the array:";
cin >> n;
if(n <=50)
{

cout << "\n Enter data into the array:";

114|Page

else

of the array”;

h
getch();
return 0;

115|Page

for(i=0;i<n;it+)

{
cout << “\n Enter << i+1 << “th data:";
cin >> arr[i];

h

cout << "\n Before sorting the array data are:\n";
for(i=0;i<n;it+)
cout << “\t” << arr[i];

fori=0;i<n-1;it+)

{
index = i;
min = a[i];
for(j =i+l ;j<=n-1;j++)
{
if (min > a[j])
{
min = a[j];
index = j;
H
h
a[index] = a[i];
a[i] = min;
b

cout << "\n After sorting the array data are:\n";
forG=0;i<n;it+)
cout << “\t” << arr[i];

cout <<“\n The total number of data exceed the size

Example 4.5: Write a C++ program to sort some integer numbers
stored in a one dimensional array using Bubble sort algorithm

#include <iostream.h>
#include <conio.h>

int main()

{

int arr[50] ,1,j,n, temp;
clrser();
cout <<"\n Enter the total number of data in the array:";

cin >> n;
if(n <=50)

{

116 |Page

cout <<"\n Enter data into the array:";
for(=0;i<n;itt+)
{
cout << “\n Enter << i+1<< “th data:";
cin >> arr[i];
§
cout << "\n Before sorting the array data are:\n";
for(=0;i<n;itt)
cout << “\t” << arr[i];

for(i=0;i<n-1; it+t+)

{
for(=0;j<n-i-1;j++)
{
if (arr[j] > arr[j + 1])
{
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
b
}

cout <<"\n After sorting the array data are:\n";
forG=0;i<n;it+)
cout << “\t” << arr[i];

else

cout <<"\n The total number of data exceed the size
of the array";
}
getch();
return 0;

Example 4.6: Write a C++ program to sort some integer numbers
stored in a one dimensional array using Insertion sort algorithm

#include <iostream.h>
#include <conio.h>
int main()
{
int arr[50] ,1,j,n, key;
clrser();
cout <<"\n Enter the total number of data in the array:";
cin >> n;
if (n <=50)
{
cout <<"\n Enter data into the array:";
forG=0;i<n;it+)
{
cout << “\n Enter 7<<i+1<< “th data:";
cin >> arr[i];
H
cout <<"\n Before sorting the array data are:\n";
for(=0;i<n;itt)
cout << “\t” << arrf[i];

for(i=1;i<n;it+)

117|Page

key = afi];
j=i-1;
while (j >= 0 && a[j] > key)
{
a[j+1]=a[jl;
J==s
}
a[j+1] = key;
}

cout << "\n After sorting the array data are:\n";
for(i=0;i<n;it+)
cout << “\t” << arrf[i];

}

else

{

cout <<"\n The total number of data exceed the size
of the array";

}
getch();
return 0;

STOP TO CONSIDER
Let us declare an one dimensional array as int Arr[20]. Then Arr and
&Arr[0] will provide the base address of the array.

4.6 OPERATIONS ON TWO DIMENSIONAL
ARRAYS

4.6.1 Initialization

Two dimensional arrays can be initialized as follows:
int arrtwol[4][3] = { /I Fig. 4.2

{458)9}7

118 |Page

{7,9,21},
{1, 8,19},
{71,6,2}
35
int arrtwo2[4][3]1={4,8,9,7,9,21,1,8,19,71,6,2};
int arrtwo3[][3]=1{4,8,9,7,9,21,1,8,19,71,6,2};

Here three ways of initializing a two dimensional array are shown
above. In case of initializing two dimensional arrays, it is necessary
to mention the second dimension of the array; otherwise it will not
work in C++ programming. So, in two dimensional array
initializations as shown below will not work in C++ programming.

int arrtwo[][]={4,8,9,7,9,21,1,8,19,71,6,2};

int arrtwo[4][]={4,8,9,7,9,21,1,8,19,71,6,2};

0 1 2
0 4 8 9
1 7 9 21
2 1 8 19
3 71 6 2

Fig. 4.2: Diagrammatic representation of the array arrtwol
declared above

4.6.2 Read and Access Array Elements

We need two subscript values to access a specific cell of a
two dimensional array. Here first subscript value will represent the
row index and the second subscript value will represent the column

119|Page

index of the specific cell of a two dimensional array. For example:
consider the two dimensional array arrtwol declared above whose
diagrammatic representation is given in fig. 4.2. Here arrtwo1[0][0]
will refer to the first element in the array with row index 0 and
column index 0 which is 4. Again arrtwo1[3][0] will refer to 71.

So arrtwol[i][j] will give the array element with i row number
and j™ column number of the array arrtwol.

Now to display the array element with row number 3 and column
number 2 of array arrtwol on the standard output device, the
following programming statement in C++ can be used:

cout << arrtwol[3][2];
So the output of the statement will be 2.

Again to read a new array element from the standard input device
into the cell with row number 3 and column number 2 of array
arrtwol, the following programming statement can be used.

cin >> arrtwol[3][2];

So result of this statement will be a new data from standard input
device will replace the existing array element of arrtwol with row
number 3 and column number 2 as arrtwol is initialized.

Example 4.7: Write a C++ program to find out the summation of all
the numbers of a matrix with integer values.

#include <iostream.h>
#include <conio.h>

int main()

{
inti,j,row_no, col no, matrix[20][20] ,sum = 0;
clrser();

cout << "\n Please enter the number of rows =”;
cin >>row_no;

cout << "\n Please enter the number of columns =7;
cin >> col_no;

120|Page

cout << "\nPlease enter the matrix:";

for(i=0;i<row no;itt)

{
for (j =0;j <col no;j++)
{
cout <<*\nPlease enter the ("<<i<<
“<<<< “Yth data:”;
cin >> matrix[i][j];
}
H
for(1=0;i<row no;itt)
{
for (j =0;j<col no;j++)
{
sum = sum+ matrix[i][j];
}
H
cout << “\n The required summation is = << sum;
getch();
return O;

Example 4.8: Write a C++ program to find out the summation of all
the diagonal elements of a symmetric matrix with integer values.

#include <iostream.h>
#include <conio.h>

int main()

{
inti,j,row_no, col no, matrix[20][20] ,sum = 0;
clrser();

cout << "\n Please enter the number of rows = ;
cin >>row_no;

cout <<"\n Please enter the number of columns = ”;
cin >> col no;

121 |Page

if(row_no !=col no)
{

cout <<“\n Wrong input. Symmetric matrix required here”;

b

}

else

{

cout << "\nPlease enter the matrix:";

for (i=0;i<row_no;it++)

{ for (j =0;j <col no;j++)
{ cout <<“\nPlease enter the ("<<i<< “’<<j<< “)th data =";
cin >> matrix[i][j];
h
b
for i=0;i<row no;it+)
{
for (j =0;j <col no;j++)
{
ifi==j)
{
sum = sum + matrix[i][i];
H
h
h

cout << “\n The required summation is = << sum;

}
getch();

return O;

122 |Page

Example 4.9: Write a C++ program to add two matrix containing
integer data

#include <iostream.h>
#include <conio.h>

int main()
{

inti,j,row no,col no;

int matrix1[20][20] , matrix2[20][20],
sum_matrix[20][20];

clrser();

cout << “\n Please enter the number of rows = ”’;
cin >>row_no;

cout << "\n Please enter the number of columns = "’;
cin >> col no;

cout << "\nPlease enter the first matrix:";

for (i=0;1i<row_no;it+)

{
for (j =0;j<col no;jt++)
{
cout << “AnPlease enter the ("<<i<< “,’<<j<< “)th data of matrix1=";
cin >> matrix 1[i][j];
}
}

cout << "\nPlease enter the second matrix:";

for(i=0;1i<row_no;it+)
{
for j =0; j <col no;j++)
{
cout << “\nPlease enter the ("<<i<< “,’<<j<<
“) the data of matrix2=";

cin >> matrix2[i][j];

}

123 |Page

for(i=0;i<row no;itt)

{
for j=0;j<col no;j++)
{
sum_matrix[i][j] = matrix1[i][j] + matrix2[i
}
}

cout << “\n The first matrix is:\n”’;

for(i=0;i<row no;itt)

{
for (j =0; j <col_no ; j++)
{
cout << “\t” << matrix I1[i][j];
}
cout << “\n”;
}

cout << “\n The second matrix is:\n”;

for(i=0;i<row no;itt)

{
for (j =0; j <col_no ; j++)
{
cout << “\t”<<matrix2[i][j];
}
cout << ‘“\n”’;
}

cout <<*“\n The resultant matrix after summation is:\n”;

for(i=0;i<row no;itt)

{
for (j = 0;j <col no ; j++)
{
cout <<“\t”<< sum_matrix[i][j];
§

124 |Page

cout <<“\n”;
§
getch();
return O;

Example 4.10: Write a C++ program to multiply two matrix
containing integer data

#include <iostream.h>
#include <conio.h>

int main()
{
inti,j,k,rl,r2,cl,c2,sum=0;
int matrix1[20][20] , matrix2[20][20] , matrix_mult[20][20];

cout <<"\nPlease enter the number of rows of the first matrix=";
cin >>rl;
cout <<"\nPlease enter the number of columns of the first matrix =

cin >>cl;

—_n.

cout <<"\nPlease enter the number of rows of the second matrix =";
cin >>12;

cout << "\nPlease enter the number of columns of the second matrix =";

cin >> ¢2;

if (c1 I=12)

cout <<"\n Matrix multiplication for these dimensions of matrices is not

possible”;

else

{

cout <<"\nPlease enter the first matrix:";

for(i=0;i<rl;itt)

{
for G=0;j<cl;j+)
{

cout << “AnPlease enter the ("<<i<< “,’<<j<< “)th data of matrix1=";

125|Page

b

cin >> matrix 1[i][j];

cout << "\nPlease enter the second matrix:";

fori=0;i<r2;i++)

{ for j =0;j<c2;jt++)
{ cout << “AnPlease enter the ("<<i<< “,’<<j<< “)th data of matrix2=";
cin >> matrix2[i][j];
H
b
for(1=0;1<rl;it++)
{
for j=0;j <c2;j++)
{
for (k=0; k <12; k++)
{
sum = sum + matrix1[i][k] * matrix2[k][j];
}
matrix_mult[i][j] = sum;
sum = 0;
}
h

cout << “\n The first matrix is:\n”";

for(i=0;i<rl;itt+)

{
for j=0;j<cl ;j++)
{
cout << “\t”<<matrix 1[i][j];
}
Cout << “\n”;
}

126 |Page

cout << ‘“\n The second matrix is:\n”;

fori=0;1<r2;i++)

{
for (j=0;j<c2;j++)
{
cout <<“\t” << matrix2[i][j];
}
Cout << “\n”;
H

cout <<*“\n The resultant matrix after multiplication is:\n";

for(i=0;i<rl;it++)

{ for (j=0;j<c2;j++)
{
cout <<*“\t”<< matrix_mult[i][j];
H
cout << ‘“\n”;
H
h
getch();
return 0;

STOP TO CONSIDER
Let us declare a two dimensional array as int Arr2[20][30]. Then Arr2,
Arr2[0] and &Arr2[0][0] will provide the base address of the array.

CHECK YOUR PROGRESS

1. Multiple choices
(a) In C++ programming, the subscript value of an array

is
starting from

127|Page

(b)

(©)

(d)

(e)

128 |Page

®» 0

(i1) 1

(iii) Compiler dependent
(iv) None of the above

int arr[20];
The meaning of the above C++ statement is

(1) arr is an integer variable

(i1) arr is an integer array capable of storing 19
integer numbers

(iii)) arris an array capable of storing 20 data

(iv) arris an integer array capable of storing 20
integer numbers

int arr[5] = {5,2,0,1,4};

arr[3] = arr[1] + arr[4];

forG=0;i<5;it+)
cout << arrf[i];

The output of the above statements is

() 52014
(i) 52044
(i) 51064
(iv) 52064

If arr is a character array and the memory address of
arr[0] is 203 then memory address of arr[3] is

() 204
() 205
(i) 206

(iv) None of the above

If you don’t initialize an array what will be the
elements set to?

®» 0
(i1) an undetermined value
(iii)) a floating point number

(iv) the character constant \0’

(f) What will happen if you try to put so many values
into an array when you initialize it that the size of the
array is exceeded?

(1) Nothing

(i1) possible system malfunction
(iii)) Error message

(iv) Other data may be overwritten

(g) What will happen if you put too few elements in an
array when you initialize it?

(1) Nothing

(i1) possible system malfunction

(iii)) Error message

(iv) Unused spaces will be filled with 0’s or
garbage.

(h) In C++ programming, number of subscript values

required in case of two-dimensional array is

(1) one

(i1) two

(iii)) three

(iv) None of the above

(i) Which of the following is not true in case of array?
(1) Array is collection of homogeneous data.
(i1) In C++ programming, size of an array can be
changed at runtime.
(iii) Array elements are stored in contiguous
memory locations.
(iv) None of the above

() Which of the following statement is a correct way to
declare a two-dimensional array which can store at
most 100 real numbers?

(1) int A[100][100];
(i) float A(100)(100);
(iii) float A[10][10];
(iv) float A[100][100];

129 |Page

(k)

M

(m)

(n)

(o)

130|Page

Which of the following statement is a correct way to
declare a one-dimensional character array which can
store at most 100 characters?

(1) int ch[100];

(i1) char ch(100);

(iii) char ch[99];

(iv) char ch[100];

Which of the following statement is a correct way to
initialize a one-dimensional character array?

(1) char ch[6]={'G",'U",'T,'D",'O",'L'};
(i1) char ch(6)={'G",'U",'T','D','O",'L'};
@iii)) charch[6]={G,U,I,D,O,L};
(iv) char ch[6]=['G','U"'T",'D','O",'L'];

Which of the following statement is a correct way to
initialize a two-dimensional integer array?

(1) int Arr[][]1={8,9,12,54,90,31};

(i1) int Arr[2][]={8,9,12,54,90,31};

(i) int Arr[2][3]={8,9,12,54,90,31};
(iv) All of the above;

Which of the following statement can be used to read
an integer number and store it in the 5th position of a
one-dimensional array?

(1) cin>>Arr[5];

(i1) cin>>Arr[4];

(iii) cin<<Arr[4];

v) cin>>Arr(4);

Which of the following statement can be used in C++
to display the data stored in a two-dimensional float
type array where the subscript values of the particular
cell are 4 and 5?

(1) cout >> A[4][5];

(i) cout<<A[5][6]);

(i) cout<<"%f"<<A[4][5];

(iv) cout<<A[4][5]);

2. State whether true or false:
(@) To declare an integer array we have to write
int arr = size(20);
(b) Array can be used to store different types of data.

(¢c) In C++ programming ,the subscript value of an
array is starting from 1.

(d) The subscript value of the last element of an array of
size 10 is 9 in C++ programming.

(e) In C++ programming, an array cannot be initialized.

4.7 DEFINITION OF STRING

String is a collection of some characters stored in a one dimensional
character array. A string is always terminated by “\0” which is called
NULL character. The ASCII value of “\0’ is zero. For example, in
fig.4.3, A is a character array with array size 10 and it stores the
string “Welcome”.

0 1 2 3 4 5 6 7 8 9

A | W E | C 0 m e \0

Fig.4.3

STOP TO CONSIDER
The maximum length of any string that will be stored in a character
array, strn[N] is N-1 as string must be terminated by the NULL(\0”)
character.

4.8 INPUT AND DISPLAY A STRING

At first we require a character array to input a string. We can use
standard input stream object, ‘cin’ and different library functions
like gets (), getchar() to input a string. For example:

char str[40];

131|Page

(a) Standard input stream object, ‘cin’ can be used as:
cin >> str;

(b) gets() can be used as:
gets(str);

(c) getchar() can be used as:

inti=0;
char ch;
while((ch = getchar()) !="\n")
{
str[i] = ch;
i+t

H
str[i] ="0";

Here str is the character array where we have input a string using
cin, gets() and getchar(). But ‘cin’ is not capable to input a multi
word string, so in case of multi word string we can use gets() or
getchar(). getchar() is a input function which can be used to input a
character. So getchar() can be used to input all the characters of a
string one by one with the help of a loop control and at the end , the
NULL character(\0) is entered.

Now to display a string we can use standard output stream object,
‘cout’ and different library function like puts(), putchar().
For example:
char str[40];
gets(str);
(a) Standard output stream object, ‘cout’ can be used as:
cout << str;

(b) puts() can be used as:

puts(str);

132|Page

(c) putchar() can be used as:

inti=0;

while(str[i] !="0")

{
putchar(str[i]);
i+t

h

4.9 OPERATIONS ON STRINGS

There are different operations performed on strings that are
discussed as follows.

(a) A string is initialized as:

char str[] = “Welcome”;

Or

charstr[| = {*W’,’¢’,’l’,’¢c’,’0’,’m’,’e’,’\0’ };
Here, in the first declaration, “\0’ is not necessary. C++ compiler
inserts the NULL character (\0) automatically.

(b) Length of a string can be estimated by just finding the
subscript value of the NULL character (\0) in the character array
where the string is stored. So searching operation is performed for
the NULL character (\0) in the string and the subscript value of the
NULL character (\0) is the required length of the string.

A C++ program to find out the length of a string is given below.

#include <iostream.h>
#include <conio.h>

int main()

{
char ch, str[30];
int slen = 0;
clrser();

133|Page

cout << "\nEnter a string =";
gets(str);
while(str[slen]! ="0")
{
slent++;
h
cout << "\n The length of the string is ="<<slen;
getch();
return O;

(a) To concatenate one string at the end of another string, we
have to find out the subscript value of the NULL character that is
stored in the string where concatenation will be performed. Then we
have to assign each character of the string that is to be concatenated
to the other string in consecutive position starting from the
estimated subscript value.

A C++ program to concatenate a string at the end of an another
string is given below

#include<iostream.h>
#include<conio.h>

int main()
{
char str1[30], str2[30];
int slen =0, 1=0;
clrser();
cout << "\nEnter the first string =";
gets(strl);
cout << "\nEnter the second string =";
gets(str2);
while(str1[slen]! ="\0")
{
slen++;
H
while(str2[i]! ="\0")
{
strl[slen] = str2[i];
slen++;

134|Page

(¢)

i+t

b

§
strl[slen] ="0";

cout << "\n After concatenation the first string is=";
puts(strl);

getch();

return 0;

To copy a string to an another string we have to just assign

each character of the first string to the second string in consecutive
subscript value positions starting from 0 to the subscript value
where the NULL character(\0) is stored in the first string.

A C++ program to copy one string to another string is given below.

#include <iostream.h>
#include <conio.h>

int main()

{

char str1[30], str2[30];
inti=0;
clrser();
cout <<"\nEnter the first string =";
gets(strl);
cout <<"\nEnter the second string =";
gets(str2);
while(str2[i]! ="\0"
{
strl[i] = str2[i];
i+t

b

b

strl[i] ="0";

cout <<"\nAfter copy the first string is =";
puts(strl);

getch();

return 0;

135|Page

Example 4.11:

Write a C++ program to search and find out the number of
occurrences of a specific character in a string.

#include <iostream.h>
#include <conio.h>

int main()

{

char str[30] ;

char ch ;

inti=0, chcount=0;
clrser();

cout <<"\nEnter a string =";

gets(str) ;

cout <<"\nEnter the character to be searched=";
cin >>ch ;

while(str[i] 1="0")

{
if(str[i] == tolower(ch) || str[i] == toupper(ch))
chcount++;
i+
b

if(chcount==10)
cout <<"\n the character, ”<< ch<< “is not present in the
string";
else
cout<<"\nThe character is present in the string,”<<chcount<<
“no. of times";

getch();
return 0;

136 |Page

Example 4.12:

Write a C++ program to count the number of vowels present in a
string.

#include <iostream.h>
#include <conio.h>

int main()

{

char str[30];
int 1= 0,vcount = 0;
clrser();
cout <<"\nEnter a string =";
gets(str);
while(str[i] !="0")
{
switch(str[i])
{
case 'a":
case 'A":
case 'e":
case 'E":
case 'i":
case 'I":
case '0'":
case 'O":
case 'u'":
case 'U'": vcount++;

i++;

if (veount==0)

cout <<"\n No vowel present in the string";

else

cout <<"\nThe number of vowel present in the string is =" <<

getch();
return 0;

137|Page

3

veount;

4.10 ARRAY ON STRINGS

Till now, we have learnt to read and display single strings by using
one dimensional character arrays. But to read multiple strings, we
require two dimensional character arrays where the first subscript
value of the arrays indicates the total number of strings and the
second subscript value indicate the maximum length of each strings.
This is also called as array of strings. For example, let us consider a
two dimensional character array Multi Strn[20][40]. Now
Multi_Strn[20][40] can be used to read 20 strings where maximum
length of each string can be40 .

A C++ program is shown below where N number of employees’
names is read and displayed.

#include <iostream.h>
#include <conio.h>

int main()

{
char Emp_names[50][100];
int N, i;
clrscr();

cout << "\n Enter the total number of names =";

cin >> N;
if(N > 50)
{
cout <<"\n Maximum 50 names is possible";
H
else
{
cout<<"\n Enter names of ”<<N<<“number of
employees::”;
for(i=0;1i<N;it++)
{
cout <<"\n Enter ”<<i+1<< “thname=";
gets(Emp_names|[i]);
H

138|Page

cout <<"\n The list of employee names is:\n";
for(i=0;1i<N;it++)

{
puts(Emp_namesJ[i]);
cout<<"\n";
H
H
getch();
return 0;

In the above program, Emp names[50][100] is declared as two
dimensional character array to store maximum 50 number of
employee names. Here Emp names[i] point to the i employee
name.

4.11 STRING LIBRARY FUNCTIONS

Some of useful library functions on strings and their functionalities
are given in the following table (TABLE 4.1).

139|Page

Table 4.1: Table For String Library Functions And Their

Functionalities
String Library Functionality
Function
strlen(strn) Returns the length of the string strn
strepy(strnl,strn2) Copies the string strn2 to the string strnl
strnepy(strnl,strn2,N) | Copies first N characters of the string strn2
to the string strnl
strcat(strn1,strn2) Concatenate the string strn2 at the end of

the string strnl

strcmp(strnl,strn2)

Compares the two strings strnl and strn2.
If it returns O then strnl and strn2 are
equal. If it returns a positive value then
strnl is greater than strn2. If it returns a
negative value then strn2 is greater than the

strncmp(strnl,strn2,N) | Compares first n characters of two strings
strn1 and strn2

strempi(strn1,strn2) Compares two strings strnl and strn2
without regard to case

strlwr(strn) Converts the string strn to lowercase

strupr(strn) Converts the string strn to uppercase

strdup(strn) Returns a pointer to a string that is
duplicate of the string strn

strchr(strn,chr) Returns a pointer to the first occurrence of
the character chr in the string strn. If chr is
not available in strn then it returns NULL.

strrchr(strn,chr) Returns a pointer the last occurrence of the
character chr in the string strn. If chr is not
available in strn then it returns NULL.

strstr(strn1,strn2) Returns a pointer to the first occurrence of a
string strn2 in the string strnl. If strn2 is not
available in strn1 then it returns NULL.

strrev(strn) Reverses the string strn

strset(strn,chr) Sets all characters of the string strn to the
character chr

strnset(strn,chr,N) Sets first N characters of the string st to

the character chr

140 |Page

STOP TO CONSIDER

It is necessary to include the header file ‘string.h’ to use mentioned string
library functions.

Now consider the following programming statements.

char strnl[] = “Gauhati University”;
char strn2[] = “Welcome to IDOL”;
int slen;

slen = strlen(strn1);

cout <<*“\n Length of the string stored in strnl is ="<< s|en;
slen = strlen(strn2);
cout << “\n Length of the string stored in strn2 is ="<< glen;
strepy(strnl,strn2);

cout << “‘n String stored in strnl is =";
puts(strnl);

cout <<“\n String stored in strn2 is =";
puts(strn2);

cout <<*“\n”’<< strcmp(strnl,strn2);

Now the output of the above programming statements is:

Length of the string stored in strnl is = 18
Length of the string stored in strn2 is = 15
String stored in strnl is = Welcome to IDOL
String stored in strn2 is = Welcome to IDOL
0

The first line of the output gives the length of the string “Gauhati
University” stored in the character array strnl. The second line of
the output gives the length of the string “Welcome to IDOL” stored
in the character array strn2. To estimate these lengths, the string
library function strlen() is used.

In the above programming statements, string library function strcpy(
) is used to copy the string stored in strn2 to the string in strnl. As a
result, string “Welcome to IDOL” replaces the string “Gauhati
University” in strnl. Due to this, the third line of the output displays
the string stored in strnl which is “Welcome to IDOL”. The fourth

141 |Page

line of the output displays the string stored in strn2 which is also
“Welcome to IDOL”.

In the above programming statements, string library function
stremp() is also used to compare the strings stored in strnl and
strn2. Now at this moment, both strnl and strn2 store the same
string. So strcmp(strnl,strn2) returns 0 and as a result the fifth line
of the output provide 0.

STOP TO CONSIDER
In case of multi word strings, the blank spaces between two words are also
considered as characters in estimation of lengths of the strings. For example,
the length of the string “Gauhati University” is 18.

Example 4.13: Write a C++ program to read N number of employee
names and perform sorting operation using Bubble sort technique to
arrange these names in alphabetical order. Use string library
functions as required in the program.

#include <iostream.h>
#include <conio.h>
#include <string.h>

int main()

{
char Emp names[50][100], temp[100];
int N, 1, j;
clrser();

cout <<"\n Enter the total number of names =";

cin >> N;
if(N > 50)
{
cout <<"\n Maximum 50 names is possible";
H
else
{

cout<<"\nEnter names of 7<<N<< “number of
employees::";
for(i=0;1i<N;it++)

142 |Page

cout << "\n Enter "<<i+1<< “thname=";
gets(Emp_names|[i]);

}
cout <<"\n The list of employee names before sorting
1s:\n";
for(i=0;1i<N;it++)
{
puts(Emp_namesJ[i]);
cout <<"\n";
}
for(i=0;1<N-1;it++)
{
for(j=0;j <N-1-i;j++)
{
if(stremp(Emp_names[j] ,Emp names[j+
{
strepy(temp , Emp_names[j]);
strcpy(Emp_names[j], Emp nam
strcpy(Emp_names[j+1] ,
temp);
}
}
b
cout << "\n The list of names after sorting is:\n";
for(i=0;1i<N;it++)
{
puts(Emp_namesJ[i]);
cout <<"\n";
}
}
getch();
return 0;
}

143 |Page

17) > 0)

es[j+1]);

CHECK YOUR PROGRESS

3. Multiple choices
(a) In C++ programming, a string is terminated by .

(1) “\0°

(i) ‘W’

(iii) A blank

(iv) None of the above

(b) A string is stored in a

(1) Character array
(i1) Integer array

(iii) Both (i) and (ii)
(iv) None of the above

(c) A string is initialized as

(1) char st1[] = “IDOL”;

(i1) char st1 = ”IDOL”;

(iii) charstl[]={‘’,’)D’,’0’,’L’,)\0’};
(iv) Both (1) and (iii)

(d) char name[20] = “Welcome to IDOL” ;
name[7] = \0’;
cout << name;

The output of the above statements is

(i) Welcome

(i1) Welcome t

(iii) IDOL

(iv) None of the above

(e) Which one of the following is appropriate for reading a
multi word string ?

(1) cin

(i) puts()

(i) gets()

(iv) Both (i) and (iii)

144 |Page

(f) If strcmp(sl,s2) returns -12 then it means

(i) sl and s2 are equal strings
(i) sl is greater than s2

(1) s2is greater than sl

(iv) None of the above

(g) char str[20] = “Welcome”;
for(int i = strlen(str) — 1 ; i>=0 ; i--)
cout << str[i];

The output of the above statements is
1) Welcome
(ii) emocleW
(i) Welcom
(iv) Error message from compiler

('h) strepy(s1,s2);
The above statement means
i) Copies the string s2 to the string sl
(i) Copies the string s1 to the string s2
(iii)) Copies the first n characters of the string s2 to
the string s1
(iv) None of the above
(i) Which one of the following statement can be used to
display multi-word string stored in the character array
'STR"?
(1) gets(STR);
(i1) cout<<STR;
(iii)) puts(STR);
(iv) BothBand C
() The maximum length of any string that can be stored
in a character array with array size 100is_

i 90
i) 99

(i) 100
(iv) 101

(k) Which of the following statement is a correct way to
initialize a string?
(1) char stringl[] = “GUIDOL”;

145|Page

(i1) char stringl[| =

{‘G’,,U,,,I753D’,’O’,’L’,7\03};

M

(m)

(n)

(0)

(P)

146 |Page

(i) char stringl[] = {G,U,I,D,O,L\0};
(iv) Both A and B

char Arr_string[50]{300];
The maximum number of strings that can be stored in
the array 'Arr_string' is .

i 50
() 300
(i) 299

(iv) None of the above

char Arr string[50][300];
The maximum length of each string that can be
stored in the array 'Arr_string' is

i 49
) 50

(i) 299
(iv) 300

Which of the following header file has to be included
in a C++ program to use string library functions?

(1) string.h

(i) stdio.h

(iii) conio.h

(iv) stringio.h

strnepy(strl , str2 , N);

The above statement means

(1) Copies the string str2 to the string strl

(i1) Copies the string strl to the string str2

(iii)) Copies first N characters of the string ‘str2’ to
the string ‘strl’

(iv) Copies first N characters of the string ‘strl’ to
the string ‘str2’

strempi(strl , str2);
The above statement means
(1) Compares the two strings ‘strl’ and ‘str2’

(i) Compares first i characters of two strings
‘strl’ and ‘str2’

(iii)) Concatenate the string ‘str2’ at the end of the
string ‘strl’

(iv) Compares two strings ‘strl’ and ‘str2’ without
regard to case

(@ Which of the following statement reverses the string
‘str’?
(1) strdup(str);
(i1) strrev(str);
(iii) strrchr(str,chr);
(iv) strset(str,chr);

(r) Which of the following statement sets all characters
of the string ‘str’ to the character ‘ch’?
(1) strrchr(str , ch);
(i1) strstr(str , ch);
(iii) strset(str, ch);
(iv) strset(str);

4. State whether true or false

(a) The length of a string is equal to the subscript value
of the position where the NULL character is stored
in the character array.

(b) Strings cannot be initialized.

(c) A string with multiple words cannot be entered by
cin.

(d) strlwr() converts a string to its lower case.

(e) strcat(strl,str2) concatenates the string strl at the
end of the string str2.

4.12 SUMMING UP

The summery of this unit is given as follows:

e An array is a collection of similar type of data which
are stored in consecutive memory locations.

147 |Page

148 |Page

The declaration of an array has three parts, (a) type of
the variable, (b)array name and (c) within brackets([
]) the size of the array means how many elements can
be stored in the array.

Initialization of an one dimensional array can be
implemented as follows int arr[5] ={
12,23,34,45,56};

Three ways of initializing a two dimensional array
are given as follows.

> int arrtwo[2][3]= {
2,18,7},
(43,91, 1}
IR

» int arrtwo[2][3]={2,18,7,43,91,1 };
» int arrtwo[][3]= {2,18, 7,43,91,1};

Insertion and searching operation on an array can be
performed with the name of the array and the
subscript values.

String is a collection of some characters stored in a
character array.

A string is always terminated by \0 which is called
NULL character.

The standard input stream object, ‘cin’ is used to
input a string in C++. But ‘cin’ is not capable of
entering multi word strings. ‘gets()’ function can be
used to input multi word strings.

Multiple strings can be stored using two dimensional
character array where the first subscript value of the
array indicates the total number of strings and the
second subscript value indicate the maximum length
of each strings. This is also referred as array of
strings.

Some useful library functions on strings are strlen(),
strepy(), strcat(), strlwr (), strupr(), stremp() etc.

We have to include the header file ‘string.h’ to use
these functions.

4.13 ANSWER TO CHECK YOUR PROGRESS

Lo (@) (1), (b) (iv), () (iv), (d) (iii), (e) (ii), (f) (iv),

(g) (iv), (h) (i), () (iD), §) (D), (k) (@v), (1) (), (m) (i), (n)
(i), (0) (iv)

2. (a) false, (b) false , (c) true , (d) false, (e)
false
3. @ (1), (d)(i), (c)(v), (d) (i), (e) (D), (f) (iii),

(g)(ii), (@), O av), @G, &) @Gv), @)@, m)
(iii), () (©), (0) (iid), (p) (iv), (q) (iD), (r) (iii)

4. (a)true (b) false (c) true (d) true (e) false

4.14 POSSIBLE QUESTIONS

Define array. Explain different types of array available in
C++ programming. Give suitable examples.

Why concept of array is very important in programming?
Write a C++ program to construct a new array by merging
two sorted integer array where the elements in the new array
will also be sorted.

Write a C++ program to input a new element into an array at
the position entered by the user.

Write a C++ program to calculate the summation of two
integer arrays.

Write a C++ program to find out the number of even and odd
numbers present in an integer array.

Write a C++ program to calculate the summation of all the
even and odd numbers present in an integer array.

149 |Page

10.
11.

12.

Write a C++ program to estimate the transpose of an input
matrix.

Define string. Write down the differences between string and
a character array.

Write a C++ program to check a string is palindrome or not.
Write a C++ program to reverse a string without using string
library functions.

Write a C++ program to replace a particular character in a
string by a character entered by the user.

4.15

REFERENCES AND SUGGESTED READINGS

1y

2)

Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering
C++. Tata McGraw-Hill Education, 2001.

Balagurusamy, E. Object Oriented Programming with C++.
Tata McGraw-Hill, 2006

150 |Page

UNIT 5:

POINTERS AND REFERENCE
VARIABLES IN C++

Unit Structure:

5.1 Introduction

5.2 Unit Objectives

5.3 Definition of Pointer

5.4 Pointer to Array
5.4.1 Pointer to One Dimensional Array
5.4.2 Pointer to Two Dimensional arrays
5.4.3 Pointer to Strings
5.4.4 Array of Pointers

5.5 Pointer and Function
5.5.1 Passing Memory Address to Function
5.5.2 Passing Array to Function through Pointers
5.5.3 Pointer to Function

5.6 Dynamic Memory Allocation
5.6.1 Dynamic Memory Allocation Using ‘new’
5.6.2 Memory De-allocation Using ‘delete’

5.7 Reference Variable

5.8 Summing Up

5.9 Answers to Check Your Progress

5.10 Possible Questions

5.11 References and Suggested Readings

5.1 INTRODUCTION

In earlier units, we have learnt to declare different types of variables
to store different types of data. But in some situations, we are
required to store and access the addresses of declared variables. So
in such cases, we can declare pointer variables.

In C++ programming, a different type of variable is introduced that
is called as reference variable.

151|Page

5.2 OBJECTIVES

After reading this unit, you are expected to be able to learn:
= What is Pointer?
= About Pointer arithmetic
= Relationship of Pointer and Array
= Use of Pointer in Function
= Use of Pointer in Structure
= About dynamic memory allocation
= What is Reference variable?

5.3 DEFINITION OF POINTER

Pointer is a variable which can store the address of another variable
of same type. Syntax of declaring a pointer variable is given as
follows:

Data type * variable Name;
For example: int *ptr;

Here ptr is a pointer variable with data type int which means that ptr
can store the memory address of any integer variable. Now ptr is a
single pointer variable. We can also declare a double pointer
variable which can store the memory address of any pointer
variable of same data type i.e. pointer to pointer. For example:

int *ptr , **dptr;

Here dptr is a double pointer with data type int and it can store the
memory address of any single pointer with data type int as shown
below.

dptr = &ptr ;

Here dptr stores the address of ptr. The ‘&’ operator used in the
above statements is ‘address of” operator in C++ programming. The
expression &ptr will give the memory address of ptr. Now let us
consider the following programming statements:

int p, *ptr, **ptr ;
p=10;

152|Page

ptr = &p;

dptr = &ptr;
1154 2256
10 1154
p ptr
6234
2256
dptr
Fig. 5.1

In fig. 5.1 three diagrammatic representations of the three variables
p, ptr and dptr are presented where the memory addresses of p, ptr
and dptr are assumed to be respectively 1154, 2256 and 6234. Here
p is an integer variable which contains an integer value 10. ptr is a
single pointer variable with data type int which contains the address
of the integer variable p. dptr is a double pointer variable with data
type int which contains the address of the memory address of the
single pointer variable ptr.

Now what will be the output of the following programming
statements?

cout <<*\n The address of p =""<< &p;

cout <<*“\n Value in p = "<<p;

cout <<*“\n The address of ptr = "<< &ptr;
cout <<“\n Value in ptr =7, ptr;

cout <<*\n The address of dptr = << &dptr;
cout << “An Value in p = << dptr;

cout << ‘“\n Value in p ="<< *ptr;

cout << “An Value in ptr = << *dptr;

153 |Page

Outputs of the above statements are:

The address of p=1154
Valueinp =10

The address of ptr = 2256
Value in ptr = 1154

The address of dptr = 6234
Value in dptr = 2256
Value inp =10

Value in ptr = 1154

Here the ¢ * ’ operator used in the above statements is ‘value of ’
operator in C++ programming. So using this operator we can access
the value stored in some memory address.

STOP TO CONSIDER
In memory, each byte of memory locations is identified by the CPU

with a unique code which is called as the physical address of the
particular memory location. A pointer variable is used to store the
physical address of the first byte of memory locations allocated for a
variable of same type.

5.4 POINTER TO ARRAY

We have already learnt that the elements of an array are stored in
contiguous memory locations as shown in fig. 5.2. In case of array,
using the name of the array we will get the base address of the array.
Now using pointer, we can use this base address to access the array
elements.

0 1 2 3 4 5 6

Arr 43 55 123 76 31 90 89

6010 6012 6014 6016 6018 6020 6022

Fig. 5.2

154|Page

5.4.1 Pointer to One Dimensional Array

In fig. 5.2, Arr is a one dimensional integer array of size 7 with base
address 6010. Now consider the following programming statements.

int *ptrl , *ptr2 ;

int Arr[7] ;

ptrl = Arr ;

ptr2 = &Arr[0] ;

cout <<“\n Base address of Arr = "<< Arr;
cout <<“\n ptrl ="<<ptrl;

cout <<*\n ptr2 = "<< ptr2;

Output of the above statements:
Base address of Arr = 6010
ptrl1=6010

ptr2= 6010

Here ptrl and ptr2 are two integer pointer both storing address of
the same memory location that is the base address of array Arr[]. So
using ‘&’ operator we can get the address of the element with
subscript value 0 in an array which is the base address of the array.
So *Arr or *ptrl or *ptr2 will refer to the element with subscript
value 0 in array Arr that is 43.

Now we have the base address of the array and to access all the
elements of the array, we can use pointer arithmetic.

There are four arithmetic operators that can be used on pointers that
are ++, --, +, and -

Now after the operation ptrl++, ptrl will point to the location 6012
because each time ptr is incremented, it will point to the next integer
location which is 2 bytes next to the current location. So now *ptrl
will refer the integer value 55 which is the element with subscript
value 1 in the array Arr. If ptr contains the base address of the array

155|Page

Arr then ptr + 1 will point the element with subscript value i in the
array Arr.

*(Arr + 0) and *Arr and Arr[0] refer the first element in the array
Arr. So *(Arr + i) and Ar[i] refers to the (i+1)™ element in the array
Arr. Actually Arr[i] is internally converted to *(Arr + 1) by the C++
compiler.

Pointers are also can be compared by using relational operators,
such as ==, <, and >.

5.4.2 Pointer to Two Dimensional arrays

In case of two dimensional arrays, there are two subscripts values to
refer an element. Consider the following programming statement:

int A[4][4];
int * ptr;
ptr=A;

Here A[][]is a two dimensional array which can store at most (4 x
4) = 16 integer eclements. Let us consider the following
diagrammatic representation of the two dimensional array A[][.

0 1 2 3
0 20 25 8 12
1 24 32 67 54
2 43 65 71 59
3 89 76 21 41
Fig. 5.3

Let us the memory address of A[0][0] is 2014 which is the base
address of A. In case of a two dimensional array like A, the O
element of the array A is a one dimensional array. So *A or *(A+0)
will give the memory address of first element of the first row of A
that is the base address of the 0™ one dimensional array in A. In this
way, *(A+1) will give the base address of 1% one dimensional array.
So *(A+i) will give the base address of i" one dimensional array.

We know that A[i][j] will refer the element from i row and j®
column. Using *(A+i) , we can refer the i®
((A+i)+j) we can refer the particular element from i*

row, so using

b row and j"

156 |Page

column in A. Now with this concept we can have the following
statements.

o AJ0][0] and *(*(A)) will refer to the same element.

e A[i][j] and *(*(A+i)+j) will refer to the same element.

e A[i][j] and *(A[i] + j) will refer to the same element.

e Ai][j] and *((*A) + (i * col no + j)) will refer to the same
element, where col _no is the total number of columns in A.

Now from the above programming statements, ptr is a pointer
variable and it stores the base address of A. So *ptr will give the
element referred by A[0][0]. Now using *(ptr +2*4+3) , we can
access the element referred by A[2][3] where 4 is the total number
of columns in A as shown in fig. 5.3. In this way we can access
A[i][j] by using *(ptr + i*col no + j), where col no is the total
number of columns that is 4 in case of A.

5.4.3 Pointer to Strings

A character pointer can be used to assign the address of a string
stored in some memory location. For example: consider the
following programming statements:

char *stl = “Welcome to GUIDOL”;

char *st2;

char str[] = “Welcome to Gauhati University”;
st2 = str;

Here stl is a character pointer which is used to assign the address of
the string “Welcome to GUIDOL” stored in some memory location.
Again str is a character array which is initialized with a string
“Welcome to Gauhati University” and a character pointer st2 is used
to assign the address of the string stored in str.

STOP TO CONSIDER
We know that a string is stored in a character array. Now address of
a string means the physical address of the first character of the string
that is stored in the character array with subscript value 0.

157|Page

5.4.4 Array of Pointers

An array of pointers is an array which stores a collection of same
type of pointers. For example: Let us consider the following
statements:

int *Aptr[6];
intA[]1=1{9,5,8,11,90, 32};

Aptr[0] = &A[O];
Aptr[1]= &A[1];
Aptr[2] = &A[2];
Aptr[3] = &A[3];
Aptr[4] = &A[4];
Aptr[5] = &A[5];

Here Aptr[] is an array of integer pointers with size 6 that means it
can store the memory addresses of 6 integer data. In the above
statements, Aptr[] store the addresses of 6 integer data which are
stored in the integer array A.

Now let us consider the following programming statement:

char *strarr| | ={
“Gauhati University”,
“GUIDOL”,
“ASSAM”,
“INDIA”

}s

Here strarr[] is a array of character pointers and it is used to store
the base addresses of four strings. So strarr[0] will store the base
address of the string “Gauhati University”. In this way, strarr[1],
strarr[2] and strarr[3] will store the base addresses of the strings
“GUIDOL” , “ASSAM” and “INDIA” respectively.

158 |Page

1.

159 |Page

CHECK YOUR PROGRESS

Multiple choices

(a) inta, *b;
a=10;
b= &a;

(b)

(©

(d)

(e)

cout << a+*b;

The output of the above statements is
(1) 10

(i1) 20

(i) 21

(iv) Error message

If Arr is a two dimensional array then Arr[i]
gives

(1) Data stored in Arr[i][0]

(i1) Address of Arr[i][0]

(ii1)) Address of Arr[0][i]

(iv) Garbage value

Which of the following statement is
equivalent to &Arr[0][0] where Arr is a two
dimensional character array?

(1) Arr

(i) Arr[0]

(i) A][0]

(iv) Both (i) and (ii)

Which of the following statement is

equivalent to *(*(Arr+i)+j) where Arr is a two

dimensional array?

») Anfi][j]

(i) *(Al]+))

(iii) *((*A) + (1 * C +j)), where C is the
total number of columns in Arr.

(iv) All of the above

Let us consider the following programming
statements.

char *S[]={

“Gauhati University”,
“IDOL”,
“Computer Science”,
“M.Sc.IT”
}5
puts(S[2]);
The output of the above statements is
(1) Computer Science
(i1) IDOL

(i) M.ScIT
(iv) None of the above

® Which of the following will refer the element
that is referred by A[i][j]?
(1) *(*(Ati)H))
(i1) * A+t
(i) *(*A+ih)
(iv) None of the above

2. Fill-in the blanks

(a) __ operator is used to access the value stored
in a variable pointed by a pointer.

(b) The base address of a one dimensional array
Arr[50] can be accessed by .

(c) If ptr is a pointer variable which points to a
character array where the base address of the
array is 1133 then ptr++ will point to the
memory location

(d) An array of pointers can store

5.5 POINTER AND FUNCTION

5.5.1 Passing Memory Address to Function

In unit 5, call by value or pass by value in function is already
discussed where data is directly passed to functions. In this section
we are going to discuss how pointers can be used to pass data to

160 |Page

functions. It is also referred as call by address or call by pointer or
pass by address or pass by pointer.

In case of pass by address, the memory addresses of the actual
parameters are passed to functions in the function calling statements
and the formal parameters are the pointer variables that can store
these addresses.

A C++ program to swap two integer numbers that are stored in two
variables by defining a user defined function is shown below. In this
program pass by address is used for argument passing to the user
defined function.

#include <iostream.h>
#include <conio.h>

void swap(int *, int *);
int main()
{
int numl , num2;
clrser();
cout <<*‘n Enter the first number =”;
cin >> numl;
cout <<“\n Enter the second number =";
cin >>num?2;
cout << “\n Before swapping the input numbers are =";
cout <<*“\n First number = ’<<numl;
cout <<*An Second number = ”<<num?2;
swap(&numl , &num?2);
cout << ‘“\n After swapping the input numbers are =";
cout << “\n First number = "<<numl;
cout << “\n Second number = "<<num?2;

getch();

return 0;
H
void swap(int *nl , int *n2)
{

int temp;

temp = *nl;

*nl = *n2;

161 |Page

*n2 = temp;

In the above program, swap() is the user defined function whose
functionality is to swap two numbers that are read in the function
main(). Here num1 and num?2 are the actual parameters and nl and
n2 are the formal parameters. In main(), swap() is called by passing
the memory addresses of numl and num2 using &(“address of”)
operator. These addresses are stored in the formal parameters nl and
n2 respectively. Finally, in swap(), swapping of the two numbers is
performed by using *(“value of”) operator and a variable “temp”.

5.5.2 Passing Array to Function through Pointers

In case of array, the base address of the array can be passed to a
function. Now using pointer variable and pointer arithmetic we can
access the array elements inside the function as shown below with
the programming statements.

int main()

{
int Aone[40], Atwo[40][40] ;
int nm ;
clrser();

cout <<*“\n Enter the number of elements in the array Aone

cin >>n;

input_one(Aone,n);

cout <<“\n Display the elements in the array Aone\n”;
display one(Aone,n);

cout <<“\n Enter the number of rows in the array Atwo =";
cin >>n;

cout <<*An Enter the number of columns in the array Atwo

—,
s

cin >>m;

input_two(Atwo, n, m);

cout <<“\n Display the elements in the array Atwo\n”;
display two(Atwo,n,m);

getch();

162|Page

return 0;

H
void input_one(int *ptrone, int n)
{
int 1;
cout <<*\n Enter ’<<n<< “elements into the array”;
forG=0;i<n;itt+)
{
cout <<“\nEnter 7<<ij+1<< “th element =";
cin >> ptrone + i;
h
H
void input_two(int *ptrtwo, int n, int m)
{
int i,j;
forG=0;i<n;itt+)
{
forG=0;j<m;j+t)
{
cout<<“\nEnter ("<<i<< “’<<j<<*) th element
cin >> ptrone +1 * 40 + j;
b
b
H
void input_display(int *ptrone , int n)
{
int 1;
forG=0;i<n;itt+)
{
cout <<“\t”<< *(ptrone+i);
H
b

void display_two(int *ptrtwo, int n, int m)

{

int i,j;

163|Page

for(i=0;1i<n;it++)

{
forG=0;j<m;j++)
{
cout <<‘“\t'<< *(ptrtwo +1%*40 +j);
}
}

5.5.3 Pointer to Function

A pointer to function or a function pointer is a pointer that stores the
starting address of a function. It means that a function pointer points
to the starting address of an executable code and it does not point to
any data. The syntax to declare a pointer to function in C++ is
presented below.

Return_DataType (* Pointer Name)(Argument list);

Here Return_DataType is the return type of a function which will be
pointed by the function pointer, Pointer Name and if the function
has arguments then argument list will be provided as shown in the
syntax.

The syntax to point a function by using a function pointer is stated
below.
Pointer Name = Function Name;

Here Pointer Name is a function pointer and Function Name is a
name of a function.

Let us consider the following C++ program to understand the use of
function pointer.

#include<iostream.h>
#include<conio.h>

int [s_Prime(int); // Function Declaration

int main()

{

164 |Page

int Num, flag;

int (*Fptr)(int); // Declaration of the function pointer, Fptr

clrser();

cout<<"\n Enter a number=";

cin>>Num;

Fptr = Is_Prime; //The starting address of Is_Prime() is assigned to
Fptr

flag = Fptr(Num); // Calling of Is_Prime() using Fptr

if(flag==1)

{

cout<<"\n"<<Num<<" is a prime number";

}

else

{

cout<<"\n"<<Num<<" is not a prime number";
getch();
return 0;

int Is_Prime(int N) // Function definition
{
int 1;
if(N==1)
return O;
else
{
for(i=2;1<=N/2 ;it++)
{
if(N%i == 0)
return 0;
}
return 1;
§
}

In the above program, Fptr is a pointer to function and it is used to
hold the starting address of the function Is_Prime(). The output of
the above program is stated below.

165|Page

Enter a number= 7
7 is a prime number

A pointer to function can also be passed as parameter to other
functions in C++. Let us consider the following C++ program to
learn about it.

#include<iostream.h>
#include<conio.h>

int Is_Prime(int); // Function Declaration
void Check Prime(int (*)(int)); //Function Declaration
int main()
{
clrscr();
Check Prime(Is_Prime); / Function pointer as parameter
getch();
return O;

}

void Check Prime(int (*Fptr)(int)) //Function pointer Fptr as formal paramete

{

int Num,i, flag;

-

cout<<"\n Enter a Number=";
cin>>Num;

flag = Fptr(Num);
if(flag==1)

{

cout<<"\n"<<Num<<" is a prime number";

}

else

{
cout<<"\n"<<Num<<" is not a prime number";
H
§
int Is Prime(int N) // Function definition
{
int 1;
if(N==1)
return 0;
else

{

166 |Page

for(i=2;1<=N/2;it++)

{ if(N%i == 0)
return O;
H
return 1;
h

}

In the above program, a function pointer is passed as parameter to
the function, Check Prime(). Here the function pointer, Fptr points
to the function, Is Prime(). The output of the program is stated
below.

Enter a Number= 12
12 is not a prime number

5.6 DYNAMIC MEMORY ALLOCATION

Memory allocation during program execution that is at the runtime
of a program is called dynamic memory allocation. So when we
need to allocate memory at runtime then dynamic memory
allocation is performed.

5.6.1 Dynamic Memory Allocation Using ‘new’

In C++, memory allocation at runtime that is dynamic memory
allocation can be performed by using the operator “new”.

The syntax to allocate memory by using “new” is:

Data Type *PTR;
PTR =new Data_Type;

Here Data Type is any valid data type. “new” operator will allocate

required memory to store data of type Data Type and return the
memory address. The pointer PTR will store this address.

167|Page

For example, let us consider the following programming statements:

int *PTR;
PTR = new int;

Here, PTR is an integer pointer that stores the memory address of
the allocated memory locations by “new” operator. An integer data
can be stored in the allocated memory space.

“new” operator can also be used to initialize the allocated memory.

The syntax for this purpose is shown below.
PTR =new Data Type(Value);

For example, let us consider the following programming statements:

char *PTR = new char(‘S’);
cout<< *PTR;

Here, “new” is used to allocate memory to store a character data and
it is initialized to ‘S’. So, the output of the above statements is S.

Following syntax can be used to allocate memory for a one-
dimensional array.

PTR = new Data-Type[Array_Size];

Here Array Size is the number of array elements that can be stored
in the allocated memory spaces.

For example, let us consider the following programming statements:

int *PTR;
PTR = new int[10];

Similarly, following statements can be used to allocate memory for
a two and a three dimensional array respectively.

int *PTR1, *PTR2;

PTR1 = new int[4][12]; // Memory allocation for two
dimensional array

168 |Page

PTR2 = new int[7][8][9]; // Memory allocation for three
dimensional array

STOP TO CONSIDER

If sufficient memory is not available for allocation then “new” returns a
null pointer.

5.6.2 Memory Deallocation Using ‘delete’

In C++, memory deallocation can be performed by using the
operator “delete”.
The syntax to deallocate memory by using “delete” is:

delete PTR;

Here, PTR is the pointer that stores the memory address of a data
object created with “new” operator.

Following statement can be used to release memory of an array
that is created by “new” operator.

delete [| PTR;

Here PTR is a pointer that points to an array created by “new”
operator.

Program: Write a C++ program to show the use of ‘new’ and
‘delete’ operator.

#include <iostream.h>
using namespace std;

int main()

{

int* ptr_int; // declare an int pointer

float* ptr_float; // declare a float pointer

ptr_int=new int; // dynamically allocate memory
ptr_float = new float; // dynamically allocate memory

169 |Page

// assigning value to the memory
*ptr_int =17,
*ptr_float = 99.99;

cout<< "The value of ptr_int is: "<<*ptr_int<<"\n";
cout<<"The value of ptr_float is: " <<*ptr_float;

// deallocate the memory
delete ptr_int;
delete ptr_float;

return 0;

}

5.7 REFERENCE VARIABLE

In C++, reference variable is a variable that offer an alternative
name to an already declared variable. Use of reference variables in a
C++ program is similar with the use of the value variables. Changes
made to a reference variable are also reflected in the variable that is
bound to the reference variable. So it can be realized that reference
variable has the power of pointer variable. But when a reference
variable is bound to a variable then at later stage, this binding cannot
be changed.

The syntax to declare a reference variable is presented as follows.
Data Type & Reference-Var = Variable;
For example:
int var;

int & ref var= var;

To understand reference variable in details, let us consider the
following C++ program.

170 |Page

include < iostream.h >
include < conio.h >

int main()
{
int num = 10;
int & ref = num,;

clrser();

cout<<"\n Value in num = "<<num;
cout<<"\n Value in num = "<<ref;

ref = num + 20;

cout<<"\n Value in num = "<<num,;
cout<<"\n Value in num = "<<ref;
getch();

return O;

In the above program, ‘num’ is an integer variable initialized with
value 10. On the other hand ‘ref” is the reference variable that is
bound with the integer variable ‘num’. So the first two outputs of
the above program are shown as follows.

Value in num = 10
Value in num = 10

In the above program the reference variable ‘ref” is assigned by the
value that is estimated by adding 20 with the value stored in the
variable ‘num’. As a result, the value of the variable ‘num’ is also
changed that is similar to the reference variable ‘ref’. So, the final
two outputs of the program are shown as follows.

Value in num = 30
Value in num = 30

171|Page

172 |Page

CHECK YOUR PROGRESS

Multiple choices

(a)

(b)

(©

(d)

(©)

Which of the following is a correct way to
pass a string to a function where the string is
stored in the character array str[40]?

1) fun(str)

(i1) fun(&str[0])

(i) fun(*str)

(iv) Both (i) and (ii)

new is a

(1) operator
(i1) function
(iii) variable
(iv) object

In C++, dynamic memory allocation can be

performed by .
i) malloc ()
(i) new

(i) delete
(iv) None of the above

In C++, dynamically allocated memory can be
released by using

(1) free ()

(i) new

(i) delete

(iv) None of the above

Which of the following will refer the element
that is referred by A[i][j]?

® *(*(Ati)H)

(i1) *A+itj

(i) *(*A+it))

(iv) None of the above

() Which of the following is a correct syntax to
declare a reference variable that refers an
integer variable ‘num’?

i) int ref var = & num;
(i1) int num = & ref;

(iii)) int & ref var=num;
(iv) None of the above

(g) What is the output of the following C++
statements?

int num;

int & ref var =num;
num = 20;

ref var =ref var + 10;
num = num -1;

cout << num;

(i) 19

(if) 20
(iii) 30
(iv) 29

State whether true or false

(a) In C++, memory can be dynamically allocated by
delete.

(b) Reference variable is an alternative name to an
already declared variable.

(c) ‘new’ is a special function.

(d) A two dimensional array cannot be passed to a
function by using a pointer.

5.8 SUMMING UP

The summery of this unit is given as follows:

e Pointer is a variable which can store the address of another
variable of same type. Syntax of declaring a pointer variable
is given as follows:

Data type * variable Name;

173 |Page

e Pointer to pointer is a pointer variable which stores the
memory address of any pointer variable of same data type.
For example: int **dptr.

e Using pointer, we can use the base address of an array to
access the array elements. A[i] can be referred by *(A+i) and
A[i][j] can be referred by using *(*(A+i)+j). An array of
pointers is an array which stores a collection of same type of
pointers. For example: int *Aptr[6];

e In case of array, the base address of the array can be passed
to a function and in the function definition, using pointer
variable and pointer arithmetic we can access the array
elements.

e A pointer to function or a function pointer is a pointer that
holds the starting address of a function. Pointers to function
can also be passed as parameters to other functions.

e Dynamic memory allocation is the allocation of memory
during program execution that is at the runtime of a program.
In C++ programming language, dynamic memory allocation
can be performed by the operator ‘new’.

e ‘delete’ is the operator used to release a reserved memory
space.

e In C++, reference variable is a variable that offer an
alternative name to an already declared variable.

e The syntax to declare a reference variable is presented as
follows.

Data Type & Reference-Var = Variable;

5.9 ANSWERS TO CHECK YOUR PROGRESS

L. (@). (i) , (b). (ii) , (¢). (i) , (d). (i) , (e). (0} , (D) (1)

2. (a). *, (b). Arr, (c). 1134, (d). Collection of similar
types of pointers

3. @Gv),) @), (¢) @), (d)(ii), (e) (@), (P (i),
(2) (iv)

174 |Page

4, (a). False, (b). True, (c). True, (d). False

5.10 POSSIBLE QUESTIONS
1. Define pointer with suitable example.
2. What is pointer to pointer? Give example.
3. Explain call by address with suitable example.
4. Explain how a two dimensional array can be passed to a

function using pointer. Give suitable example.

5. What do you mean by dynamic memory allocation?

6. Explain how pointer arithmetic can be used to access one
dimensional and two dimensional arrays. Give examples.

7. Explain reference variable with a suitable example?

5.11 REFERENCES AND SUGGESTED
READINGS

1) Venugopal, K. R., Rajkumar, Ravishankar, T. Mastering
C++. Tata McGraw-Hill Education, 2001.

2) Balagurusamy, E. Object Oriented Programming with C++.

Tata McGraw-Hill, 2006

175|Page

UNIT 6: FUNCTIONS

Unit Structure:
6.1 Introduction

6.2 Unit Objectives

6.3 What is Function?

6.4 Structure of a Function

6.5 Declaration of a Function

6.6 Function Definition: Formal Parameters & return Statement
6.7 Function Call: Actual Parameter
6.8 Call By Value

6.9 Call By Address

6.10Types of User Defined Functions
6.11Passing Array To Function
6.12Passing String To Function
6.13Recursive Function

6.14 Summing Up

6.15 Answers to Check Your Progress
6.16 Possible Questions

6.17 References and Suggested Readings

6.1 INTRODUCTION

Functions are one of the important building blocks in C++. It is a
block of code that perform a specific task and runs only when called
in the main function. Functions adds the advantage of simplifying
the code by breaking it into smaller units. Also the user is not
required to write the same code again and again, once a function is

written it can be called multiple times.

176 |Page

6.2 UNIT OBJECTIVES

After going through this unit, you will be able to:
e understand why function is necessary and its advantages,

e understand the components of a function — function
prototype, function definition and function call statement,
return-type and argument(s) of a function,

e integrate a function into a program,

e know the differentiate between function call by value and
function call by address,

e understand the concept of recursive function and its use.

6.3WHAT IS FUNCTION?

A function can be defined as a group of statements that perform a
task. A function may be called(used) from anywhere in a program
for any number of times. There are two categories of Functions and
they are:library functions and user-defined functions.

Library Functions are the functions those are implemented in the
C++ library, available under different header files (with extension
.h). We can use a function in our program whenever the tasks
implemented in that function are to be performed. In the earlier units
you have come across different library functions, e.g.,

clrscr(), getch() implemented in conio.h;
strlen(), strepy() implemented in string.h etc.

A User Defined Functionis a function which is implemented by a
user (mainly a programmer). So, now onwards we will discuss about
User Defined Function. main() is a special user-defined
functionwhich is mandatory to be implemented in every program as
the execution of a program starts from it.

A program can have more than one user-defined function.
Conventionally, functions are so designed that each one of
themperforms some independent tasks and later integrated in a
single program.

177 |Page

STOP TO CONSIDER
In a statement of a C++ program if a word contains ‘()’ at the end
then that word with ()’ is a function e.g., in the statement
‘x=summation();’ then you remain sure that summation() is a
function (may be user defined one or a library function).

The following are some advantages of using functions:

1. By defining functions, a programmer can divide the entire task
of the program into simple subtasks.

2. In a program, a task containing multiple statements may have to
be repeated a no. of times. In a function the taskcode can be
written and wherever in the program, the task is required to be
performed, the functionis called.Thus it reduces the size of the
program instead of implementing the same set of code again and
again in the program.

3. In C++, a function defined for a particular task can be shared or
used by different programs.

4. The advantage of implementing the repetitive code as a function
is that whenever there is a requirement of modification in the
task-code, you just modify the code inside the function and the
modification will be reflected in every use of the function.

6.4 STRUCTURE OF A C++FUNCTION

As already mentioned, a function is a group of statements, which
perform a particular task; so, there are rules for its declaration,
definition and use. From the previous units, it is clearly
understoodthat how can a library (built-in) function be used in our
program to perform a particular task for which it is designed.

A user defined function can occur in a program in the following
ways.

» Function Declaration (or Function prototype)
» Function Definition:: Formal Arguments
» Function Call:: Actual Arguments

The sections, to follow, will explain the ways one by one. Consider
the following program, Program-1, where in the “main()” function,
two integers are taken as input, then calls the user defined function

178 | Page

“sum()” passing the two input integers and gets the summation in
return. Then the summation is displayed on to the screen.

Program-1:

#include<iostream.h>
#include<conio.h>

Function Declaration or Prototype of

int sum(int, int); <—— .
() function sum()

void main() <—|Deﬁnition of main() function

{
clrscr();
int a, b, result;
cout<<“Enter a number:”;
cin>>a;
cout<<“Enter another number:”;
cin>>b; : :
resl-sumia, by, <t 0 Bt B
cout<<“The Summation="<<result;
getch();
} Definiti f functi
i i) +—— [e 0 ¥
int s;
S=xty;
return (s);
§

6.5 FUNCTION DECLARATION

Like variables, the declaration of a function is necessary before it is
used. The function declaration is formally known as Function
Prototype. As the name prototype means model/blueprint, the
function prototype means the blueprint for the function which
basically describes/informs the compiler about the return type,
function name and data-type of the parameters/arguments passed

179 |Page

to it. Except the “main()” and the library functions, all other user
defined functions should have a prototype.

The syntax for function declaration/prototype is:
return-type function-name (parameter-type-list);

You may get confused with the word return-type, well, it means
data-type!!! Yes, only valid data-types (built-in/user defined) can be
used as return-type for a function. Return-type basically describes
the kind of the data/value, a function can return. If, a function
should return an integer data/value then the return-type should be
one among int/short int/long int. If a function does not return any
value then the return-type should be void.

function-name is the name given to a function. The rules for
naming a function are the same as that for a variable.

The parameter-type-list is the list of data-types for the data/values
to be passed to the function as parameters, each separated by °,’.
Some, along with the data-type a parameter name is given for each
of the parameters in the list but this is optional.

The function prototype statement should be terminated by a semi-
colon.From the Program-1, the declaration of the function sum() is
illustrated in Fig-6.1.

int sum (int, int);
‘ T— Parameter-2 Data-type
Parameter-1 Data-type

Function Name

Return Type
Fig-6.1

The above prototype tells the compiler that the function sum() takes
two integers as arguments and returns an integer. The values/data
which a function takes are called as parameters or arguments. A
function in C++ can take as many arguments as it needs (or no
arguments at all) but can return only one argument.

180 | Page

Example-1: Write a function prototype which takes a character as
parameter and returns nothing.

void fun 1 (char);
or, we can write as

void fun 1 (char param);
Explanation:

v Since, the function returns nothing the return-type is
mentioned as void.

v fun_1 is the name of the function.

v ‘char’ or ‘char param’ is mentioned within () brackets as it
is said that the function takes a character as parameter.

Example-2: Write a function prototype which takes two floating
point numbers as parameters and returns their summation.

float summation (float, float);
or, we can write as

float summation (float numl, float num?2);
Explanation:

v" Since it is said that the function returns the summation of
two floating point numbers so, the return-type is mentioned
as float.

v summation is the name of the function.

v' ‘float’ ‘float’ (or ‘float numl’, ‘float num?2’) are
mentioned within () brackets as it is said that the function
takes two floating point numbers as parameters.

STOP TO CONSIDER
If the definition of a particular function (e.g. sum) is mentioned after
the function, from where the 1% function is called upon (e.g. main),
then the function declaration/prototype 1% function (sum) is
mandatory. But, if the 1 function (sum) is defined before the 2
function (main) then the declaration/prototype is optional.

181 | Page

6.6 FUNCTION DEFINITION: FORMAL
PARAMETERS & THE return STATEMENT

The definition of a function tells exactly what the function is written
for. A Function Definition comprises of the function name,
return-type, number of parameters withtheir types and its body. A
Functionis a block of statements that will be executed when the
function is called. The syntax for function definition is:

return-type function-name(type paraml/, type param2,.....)

{

//Statements

}

In the above syntax,

» return-type is the data type of the value/data to be returned
by the function.

> function-name is the name of the function.

> “type paraml, type param2, ” is the list of parameters
to be passed to the function. Here, unlike in function
prototype, name of the parameteralong with its type is
mandatory for each of the parameters for the function.

STOP TO CONSIDER
You may notice in the syntax of the function definition that, at the
end of the header statement there is no ;’. This so because, it is the
start of the function definition.

Consider the definition of function sum() in Program-1, whichis
mentioned after the main():

int sum(int x, int y)

{
L] &5 |Body of the function sum() |
S=Xty;
return (s);

h

In theabove function sum(),

» Apart from return-type as int and function-name as sum, the
function heading also contains x and y as two parameters of
type int.

» { starts the body of the function.

182 | Page

» 1% statement, within the body of the function, is the
declaration statement of the variable s.

> in the 2" statement, within the body of the function, the
value of x and y are added and stored into variable s. x and
y will contain the values that will be passed when the
function will be called.

» The last statement, within the body of the function, will
return the value of the variable s to the function from where
the function sum() will be called upon.

6.6.1 Formal Parameters/Arguments

Consider the definition of function sum() mentioned above. Here, x
and y are the used as parameters/arguments for the data/values to be
passed when the function sum()will be called and are called as
Formal Parameters or Formal Arguments. Thus Formal
Parameters/Arguments can be defined as the
parameters/arguments that are mentioned in the definition of a
function.

In the function sum()there is a variable s which is local to the
function. But at the same time the parameters x and y are also can be
treated as local variables of the function sum().

Now, when the sum() is called with the parameter-values, the
function sum() starts executing and the two parameter-values are
stored in x and y respectively.

STOP TO CONSIDER

The names of the formal and the actual arguments may be the same or
be different but the data-types must be the same.

6.6.2 The return Statement

In the definition of the sum() function of Program-1, the return is
used at the end of the function body along-with the variable s within
(). This means that the value of s is returned to the function from
which the sum() is called upon, i.e. from within the main()
function.

183 | Page

Basically, the return statement is used for two purposes:

v' To return a value from called function to the calling
function.For this, the value of the variable to be returned is
mentioned at the end of return statement within ().

v" To end the execution of the called function and transferring
the control back to the calling function. So, in this situation
along-with the return statement no value/value of a variable
is mentioned.

STOP TO CONSIDER

The main limitation in the use of the return statement is that you can
use it to return only one value.

CHECK YOUR PROGRESS -1

1. What is function?

2. What do you understand by User Defined Function?
3. What is Function Prototype?

4. What is Formal Arguments or Formal Parameters?
State TRUE or FALSE:

5. A function always returns a value.

6. A function may or may not have parameters.

7. return statement is used to end a function.

8. Return type of a function can be void.

6.7 FUNCTION CALL: ACTUAL PARAMETER

Basically, the Function Call means the use of a function in a
program where the function may be a library function or a user
defined function.

184 | Page

Consider the main() function in Program-1.

void main()

{
clrser();
int a, b, result;
cout<<“Enter a number:”;
cin>>a;
cout<<“Enter another number:”;
cin>>b;
result=sum(a, b);
cout<<“The Summation="<<result;
getch();

}

Here in the main() function,

» two integer inputs are stored into the variable a and b using
two coutstatements,

> in the statement,
result=sum(a, b);

the function sum() is used(or called) with the variablea and
b mentioned within ().

Actual Parameters/Arguments:

Consider the definition of function main() mentioned above.
Asmentioned earlier, a and b are the two variables passed tothe
function sum()when it is called. Here, a and b are known as Actual
Parameters or Actual Arguments.

Now, let’s discuss about how many ways a function can be called.
There are two ways of calling a function (may be a library or user
defined function) and they are:

e (all By Value
e (all By Address
e (all By Reference

In terms of parameter/argument passing the abovementioned ways
of function calling are also known as:

e Pass By Value
e Pass By Address
e Pass By Reference

185 | Page

6.8 CALL BY VALUE

In this technique of calling a function, only the values are passed as
parameters. In the above mentioned main() function while calling
the function sum(), the variables a and b are passed as
arguments(actual). Thus, the values stored in a and bare passed to
the function sum() when it is called. As in this method of function
call, the values are passed as parameters to the called function,
hence this method of function call is known as Call by Value or
Pass by Value.

Consider the Program-2. Here in this program sum() is a user
defined function, same as mentioned in Program-1. But the main()
function(in Program-2) is different from the main() in Program-1.

Program-2: Demonstration of Call By Value.

#include<iostream.h>
#include<conio.h>

void main()

{
clrscr();
int result;
result=sum(5, 2);
cout<<“The Summation="<<result;
getch();

H

int sum (int x, inty)

{ .
int s;
S=xty;
return (s);

H

Output:

The Summation=7
Explanation:

When the program runs, execution starts for the main()
function.Statements in the main() start executing one-by-one.
When, the following statement executes,

result=sum(5, 2);

v' the sum() function is called with actual arguments 5, 2.

186 | Page

v' The execution control is now transferred to the function
sum() with the values 5 and 2, [passed from the main()]
those eventually stored in the x and y respectively.

v Inside sum(), the values stored in x and y, i.e. 5 and 2
respectively, are added and then assigned to s.

v' At the end of sum(), the return statement returns the value
of s, i.e. 7, and transfers the execution control back to the
above statement in the main() function from where the
function sum() was called.

v’ The returned value 7[value of s in sum()] is assigned to the
variable result in the main().

v" Now, the cout statement is executed and the output is
produced onto the screen.

The above explanation is depicted in Fig-6.2.

Stox
// 2toy
. . . . " .
void main() —— int sum (int x, inty)
Transfer of {
clrser(); Execution int s;
int result; Control s=X+ty;
pesult=sum(5, 2); <€ return (s);
cout<<“The Summation="<<result); }
betch();
i
7 to result

Fig-6.2: Illustration of function calling, parameter passing &
returning a value (Program-2)

Now, let’s try to explain the execution of Program-1. Consider that
10 and 20 are the given input for the variable a and b respectively.
Output:

Enter a number:10
Enter another number:20
The Summation=7

Explanation:
In the main() function, when the following statement executes,

result=sum(a, b);

187 |Page

v’ the sum() function is called with actual arguments 10, 20 as
they were the given inputs for a and b using the two
cinstatements.

v' The execution control is now transferred to the function
sum()with the values of a and b, i.e.10 and 20, [passed from
the main()]thoseeventuallystored in the x and y respectively.

v’ Inside sum(), the values stored in x and y, i.e. 10 and 20
respectively, are added and then assigned to s.

v At the end of sum(), the return statement returns the value
of s, i.e. 30, and transfers the execution control back to the
above statement in the main() function from where the
function sum() was called.

v’ The returned value 30 [value of s in sum()] is assigned to the
variable result in the main().

v" Now, the cout statement is executed and the output is
produced onto the screen.

The above explanation is depicted in Fig-6.3.
10 to x (as a contains 10)

/ 20 to y (as a contains 20)

\4
int sum (int x, inty)
{

int s;

void main()

clrscr();

int a, b, result;
cout<<“Enter a number:7;
cin>>a;

ansfer of s=xty;
cout<<“Enter another fiu
cin>>b;

Execution return (s);
V /Cun(»rm/}
pesult=sum(a, b); /

cout<<“The Summation="<<result;
getch();

30 to result (as s contains30)

Fig-6.3: Illustration of function calling, parameter passing &
returning a value (Program-1)

6.9 CALL BY ADDRESS

Before discussing the topic, let’s first know about Address. The
main memory is addressable which means that any object which
resides in it has an Address. The variables can be accessed by their
names as well their addresses.We already know that the Address-

188 | Page

of-Operator(&)is used to get the Address of the memory location
used by a variable. Now the term, Call By Address, means that
while calling a function we need to pass the address. And in the
called function the data-item in that location can be accessed using
the address passed. So, in the definition of the function the argument
should be such that it can hold an address of a location. For this let’s
discuss about Pointers.

What is a Pointer?

APointer Variable can be defined as the variable which can store
an address of a memory location. The declaration syntax of a pointer
variable is the same as that of a variable with a ‘*’ symbol before
the variable name.For example,

int *a;

Consider the following statements, which clearly describe the use of

a pointer variable.

int x =100;

int *p;

p=&x;

v" The first statement declares an integer variable x as well as 100
is assigned to it.

v" Second statement declares an integer pointer variable p.

v" In the third statement, the address of the variable x is assigned to
the pointer variable p.

Fig6-4 depicts the scenario after execution of the third statement
while considering the address of x is 100001 and address of p is
100010.

100 1000001
1000001 100010

Xp
Fig-6.4

Therefore, the variable x can be accessed using x itself and p. These
are illustrated in the following statements.

cout<<“The value of x = "’<<x;
cout<<*“\nThe value of x = ’<<*p;

Output:

189 |Page

The value of x = 100
The value of x = 100

Explanation:
v" The first cout will display the value of x using itself.

v The second cout will display the value of x using p. So, here *p
means the valueat the memory location whose address is stored
in p. In other words, *p means the value at the location
pointed by p.

Now, you may think of that, if *p and x mean the same location
then what does p mean??? The p contains the address of x, i.e.,
1000001. So, the following statement will display the content of p,
1.€., the address of x, and which is 1000001.

cout<<“The address of x (using p) ="<<p;

The address value will be displayed as a hexadecimal number.
The following statement will also display the address of x.
cout<<“The address of x (using x itself) ="<<&x;

Hope!!! that you have a got a clear idea about addresses and
pointers. Now, let’s come to the topic of discussion i.e.,Call By
Address or Pass By Address.

To understand this, let’s consider the Program-3 which is a
modification of Program-1.

Program-3: Demonstrating the Call By Address/Pass By Address.

#include<iostream.h>
#include<conio.h>
int sum(int, int);

void main()
{
clrscr();
int a, b, result;
cout<<“Enter a number:”;
cin>>a;
cout<<“Enter another number:”;
cin>>b;
result=sum(&a, &b);
cout<<“The Summation="<<result;

getch();

190 | Page

int sum(int *x, int *y)

{
int s;
s="x+ *y;
return (S);
h

The output of this program will be the same as the output of the
Program-1 if same inputs are considered for a and b.

Let’s discuss the execution of the program in brief.In the main()
function:

v Using cin, two inputs are taken and stored into the variables a
and b.

v In the statement, marked as bold, the sum() function is called
and &a (i.e. address of a) and &b (address of b) are passed as
arguments.

Now, execution control is transferred to the sum() function. As the
arguments from the main() function are addresses of a, b therefore
the formal arguments in the definition of the function sum() are
declared as integer pointers.

In the sum() function:

v The addresses of a and b passed from main() are stored into the
pointer variables x and y respectively, i.e. x and y are pointing to
variables a and b in of main() function.

v' In the statement, s=*x+*y;*x and *y means the variables a and
b of the main() function. So, the values of a and b, i.e. pointed
by x and y, are added and stored into the variable s.

v The value of s is returned to main().

Now, the execution control is transferred back to main() function.
In the main() function:

v The returned value from sum() is then stored into the variable
result.

v' The value of the result variable is then displayed using cout.

191 | Page

6.10TYPES OF USER DEFINED FUCNTIONS

We have already discussed the basic concepts related to Function
Prototype, Function Definition and Function Calling. Functions can
be categorized in to different types depending on the return type and
the arguments.

6.10.1 Function with No Argument and No Return
Value:

Function with no argument means no argument list within () in a
function definition and in function calling and function prototype.

Function with no return value means void as return type of the
function.

Functionsof this type, defined by user are rare. But there are built-
in/library functions of this type e.g, clrser(), getch() etc. Program-
4is an example of a user defined function of this kind.

Program-4:Write a C++ program using the concept of functions to
display the nos. from 1 to 10.

#include<iostream.h>
#include<conio.h>
void displaynums();

void main()

{
clrser();
displaynums();
getch();

H

void displaynums()

{ . .
int 1;
cout<<“The numbers from 1 to 10 are:n\”;
for (i=1; i<=100; i++)
{ .

cout<<i;

b

H

Output:

The numbers from 1 to 10 are:

192 |Page

12345678910

6.10.2 Function with Argument(s) but No Return
Value

Function with arguments means there may be one or more than one
argument in a function definition and in function calling and
function prototype.

Function with no return value means void as return type of the
function.This is illustrated in Program-5 mentioned below.

Program-5: Write a C++ program usingfunctions which will take
two numbers as arguments and displays the nos. between them.

#include<iostream.h>
#include<conio.h>
void displaynums(int start, int end);

void main()

{
clrscr();
displaynums(100, 500);
getch();
H
void displaynums(int start, int end)
{ . .
int 1;
cout<<“The numbers from P<<start<<* to

’<<end<<‘“are:\n”;
for (i=start; i<=end; i++)

{
}

cout<<q<<* 7’

h
Output:

The numbers from 1 to 10 are:
12345678910 civvvvviiiiiiiiiiinnninn. 500

193 | Page

6.10.3 Function with Argument(s) and Return Value

Function with arguments means there may be one or more than one
argument in a function definition and in function calling and
function prototype.

Function with return value means data types other than void as
return type of the function.This is illustrated in Program-6
mentioned below.

Program-6: Write a C++ program using functions which will take
two numbers as arguments and returns the summation of the nos.

#include<iostream.h>
#include<conio.h>
int summation(int start, int end);

void main()
{
clrser();
int X, y, result;
cout<<“Enter the starting no: ”’;
cin>>Xx;
cout<<“Enter the ending no: ”;
cin>>y;
result=summation(x, y);
cout<<“The summation of the numbers from ’<<x<<* to
P<<y<<* = "<<result;

getch();
h
intsummation(int start, int end)
{
int 1, sum=0;
for (i=start; i<=end; i++)
{
sum = sum + i;
b
return (sum);
b

Consider the input given to x and y in the main() function are 1 and
10 respectively.

Output:

Enter the starting no: 1
Enter the ending no: 10

194 | Page

The summation of the numbers from 1 to 10= 55

6.10.4 Function with No Argument but Return Value

In this type of functions, no arguments are declared in the definition
of the functions but return type should be mentioned.

This is illustrated in Program-7 mentioned below.

Program-7: Write a C++ program using functions which will return
the summation of the nos. from 1 to 10.

#include<iostream.h>
#include<conio.h>
int summation();

void main()
{

clrser();

int result;

result=summation();

cout<<“The summation of the numbers from 1 to 10=
»<<result;

getch();
b
int summation()
{
int 1, sum=0;
for (i=1; i<=10; i++)
{
sum = sum + i;
b
return (sum);
b
Output:

The summation of the numbers from 1 to 10= 55

195 | Page

6.11PASSING ARRAY TO FUNCTION

In C++, , we can also pass array to a function as parameter. We
know that the syntax of declaring aone-dimensionalarray is:

data-type array-name [size |;

The same syntax is used while declaring an array as argument in a
function definition but with a little modification:

void process(int a[])

{
Statements.......
h
void process(int al[], int n)
{
b

where the argument n is for the size of the array-argument a[].

The prototype of the function process() may be written as:
void process(int a[10]);

Or, void process(int a[]);

Or, void process(int []);

During the call to the functionsum(), we have to pass two items as
arguments: the name of the actual array as 1°' argument and the no.
of elements present in the array as the 2" argument.

void main()

Program-8: Write a C++ program using functions to calculate the
summation of the nos. in an integer array passed as parameter.

#include<iostream.h>
#include<conio.h>

int arraySUM(int [], int);

196 |Page

void main()
{
clrser();
int a[100], n, 1, result;
cout<<“How many nos. you want to enter: ”’;
cin>>n;
cout<<“Enter the nos:\n”;
for (i=0; i<n; i++)

{

§

result= arraySUM(a, n);
cout<<“The Summation:”’<<result;
getch();

cin>>a[i];

}

int arraySUM(int arr|], int size)

{
int 1, sum=0;
for (i=0; i<size; i++)

{
}

return (sum);

sum = sum + arr[i];

b
Output:

How many nos. you want to enter: 5
Enter the nos:

2

4

8

45

1

The Summation: 60

Program-9: Write a function in C++ to findmaximum of the nos. in
the integer array passed as parameter.

#include<iostream.h>
#include<conio.h>

void findmax(int [], int);
void main()

{

clrscr();

197 |Page

int a[100], n, 1, result;

cout<<“How many nos. you want to enter: ”’;
cin>>n;

cout<<“Enter the nos:\n”;

for (i=0; i<n; i++)

{
cin>>a[i];
j
findmax(a, n);
getch();
h
int arraySUM(int arr|[], int size)
{
int i, max=arr[0];
for (i=1; i<size; i++)
{
if(arr[i]>max)
{
max=arr[i];
b
b
cout<<“The Maximum No: "<<max;
h
Output:

How many nos. you want to enter: 5
Enter the nos:

2

4

8

45

1

The Maximum No: 45

6.12 PASSING STRING TO FUNCTION

Like array, a string can also be passed as parameter to a function.
The syntax of defining a function which takes a string as parameter
is:

return_type function_name(char string_array[])

{

Statements.........

198 | Page

The Program-10 will help you to understand the above facts.

Program-10: Write a C++ program using functionwhich returns the
no. ofvowels in the string passed as parameter to it.

#include<iostream.h>
#include<conio.h>

int vowelnos(char []);

void main()

{
clrser();
char strname[100];
int no;
cout<<“Enter a String: ”’;
cin>>strname;
no=vowelnos(strname);
cout<<““The no. of Vowels="<<no;
getch();

H

int vowelnos(char n[])

{ . .
int 1, count;
for (i=0, count=0; n[i]!=\0"; i++)
{

if(n[i]=="a’ || n[iJ=="¢’ || n[i]=="1" || n[i]=="0" ||

nfif==w || nfil=A" || nil=E || =T | nfi==0" |
nfi]=U")

{
count++;
H
H
return count;
H
Output:

Enter aString: WELCOME TO IDOL
The no. of Vowels= 6

6.13 RECURSIVE FUNCTION

Till now, all user defined functions discussed above are called inside
the main(),. So, any function can be called from any other functions.
Apart from this, C++ also enables a function to call itself. This

199 |Page

technique is called Recursion. Recursive Function is a function
which calls itself.Consider the following Fig-6.5.

\{/01d A() A) <
A()’
o
(@) (b)

Fig-6.5

In the definition of A(), there is a statement which calls the function
itself [Fig-6.5(a)]. The function A() is a Resursive Function. This
is shown graphically in Fig-6.5(a).

There is another term known as Indirect Recursion. Indirection
Recursion occurs when one function calls another function that then
calls the first function. The following is an example of Indirect
Recursion. Consider the following Fig-6.6.

void A()
{ Al) —
B(;
H
void B()
{
AQ); B()
H
(a) (b)

Fig-6.6

In the definition of A(), there is a statement which calls the function
B() and in the definition of B() a statement calls the function A()
[Fig-6.6(a)]. This is called Indirect Recursion. This is shown
graphically in Fig-6.6(a).

Program-11:Write a C++ program which calculates the summation
of the no. from 1 to 3 using recursive function.

#include<iostream.h>
#include<conio.h>
int calc(int n);

200 | Page

void main()

{
}

cout<<"\nThe Summation = "<<calc(3));

int calc(int n)

{
if(n==0)
return 1;
else
return n+calc(n-1);

Output:
The Summation = 6

Explanation (Graphically):

calc(3)
I
3 + cale(2) Return: 3 +3 =6
2 + calc(1) Return: 2 +1=3
1 + calc(0) Return: 1 +1=1

E

» Return:

Fig-6.7

Program-12: Write a C++ program which calculates the factorial of
a no. using recursive function.

#include<iostream.h>
#include<conio.h>
int fact(int n);

void main()

{

cout<<"\nThe Factorial of 3 = "<<fact(3));

201 |Page

}

int fact(int n)

{
if(n==0)
return 1;
else
return n*fact(n-1);
h

Output:
The Factorial of 3 =6

Explanation (Graphically):

fact(3)
|
3 * fact(2) Return: 3*2=16
2 * fact(1) Return: 2 * 1 =2
1 * fact(0) Return: 1 *Tl =1
» Return: 1
Fig-6.8

202 |Page

CHECK YOUR PROGRESS - 11

9. What do you understand by Actual Parameters?
10. What are the two ways of calling a function?
11. What is Pointer? How is it related to Call by Address?

12. What do you understand by function with no argument
and no return value?

State True or False:
13. *p means the location whose address is stored in p.

14. In Call By Value the addresses of the storage locations are
passed.

15. An array cannot be passed as parameters to a function.
Fill-in the Blanks:

16. function calls itself.

17. While passing an array to a function, the of the
array should also be passed.

6.14 SUMMING UP

This Unitdiscusses the cocept of functions its types and its
advantages.

As discussed in this Unit, C++ library consists of a no. of header
files, e.g..iostream.h, conio.h, string.h etc. These header files
contain functions for different purposes.

The concept of User Defined Functions is also discussed in this
Unit. These types of functions are very useful to cater out userneeds
while writing C++ programs.

The two ways of calling a function, Call by Value and Call
byAddress, are discussed with examples.

203 |Page

The unitgives the basic idea related with function definition,
function call, and function prototype.

The types of user defined functions in relation with arguments and
return type are discussed with the help of examples. Also functions
with array as arguments are also discussed with examples.

6.15 ANSWERS TO CHECK YOUR PROGRESS

1. A function can be defined as a group of statements that perform a
task. A function may be called (used) from anywhere in a program
for any number of times.

2. User Defined Function is a function which is implemented by a
user (mainly a programmer). main() is a special user-defined
function from where the execution of a program starts.

3. Like variables, the declaration of a function is necessary before it
is used. The function declaration is formally known as Function
Prototype.

4. The Formal Parameters/Arguments can be defined as the
parameters/arguments that are mentioned in the definition of a
function.

5. False
6. True
7. False
8. True

9. Actual Parameters/Arguments can be defined as the items/values
those are passed to a function when it is called.

10. There are three ways of calling a function and they are namely
Call By Value/Pass By Value, Call By Address/Pass By Address
and Call By Reference/Pass By Reference.

11. A Pointer or pointer Variable can be defined as the variable
which can store an address of a memory location.

12. Function with no argument means no argument list within () in
a function definition and hence no argument in function calling and
function prototype also. Function with no return value means void
as return type of the function.

13. True

204 | Page

14. False
15. False

16. Recursive

17. name

6.16 POSSIBLE QUESTIONS

Short answer type questions:

1.
2
3.
4
5

6.

What are the main advantages of using functions?

. Write down the categories of functions?

What is the syntax of defining a function?

. Why does the return statement used in a function?

. What is the difference between a Function Definition and

Function Prototype?

What is the use of the return statement?

Long answer type questions:

7.

10.

11.
12.

13.

Write down the syntaxesfor Function Prototype, Function
Definition and Function Call.

Differentiate between Call by Value and Call By Address.

How can you relate pointers with Call by Address? Discuss
with the help of an example.

How can array be passed to a function? Discuss with the
help of an example.

What is a Recursive Function? Discuss.

Write a C++ function which swaps the two arguments
passed as parameters so that swapping reflects in the actual
parameters.

Write a recursive function to evaluate the following series:

S=1+2+........+n

205|Page

6.17 REFERENCES AND SUGGESTED READINGS

1. Stroustrup, Bjarne.The C++Programming Language.

2. Balagurusamy, E.. programming in C++. Tata McGraw-Hill
Education.

3. Kanetkar, Y. P.. Let us C++. BPB Publications.

206 |Page

UNIT 7: CLASSES AND OBJECTS

Unit Structure:
7.1 Introduction

7.2 Unit Objectives

7.3 Introduction to Objects and Classes
7.4 Defining Classes

7.5 Creating Objects

7.6 Access Specifiers in C++

7.7 Accessing Members of an Object
7.8 Constructors and Destructors

7.9 Friend Function

7.10 Summing Up

7.11 Answers to Check Your Progress
7.12 Possible Questions

.13 References and Suggested Readings

7.1 INTRODUCTION

Abstraction is one of the major concepts related to Programming
Languages those support Object Oriented Programming Concepts.
This concept handles complexity by hiding the unnecessary details
to the user.

Suppose your job is to print documents in an Office. For this you
just need to open the documents (to be printed) and give the print
command. The printer will give printouts of the documents. You
don’t require the knowledge about how a printer works internally.
For your job, you just use it. Thus, the manufacturer of the printer
hides the complexity of the printing process from its user. This can
be termed as Abstraction.

Same is the case related to Object Oriented Programming
Languages. As a part of Data Abstraction let’s discuss Object,
Class, Member Function, Constructor, Destructor and Friend
Function.

207 |Page

7.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

understand the concept of Abstraction

know the various important issues related to Abstraction

realize how it helps in adding securities to the sensible data

learn how to implement Abstraction in C++

7.3 INTRODUCTION TO OBJECTS AND CLASSES

Any real-world entity, living or non-living, is termed as Object. For
example, Ritz, Baleno, Swift Desire, 110, Santro, Duster, XUV300
etc. can be termed as object. As we know, today cars are categorized
as Hatchback, Sedan, SUV etc. So, Ritz, 110, Santro are considered
as Hatchback; Baleno, Swift Desire as considered as Sedan; Duster,
XUV300 are considered as SUV. Each of these categorizations can
be considered as a Class. Thus, we can say that

» Ritz, 110, Santro are the Objects of Class Hatchback,
» Baleno, Swift Dezire are the Objects of Class Sedan, and
» Duster, XUV300 are the Objects of Class SUV.

Now, you may have a preliminary idea about objects and classes.We
will discuss the OOP concepts with the help of the C++
Programming.

7.4 DEFINING CLASSES

Class is basically the main building block in OOP. In terms of C++,
class is a user-defined data type which has members to store data
and perform certain activities. The members that stores data are
termed as data members and those which perform activities are
termed as member functions. The data members are called
Attributes and member functions are called Methods.

In C++ by creating a class is basically the creation of a blueprint of
data type.In C++ there are different ways of defining a class. The
simplest way is given below:

208 |Page

class class-name

{

3

access-specifier:

data-type attribute-name-1;
data-type attribute-name-2;
return-type method-name-1()

Let’s now discuss the above way of defining a class point-wise.

>

>

“class” is a keyword and is used to define a class. “class-name”
is the name of the class to be defined.

9

After the “access-specifier” may be any of “public”, “private”
and “protected”. These three access-specifiers will be discussed
in detail later in this unit.

“attribute-namel”, “attribute-name2” are the attribute names or
the data members of the class. The “data-type”, as we all know,
is the type of the data that can be stored in the respective data-
members.

“method-namel()”, “method-name2()” are the functions those
are defined for performing certain task. The “return-type” is the
data-type of the value to be returned from the respective
functions. For each of the functions, the function statements are
to be written within the braces “{ }”.So, this is exactly how we
write a function (as mentioned in earlier units).

At last, we have to end the class definition by using “}” which is

[T 1]

followed by “;”.

STOP TO CONSIDER

More than one access-specifier can be used to declare and define
data-members and member-functions within a single class.

209 |Page

For the time-being, let’s consider the “public” as the access-
specifier. Suppose we have to create a class named “showsymbol”
which has,

e an attribute/data-member named “val” of type integer,

e a method named “input()” which will store an integer to
“val” input by the user, and

¢ a method/member-function named ‘“show()” which will
display the symbol “*” no. of times that is stored in “val”.

Now we will define the class “showsymbol”.

class showsymbol

{
public:

intval,
voidinput()
{

cin>>val;

}

voidshow()

{
int 1;
for(i=0; i<val; i++)

{

cout<<<* 7

b
H
¥
Thus, we have completed the definition class of the “showsymbol”
following the above mentioned way. In this way, we are declaring
and defining the attributes and methods of the class within the
braces, { and }, of the class definition.

The other way of defining a class is to:

v’ declare the attributes inside the class definition, i.e. within
the curly braces, { and }, used for the class.

v" only declare the methods/functions withing the class, i.e. the
prototype of the methods/functions.

v" define the methods/function outside the class, i.e. not within
the curly braces, { and }, used for the class. The syntax of
defining a member function outside the class definition is:

210 | Page

return-type class-name::member-function-name()

Now, we will see how to define the same “showsymbol” class in the
other way just mentioned above.

class showsymbol

{
public:

intval,;
voidinput();
voidshow();
33
voidshowsymbol::input()

{

cin>>val;

voidshowsymbol::show()

{

int i;
for(i=0; i<val; i++)
{

cout<<<* 7’

}
}

Here in the above code, you may notice the use of :: symbol. This
symbol is known, in C++, as Scope Resolution Operator. As the
name suggests,this operator signifies that the following function
belongs to the class (as member function) whose name precedes it.
Thus, the functions (input and show) defined above are the member
functions of the class showsymbol.

7.5 CREATING OBJECTS

An object of a class is just like variable of a primitive data-type. The
difference is that an object contains different data-members of
different data-types along-with different functions but a variable
contains a single value of that particular data-type.But like variables,
memory is allocated when we declare an object which depends on
the memory required for that particular class type.

The syntax of declaration of an object of a class is:

211 |Page

class-name object-name;

The statement for creating an object, named objl, for showsymbol
class is:

showsymbol objl;
Another way for creating the object is:

showsymbol objl = showsymbol();

7.6 ACCESS SPECIFIERS IN C++

The term Access Specifierindicates how the members of a class can
be accessed from within and outside the class.Outside the class
basically means accessing the members of the class from
functionsthose are not the members of that respective class.There
are three access-specifiers in C++ and they are public, private and
protected.

Table-1 shows the accessibility of the access specifiers.

Table-1: Access Specifiers’ Accessibility

Access Specifier
public private protected
from same class Yes Yes Yes
from derived class Yes No Yes
(inheritance)
from other classes Yes No No

7.7 ACCESSING MEMBERS OF AN OBJECT

The protected access specifier is directly related to the concept of
Inheritance, which will be discussed in the following unit.
Therefore, here we will only discuss the other two access specifiers.
i.e., private and public.

While accessing a member, data-member or member function, of a
class we need to use
followed by the member name. This is required when accessing
from outside the class. But whenever we want to access member of
a class from within itself(same class), we can directly use the
member.

[

operator preceded by object name and

212 |Page

Let’s now consider the above showsymbol class, with
modifications, for ourdiscussion.

Program-1:

#include<iostream.h>
#include<conio.h>

class showsymbol
{ private:
int val; //private data-member
public:

void input(); //public member-function
void show(); //public member-function
¥
void showsymbol::input() //definition of input public member-
//function
{cin>>val;}

void showsymbol::show() //definition of show public member-
//function
L
int 1;
for(i=0; i<val; i++)
{cout<<t* ;4

H

void main()

{
clrscr();
showsymbol objl; //creating object of showsymbol class
cout<<“Enter the no. of occurrences=";
objl.input(); //accessing input function from main
cout<<“The output is:”<<endl;
objl.show(); //accessing show function from main
getch();

H

Output:

Enter the no. of occurrences= 10

The output is:
skeoskeoske steske sk skeosk sk

213 |Page

Explanation:

v

v

v

The wval is declared as private data-member of the class
showsymbol.

The input() and show() functions are declared as public member-
function of the showsymbol class.

The val data-member is used directly inside the above two
member-functions as these functions are members of the same
class showsymbol.

In the main() function, an object is created, named objl, of type
showsymbol class. Thus, memory space is allocated for the
object.

In the main() function we are calling/using the member-
functions of showsymbol class, input() and show(), for the
object obj1 using the °.” operator.

Now, we run the program:

o Displays the message “Enter the no. of occurences="".

o Now, the program is waiting for an integer input. This is
due to the call of the input() public function for the
object objl. Which in turn actually executes the
“cin>>val” statement,for theval private member of obj1.

o When user gives the input as 10, this value is assigned to
val member of obj1.

o Now, the message “The output is:” is displayed.

o The show() function for obj1 is now called and which in
turn shows ten(10) “*” symbols in the same line as the
val contains the value 10.

(The uses of clrscr() and getch() library functions are already

discussed in earlier units.)

7.8 CONSTRUCTORS AND DESTRUCTORS

7.8.1 Constructors

Constructor is a special kind of member function of a class which
has the same name as the class and also has no return type. This is
implicitly called when an object is created. When we declare an

object of a class this member function is automatically called.

A object may require initialization of the data members, to do so
constructors are used. It is to be noted that when we create a class

214 |Page

without defining a constructor, as in showsymbol class in Program-
1, a default constructor is automatically created by the compiler.

A Default Constructor does not have any parameter.lt is necessary
when we want to initialize the data-members with default
values.The constructors those are defined with parameters are
known as Parameterized Constructors.

Let’s try to understand all these with the example shown in
Program-2 (considering the showsymbol class, with modifications,
from Program-1).

Program-2:

#include<iostream.h>
#include<conio.h>

class showsymbol
{ private:
int val; //private data-member
public:

showsymbol(); //default constructor
void input();//public member-function
void show();//public member-function

35

showsymbol::showsymbol() //definition of default consturctor
{ val=10;}

showsymbol::showsymbol(int n) //definition of parameterized
//[consturctor
{ val=n;}

void showsymbol::input() //definition of input public member-
//function
{cin>>val;}

void showsymbol::show() //definition of show public member-
//function
L
int 1;
for(i=0; i<val; i++)
{cout<<“* ;4

215|Page

}

void main()

{
clrser();
showsymbol obj1, obj2(20); //creating object
cout<<“The output for obj1:’<<endl;
objl.show(); //accessing show function of objl
cout<<“The output for obj2:"’<<endl;
obj2.show(); //accessing show function of obj2
cout<<“Enter the no. of occurrences for obj1=";
objl.input(); //accessing input function of objl
cout<<“Enter the no. of occurrences for obj2=";
obj2.input(); //accessing input function of obj2
cout<<“The output for obj1:’<<endl;
objl.show(); //accessing show function of objl
cout<<“The output for obj2:”<<endl;
obj2.show(); //accessing show function of obj2
getch();

b

Output:

The output for obj1:

skoskeosk skeoske sk skeosk sk

The output for obj2:

S ske sk sfe sfe sk st sfeoske st sfeoskeoske sfe sk skeskeoskok

Enter the no. of occurrences for obj1=>5
Enter the no. of occurrences for obj2= 15
The output for obj1:

skokoskskosk

The output for obj2:

sfe sk sk sfe sfe sk st sfeoske sk sfeskeske sfesk

Explanation:

v' A Default Constructor is defined where we initialize the value
of val with 10, i.e., whenever we declare an object the default
value of val is 10.

v’ A Parameterized Constructor is also defined where we
initialize the value of val with the value in the parameter n, i.e.,
whenever we declare an object using this constructor the default
value of val is the value in parameter n.

216 |Page

v" When we declare the object obj1, the val member is set with the
10 as the constructor gets called is the default constructor.

v' When we declare the object obj2, the 20 mentioned within () is
the value for the parameter ‘n’ of the parameterized constructor.
And thus,val member is set with the 20 as here the
parameterized constructor gets called.

v' Thus for

o objl, 10 (ten) ‘*’ are displayed.
o obj2, 20 (twenty) “*’ are displayed.

v" Now, we take inputs for objl and obj2, which are 5 and 15
respectively. This means the value of val for objl is 5 and for
obj2 is 15.

v' Thus for

o objl, 5 (five) ‘*’ are displayed.
o obj2, 15 (fifteen) ‘*’ are displayed.

STOP TO CONSIDER

A class can be defined with more than one parameterized constructor
(with different signatures) but with only one default constructor.

As of now, constructors have some special characteristics and these
are:

» They are used to initialize the mainly the data-members of
objects.

They should have the same name as the class.

They should be declared as public member functions.

They have no return types.

YV V V V

They are automatically gets called when objects are created.

STOP TO CONSIDER

A constructor is automatically gets called when an object is
created(declared). This object creation is generally done in functions
those are not part of the class of which the object is declared. Hence,
the constructors should be declared under public access.

Now, we will discuss about the implicit and explicitconstructor
call. Considering the showsymbol class in Program-2,the objects’
declaration

showsymbol obj1, obj(20);

217 |Page

is known as implicit constructor calling. We also know that, as
discussed in section 7.5, the objects’ declaration statement(s) can be
written as:

showsymbol objl = showsymbol();

showsymbol obj2 = showsymbol(20);

Here, the constructors are called explicitly (explicit constructor
call).

7.8.2 Destructor

It is used to destroy objects. Destructor isalso a special member
function of a class which has the same name as the class preceded
by ‘~’ (tilde) symbol. A destructor does not take parameters and also
has no return type.

The example of a destructor is:

~showsymbol() {
H

Like constructor, if we do not explicitly define a destructor the
compiler will implicitly define a destructor. The definition of a
destructor is of utmost need when we allocate memory during object
construction. Consider the Program-3.

Program-3:

#include <iostream.h>
#include <conio.h>
#include <string.h>

class test {
private:

char *str;

public:

test (char*); //Constructor
showdata(); //Member function

~test(); //Destructor

35

test::test(char*data) //Definition of constructor

{

str = new char[strlen(data)+1];
strepy(str, data);

218 | Page

}

test::showdata() //Definition of member function

{

cout<<“The string inside is= "<<endl<<str;

}

test::~test() //Definition of destructor

{

delete[] str;

}

void main () {
clrscr();

test obj1 = test("GUIDOL"); //Creation of object
objl.showdata(); //Display the string data inside object
getch();

}

Explanation:
v Inside the Constructor,

o First, we have dynamically allocated memory for the
parameter to be passed using the length of the parameter.

o Next, we assign the string value of the parameter to the
allocated space using strcpy() function.

v' In the showdata() member function, the string value inside
thestr data-member is displayed.

v' Inside the Destructor, the allocated memory for the str data-
member is deleted.

v' Inside the main() function,

o First, an object (obj1) is created and thus “GUIDOL” string
is assigned to the str member of obj1.

o Next, the string data inside str member of objl is displayed
which is obviously “GUIDOL”.

o At last, the main() ends, i.e., the program ends.

Now, the question is when will be the destructor called to free-up
the allocated memory? The answer is that when the object goes out-
of-scope the destructor will be called implicitly and here in our case

219 |Page

the destructor is executed when end of the program reached, i.c., the
end of main() function.

7.9 FRIEND FUNCTION

In C++, an outside function can be made friend to a class. The
function that is made friend to a class is termed as Friend Function
to that particular class. To make a function friend to a class we just
have to declare the function as friend, using friend keyword, within
the class definition. The syntax for declaring a function friend of a
class is:

friend return-type function-name(arguments);

where return-type, function-name and arguments are the return type,
name and argument of the friend function.A Friend Function can be
declared under public or private access of a class.

Few points related to Friend Function are:

v" A FriendFunction to a class is not within the scope of the
classi.e., not a member-function of that class.

v As it is outside the scope-of the class therefore it cannot be
invoked using objects of that class.

v" It can only be called in the same way as a normal function.

v" It can access the private and protected members of the class
only by using an object of that class. Therefore, generally it has
object of that class as argument.

The following program is an example for friend function.
Program-4:

#include <iostream.h>
#include <conio.h>
#include <string.h>

class number {
private:

intnum;
public:
number (int); //Constructor

int returndata();
void showdata();
friend int sumnumbers(number, number);

220 | Page

)5

number::number(int n)

{

num=n;

}

number::showdata()

{

cout<<num<<endl;

}

int sumnumbers(number a, number b)

int res;
res = a.num + b.num;
return res;

}

void main () {
clrscr();

numberx(50), y(100);
int result;
cout<<“The value inside object x=";
x.showdata();
cout<<“The value inside object y=";
y.showdata();
int sumresult;
result = sumnumbers(X, y);
cout<<“The result of summation = "<<result;
getch();

}

STOP TO CONSIDER

IA normal function can be made friend to any number of classes.

221 |Page

CHECK YOUR PROGRESS - 111

1. What is constructor?

2. When is the default constructor invoked?

3. What is parameterized constructor?

State TRUE or FALSE:

4. A destructor has a return type.

5. In every class there must be a declaration for destructor.

6. Constructor cannot have arguments.

7. friend keyword is necessary for declaring a friend function.

8. A friend function can directly access the private members of
the class to which it is declared as friend.

9. Division by zero (0) is a error.

7.10 SUMMING UP

This Unit contains discussions related to Classes and Objects.
e C(lasses are basically the blueprints of user defined data-types.

e A variable of a class type is termed as objects of that class.

e In C++, class keyword is used to define a class and the

IR

definition ends with a “;”.

o The access specifiers in C++ are private, protected and public.

e The member functions of a class can be defined out the class

[T L]

definition using the scope resolution operator “::

e Constructors are special member function used to initialize the

data-members while creation of an object.

e A Constructor has the same name as the class name and it does

not have return type.
e Constructors are called implicitly and explicitly.

e A Default Constructor does not have parameters.

222 |Page

For classes without default constructor, the compiler
automatically creates one.

Destructor is also a special member function of a class and is
automatically gets called when an objectof that class goes out-
of-scope.

Destructor also has the same name as the class name and is
preceded by the “~” symbol. It does not have return type as well
as parameters.

Friend Function is a normal function which is made friend to a
class using the friend keyword.

Friend function of a class can access the private and protected
members of that class using the object(s) generally passed as
parameter(s) to it.

7.11 ANSWERS TO CHECK YOUR PROGRESS

1. A constructor is a special kind of public member function of a
class which has the same name as the class name and has not return

type.

2. A default constructor is invoked when and object declaration

statement without any parameter is executed.

3. A parameterized constructor is a constructor which has

arguments.
4.False
5. False

6. False

7. True
8. True

7.12 POSSIBLE QUESTIONS

1. How does an object of a class is created?
2. What is the syntax of defining a class?

3. Write down the role of constructor during object creation.

223 |Page

4. Write down the differences between default constructor and
parameterized constructor.

5. What is Friend Function? How a function can be declared as
a friend to a class.

7.13 REFERENCES AND SUGGESTED READINGS

1. Stroustrup, Bjarne.The C++Programming Language.

2. Balagurusamy, E.. programming in C++. Tata McGraw-Hill
Education.

3. Kanetkar, Y. P.. Let us C++. BPB Publications.

224 |Page

UNIT-8: INHERITANCE

Unit Structure:

8.1 Introduction
8.2 Unit Objectives
8.3 Concepts of Inheritance
8.3.1 Advantages of Inheritance
8.3.2 Disadvantages of Inheritance
8.4 Casting up the Hierarchy

8.4.1 Difference between Upcasting and Downcasting
8.4.2 Details of Upcasting
8.4.3 Details of Downcasting

8.5 Types of Inheritance

8.5.1 Single Inheritance
8.5.2 Multiple Inheritance
8.5.3 Multilevel Inheritance
8.5.4 Hierarchical Inheritance
8.5.5 Hybrid Inheritance
8.6 Importance of Access Specifiers in Inheritance

8.7 Virtual Base Class
8.8 Summing Up

8.9 Answers to Check Your Progress
8.10 Possible Questions
8.11 References and Suggested Readings

8.1 INTRODUCTION

In the earlier chapters, the learners have been acquainted with
various important aspects of object oriented programming (OOP)
involving class, object, data members, member functions, data
abstraction, data hiding, constructor, destructor, access specifiers,
friend functions, polymorphism, etc. Apart from all these,
inheritance plays a major role in implementing OOP in real sense,
because this property of OOP is much closer to real life
requirements of the current day software users. The code reusability
and code optimization are two highly appreciated domains in the
field of computer science. Both these two issues are well addressed
by inheritance in true sense. If some codes are already developed,
then there is no question of re-writing the similar codes again and

225|Page

again, but the extension works need to be addressed in some other
module and both modules could be tied up as and when needed.
This is the basis of inheritance.Although, there are a lot of
advantages in implementing inheritance, there are certain
disadvantages too, which are all discussed in this chapter. The up-
casting and down-casting in class hierarchy are two another key
terms and they are addressed here. There are many types of
inheritances ranging from single inheritance to hybrid inheritance.
All these types of inheritances are discussed here with their coding
syntax and appropriate example programs using C++ codes. The
access specifiers available in OOP languages have a vital role in
inheritance, because these are the programming tools that can
restrict access to some private data from unauthorized access despite
of the smooth maintaining of the class hierarchy. This aspect is
covered in the chapter followed by the discussion on importance of
virtual base class in inheritance.

8.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

e Learn the importance of Inheritance in OOP languages.

e Know about the advantages and disadvantages of Inheritance.

e Acquire knowledge on Casting-up and Casting-down in
Inheritance.

e Know about various types of Inheritance with definition and
syntax.

e Know various types of Inheritance with example programs.

e Know the importance of various access specifiers in
implementing Inheritance.

e Learn the importance of virtual base class in Inheritance.

8.3 CONCEPTS OF INHERITANCE

Inheritance is one of the most important properties of Object
Oriented Programming (OOP) paradigm. The concept of extending
classes is the basis of this mechanism. Inheritance is such a
mechanism through which the properties from one class (base class)
is inherited to another class (derived class). In another point of view,

226 |Page

we can say that the features and behaviors of a class are acquired by
another class when we implement inheritance in a program. The
class whose members are inherited is called the base class or super
class and the class that inherits those members is called the derived
class or sub class.

Definitions:

e Base class: The parent class whose properties are inherited by
another class is called the base class. It is also termed as a Super
class.

e Derived class: The class in which the properties are inherited
from the parent class is called the Derived class. It is also termed
as a Sub class.

It is to be understood that the classes are some abstract units. These
classes do not take part in programming in a direct manner. But the
instances of classes, which are popularly known as objects, are the
main participatory units in the implementation of object oriented
programming. We can come to know about an object by knowing its
class also.

Let us suppose that we are not familiar with someone among the
employees of an educational institute. But, if you come to know that
he belongs to that institute, we would come to know that he has an
employee-id, employee-name, salary and date-of-joining. In the
advanced level of object oriented programming, these classes can be
defined in terms of other connected classes. For example- teachers,
library staffs, office staffs and security staffs are generally
considered as some employees of an educational institution. In
object oriented terminology, the teachers, library staffs, office staffs
and security staffs are all derived classes or sub classes of the
employee class. Similarly, the employee class is the base class or
super class of teachers, library staff, office staff and security staff.
The hierarchy of classes plays an important role in the
implementation of inheritance.

8.3.1 Advantages of Inheritance

227 |Page

o The subclassesderive all the properties from the super class,
thereby reusing the existing code.

e Programmers can reuse the codes in the superclass or base class
as many times as the number of derived classes being formed.

o There will not be any wastage of memory space because the
same properties are inherited and not duplicated.

o This also leads to faster progression and development time.

o Code enhances maintenance and memory utilization.

¢ Reduces code redundancy and enhances code reusability.

e Reduces source code size and improves code readability.

8.3.2 Disadvantages of Inheritance

o As the base class and the child class are tightly coupled in
inheritance, hence any changes made in the codes of parent
classes affect the child classes.

e In a class hierarchy, many data members remain unused and the
memory allocated to them remains unutilized.

e The above mentioned unutilized memory affects the
performance of the program if proper care is not taken in its
implementation.

8.4 CASTING UP THE HIERARCHY

The OOP languages allow a derived class pointerto be treated as a
base class pointer. This is called upcasting. Downcasting is an
opposite process, which consists of converting base class pointer to
derived class pointer.

Upcasting
[e | i
2
o
v
Downcasting

228 | Page

Fig-8.1: Upcasting and Downcasting in Inheritance

8.4.1 Difference between Upcasting and Downcasting

Definitions:

o Upcasting: Casting a derived class pointer to a base class
pointer is known as upcasting. The figure below depicts the
upcasting of derived class-1 pointer/reference to the base
class pointer/reference (derived class 1 -> base class).

o Downcasting: Casting a base class pointer to a derived
class pointer is known as downcasting. The figure below
depicts the Downcasting of the base class pointer/reference
to the derived class-2 pointer/reference (base ->derived
class-2).

.
Base Class
e —
Upcasting
Downcasting,
Derived Class-1 [Derived Class-2 }«—

Fig-8.2: Casting in Inheritance

8.4.2 Details of Upcasting

The need of upcasting arises when we have to cast a subclass to a
superclass.Upcasting is sometimes called widening. It happens
automatically and no explicit work needs to be performed.
Upcasting facilitates the access of parent class members, but it is not
possible to access all the child class members on the contrary.
Instead of all the members, we can access some specific members of
the child class.

The following C++ code segment deals with three different shapes.

The Shapeclass is defined first and the three classes
Circle, Triangle and Rectangle are derived from it. A member

229 |Page

function is defined within each of the derived classes for
communicating with the base class.

void play(Shapeé& s)
{
s.draw () ;
s.scaleup () ;

s.scaledown () ;

}

This member function corresponds to any shape, so it is
independent of the specific type of object (circle, triangle or
rectangle)for the purpose of the actions i.e. drawing, scaling up
or scaling down. Suppose, in some part of the program, we are
using the play() function as mentioned in the following code.

Circle cir;
Triangle tri;
Rectangle rec;
play(cir);
play(tri);

play(rec);

Here, a circle object is being passed into a function that is asking for
a shape as argument. Since a circle is a shape, it can be treated as the
one to whom, the play() function needs to respond.Upcasting allows
us to treat a derived type as though it were its base type. That is how
we abstain ourselves from knowing what the exact type we are
dealing with. This indicates that the play() function has no specific
coding regarding a circle, or a triangle or a rectangle. If we proceed
for writing that kind of code, which checks for all the possible types
of shapes, it will become a messy code, and we need to change it
every time we add a new kind of shape. In these codes, however, we
are treating that each shape can be drawn, scaled up and scaled
down.

Because implicit upcasting makes it possible for a base-class pointer
(reference) to refer to a base-class object or a derived-class object,
there is the need for dynamic binding. Virtual member functions are
useful for implementing dynamic binding. If a member function

230 | Pa

(&

()]

is virtual, then when we send a message to an object, the object will
do the right thing, even when upcasting is involved. Note that the
most important aspect of inheritance is not that it provides member
functions for the new class, however, it is the relationship expressed
between the new class and the base class.

class Parent
{
public:
void sleep() {}
i
class Child: public Parent
{
public:
void playVideoGame () {}
i
void main()
{
Parent parent;
Child child;

Parent *pParent = &child; //upcast-
implicit type
Child *pChild =(Child
*) &parent;//downcast-explicit type
pParent -> sleep():;
pChild ->playVideoGame () ;
}

A Child object is a Parent object, where, it inherits all the data
members and member functions of the Parent object. So, anything
that we can do to a Parent object, we can do to a Child object.
Therefore, a function designed to handle a Parent pointercan
perform the same acts on a Child object without any problem. The
same idea is applicable if we pass a ‘pointer to an object’ as a
function argument. Upcasting is transitiveif we derive a Child class
from Parent, then Parent pointercan refer to a Parent or
a Child object.

8.4.3 Details of Downcasting

231 |Page

The opposite process of Upcasting i.e. the conversion of base-class
pointerto a derived-class pointer is called Downcasting. When we
want to cast a super class to a sub class, we use Downcasting (or
narrowing), and Downcasting is not directly possible. For example,
in Java, it is done in an explicit manner.The Downcasting operator
in C++ isbasically extraordinarily slow compared to the
performanceof other operators due to the fact that C++ allows
multiple and virtual-inheritance.

Downcasting is not allowed without an explicit type cast. The
reason for this restriction is that the ‘is-a’ relationship 1is
notsymmetric in most of the cases. A derived class could add new
data members, and the class member functions that used these data
members would not be able to apply onto the base class.As in the
example, we derived Child class from a Parent class, adding a new
member function, playVideoGame(). It would not make sense to
apply the playVideoGame() function to a Parent object. However, if
implicit downcasting were allowed, someone could accidentally
assign the address of a Parent object to a pointer-to-Child i.e.

Child *pChild = &parent; //can’t convert from 'Parent
*' to '"Child *!

//error will arise
here..

and use the pointer to invoke the playVideoGame() method as

shown below.

pChild ->playVideoGame () ;

As the Parent need not contain a playVideoGame() function, the
Downcasting in the above code segment could lead to some
insecure operation. C++ provides a special explicit cast
called dynamic_cast that performs this conversion.

Downcasting is the opposite of the basic object-oriented rule, which
states objects of a derived class, can always be assigned to variables
of a base class.The need for dynamic_cast generally arises when we
need to perform derived class operations on a derived class object,
but we avail only a pointer to a base class only.

232 |Page

8.5 TYPES OF INHERITANCE

There is a need of various forms of inheritances in order to meet the
real life needs of the current day software developers as well as the
users. Some of the most appreciated forms of such inheritances
ranging from single inheritance to hybrid inheritance are described
below with necessary diagrams and suitable example programs.

e Single Inheritance

]

Fig-8.3: Single Inheritance

e Multiple Inheritance

[Semester Marks [Coclmncn]arMm:ks

NV

233 |Page

Fig-8.4: Multiple Inheritance

e Multi-level Inheritance

3

Fig-8.5: Multilevel Inheritance

[

e Hierarchical Inheritance

() () [

Fig-8.6: Hierarchical Inheritance

e Hybrid Inheritance

234 |Page

Result]

Fig-8.7: Hybrid Inheritance

8.5.1 Single inheritance

The simplest form of inheritance is the single inheritance. In this
inheritance, a derived class is formed from a base class.In the
example shown below, the class Animal is the base class or parent
class and the class Dogis the derived class or child class. Here, the
class Doginherits the features and behaviours of the parent class
Animal.Single inheritance is implemented in C++ as shown below.

Given below is a C++ based programming example of Single
Inheritance.

#include <iostream.h>
#include <string.h>

class Animal
{
private:
string name="";
public:
int no_of legs=4;
int no_of tail=l;

}i

class Dog : public Animal
{
public:
void act ()
{
cout<<"\n The dog barks !!!";

235|Page

}i

void main ()
{

Dog dog;

cout<<"\n The dog has "<<dog.no of legs<<"
legs";

cout<<"\n The dog has "<<dog.no of tail<<"
tail";

dog.act();

QOutput:

The dog has 4 legs
The dog has 1 tail
The dog barks!!!

The class Animalis a base class and the class Dog is derived from
Animal class. The class Dog inherits all the members of Animal
class and can avail its own properties, which is clear from the output
above.

8.5.2 Multiple inheritance

In this inheritance, a derived class is created from more than one
base class. Although this form of inheritance is directly supported in
C++, thisis not directly supported by Java and .NET Languages like
CH#, F# etc.In the given example, class Result inherits the properties
and behaviours of the two base classes i.e.Semester Marks and
Cocurricular Marks at same level. So, the class Result is the
derived class here.Following is an example program to demonstrate
Multiple Inheritance in C++.

#include <iostream.h>

class Semester Marks
{
protected:
int rollNo,subl, sub2;
public:
void getsmarks ()
{
cout << "\n Enter the Roll No : ";
cin >> rollNo;
cout << "\n Enter the two best marks: ";
cin >>subl>>sub2;
}
}i

236 |Page

class Cocurricular Marks
{

protected:

int comarks;

public:

void getcomarks ()

{

cout << "Enter the mark for cocurricular
activities: ";

cin >> comarks;

}
b

class Result : public Semester Marks, public
Cocurricular Marks
{
private:
int total marks, avg marks;
public:
void display ()
{
total marks = subl + sub2 + comarks;
avg marks = total marks / 3;
cout << "\nRoll No: " << rollNo ;
cout<< "\n Total Marks: " << total marks;
cout << "\n Average Marks: " << avg marks;

}i

void main ()
{

Result res;
res.getsmarks () ;
res.getcomarks () ;
res.display();

}

Output:

Enter the Roll No: 25

Enter the two best marks: 40 50

Enter the mark for Cocurricular activities: 30
Roll No: 25

Total marks: 120

Average marks: 40

In the above example, we have three classes i.e. Semester Marks,
Cocurricular Marks, and Result. The class Semester Marks reads
two of the semester best marksof the student. The class
Cocurricular Marks reads the markof the student in co-curricular
activities.The Result class calculates the total marks and avg marks
on receiving inputs from the two base classes.In this model, Result
class is derived from Semester Marks and Cocurricular Marks as

237 |Page

we calculate Result from the semester marks as well as co-curricular
activities marks.This exhibits the multiple inheritance neatly.

8.5.3 Multi-level inheritance

In this inheritance, a derived class is created from another derived
class.In the given example, class German_ Shepherd inherits the
properties and behavior of class Dog and the class Doginherits the
properties and behavior of another class Animal. So, here Animal is
the parent class of Dog and Dogis the parent class of
German_Shepherd. So, here class German_Shepherd implicitly
inherits the properties and behavior of class Animal along with class
Dog. Thus it exhibits multi level inheritance. Following is an
example C++ program to demonstrate Multilevel Inheritance.

#include <iostream.h>
#include <string.h>

class Animal
{
private:
string name="";
public:
int no of legs=4;
int no _of tail=1l;

}i

class Dog : public Animal
{
public:
void act ()

{

cout<<"barksmuch !!!";
}
}i

class German_ Shepherd :public Dog
{
public:
void behaviour ()

{

cout<<"is very aggressive !!!";

b

void main ()

{
German Shepherdgs;

238 |Page

cout<<"\n German Shepherd has
"<<gs.no_ of legs<<" legs";

cout<<"\n German Shepherd has
"<<gs.no_of tail<<" tail";

cout<<"\n German Shepherd ";

gs.act();

cout<<"\n German Shepherd ";

gs.behaviour () ;

}

Output:

German Shepherdhas 4 legs

German Shepherdhas 1 tail

German Shepherdbarksmuch !!!

German Shepherdis very aggressive !!!

This kind of inheritance can be treated as the extension of the Single
inheritance. Here, a class German Shepherdinherits from the class
Dog that in turn inherits from the class Animal. We see here that the
class German_Shepherdinherits the properties and methods of both
the upper hierarchy classes above it, i.e. the Dogand the
Animalclass. The class Dogacts as a Dbase class for
German_Shepherd and acts as a derived class for the Animal class.

8.5.4 Hierarchical Inheritance

In this inheritance, more than one derived classes are generated from
a single base class.In the given example, class Shape (base class)
has three child or three derived classes i.e. Rectangle, Triangle and
Square.Following is an example C++ program to demonstrate the
Hierarchical Inheritance.

#include <iostream.h>

class Shape

{

public:
int x,y;
void getdata(int n,int m)
{
X= n;

y = m;

}i
class Rectangle : public Shape

{
public:
int area rec()

{

239 |Page

int area = x*y;
return area;

b

class Triangle : public Shape
{
public:
int area tri()
{
float area = 0.5*x*y;
return area;

b

class Square : public Shape
{
public:
int area squ()
{
float area = x*x;
return area;

b

void main ()
{
Rectangle r;
Triangle t;
Square s;
int length,breadth,base,height, side;

cout << "\n Enter the length and breadth

the rectangle: "; cin>>length>>breadth;
r.getdata (length, breadth) ;
int rec_area = r.area rec();

cout << "\nArea of the rectangle = "
<<rec_area;

cout << "\n Enter the base and height of

the triangle: "; cin>>base>>height;

t.getdata (base, height) ;

float tri area = t.area tri();

cout <<"\n Area of the triangle = "
<<tri area;

cout << "\n Enter the length of one side
the square: "; cin>>side;

s.getdata (side, side) ;

int squ_area = s.area squ();

240 |Page

of

of

cout <<"\n Area of the square = <<
squ_area;

}
Qutput:

Enter the length and breadth of the rectangle: 10
5

Area of the rectangle = 50

Enter the base and height of the triangle: 10 5
Area of the triangle = 25

Enter the length of one side of the square: 5
Area of the square = 25

The above example is a classic example of Hierarchical Inheritance.
We have a base class Shape and three derived classes i.e. Rectangle,
Triangle and Square.While a method is used to read data in the
Shape class, each of the three derived classes has its own method to
calculate area. In the main function, data is read for each object and
then calculation of area is done.

8.5.5 Hybrid inheritance

This is combination of more than one inheritance. Hence, it may be
a combination of Multiple and Multilevel inheritance or Multilevel
and Hierarchical inheritance or Hierarchical, Multilevel and
Multiple inheritance.Since .NET Languages like C#, F# etc. do not
support multiple inheritances, hence hybrid inheritance with a
combination of multiple inheritancesis not supported by .NET
Languages. Following is an example C++ program to demonstrate
Hybrid Inheritance.

#include <iostream.h>
#include <string.h>
class Student
{
private:
int id;
char namel[];
public:
void getstudent ()

cout << "\n Enter student Id

and student name : ";
cin >> id >> name;

241 |Page

class Marks:

{

b

protected:

public Student

int phy, chem, math;

public:

void getmarks ()

class Sports

{

protected:

cout << "\n Enter marks for
Physics, Chemistry &
Mathematics :";

cin >>phy>>chem >> math;

int spmarks;

public:

void getsports()

{

mark:";

class Result

{

private:

cout << "\n Enter sports

cin >> spmarks;

public Marks, public Sports

int total marks;

float avg marks;

public

void display ()

{

spmarks;

total marks;

<<avg marks;

}i

}

void main ()

{

result

242 |Page

total marks=phy+ chem + math +

avg marks=total marks/4.0;
cout << "\n Total marks =" <<

cout << "\n Average marks = "

resy

res.getstudent () ;
res.getmarks () ;
res.getsports () ;
res.display () ;

}

Qutput:

Enter student Id and student name : 25 Abhinav
Enter marks for Physics, Chemistry & Mathematics
:80 84 86

Enter sports mark:90

Total marks =340

Average marks =85

Here we have four classes i.e. Student, Marks, Sportsand Result. The
classMarksis derived from the Student class. On the other hand, the
class Resultis derived from Marks and Sportsclass.Finally, we
calculate the result from the subject marks plus the sports mark.The
output is generated by creating an object of class Result that has
acquired the properties of all the other three classes indirectly.

8.6IMPORTANCE OF ACCESS SPECIFIERS IN
INHERITANCE

There is an important role of access specifiers in inheritance. The
action of access specifiers come into force when derived classes
want to access the members of a class.When the derived classes
inherit members, those members may change access specifiers in the
derived class. This does not alter the access specifier type of the
own members (non-inherited) of the derived classes.

If the inheritance is protected, its children are aware that they are
inheriting from one base class. If the inheritance is private, no one
other than its own object is aware of the inheritance. All the three
types of inheritances in terms of access specifiers are discussed
below.

i) Public Inheritance — When deriving from a public base class,

public and protected members of the base class remains the same in
the in the derived class.

243 |Page

Access specifier in base class Access specifier when inherited publicly

Public Public
Protected Protected
Private Inaccessible

Table-8.1: Status of access specifiers in derived classes when
inherited publicly

ii) Protected Inheritance — When deriving from a protected
base class, public and protected members of the base class
become protected members of the derived class.

Access specifier in base class Access specifier when inherited protectedly

Public Protected
Protected Protected
Private Inaccessible

Table-8.2: Status of access specifiers in derived classes when
inherited protectedly

iii) Private Inheritance — When deriving from a private base
class, public and protected members of the base class become
private members of the derived class.

Access specifier in base class Access specifier when inherited privately

Public Private
Protected Private
Private Inaccessible

Table-8.3: Status of access specifiers in derived classes when
inherited privately

8.7 VIRTUAL BASE CLASS

As we can see in the figure below that the data members or the
member functions of class A are inherited in a redundant way to
class D via class B and class C. So, when any data member or
member function of class A is accessed by an object of class D, it
is very sure to have ambiguityas to which data member or member

244 |Page

function would have to be called. This confuses the compiler and it
displays error.To resolve this ambiguity when class A is inherited
in both class B and class C, it is declared as virtual base class by
placing a keyword virtual as:

Syntax 1:
class B : public virtual A
{
}i

Syntax 2:
class C : public virtual A
{
}i
An example C++ program is shown below to have a clear
understanding of the virtual base class concept.

#include <iostream.h>
class A
{
public:
int a;
A() // constructor definition
{
a = 10;

class B : public virtual A
}i

class C : public virtual A
{
}i

class D : public B, public C
{
}i

int main ()

{

D object; // object
creation of class D
cout << "a = " << object.a << endl;

return 0;

245|Page

The keyword virtual can be written before or after the public. Now
only one copy of the data member or the member functionwill be
copied to class B and class C and class A becomesthe virtual base
class. Virtual base classes offer a way to save space and avoid
ambiguities in class hierarchies that use multiple inheritances.
When a base class is specified as a virtual base, it can act as an
indirect base more than once without duplication of its data
members. A single copy of its data members is shared by all the
base classes that use virtual base.

CHECK YOUR PROGRESS
Multiple choice questions:

1. Which among the following best describes the
Inheritance?
i) Copying the code already written
ii) Using the code already written once
iii) Using already defined functions in
programming language
iv) Using the data and functions into derived
segment
2. Which among the following is correct for a
hierarchical inheritance?
i) Two base classes can be used to be derived
into one single class
ii) Two or more classes can be derived into one
class
iii) One base class can be derived into other two
derived classes or more
iv) One base class can be derived into only two
classes

3. Which type of inheritance leads to diamond problem?
i) Single
ii) Multiple
iii) Multilevel
iv) Hierarchical

4. What is upcasting?

246 |Page

i) Casting subtype to supertype

ii) Casting super type to subtype
iii) Casting subtype to super type and vice versa
iv) Casting anytype to any other type

5. Which among the following is safe?

i) Upcasting
ii) Downcasting
iii) Both upcasting and downcasting
iv) If upcasting is safe then downcasting is not,
and vice versa

State whether True or False:

1. Multiple inheritance is supported by almost all high
level languages.

2. Private data members are not accessible from derived
classes.

3.Inheritance reduces code redundancy and enhances
code reusability.

4. Casting a base class pointer to a derived class pointer
is known as upcasting.

5. Private inheritance in terms of accessibility is better
than protected inheritance.

Fill in the blanks:

1. The class from which other class inherits is

2. The inheritance type where a derived class is inherited

from many base classes is inheritance.
3. Inheritance is in nature.
4. A/An class is one that cannot be
instantiated.
5. contains data members only.
Match the following:
1. Object i)Inheritance
2.Virtual ii)Access specifier
3. Inheritance iii)Dynamic cast
4. Protected iv)Ambiguity removal

247 |Page

5. Downcasting v)Scope resolution
operator
vi)Reusability
vii) Class instantiation

8.8 SUMMING UP

This unit begins with the basic concept of inheritance with emphasis
on its significance in object oriented programming. The advantages
and disadvantages of inheritance are discussed. Casting up in the
hierarchy is discussed and the terms Upcasting and
Downcasting. There are various types of inheritance. Single
inheritance is the basic of all and the other inheritances are multiple
inheritance, multilevel inheritance, hierarchical inheritance and
hybrid inheritance. All these five types are discussed in this chapter
with their implementation.. The access specifiers, i.e. public, private
and protected have a vital role in inheritance. The derived classes
can be inherited from its base class in public mode, protected mode
and private mode. All these modes have different levels of access to
the data herein. Virtual base class is another very important facility
in OOP to get rid of ambiguity issues. The final section of this unit
is wind up with the discussion on the detailed cause of ambiguity.

8.9 ANSWERS TO CHECK YOUR PROGRESS

Multiple choice questions:

1.(iv) 2. (iii) 3. (ii) 4.31)
5. (i)

State whether True or False:

1. False 2. True 3. True 4. False
5. False

Fill in the blanks:

1. Base Class 2. Multiple 3. Transitive 4.
Abstract 5. Structure

248 |Page

Match the following:

1. (vii) 2. (iv) 3. (vi) 4. (i)
5. (i)

8.10 POSSIBLE QUESTIONS

Short answer type questions:

1)
2)
3)

4)

5)

What is the difference between a class and an object?

What is inheritance? Mention the types of inheritances.

What is the difference between Multiple Inheritance and
Hierarchical Inheritance?

Differentiate between:

i) Public access specifierand Private access specifier

ii) Upcasting and Downcasting

iii) Single Inheritance and Hybrid Inheritance

What measure will you take to resolve the issue of ambiguity
in inheritance?

Long answer type questions:

1)

2)
3)

4)

5)

Explain the importance of inheritance in object oriented
programming. Also mention the advantages and
disadvantages of inheritance.

Differentiate between Upcasting and Downcasting in
inheritance with necessary code segments.

Explain various types of inheritances along with necessary
diagrams to ease the process of understanding the concept.
Explain the three types of inheritances in terms of access
specifiers (public, protected and private) that a derived class
can undergo.

Explain the importance of virtual base class with suitable
program.

249 |Page

8.11 REFERENCES AND SUGGESTED READINGS

E. Balagurusamy (2010). Object Oriented Programming With
C++. Tata McGraw hill Education Pvt. Ltd. p. 213. ISBN 978-
0-07-066907-9.

Dr. K. R. Venugopal, Rajkumar Buyya (2013). Mastering
C++. Tata McGraw hill Education Private Limited.
p. 609. ISBN 9781259029943.

Mitchell, John (2002). "Concepts in object-oriented
languages"". Concepts in programming language. Cambridge,
UK: Cambridge University Press. p.287. ISBN 978-0-521-
78098-8.

Bjarne Stroustrup. “The Design and Evolution of C++”.
Addison-Wesley Professional. Publication: April 8, 1994.
Edition - 1

250 | Page

UNIT 9: POLYMORPHISM

Unit Structure:
9.1 Introduction
9.2 Unit Objectives
9.3 Definition of Polymorphism
9.4 Compile time polymorphism
9.5 Function Overloading
9.6 Operator Overloading
9.6.1 Unary Operator Overloading
9.6.2 Binary Operator Overloading
9.6.3 Operator Overloading Using Friend Function
9.6.4 Data Conversion Using Operator Overloading
9.6.5 Overloadable and Non-Overloadable Operators in
C++
9.7 Run time Polymorphism
9.8 Virtual Function
9.8.1 Implementation
9.8.2 Pure Virtual Function
9.9 Summing Up
9.10 Answers to Check Your Progress
9.11 Possible Questions
9.12 References and Suggested Readings

9.1 INTRODUCTION

In unit 1, four important properties of Object Oriented Programming
(OOP) have been introduced. Polymorphism is one of these OOP
properties. In this unit, different types of polymorphism are
discussed with their implementations.

9.2 UNIT OBJECTIVES

After reading this unit, you are expected to be able to learn:
% What is Polymorphism?
+ Different types of Polymorphism in OOP.
% Definition and types of Compile time polymorphism.
% Definition and implementation of function overloading.

251 |Page

¢ Definition of operator overloading.

+ Implementations of unary and binary operator overloading.
% What is runtime polymorphism?

+¢ Definition of Virtual function and its implementation.

% What is dynamic binding?

+¢ Definition and implementation of pure virtual function?

+ Explain Abstract class.

9.3 DEFINITION OF POLYMORPHISM

The word “Polymorphism” is originated from two Greek word
“Poly” and “Morphe”. In Greek, the word “Poly” means “many”
and the word “Morphe” means “form”. In Object Oriented
Programming (OOP), the word “Polymorphism” is used to represent
one of its properties. It allows same function name for different
functionalities and also allows using one operator for performing
multiple operations. It means that a same function name can be used
to represent multiple operations and depending upon the type of
parameters or number of parameters or object, a particular operation
will be executed. Similarly, Polymorphism allows an operator to
perform differently functions depending upon the type and number
of function parameters of the called operator.

In OOP, Polymorphism can be categorized into two major groups
that are Compile time polymorphism and Run time polymorphism.

9.4 COMPILE TIME POLYMORPHISM

In computer programming, linking of function call to the function
definition or body is referred as binding. If compiler can determine
a binding at the compile time then it is termed as static binding. It
means that compiler can be able to recognize all necessary
information to call a function at compile time in case of static
binding. The advantage of static binding is that it increases the
efficiency of the program because before execution all necessary
information is recognized. On the other hand, due to static binding,
the flexibility of the program is decreased.

252 |Page

As we know Polymorphism allows the use of same function name
for multiple functions where each function must be different from
other functions in terms of the number of parameters or type of
parameters or both. In this case, binding of function call to its
function body is determined by the compiler at the compile time on
the basis of the number of parameters or types of parameters or
both. So this type of polymorphism is called as Compile time
polymorphism. It means Compile time polymorphism is realized
due to static binding. Function overloading and Operator
overloading are the two types of Compile time polymorphism.

9.5 FUNCTION OVERLOADING

We have already learnt from the earlier section that Function
overloading is a Compile time polymorphism. Function overloading
allows the use of multiple functions with same name in a program
where each function provides different functionality from other
functions. In this case, the name of multiple functions is same but
they must be different in terms of number of parameters or types of
corresponding parameters or both. Readability of program can be
improved due to function overloading.

Now we will try to learn function overloading with an
example. Let us consider the following C++ program as an example
of function overloading.

Program 9.1: C++ Program to Estimate Areas of Triangle, Square,
Circle and Parallelogram.

include < iostream.h >
include < conio.h >
include < string.h >

int Area (int, int); /I Area of Triangle

int Area (int); /I Area of Square

float Area (float , float); /I Area of Circle

int Area (int, int,char[]); // Area of Parallelogram

int main()

{
int Base , Vertical Height, Length Side ;

253 |Page

float Radius , Pi=3.14 ;

cout << “\n Area of Triangle:” ;

cout << "\n Enter base(in Meter) =" ;

cin >> Base;

cout << "\n Enter vertical height (in Meter) =" ;

cin >> Vertical Height;

cout << "\n Area of the triangle =" ;

cout << Area(Base , Vertical Height) << “ Square
Meters\n” ;

cout << ‘“‘An Area of Square:” ;

cout << "\n Enter length of a side (in Meter) =" ;

cin >> Length_Side;

cout << "\n Area of the Square =" << Area(Length_Side) ;
cout << “ Square Meters\n” ;

cout << “\n Area of Circle:” ;

cout << "\n Enter radius(in Meter) =" ;

cin >> Radius ;

cout << "\n Area of the Circle =" << Area(Radius , Pi) ;
cout << “ Square Meters\n” ;

cout << “\n Area of Parallelogram:” ;

cout << "\n Enter base (in Meter) =" ;

cin >> Base ;

cout << "\n Enter vertical height(in Meter) =" ;

cin >> Vertical Height;

cout << "\n Area of the Parallelogram =" ;

cout << Area(Base , Vertical Height, "Parallelogram") ;
cout << “ Square Meters” ;

getch();

return(0);

int Area (int B , int H) // Function to estimate area of
Triangle

{
return((B * H)/2);

int Area (int LS) // Function to estimate area of Square

254 |Page

return(LS * LS);

float Area(float R , float PI) // Function to estimate area of
Circle

{
return(PI * R * R);

int Area(int B, int H, char S[]) /* Function to estimate area of
Parallelogram */

{
if(strcmp ("Parallelogram" , S)==10)
return(B*H);
else
return 0;
b

QOutput of the above program:

Area of Triangle:

Enter base(in Meter) = 14

Enter vertical height (in Meter) = 12
Area of the triangle = 84 Square Meters

Area of Square:
Enter length of a side (in Meter) =7
Area of the Square = 49 Square Meters

Area of Circle:
Enter radius(in Meter) =4.7
Area of the Circle = 69.3977 Square Meters

cout << “\n Area of Parallelogram:” ;

Enter base (in Meter) = 20

Enter vertical height(in Meter) =12

Area of the Parallelogram = 240 Square Meters ;

255|Page

Function overloading has been demonstrated with the help of the
above C++ program (Program 9.1). The job of this program is to
estimate the areas of Triangle, Square, Circle and Parallelogram. It
has been observed that there are four functions with same name
‘Area’. But each function is different from others in terms of type of
corresponding parameters or number of parameters or both. So, area
of a Square can be estimated by the function, Area() which has only
one parameter and the type of parameter is int. On the other hand,
the function, Area() with two int parameters will provide the area of
a Triangle. So these two functions demonstrate function overloading
using different number of parameters. Again the function, Area()
with two float type parameters will provide the area of a Circle. In
this case, it demonstrates function overloading using different types
of parameters. Finally, the function, Area() with two int parameters
and one string parameter will estimate the area of a Parallelogram.
Now which function will be linked at the time of function call is
dependent upon the parameters passed to it. For example, if we pass
only one int parameter then the function, Area() which is used to
calculate the area of a Square will be linked and the area of a Square
will be returned after estimation. We can understand this function
overloading concept very easily by observing the output of the
program mentioned above.

9.6 OPERATOR OVERLOADING

We have already learnt in Unit 2 about different types of operators
available in C++. Each of these operators can be used to perform
some specific operation on primitive or built-in data types in
Structured Programming Languages like C. For example, ++
(Increment Operator) can be used to increase the value of its
operand by one. The data type of the operand can be either int or
float or char.

In Object Oriented Programming (OOP), additional meanings to an
operator can be defined so that it can also be used with user defined
classes or user defined data types. It means one operator can be used
to operate on primitive data types as well as on user defined data
types also. This feature of OOP is called Operator overloading. To
achieve Operator overloading, special member functions or friend

256 |Page

functions has to be defined in a class. So, depending upon the
operands, an overloaded operator will perform its task. The syntax
rules of overloaded operators are same as theoriginal operator. One
more important point is that using Operator overloading, the basic
meaning of an operator cannot be changed.

The compiler can recognize at compile time about the defined
operation for a particular operator. It means that Operator
overloading is also a type of compile time polymorphism.

In C++, the keyword ‘operator’ is used to overload operators. The
general syntax of operator overloading in C++ is presented as
follows.

Return_Type operator OperatorSymbol ([Argument List])

{

// Body of the function to add new operation to the operator

In the above syntax, Return_Type refers the type of the data that is
returned from the operator overloading function. If the function
returns an object then Return Type refers the class name of the
returned object. If the function does not return anything then
Return Type will be void. Again in the above syntax,
OperatorSymbol represents the operator which is to be overloaded.
Finally, [Argument List] refers the parameters passed to the
function as per requirement.

STOP TO CONSIDER
All Object Oriented Programming languages don’t support Operator
overloading. For example, Java don’t support Operator overloading

9.6.1 Unary Operator Overloading

If the number of operand to an operator is only one, then the
operator is called as unary operator. For example: ++, --, ~ are unary
operators. The syntax to overload unary operators in C++ is
presented as follows.

Return_Type operator Unary Operator Symbol ()
{

257 |Page

// Body of the function to add new operation to the operator

From the above syntax, it can be observed that in C++
programming, no parameter is passed to the overloading function to
overload a unary operator. In the above syntax,
Unary Operator Symbol refers to the unary operator which is going
to be overloaded.

Now, we will try to understand how to overload a unary operator by
observing the following C++ program.

Program 9.2: C++ Program to Overload ++ (Increment) operator.

include < iostream.h >
include < conio.h >
include < stdio.h >

class Employee
{
private:
char Emp Name[200],Emp Id[10];
long int Salary,Increment;
public:
void Input Employee Information();
void Display Employee Information();
void operator ++();

}s

void Employee :: Input Employee Information()
{

cout << "\n Enter Employee Id =";

cin >> Emp_Id;

cout << "\n Enter Employee Name =";

gets(Emp_Name);

cout << "\n Enter Salary =";

cin >> Salary;

cout << "\n";

258 |Page

void Employee :: Display Employee Information()

{
cout << "\n Employee Id =" << Emp_Id;
cout << "\n Employee Name =" << Emp_Name;
cout << "\n Salary =" << Salary << "\n";

H
void Employee :: operator ++()
{
cout << "\n Enter Salary Increment =";
cin >> Increment;
Salary = Salary + Increment;
}
int main()
{
Employee E1;
clrser();

cout << ‘“\n Input Employee Information:”;

El.Input Employee Information();

cout<<"\n Employee Information:\n";

E1.Display Employee Information();

El++;

cout<<"\n Employee Information After
Increment:\n";

El.Display Employee Information();

getch();

return(0);

Output of the above program:

Input Employee Information:

Enter Employee Id = E0014

Enter Employee Name = Mr. Ankur Duwarah
Enter Salary = 87000

Employee Information:

Employee Id = E0014

Employee Name = Mr. Ankur Duwarah
Salary = 87000

259 |Page

Salary

Enter Salary Increment = 1000

Employee Information After Salary Increment:
Employee Id = E0014

Employee Name = Mr. Ankur Duwarah

Salary = 88000

In the above C++ program (Program 9.2), increment operator ++ is
overloaded where the operand of ++ is the object of the class
‘Employee’. From the output of the program, we can have observed
that unary operator ++ operates on the object ‘E1’ of class
‘Employee’ and it increments the value of the variable ‘salary’ by
1000 that is entered by the user.

9.6.2 Binary Operator Overloading

If the number of operand to an operator is two then the operator is
called as binary operator. For example: +, -, =* are binary
operators. The syntax to overload binary operators in C++ is
presented as follows.

Return_Type operator Binary Operator Symbol (Argument)
{

// Body of the function to add new operation to the operator

From the above syntax, it can be observed that in C++
programming, to overload a binary operator, we are required to pass
one parameter to the overloading function. In the above syntax,
Binary Operator Symbol refers to the binary operator which is
going to be overloaded. In binary operator overloading, the
overloading function which is the member function of the first
operand is invoked and the second operand is explicitly passed to
that function. So, the data members of the first object can be
accessed directly inside the overloading function without using the
dot operator. On the other hand, the data members of the second
object can be accessed by using dot operator with the object which
is the parameter of the overloading function. If the second operand
is not an object then it can be accessed directly.

260 | Page

Now, we will try to understand how to overload a binary operator
by observing the following C++ program.

Program 9.3: C++ Program to Overload + (Addition) operator

include < iostream.h >
include < conio.h >

class Complex Number

{
private:
float X, Y;
public:
void Input Complex Number();
void Display Complex Number();
Complex Number operator +(Complex Number);
¥

void Complex Number:: Input Complex Number()

{

cout << "\n Enter Real part =";

cin >> X;

cout << "\n Enter Imaginary part =";
cin>>Y;

void Complex Number :: Display Complex Number()
{

if(Y>0)
{
cout << X << " +"<<"i";
else
cout << X <<"+"<<Y <<"";
}
else
{
if(Y==-1)
cout << X << " - q";
clse
cout << X << " - " << 1¥Y << """

261 |Page

Complex Number Complex_ Number : operator
+(Complex Number T)
{

Complex Number CN;

CNX=X+TX;

CNY=Y+TY;

return(CN);

int main()

{
Complex Number CN1,CN2,SUM_CN;
clrser();
cout << "\n Enter First Complex Number:";
CNl1.Input_Complex Number();
cout << "\n Enter Second Complex Number:";
CN2.Input_Complex Number();
SUM_CN = CNI1+CN2;
cout << "\n First Complex Number is =";
CNI1.Display Complex Number();
cout << "\n Second Complex Number is =";
CN2.Display Complex Number();
cout << "\n Addition of the two Complex Number =";
SUM_CN.Display Complex Number();
getch();
return(0);

Output of the above program:

Enter First Complex Number:
Enter Real part = 4
Enter Imaginary part = 5

Enter Second Complex Number:
Enter Real part = 8

Enter Imaginary part =9

First Complex Number is =4 + 5i

262 |Page

Second Complex Number is = 8 + 9i
Addition of the two Complex Number = 12 + 14i

In the above program (Program 9.3), the binary operator +
(Addition) is overloaded to implement addition of two complex
numbers. It is observed that CN1 is the first operand and CN2 is the
second operand of + operator. CN1 and CN2 are the objects of the
class ‘Complex Number’.

Now the statement ‘SUM_CN = CN1+CN2;’ will invoke the binary
operator overloading function ‘Complex Number operator -+(
Complex_ Number)’ which is the member function of CN1 and the
object CN2 is explicitly passed to this overloading function. Inside
the overloading function, data members of CNI1 are accessed
directly and data members of CN2 is accessed by using the dot
operator with the object T which is the formal parameter of the
overloading function.

Program 9.4: C++ Program for String Concatenation by
Overloading + (Addition) Operator

include < iostream.h >
include < conio.h >

include < string.h >

include < stdio.h >

class String

{
private:
char string1[200];
public:
void Input_String();
void Display_String();
String operator +(String);
s
void String :: Input_String()
{
gets(stringl);
}

263|Page

void String :: Display_String()
{
cout<<"\n"<<stringl;
cout<<"\n";

String String::operator +(String St1)
{
String St2;
strepy(St2.string1,string1);
strcat(St2.string1,St1.string1);
return(St2);

int main()

{
String S1, S2, S3;
clrser();
cout << "\n Read the first string :: ";
S1.Input_String();
cout << "\n Read the second string :: ";
S2.Input_String();
S3=S1+S82;
cout << "\n The first string :: ";
S1.Display_String();
cout << "\n The second string :: ";
S2.Display_String();

cout << "\n Output after string concatenation :: ";

S3.Display_String();
getch();
return(0);

Output of the above program:

Read the first string :: Gauhati
Read the second string :: University
The first string :: Gauhati

The second string :: University
Output after string concatenation :: GauhatiUniversity

264|Page

Program 9.5: C++ Program to implement
Overloading = (Assignment) Operator

include < iostream.h >
include < conio.h >

include < string.h >

include < stdio.h >

class String

{
private:
char string1[200];
public:
void Input_String();
void Display_String();
void operator =(String);
s
void String :: Input_String()
{
gets(stringl);
b
void String :: Display_String()
{
cout << string]1;
cout << "\n";
}
void String::operator =(String St1)
{
strepy(stringl , Stl.stringl);
}
int main()
{

String S1, S2;

265|Page

String Copy

clrser();

cout << "\n Read the first string::";
S1.Input_String();

cout << "\n Read the second string::";
S2.Input_String();

cout << "\n The input strings are::\n";
cout << "\n The first string::";
S1.Display_String();

cout << "\n The second string::";
S2.Display_String();

S2 =S1;

cout << "\n After copying first string to second string::";
cout << "\n The first string::";

S1.Display_String();

cout << "\n The second string::";

S2.Display_String();

getch();
return(0);

Output of the above program:

Read the first string:: Gauhati University
Read the second string:: IDOL

The input strings are::

The first string:: Gauhati University

The second string:: IDOL

After copying first string to second string ::
The first string :: Gauhati University

The second string :: Gauhati University

Program 9.6: C++ Program for String Comparison by Overloading
= = (Equal to) Operator

include < iostream.h >
include < conio.h >

include < string.h >

include < stdio.h >

266|Page

class String

{
private:
char string1[200];
public:
void Input_String();
void Display_String();
int operator = =(String);
s
void String :: Input_String()
{
gets(stringl);
b
void String :: Display_String()
{
cout << "\n" << stringl;
cout << "\n";
}

int String :: operator = =(String St1)
{
strupr(stringl);
strupr(Stl.string1);
if(stremp(Stl.stringl , stringl) ==0)

return(1);
else
return(0);
H
int main()
{

String S1, S2;

clrser();

cout << "\n Read First String::";
S1.Input_String();

cout << "\n Read Second String::";
S2.Input_String();

267 |Page

if(S1==82)
{
cout <<"\n Both are same strings”’;
cout << “(Considering Both in Upper case
characters)";

}

else

{

cout << "\n Both are different strings";

getch();
return(0);

Output of the above program:
Read First String :: Gauhati University

Read Second String :: Gauhati University
Both are same strings(Considering Both in Upper case characters)

9.6.3 Operator Overloading Using Friend Function

In C++, friend function can also be used to overload operators.
When we use friend function to overload unary operators then one
argument has to be passed to the operator overloading function. On
the other hand, in case of binary operator overloading, we require to
pass two arguments to the operator overloading function. The
syntax of operator overloading using friend function is presented as
follows.

friend Return_Type operator Symbol (Argument List)
{

// Body of the function to add new operation to the operator

Let us try to understand the operator overloading using
friend function by observing the following C++ program.

268 | Page

Program 9.7: C++ program to overload +(Addition) operator using

friend function
include < iostream.h >
include < conio.h >

class Complex Number

{
private:
float X,Y;
public:
void Input_ Complex Number();
void Display Complex Number();
friend Complex Number
+(Complex Number,Complex Number);
}3

void Complex Number::Input Complex Number()

{

cout << "\n Enter Real part =";

cin >> X

cout << "\n Enter Imaginary part =";
cin >>Y;

void Complex Number :: Display Complex Number()
{

operator

if(Y>0)
{
if(Y==1)
cout << X << "+ "<<"i";
else
cout << X <<"+"<<Y <<"i";
}
else
{
if(Y==-1)
cout << X << " -q";
else
cout << X << " - " << 1Y << MM
b

269 | Page

Complex Number operator +(Complex Number
Complex_Number S)
{

Complex_Number CN;

CN.X=SX+TX;

CN.Y=SY+T.Y;

return(CN);

int main()

{
Complex Nu