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The M.A/ M.Sc syllabus of IDOL has been restructured for the semester system on the basis of the guidelines
of the UGC. There are four semesters in two years; each semester comprising of five papers. In the 3™ semester
3 papers are common to all and the other two papers are optional. In the 4® semester two papers are common
and three papers are optional. Questions will be set from each unit, proper weightage will be given unit wise and
marks from each unit is shown accordingly. Examination will be held at the end of every semester. Each examination
paper will carry 64 marks. In each paper there will be an internal assessment of 16 marks.

Semester g Credit

Semester 1

Paper- M101: Real Analysis and Lebesgue Measure

Paper-M 102: Topology

Paper-M 103: Algebra

Paper-M 104: Differential Equation

Paper-M105: Tensor and Mechanics

Semester 11

Paper- M201:Complex Analysis '

Paper-M202:Functional Analysis

Paper-M 203: Hydrodynamics

Paper-M 204: Mathematical Methods

Paper-M205: Operation Research

Semester III

Paper- M301: Computer Programming in C (Theory and Practical) 6

Paper-M302: Number Theory 6

Paper-M 303: Continuum Mechanics 6
6
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Paper-M 304: Algebra [I/Space Dynamics
Paper-M305: Special Theory of Relativity / Mathematical Logic
Semester 1V
Paper- M401: Graph Theory 6
Paper-M402: Numerical Analysis 6
Paper-M403: Functional Analysis II/ Fluid Dynamics 6
Paper-M404: Mathematical Statistics /Dynamical System. [
Paper-M405: Fuzzy Sets and their Applications/

General Theory of Relativity and Cosmology.

=
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Semester |
M101: Real Analysis and Lebesgue Measure

Unit 1: (Marks-20)

. Uniform convergence at an interval. Cauchy’s criterion. Test for uniform convergence. Properties of uniformly
convergent sequences and series of functions. Uniform convergence and continuity. Integration, differentiation
weirstrass approximation theorem (Statement only) and its application. Uniqueness theorem for power series.
Abel's and Tauber’s theorem. Fundamental properties.

Unit 2:(Marks-20)

Function of bounded variation, continuity, Differentiation, their continuity and monotonicity. Definition and Existence
of R-S integral, properties of R-S integral integration and differentiation, fundamental theorem of calculus.

Unit 3:(Marks-20)

Lebesgue outer measure, Measurable sets and properties. Borel sets and their measurability characterization of
measurable sets, Non-measurable sets, Measurable function, Properties, Operation of measurable function, sets
of measure zero. :

Unit 4:(Marks-20)

Lebesgue integral, Lebesgue integral of a bounded function, comparison of Riemann integral and Lebesgue
integral. Integral of non negative measurable function, General Lebesgue integral. Convergence of Lebesgue
integral, Bounded convergence théorem (statement only) Monotone Convergence theorem (statement only),
Lebespue Convergence theorem (statement only)..

Text Books:

1. Malik and Arora-Mathematical Analysis
‘2. L. Royden- Real analysis, Prentice Hall of India,

Reference Books: _

1. W.Rudin, Principles of Mathematical Analysis, 3" Edition, McGraw Hill
2. Real Analysis-Goldberg '

3. Real Analysis-Dipak Chatterjee, Prentice Hall of India

4. Jain and Gupta-Lebesgue Measure and integration, Willey Eastern Ltd

M102 : Topology
Unit 1:(marks-20) Metric Space:

" Convergence of sequences, completeness, Bair's theorem, continuous mappings, spaces of continuous function's
Euclidean and unitary spaces.

Unit 2:(marks-10)Topological Space:
Continuity and homeomorphism, subspace, bases and sub bases. Weak topologies.
Unit 3:(marks-20) Compactness:

Compact spaces, product spaces, Tychonoffs theorem and locally compact spaces. Compactness for metric
spaces, Ascoli's theorem.
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Unit 4(marks-20)Separations:

Tl-space and Hausdorff spaces, Completely regular spaces and normal spaces, Urysohn's lemma and Tietze
extension theorem. ;

Unit 5:(marks-10)Connectedness:

Connected spaces, components of a space, totally disconnected spaces, locally connected spaces.
Books Recommended: '

Simmons G.F. : Introduction to Topology and Modem Analysis, McGraw Hill

M103: Algebra
Unit I:(marks-20)

Direct product and Direct sums of Groups, Decomposable groups, Normal and Subnormal series of groups,
Composition series, Jordan Holder theorem, solvable groups.

Unit 2;(marks-20)
Divisibility in Commutative rings, PID, UFD and their properties, Eisenstein's irreducibility criterion.
Unit 3:(marks-20)

Field theory-Extension fields, Algebraic and Transcendental, Splitting field, perfect fields, Finite fields (Moore's
theorem etc.). Construction by ruler and compass, elements of Galois theory. .

Unit 4:(marks-20)

Canonical forms, similarity of linear transformations, Invariant subspaces, Reduction to triangular forms, nilpotent
transformations, index of nil potency, invariants of a nilpotent Transformation, Primary decomposition theorem,
Jordan blocks and Jordan forms.

Text Books:

1. S.Singh and Zameruddin-Modern Algebra

2. Hoffman and Kunz-Linear Algebra

Reference Books:

1. LN.Herstein-Topic in Algebra

C.Musili-Rings and Modules

D.S. Malik, J.N.Mordien, M.K.Sen-Fundamental of Abstract Algebra.
K.B.Dutta-Matrix and linear algebra.

Liner Algebra-S.Liptestuz. Schaum's outline series.

“oR W N

M104: Differential Equation.
Unit 1: (marks-20)

Solution of 2~ order differential equations with variable coefficients including method of variation of parameters.
Statement only Existence theorem of 1* order equation, Statements of existence theorems for system of 1* order
equations and for nth order differential equations, Wronskian. '
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Unit 2:(marks-20)

Method of series solution of 2™ order differential equations with particular reference to legendre. Bessel and
Gauss. Simultaneous differential equations and total differential equations.

Unit 3:(marks-20)

Origin of partial differential equations of 1 order, LaGrange's method of solving 1% order linear partial differential
equations. Particular solutions under various prescribed conditions. Linear homogeneous equations with more
than two independent variables.

Unit 4:(marks-20)

Char pit's method of solving non-linear 1# order partial differential equations. Complete Integrals. Standard forms
of non-linear 1* order partial differential equations.

Books Recommended: _

1. Theory and problems of differential equations-Frank Ayres Jr. Schaum's Outline Series, McGraw Hill,
2. Advance Differential Equations-Raisinghannia.

3. Partial Diffrential Equation-Gupta Malik and Mittal Pragati Prakashan

M105 Tensors & Mechanics
Unit 1:{marks-10)

Transformation of coordinates, summation convention, Kronecker delta, definition of tensors covariant, contra
variant and mixed tensor, Carlesian tensors, rank of a tensor, symmetric and antisymmetric tensors, outer and
inner product of tensors, contraction, quotient law. Riemannian space, metric tensor, fundamental tensors, associate
tensors, magnitude of a vector, angle between two vectors Parametric curves.

Unit 2:(marks-11{)

Christoffel's three-index symbols {or brackets) and properties, covariant differentiation of tensors, divergence
and curl of a vector and gradient of a scalar.

Intrinsic derivatives, curvature of a curve, parallel displacement of vectors.

Unit 3:(marks- 10)

Forces in three dimension and general conditions of equilibrium, Poisot's central axis, wrench, cylindroids.
Unit 4(marks- 10)

Virtual works, bending moments, equilibrium of slightly elastic beams, general equations of a bent rod, equations
of three moments, work done in bending a rod.

Unit 5:{marks-10)

Newton's laws and inertial frame of reference, general equations of motions, conservative force fields, general
principle of conservation of energy, linear momentum and angular momentum.

Unit 6:(marks-1 @)

Motion in two dimensions, motion under a central force with particular reference to inverse square law of force,
Kepler's laws of planetary motions, two body problem, motion in resisting medium and motion when the mass
varies.
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Unit 7:(marks-10)

Motion in three dimensions, velocity and acceleration in cylindrical and spherical polar coordinates, motion on
cylindrical spherical and conical surfaces. '

Unit 8:(marks- 10)

Revision of moments and general equations of motion of rigid bidy, motion in two dimensions under finite and
impulsive forces, expression for K.E.; motion about a fixed axis.

Books recommended:

Tensors:

1. Agarwal D.C.: Tensor Calculus of Riemainan gcﬁmctry

2. Ayers: Vectors and introduction to Tensor

3, Jeffreys and Jeffreys: Cartesian Tensor

4, Lass: Vector and Tensor Analysis ,

5. Sharma GC. and Singh SX.: A Text Book of Tensor and Riemannian Geometry.
6. Weatherburn: Riemannian Geometry

Statics:

1. Lamb: Statics(CUP)

2. Loney: Statics(CUP)

3. Ramsey: Statics(Cup)

4. Tyagi, Nand and Sharma: Statics, Krishna Prakashan mandir
Dyanamics:

1. Chorlton; Text Books of dynamics, Van Nostrand '

2. Goldstein: Classical mechanics, Addison Wesley

3. Loney S.K.: Dynamics of a particle and of rigid bodies (CUP)
4. Ramsey: Dyanamics Partll

5. Singe and Griffith: Principles of mechanics, McGraw Hill

6. Spiegel M: Dyabanamics Part I

Semester 2

M201Complex Analysis

Unit I{ Marks-20)

Analytic functions: The Cauchy Riemann equations, harmonic functions, elementary function's many valued
functions. , .

Analytic functions as mappings: Isogonal and conformal Transormations. Bilinear transformations: geometrical
inversion, coaxial circles, invariance of the cross-ratio. Fixed points of a bilinear transformation; some special
bilinear transformations, ¢.g. real axis on itself, unit circle on itself, real axis on the unit circle etc.
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Branch point and branch lines, concept of the Riemann Surface.
Unit 2: ( Marks-20)

Integral along oriented curve, Cauchy's theorem, the Cauchy-Goursat theorem; Cauchy's integral and functions
defined by integrals, the derivatives of a regular function; Morera's theorem, Cauchy's inequality, Liouville's
theorem; Maximum modulus principle.

Unit 3: (Marks-20)

Taylor's and Laurent's theorem: Zeros and singularities, their classification, poles and zeros of meromorphic
functions. :

The argument theorem, "Rouche's theorem, location of roots of equations.
Unit 4: ( Marks-20)
The residue theorem: evaluation of integrals by contour integration, special theorems used in evaluating integrals.

Books Recommended:

Phillips E.C.: Function of a Complex Variable, Oliver and Boyd

Shanti Narayan : Theory of Functions of a complex Variables, 5. Chand and Co

Spiegel Murry R: Theory and Problems of Complex variables, Scheum's Outline Series TMH

M202 Functional Analysis
]

Unit 1: (Marks -20)

Banach Space: Definitions and some examples, Basic properties, continuous linear transformation, finite
demensional normed linear spaces.

Uniit 2:(Marks-20)

Hahn-Banach theorem, natural embedding of NLS*, open mapping theorem, closed graph theorem, Banach
Steinbaus theorem, conjugate of an operator.

Unit 3:(Marks-20)

Hilbert Spaces: Definition and simple properties, orthogonal complement, orthogonal sets, conjugate space H¥,
adjoint of an operator, self adjoint of an operator, normal and unitary operator projection.

Unit 4:{Marks-20)
Finite-dimensional spectral Theory: Spectrum of an operator, spectral theorem.
Books recommended:

Simmons GF.: Introduction to Topology and Modern Analysis, McGraw Hill

Books for reference:
Lahiri, BK_: Functional Analysis
Limaye, B.V.: Functionla Analysis
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M203: Hydredynamics
Unit 1 (Marks-20):

Kinematics of fluid motion: Path lines stream lines equations of continuity equation of motion and their integrals
boundary conditions. Impulsive motions. Analysis of fluid motion and general theory of irrotational motion,

Unit 2 (Marks-20):

Motion in a plane: Use of Complex potential. Source. Sink doublet. Method of images. The Circle theorem. The
theorem of Blasius. Motion past circular cylinder.

Unit 3:(Marks-20):
Motion in space: Motion past a sphere axisymmetric motion. Stoke's stream function and its use.
Unit 4(Marks-20):

Vortex motion : Properties of vortex filament motion due to rectilinear vortex and a system of vortices motion of
a vortex filament due to the influence of others. Ranking vortex.

Text Books:

1. Continuum Mechanics -G.E.Mase. Schaum's outline series. McGraw Hill Book Company

2. A Treatise on Hydromechanics. Part Il. W.H.Besant and A.S. Ramsay. CBS Publishers. Delhi

3. Text Book of Fluid Dynamics-Frank Chorlton. C.B.S Publishers. Delhi

Reference books:

1. Mathematical Theory of Continuum Mechanics-R. Chatterjee. Narosa Publishing House. New Dellu.
2. An Introduction to Fluid Mechanics-G K Batchelor. Foundation Books. New Delhi.

3. Hydrodynamics- M.D. Raisinghania S. Chand and Co. Limited.

M204: Mathematical Methods
Unit I: { Marks-20):
Lap lace "Transform with application to the solution of differential equations.
Unit 2: (Marks-20):

Fourier Transform: Fourier Integral Transform, Application of Fourier Transform to ordinary and partial differential
equations of initial and boundary value problems.

Unit 3(Marks-20):

Integral equations: Solution of Linear Integral Equations, Fredholm's Integral Equations with separable kernels,
Voltera's Integral Equations

Unit 4(Marks-20):
Method of successive Approximations, Fredholm's method, Voltera's method.

Books Recommended:
The Mathematics of Physics and Chemistry, by Margenue and Murphy.
Methods of Applied Mathematics by Francis B. Hilderbrand.

Page—8 of Syllabus




Fourier Transforms, by lan N. Sneddon -
Theory and Problems of Laplace transforms, by M.R. Spiegel.

M205: Operations Research
Unit-1 (Marks-10):

History and Development of Operations Research. Operation Research and its Scope. Necessity of Operation
Research in Industry and Management. General idea of queuing problem-Markovian and non Markovian queues.
Quening theory and its operating characteristic queuing model-M/M/ M/M/K. General equations of the models.

Unit-2(Marks-10):

Simulation: Theory of simulation. Monte Carlo method application to the problems of replacement and maintenance
inventory, quening and financial problems.

Unit-3. (Marks-20):

Linear Programming: Simplex method. Theory of the simplex Method Duality and sensitivity Analysis. Other
Algorithms for Linear Programming Dual Simplex Method. Integer programming-Branch and Bound technique.
Concept of cutting plane. Gomory's all integer cutting plane method.

Applications to Industrial Problems:- Optimal product mix and activity levels. Petroleum refinery operations
Blending problems. Economic interpretation of dual linear programming problems. Input-output analysis.

" Unit-4: (Marks-10):
Transportation and Assignment Problems.
Unit-5: (Marks-10);

New York Analysis- Shortest Path Problem. Minimurn Spanning Tree Problem. Maximum Flow Problem, Minimum
Cost Flow Problem. Network simplex Method. Project Planning and Control with PERT-CPM

Unit 6: (Marks-20):

MNonlineear Programming :; One and Multi-Unconstrained Optimization. Fuhn-Tucker Conditions for Constrained
Optimization. Quardratic Programming. Separable Programming Convex Programming Non-convex Programming,

Text Books:
1. Kanti Swarup.P.K. Gupta and Manmohan: Operations Research. S.Chand and Co.
2. H.A.Taha Operations Research-An introduction.Macmillan Publishing Co. Inc. New York.

Reference Books:

1. FS Hillier and GJLiberman. Introduction to Operations Research (Sixth Edition). McGraw Hill
International Edition. Industrial Engineering Series. 1995 (This book comes with a CD containing
- tutuorial software)

2. PK.Gupta and D.S. Hira: Operations Research-An Introduction S.Chand and Co.
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Semester 3
M301Computer Programming in C

Unit 1( Marks-20):

An Overview of Programming: The basic model of computation, Algorithms, Flow charts, programming languages,
compilation, linking and loading, efficiency and analysis of algorithms.

C Essentials: Character set, variables and identifiers, built in data types, operators and expressions, constants,
type conversions, basic input/put operations, anatomy of a C program.
Unit 2 (Marks-20):

Conirol Flow: Conditional branching, The switch statement, looping, nested loops, the break and continue statements,
the goto statement, infinite loops.

Unit 3(Marks-20):

Arrays, Pointers and Functions: Declaration, initialization, pointer arithmetic. Basics of functions, passing arguments,
declaration and calls, return values.

SAMPLE PROGRAMS FOR PRACTICAL (MARKS-20)

To evaluate an arithmetic expression. To find GCD, Factorial. Fibonacci series. Prime number generation. Reversing
digits of an integer. Finding square root of a number. To find the roots of a quadratic equation. To find the greatest
and smallest of a finite set of numbers. To find the sum of different algebraic and trigonometric series. Addition,
subtraction and multiplication of matrices.

Books Recommended:

Fajaraman V.: Computer Oriented Numerical methods, Prentice Hall of India, New Delhi
Balaguruswamy E.: ANSIC

Kernighan W. and Ritchie D..: The C programming Language, PHL

M302: (Number theory)
Unit 1. (Marks-20)

Principle of mathematical induction, least common multiple, greatest common divisor. Euclidean algorithm, prime
numbers, unique factorization theorem)

Unit 2: (Marks-20)

Operations of congruences, Residue sets mod m, Euler's theorem, order of a mod m, linear congruences, the
theorems of Fermat and Wilson, The Chinese Reminder theorem, Pu]ynumlal CONgruences.

Unit 3: (Marks-20)

Primitive roots, Indices, quardratic residuce mod m, Euler's criterion, The Legendre sybmbol, The law of quadratic
reciprocity. The Jacobi symbaol.

Unit 4: (Marks-20)

Multiplicative Arithmetic functions, T and ¢ functions, Mobius function, Euler's function, The inversion formula.
Linear Diophantine equations, equations of the form x™+y*= z?, related equation resentation of a number b
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sum of two of four squares.
Books recommended:

Burton D.M.: Elementary Number Theory, Universal Book stall, New Delhi

M303: Continuum Mechanics
Unit: 1 {(Marks-20)

The continuum concept. Homogeneity isotropy mass density. Cauchy's stress principle. Stress tensor. Equations
of equilibrium. Stress quaric of Cauchy. Principal stresses. Stress invariants. Deviator and spherical stress tensors.

Unit 2 (Marks-20) Analysis of Strain:

Lagrangian and Eularian-descriptions. Deformation tensors. Finite strain tensor. Small deformation theory. Linear
strain tensors and physical interpretation. Stress ratio and finite strain interpretation strain quardric of Cauchy.
Principal strains. Strain invariants. Spherical and Deviator strain components. Equations of Compatibility.

Unit 3 (Marks-20) Motion:

Material derivatives path lines and stream lines. Rate of deformation and Vortiety with their physical interpretation.
Material derivatives of volume. Surface and line elements. Volume surface and line integrals. Fundamental laws
of continuum Mechanics.

Unit 4 (Marks-20) Constitutive equations of Continuum Mechanics:

Linear elasticity. Generalized Hook's Law. Strain energy function. Elastic constants for isotropic homogeneous
materials. Elaststatic and Elastodynamic problems.

Fluids: Viscous Stress tensor. Barotropic flow : Stokesian fluids. Newtonian fluids. Navier stokes equations.
Irrotational flow. Perfect fluids. Bernoulis equation. Circulation.

Text Books:
1. Continuum Mechanics -G.E.Mase. Schaum's outline series. McGraw Hill Book Company
2. Mathematical Theory of Continuum Mechanics-R.Chatterjee. Narosa Publishing House. New Delhi.

M304 Algebra I1
(Optional):
Unit 1: (Marks-20)

Posets and lattices, Modular, Distributive lattices, Direct product {sum) of an infinite family of groups. Structure
theorems for finitely generated abelian groups

Unit 2 (Marks-20)

Sylow's theorem and its applications : Free abelian groups, free groups, free products of groups, representation of
a group. '

Unit 3(Marks-20)

- Modules, submodules, Direct product and direct sum of modules, prime ideals in commutative rings, complete ring
of guotients of a commutative rings.
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Unit 4 (Marks-20)
Primitive rings, Radical, completely reducible module and rin gs, Artinian and Noetherian rings and modules.

Text/Reference Books:

Theory of groups-M.Hall

Lecutes of rings and modules-J Lambek

Modern Algebra- Singh and Zameeruddin, Vikas Publishing House
Lattices and Bollean Algebra-V.K. Sarma, Vikas Publishing House.
Basic Abstract Algebra- Bhattacharyya, Jain and Nagpaul, CUP, 1997
Infinite Abelian group- L Fﬁch, Academic Press

- i A

M304 Spﬁce Dynamics (Optional)
Unit-1 Basic formulae of a spherical triangle-The Two-body problem: (Marks-20)

The motion of the centre of mass. The relative motion. Kepler's equation. Solution by Hamilton Jacobi Theory.
The Determination of Orbits: Laplace's Gauss Methods.

Unit-2: The Three Body problem: (Marks-20)

General Three Body Problem. Restricted Three Body Problem. Jacobi integral. Curves of zero velocity. Stationary
solutions and their stability. The n-body problem: The motion of the centre of Mass. Calssical integrals.

Unit-3. Perturbation : (Marks-20)

Osculating orbit, perturbing forces. Secular and Periodie perturbations, Lagrange’s planetary Equations on terms
of perturbing forces and in terms of perturbed Hamiltonian. Motion of the moon-The perturbing forces. Perturbation
of Keplerian elements of the moon by the sun.

Unit-4 Flight Mechanics: (Marks-20)

Rocket performance in a vacuum, vertically ascending paths. Gravity twin trajectories. Multi-stage rocket in a
vacuum. Definitions pertinent to single stage rocket. Performance limitations of single stage rockets. Defimtions
pertinent to multi stage rockets. Analysis of multi-stage rockets neglecting gravity. Analysis of multi-stage rockets -

including gravity.
Unit-5 Rocket performance with aerodynamic forces. (Marks-20)

Short-range non-lifting missiles. Ascent of a sounding rocket. Some approximate performance of rocket powered
aircraft.

Text Books:
1. Fundamentals of Celestial Mechanics. The Macmillan Company. 1962 J.M.A Danby
2. Clestial Mechanics. The Macmillan Company. 1958- E. Finaly. Freundlich.

3. Orbital Dynamics of Space Vehicles. Prentice Hall INC. Engle Wood Cliff. New Jersey 1963I—Ralph
Deutsch

Reference Books:
1. An Introduction of Clestial Mechanics. Intersciences Publishers. INC 1960- Theodre E.Sterne.
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2. Flight Mechanics Vol 1. Theory of flight paths. Addision Wiley Publishing Company INC. 1962-
Angelo Miele.

M305 Special Theory of Relativity(Optional)
Unit 1: (Marks-20)

Inertial and non-inertial frames, Geometry of Newtonian mechanics, Galilean Transformations, Back-ground of
the fundamental postulates of the special theory of relativity, Lorentz transformation. Relativistic concept of
space and time and relativity of motion, Geometrical interpretation of Lorentz transformation as a rotation. Lorentz
transformation as a group.

Unit 2: (Marks-20)

Relativistic addition law of velocities and its interpretation in terms of Robb's rapidity, Invariance of sped of light,
consequences of Lorentz transformation eg (i) Lorentz Fitzgerald contraction (ii) Time dilation (iii) Simultaneity of
events, Proper length and proper time, Application in problems. Transformation of acceleration.

Unit-3: (Marks-20)

Relativistic mechnics. Variation of mass with velocity, Transformation of mass, force and density Equivalence of
mass and energy, Transformation of momentum and energy, Energy momentum vector. Applications in problems,
Relativistic Lagrangian and Hamiltonian.

Unit-4: (Marks-20)

Minkowaki's space, Geometircal representation of simultaneity, Contraction and dilation, space like and time like
intervals, position. Four vectors, Four velocity, Four forces and Four momentums, Relativistic equations of motion,
Covariant four- dimensional formulation of the laws of mechanics.

Unit-5: (Marks-20)

Electrodynamics: Fundamentals of electrodynamics, Transformation of differential operators, D' Alembert operator,
Drivation of Maxwell's equation, Electromagnetic potentials and Lorentz condition, Lorentz face, Lorentz
transformations of space and time in four-vector form, Transformations of charge and current density, Invariance
of Maxwell's equations, Transformation equations of electric field strength and magnetic field induction components,
Invariance of E>-H?and E.H.

Reference Books : :

1. Introduction to Special Relativity, Wiley Eastern Lt.(1990) Robert Resnick

2. The Mathematical Theory of relativity, Cambridge University Press 1965 A 5 Eddington.
3. Relativistic Mechanics (Theory of Relativity) Pragati Prakashan, 2000-Satya Prasash

M305
Mathematical Logic (Optional)
Unit 1{(Marks-20):

Informal statement calculus: Statements and connectives, truth functions and truth-tables, normal forms, adequate
sets of connectives, arguments and validity.

Unit 2 (Marks-20):

" Formal statement caleulus: Formal definitions of Proof. Theorem and Deduction the formal theory L of statement
calculus the deduction theorem and its converse.
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Unit 3(Marks-20)

Adequacy theorem for 1: Valuation in L. tautology in L. the Soundness theorem. Extensions of L. consistency of
an extension the adequacy theorem of L.

Unit 4(Marks-20)

Informal predicate Calculus: Symbolism of predicate calculus. First order language interpretation truth values of
well-formed formulas satisfaction and truth. Formal Predicate Calculus: Predicate Calculus as a formal theory
the adequacy theorem of K.

Unit 5(Marks-20):

Mathematical Systems: First order systems with equality the theory of groups first order arithmetic formal set
theory consistency and models.

Books:
Text Book: Logic for Mathematics by A.G. Hamilton
Ref. Book: Introduction of Mathematical Logic by Elliot Mendelson

Semester 4

M401Graph theory

Unit 1: . (Marks-20)

Graphs, subgraphs, walk, paths, cycles and components, intersection of graphs, Degrees, Degree sequence.
Threes, spanning tree, cycles, cocycles. Cycle space. Cocycle space, connectivity, cut vertices, cut edges, blocks.,
connectivity parameters, Menger's theorems.

Unit-2: (Marks-20)

Eulerian and Traversible graphs: Characterization theorems, characterization attempts for Hamiltonian graphs,
two necessary and sufficient conditions of a graph to be Hamiltonian, Factorisations, Basic concepts, 1-
factorizat5ion, 2- factorization, coverings, critical points, and lines

Unit-3: (Marks-20)

Planarity: Subdivision of graph, identification of vertices, plane and planar graph, outer planar graph, Euler's
polyhedron formula, Kuratowski's theorems, Genus, thickness, coarseness and crossing number of a graph.

Unit 4: (Marks-20)

Algebraic graph theory: Adjacency matrix and spectrum of graphs, vertex, partition and the spectrum.
Text Books:

1. Harary: Graph Theory, NAROSA Publishing Co.

2. Algebraic Graph Theory

M402 Numerical Analysis

Unit 1: Interpolation formulae (Marks-20)
Newton's Forward Interpolation Formula, Newton’s Backward Interpolation Formula, Newton’s divided differ-
ence interpolation formula, Lagrange’s interpolation formula, Gauss Forward Interpolation formula, Gauss Back-
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ward Interpolation formula, Stirling’s formula, Bessel’s formula.
Unit 2. Numerical Differentiation and Integration (Marks-20)

Numerical Differentiation and Integration, Simpson's rule, Weddle's central difference formula, quadrature formula,
Gauss's quadrature formula, Euler's formula for summation and quadrature.

Unit 3. Solution of Algebraic and Transcendental Equations: (Marks-20)

Numerical Solutions of Algebraic and Transcendental Equations. Solutions by the method of iteration and the
Newton-Raphson method, cases of repeated roots.

Unit 4, Linear Equations: (Marks-20)

Direct method for solving systems of linear equations (Gauss Elimination, LU decomposition, Cholesky
decomposition), iterative methods (Jacobi, Gauss-Seidel, Relaxation methods)

Text Books:

Houscholder A.S.: Principles of Numbrical Analysis, McGraw Hill, New York.

Jain M K.: Numerical Analysis for scientists and Engineers, S.Publishers.

Kung: Numerical Analysis, McGraw Hill Book Co.

Niyogi P. : Numerical Analysis and Algorithms, Tata McGraw Hill

Rajaraman V. : Computer Oriented Numerical Methods, Prentice Hall of India, New Delhi.

M403 Fluid Dynamics (Optional)
Unit 1(Marks-20)

Waves: Long wave and surface wave stationary wave. Energy of the waves. Waves between different media.
Group velocity Dynamical significance of Group velocity. Surface tension and Capillary waves. Effect of Surface
tension in water waves.

Unit 2 (Marks-20) :

Viscous fluid motion: Navier-Stokes equation of motion rate of change of vorticity and circulation rate of dissipation
of energy. Diffusion of a viscous filament.

Unit 3 (Marks-20):

Exact solution of Navier Stokes Equation: Flow between plates. Flow through a pipe (circular elliptic). Suddenly
accelerated plane wall. Flow near an Oscillating flat plate. Circular motion through cylinders.

Unit 4 (Marks-20):

Laminar Boundary Layer Theory: General outline of Boundary layer flow. Boundary layer thickness. Displacement
thickness. Energy thickness. Flow along a flat plate at zero incidence. Similarity solution and Blasius solution for
flow about a flat plate.

Karman's momentum integral equation. Energy integral equation. Pohlhausen solution of momentum integral
equation.

Two dimensional Boundary layer equations for flow over a curved surface. Blasius solution for flow past a
_ cylindrical surface phenomenon of separation.

Text B-uull:cs:
1. Hydrodynamics- Horace Lamb. Cambridge University Press
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2. Theoretical Hydrodynamics: I.M.Milne Thomson.McMillan Company. 3. Boundary Layer Theory:
H. Schliehting Translated by J Kertin. McGraw Hill Book '‘Company Inc. New York

Reference Books:
1. Modern Development of Fluid Dynamics. Voll- S.Goldstein. Dover publication. New York
2 An Introduction to Fluid Dynamics, GK.Batchelor. Functions

M403 Functional Analysis II (Optional)
Unit-1 (Marks-10)
Vector topologies: Examples First properties Mazur's and Eidelheit's separation theorems Metrizable vector
topologies. -
Unit-2 (Marks-15)

The Open Mapping Theorem: The closed graph Theorem and the uniform Boundedness Principle for F-spaces.
Topologies induced by families of functions. Weak and Weak* topologies. Compactness. Adjooint operator
Projection and complementation.

Unit-3 (Marks-15)

Convexity: The Hahn- Banach theorem for locally convex spaces. The Banach Alauglu Theorem for topological
vector spaces. Krein-Milman theorem. Milman theorem. '

Unit-4 {(Marks-15)

Definition of Banach Algebra and Examples Singluar and Non singular elements. The Abstract index. The spectrum
of an element. Gelfand Formula. Multiplicative. Linear Function. And the maximal ideal space. Gleason Kahane
Zelazko Theorem.

Unit-5 {(Marks-15)

The Gelfand Transforms. The spectral Mapping Theorem. Isomentric Gelfand Tranform. Maximal ideal spaces
for Dise Algebra and the Algebra .

Unit-6 (Marks- 10)

(* algebras-Definition and Examples, Self Adjoint. Unitary normed positive and projection elements in (*-algebras,
Commutative (*-algebras.(*-Homomorphisms. Representation of Commutative (*- algebras. Subalgebras and
the spectrum. The spectrum theorem. The Continuous functional Calculus . Positive linear functionals and slates
in { *- Algebras, The GNS Construction.

Text Books

1. Megginson Robert E-An introduction to Banach space theory. Springer verlag

2.  W.Rudin-Functional Analysis Tata McGraw Hills.

3. [E.E.Bonsall and J.Duncan-Complete Normed Algebras. Springer verlag Reference Book
4. Folland. Garald B-Real Analysis Modern Techniques and their applications (John Wiky)
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M404Mathematical Statistics
Unit 1(Marks-16)

Probability: Mathematical and statistical definitions. Discrete Samplespace, Axiomatic approach, Theorems of
Total and Compound probability, Repeated Trials, Baye's theorem. Random Variable and its distribution,
Mathematical Expectaions, Expectation of sum and product of random variables, Expectation of functions of
random variables. Distribution of more than one random variables. Tshebysheffs lemma. Weak law of large
numbers. Theorems of Markoff and Khintchine, Bernouilli's and Poisson's theorems. Characteristic function.
Probability generating unctions, Central limit theorem.

Unit 2 (Marks-16)

Binomial distribution, Posson, distribution, Normal distribution, Hypergemetric distribution, Multionomial distributions,
Betta and Gamma distribution, Pearsonia system of vurves, denvation of the differential equations and its solutions
yielding curves of types, ULM and IV. Bivariate Normal distribution. Regression and Correlation (including
Multiple, partial and Interclass correlation) ;

Unit 3 (Marks-16)
Principle of least squares of curve fitting (including orthogonal polynomials).
Unit 4 (Marks-16)

Theory of sampling: Random and simple, random sampling, idea of sampling distribution, large sample test, Exact
sampling distribution - and T,F,Z and X*(with derivations) and associated tests of significance.

Unit 5 (Marks-16) _
Estimation: Requirement of a good estimator, Method of maximum likelihood (including Cramer-Rao inequality)
Books Recommended: .
An introduction to Probability theory and its Application by W,Felér
An Introduction to Mathematical Probability, by J.V. Uspensky
Correlation and Frequency curves, by Elderton
Modern Probability and its Application by Ferzen
Probability Theory by M. Leeve
Mathematical Methods of Statistics by H. Cramer
Linear Statistical Interference and its Application by C.R. Raw
The Advance Theory of Statistics by Kendell and Smart
Sampling Method by Cox and Cochrun
- Sampling Survey of Murphy

W Do s b b BT ee

—
o N —

Sampling Survey by F. Yats

M404 Dynamical Systems and Fractal Geometry
Unit 1: . (Marks-10)

Nonlinear Oscillators, Conservative system. Hamiltonian System, Various types of Oscillators in nonlinear system,
Solutions of nonlinear differential equations.
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Unit-2: (Marks-10)

Orbit of a map, fixed point, equilibrium point, periodic point, circular map, configuration space and phase space.
Origin of bifurcation, Stability of a fixed point, equilibrium point, Concept of a limit cycle and torus.

Unit-3: (Marks-10)

Hyperbolicity, Quadratic map, Period Doubling phenomenon, Feigenbaum's Universal constant.

Unit 4: (Marks-10) .

Turning point, Transcritical, Pitch Fork and Hopf Bifurcation.

Unit 5: (Marks-10) _

Randomness of Orbits of a dynamical system, Chaos, Strange Attractors, Various roots to Chaos, Onset mechanism
of turbulence.

Unit-6: (Marks-15)

Construction of the middle third Cantor set, Von Koch Curve, Sierpinski gasket, self similar fractals with different
similarity ratio, Julia Set, measure and mass distribution, Housdorff measure, scaling property, effect of general
transformations on Housdorff measure, Housdorff dimension and its properties, s-sets, calculation of Housdorff
dimension and its properties, s-sets, calculation of Housdorff dimension in simple cases

Unit 7: (Marks-15)

Unit measurement of a set at scale d, box dimension, its equivalent versions, properties of box dimension, box
dimension of middle third cantor set and other simple sets, some other definitions of dimension, upper estimate of
box dimension, mass distribution principle, generalized cantor set and its dimension

Text Book:

1. Robert C. Hilborn: Non linear Dynamics and Chaos

2. D. K. Arrowsmith, Introduction to dynamical systems, Cambridge University Press, 1990.
3. Kenneth Falconer : Fractal Geometry, John Wiley and Sons, 1995

4. M. F. Barnsley : Fractals everywhere, A. P. 1988.

Reference Books:
1. R.L. Devany : An introduction to Chaotic Dynamical Systems, Addission-Wesley Publishing Co. Inc. 1989.
2. K. J. Falconer : The Geometry of Fractal Sets, Cambridge University Press, 1985

M405 General Theory of Relativity and Cosmology (Optional):
Unit 1 (Marks 20)

Geodesics, Derivation of the equation of geodesics, Geodesic co-ordinates, intrinsic derivatives, First Curvature,
Parallel transport, parallel vectors. Related theorems of intrinsic derivatives and parallel displacement.

Unit 2 (Marks 15)

Riemann Christoffel Curvature tensors and their properties, Riciitensor, Bianchi identities, Einstein tensor
Divergence of Einstein tensor, Condition of Flat Space, Riemann Curvature.

Unit-3 (Marks 15)
Theory of gravitation, principle of covariance and equivalence, geodesic principle, Simple consequences of the
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principle of equivalence (i) the equality of inertial and gravitational masses{ii) effect of gravitational potential on
the rate of a clock, (iii) The clock paradox, the energy momentum tensor, Energy momentum tensor in caseof a
perfect fluid, conservation of energy and Momentum.

Unit-4 (Marks 15)

The gravitational fluid in empty space in presence of matter and energy. Newtonian equation of motion as an
approximation of geodesic equations. Poission's equation as an approximation of Einstein field equation,
Schwarzschid exterior solution and its isotropic form, planertry orbits and analogues of Kepler's laws in general
relativity. Relation between M and m, Isotropic co-ordinates. The three crucial' tests (1) The advancee of perihelion
(ii) Bending of light rays in a gravitational field (iii) Gravitational red-shift in spectral lines. Schawarzachid interior
solutions., Boundary conditions.

Unit-5 (Marks 15)

Cosmology, Mach principle, Einstein modified field equations with cosmological term, Static cosmological models
of Einslein and de-sitter, their derivations, properties and comparision with the actural universe. Huble's Law,
cosmological principles, Wely's postulates. Non-static cosmological models. Derivation of Robertson": Walker
metric, Redshift, Redshift versus distance relation Angular size versus red: shift relation and source counts in
R_.W space time. :

Text Books

1. The Mathematical Theory of Relativity, Cambridge Univesity Press-1965-A.5. Eddington
2. AFirst course in general relativity, Cambridge University Press, 1990-B.F. Shutz

3. The Theory of Relativity-C Moller
4

An Introduction to Riemannian Geometry and Tensor Calculus, - G E. Weatherbum. Cambridge
University Press, 1950

M 405 Fuzzy Sets and their application (Optional)
Unit 1 (Marks-10)

Fuzzy sets: Basic Definitions. D-level sets. Convex fuzzy sets. Basic operations on Fuzzy sets. Types of Fuzzy
sets. Cartesian products. Algebraic products Bounded sum and difference. T-conoroms.

Unit-2 (Marks-10)

Extcusion Principle: the Zadeh extension priruﬁiple Image and inverse image of fuzzy sets. Fuzzy numbers. Elements
of Fuzzy Arithmetic. ’

Unit-3 (Marks-10)

Fuzzy relations and Fuzzy Graphs: Fuzzy relations and fuzzy sets. Composition of Fuzzy relations. Min-max
composition and its properties. Fuzzy equivalence relations, Fuzzy compatiability relations. Fuzzy relation equations.
Fuzzy graphs, Similarity relation.

Unit-4 (Marks-10)

Possibility Theory: Fuzzy measures. Evidence theory. Necessity measure. Probability measure. Possiblity
distribution. Possibility theory and fuzzy sets. Possibility theory versus probability theory.

Unit-5 (Marks-10})

Fuzzy Logic: An overview of classical logic. Multivalued logic. Fuzzy propositions. Fuzzy quantifiers. Linguistic
variable and hedges. Inference from conditohnal fuzzy propositions, the compositional rule of inference. Appliction
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in Vivil, Mechanical and Industrial Engineering.
Unit-6 (Marks-10)

Approximate reasoning: An overview of fuzzy expert system. Fuzzy implications and their selection. Multiconditional
approximate reasoning. The role of fuzzy relation equation.

Unit-7 (Marks-10)

Introduction to fuzzy control: Fuzzy controllers. Fuzzy rule base. Fuzzy inference engine. Fuzzification.
Defuzzification and the various Defuzzification methods (the centre of area, the centre of maxima and the mean
of maxima methods). Introduction of Fuzzy Neural Network, Autometa and Dynamical Systems:

Unit-8 (Marks-10)

Decision making in Fuzzy environment: Individual decision making. Multiperson decision makding. Multicriteria
decision making. Multi stage decision making. Fuzzy ranking methods. Fuzzy linear programming. Application in
Medicine and Economics.

Text Books:

1. GJKlir and B. Yuan-Fuzzy sets and Fuzzy Logic, Theory and Applications, Prentiee Hall of India, 1995
2. H.J.Zimmermann-Fuzzy set theory and its application, Allied Publishers Ltd. 1991
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Real Analysis

UNIT 1

Sequences and series of fanctions
1. Pointwise and uniform convergence:

Definition 1.1: Suppose {f;}, =1, 2, 3, ..., is a sequence of real valued functions
defined on a set E of real numbers. If for each x €E, the sequence {f(x)} of real
numbers converges and I@mfn{x}:f[x], xe E, then we say that {f;}converges

pointwise to fon E.

Definition 1. 2: A sequence {f,} nf_ﬁmac:’fions {fal,m=1,2 3, ..., is said to be
converge uniformly to a function f on E, if for every £>0, there is an integer N such
that

n 2N implies | fu(x) - fix) | <€, forall x& E.

Note: If a sequence {f,} converges uniformly to f on E, then it converges pointwise to f
on E. However, the converse is not trut as the solved example 3 shows. '

Theorem 1.3:

(Cauchy’s criterion for uniform convergence). The sequence {f,} of functions
defined on E, converges uniformly on E if and only if every e>0 there exists a
positive integer N such that for all m, n= N and for all xeE.

| (%) - fulx) | <&

Definition 1.4: A series Ef;, of functions (each defined on a set E) is said 1o converge
pointwise (resp. uniformly) on E to a sum S(x) if the sequence of functions
{sn} (sequence of partial sums) defined by

s.(x)= Z f.(x) converges pointwise (resp. uniformly) to S(x).

i=1
Theorem 1.4: (Cauchy’s criterion of convergence of series) A series If, converges
uniformly on E if and only if given £>0, there exists a positive integer N such that for
all n2N, p=1 and for all xeE,

lfu-a-l: )+ L (x)+-+ f'hp{x)[ <E.

Theorem 1.5: Suppose {f,} converges pointwise to fon E.

Let M, = S::Hf“(x] ~f(x)}n21.




Then {f,}converges to f uniformly if and only if M,—0 as n—e=.

Theorem 1.6 (Welerstrass M-test): Suppose {f,} is a sequence of functions defined
on E, and suppose

| f0] <M,V xeE, n=1,2,3, ...
Then Zf, converges uniformly on E if ZM, converges.
Note: The converse of the theorem 1.6 is not true.
Uniform convergence and continuity

Theorem 1.7 (a): If {f,} is a sequence of continuous functions on E c R,and if {fa}
converges uniformly to f on E, then f is continuous.

(b) If a series Zf, converges uniformly to f on E c R and its term f, are continuous at a
point xo& E, then the sum function f is continuous at Xo.

. Theorem 1.8 (Dini’s theorem on uniform convergence):

{n]jf a sequence, {f;} of continuous ﬁmcunns on a closed interval [a, b] is monotonic
increasing, and converges pointwise to a continuous function f, then {f,} converges
uniformly to f on [a, b]. i

(b) If the sum function of a series Xf,, with rion-negative continuous termsdefined on
[a, b] is continuous, then the series Zf, converges uniformly on [a, b].

Uniform convergence and integration :

Theorem 1.9 (a) If a sequence {f,}converges uniformly to f on [a, b], and each
function f, is integrable on [a, b] , then f is integrable on [a, b], and the sequence

{J'fndt} of indefinite integrals of f, converges uniformly to [fdt on [a, b).

(b) If a series Zf, converges uniformly to f on [a, b], and each term fi(x) is integrable,
then f is integrable on [a, b] and the series E[I fdt] converges uniformly to det on

(a, b].
Uniform convergence and differentiation

Theorem 1.10 (a) Let {f,} be a sequence of differentiable functions on [a,b] such that

.it converges at least at one point Xee[a, b). If the sequence of derivatives
{f.' }converges uniformly to G on [a, b], then the given sequence {f,} converges
uniformly on [a, b].

(b) Let £f, be a series of differentiable functions on [a, b} and such that it converges at
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least at one point xg€ [a, b]. If the series of differentials £f," converges uniformly to G
on [a, b], then the given series Zf, converges uniformly on [a, b] to a function f, where
f(x) =Gix).

2. Eguicontinuous families of functions

Definition 2.1: Let {f;} be a sequence of functions defined on an interval [a,b]. We
say that {f,} is pointwise bounded on [a, b] if the sequence {f,(x)}is bounded for
every x€(a, b]. In other words, {f,} is pointwise bounded, if there is a real valued
function ¢ on [a, b] such that | fal(x) | < ¢(x), forall xe [a, b] and forall n=21. The
sequence {f;} is uniformly bounded on [a, b], if there is a positive number M such
that | f,(x)| <M, for all xe [a, b] and n > 1.

Definition 2.2: A family 3 of functions defined on a set E ¢ R is said to be
equicontinuous on E, if for every € > 0, there exists 8 > 0 such that for all fe 3

x) — f(y)| <& whenever x, y eE with [x-yl<d.
| fx) - f(y)| < wh Ewith [x-yl<3
Note that every member of an equicontinuous family is uniformly continuous.

Theorem 2.3: If {f,} is a uniformly convergent sequence of continuous functions on an
interval [a, b], then {f,} is equicontinuous on [a, b].

Theorem 2.4: If {f,} is pointwise bounded and equicontinuous on [a, b], then {fy}
contains a uniformly convergent subsequence and £z} is uniformly bounded on [a, b].

3. Power series
Definition 3.1: The series Yax", )
n=i)

where a, are real numbers dependent on n but not on x, is called a power series.
Clearly, for any values of a,, the series (1) is convergent at x = 0. Let S be the set of
values of x for which the series (1) is convergent. The set S is called the region of
convergence of the power series. The power series (1) is said to be

(i) nowhere convergent if S = [0}.

{(ii)  everywhere convergent if S=R.

(iii)  absolutely convergent at x, if Zlanx“ is convergent.
m=0

L Lk .
Theorem 3.2: If lim tan|ﬂ- 2= %,, then the power series Zax" is convergent (in fact
absolutely convergent) for |x|<Rand divergent for Ix|>R.

Definition 3.3: In view of theorem 3.2, the region of convergence S of a power series
Xa,x" is an interval. The end points of this interval are —R and R (may or may not be

5




. . : l . —_— L
inclusive), where R is 0, == or — according as ]l.l'l'l|ﬂn!ﬁ is oo, 0 or non-zero
n

!l;ﬁlau

finite. R is called the radius of convergence of the power serics.

|
Note 3.4: If L L exists (finitely or infinitely), then R =l 2 , because
a, +]1 a, +1
a ! G i
then lim{—*Y = limla |» =lima,|*.
a'I'I

Theorem 3.5: Suppose that the series Zax" converges for | x| < R, then we have the
following:

(a) For every € > 0, the series Zagx" is uniformly convergent on [-R+e,R-€].

(b) If fix) = Tax", |x|<R, ten fis differentiable (and therefore continuous) in
(-R,R) and

f(x)= inanx"‘, |x| <R.
n=|
4. Fourier series

Definition 4.1: A trigonometric polynomial is a finite sum of functions
M .
f(x)=a, +Z{ancnsnx +b, sinnx) .(4.1)
=l 2

where x is a real number and ao. ..., a, by,..., by are constants {here we allow
them to be complex numbers).

: 1 .
Since cosf = %(c’“ + e'“) and sin@ = ?(c.” - c'"’l we can write (4.1) as
i 1 %

N .
f(x) =Y c,e™, (xisreal) ..(42)
=N

We see that f(x) in (4.1), and therefore in (4.2), is periodic with period 2.

Result 4. 2: Ifn is any integer, then

Therefore the constants ¢, in (4.2) are given by




1 4
¢, === [ f(x)e™ ™ dx.
n 7
Definition 4.3: A trigonometric series is a series of functions
Y™ ...(4.3)

~ where x is real and ¢, are complex numbers. The nth partial sum of (4.3) s
the trigonometric polynomial

.

]
z:.ne
=N

N
If f is an integrable function on [-T, %}, then the trigonometric series )" c,e™ , where
-N

the numbers ¢, arc given by

C, s If(x}e =dx, ne Z, ...{4.4)
m !

is called the Fourier series of f. The constants ¢, are called the Fourier coefficients of
f.

Definition 4.4: Let {¢,} (n =1, 2, ...) be a sequence of complex functions defined on
[a, b]. We call that {¢,} an orthogonal system of functions on [a,b], if

b —_——
j-'i’nf?il'i)m(x] dx =0 forall n# m.
(here ¢ (x) isthe wmpléx conjugate of ¢m(x). )

1’ F
[f in addition ﬂq:_,{x}| dx =1 for all n, then {¢,}is said to be orthonormal.

Definition 4.5: If {0y} is an orthonormal system of function defined on-  [a, b] and

¢ =|f(t)p, (t)dt, n21, ...(4.5)

ey

we write f(x)~ Zu:_c“q:n{x}, x € [ab], . {4.6)
!

and call the series in (4.6) the Fourier series of f relative to {¢,}. The constants ¢, in
(4.5) is called the nth Fourier coefficient of f relative to {¢.}.
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Note: Symbol *~’ is used in (4.6) instead of equality, because nothing is said about the
convergence of the series.

Theorem 4.6: Let {§,} be orthonormal on [a, b]. Let s (x)= iﬂm%(ﬂ

be the nth partial sum of the Fourier series of f, and suppose  t,(x)= 3 V.0, (X).
m=]

Then hf ~s,['dx < hf ~t,['dx,

and equality holds if and only if vy = ¢, for all m.

Theorem 4.7: If {9, }is orthonormal on [a, b] and if
]
f(x) ~ Zcadu(x), then ¥fc,|* < [|f(x)| dx. In particular, lime, = 0.

5. Solved problems

Section 1:

1. Suppose{f,}is a sequence of monotonic functions on [a, b}, and {fa} converges
pointwise to a continuous function f on [a, b]. Prove that the convergence is
uniform on [a, bl.

Solution: First we assume that each f, is monotonic increasing on [a, b]. Then f is
monotonic increasing on [a, b]. Let e>0 be given.

Since f is continuous on [a, b}, f is uniformly continuous on [a, b] and so 3.8 > 0 such
that

| f(x) - fty)| <€ forallx,ye [a, bl with [x-yl<8. ...(5.1)
Choose a partition P = (xg, X1, ..., X)of [a, b] with u(P) < 8.
Thenby (5.1) | f(x) - fixia)|<e fori=1,2, ...k ...{5.2)

Since limf,(x,)=f(x,), i=1,2, ...k, there exists a positive integer N such that

[f.x) - fx)] <€ foralln2N,i=1,2, ...k -..(53)

Now, letn 2N, x € [a,b). Let xe[x;., %]- Then

fa(x) = f(x) = falxi) — f(xi1)




= fa(xi) — fi(x;) + f(xi) — fi(xi.1)
<2, by (5.3) and (5.2).
Similarly,  £(x) - f,(x) < f(x) - £u(x1)
= f(x;) - £(xi1) + f(Xi1) — fa(xi))
< 2e.

Therefore |fy(x) — f(x)| < 2¢ for all n 2 N, xe [ab], and hence {f,} converges
uniformly to f on [a, b).

The case is similar, if each f; is monotonic decreasing. Now, if {f;}contains
both increasing and decreasing, then the sequence {f,} can be broken into two parts :
one contaihing increasing and the other decreasing functions. If one of the two parts i$
finite, then the. terms of this part can be deleted from {f,} without effecting the
convergence and by the above cases (f,} converges uniformly to f.

If both the parts are infinite, then they are uniformly convergent subsequences
of {f;} converging to the same limit of f. Consequently, {f,} converges uniformly to f.

2. Obtain a set of sufficient conditions for term by term differentiation of the series
Y £.(x) in the interval [a, b].

a=l
Solution: Consider the series obtained by term by term differentiation of the given
series, viz. Zf:(x} . We prove the following : If
- . :

(1) Zf; converges at least pointwise on [a, b],
(2) If.’ converges uniformly to g on [a, b] and
(3) each f," is continuous on [a, bl,

Then Zf, converges uniformly on [a, b], and
£(x) = g(x) Lni{zfu(x})z Y £1(x).

Since the series £f," converges uniformly on [a, b] and each f,’ is continuous on

(a. b], therefore the sum function g is continuous on [a, b]. Thus Jg{lﬁt is

differeatiable and a‘il-j g(b) dt = g(x).
X




Again, because each £’ is continuous on [a, b] and If;’ converges uniformly to

g on [a, b], we get z I £ (t)dt converges uniformly Ig[t} dt on [a, b]. Since

(=[O} =0~

we get i[fn (x)-f,( a}] converges uniformly on [a, b]. Because

3l 0 £, @)= 3,0 - 3, (@) = £6) - (@),
n=l o=l

n=l

Zf, converges uniformly to fon [a, b].

Now, j g(tdt =3 £(0dt = £(x) - (@),

n=l
and therefore, () =~ [ 80t =—_[f0) - £(@)]= £ )

ie. f(x)=g(x)
ie. -:; ( Z F{x}}= Z £'(x).

3. Show that the sequence {f,}, where f(x) = x" is uniformly convergent on [0, k],
k<1 and only pointwise convergent on [0, 1].

Solution: Let 0 <k < 1. Then, forx e [0, k]
Ifool=1x"] <K

Since limk* = O(for 0 < k < 1), (in view of theorem 1.5 ) the sequence {f;}converges

uniformly 1o the zero function on [0, k]. Next, since each f, is continuous on [0, 1], the
limit function must be continuous on [0, 1], if {f,} converges uniformly on [0, 1].
However,

Dif0<x<l

T -
-2l {1 ifx=1 ,

which is discontinuous at x = 1. Thus, (by theorem 1.7(a)) {fy}converges only
pointwise on [0, 1].
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1 2x 4x*  8x7 1
4 PR

4. Show that for -1 <x <1, - - -+ - A
l+x 1+x° 1+x 1+x 1-x

Selution : Consider the series
log(1 — x) + log(1 + x) + log(1 + x’) + log(1 +x) + ... (5.4)
The nth partial sum of (5.4) is
8 = log{(l-x){l+xm+f}---{l+f"’ }}=logu—x""}
For-1<x<Il, ILn:Su =0, and therefore the series (5.4) converge pointwise to the zero
function on [*l,nl ).

; ; 2x 4x’ 8x’ phgt-l
Mext, consider the senes = -+ =t —+
1+x* I+x" 1+x I+x?

(5-5)

If0 <k <I then

r 1l . .—r
<2°x¥ 1 <2°k* 7, forall xe[-k, k].

1+x*

Now, El“k}"‘ can be shown to be convergent. Therefore, by Weierstrass M-test, the

series (5.5) converges uniformly to the zero function in [k, k]. Thus the series (54)is
pointwise convergent to the zero function, contains terms with continuous and the
series of the derivatives of (5.4) is uniformly convergent on [k, k] for every k € [0, 1).

Therefore (5.4)can be differentiated term by term. We get therefore

=1 1 2x 4x’
+ + +
1-x 1+x 1+x* 1+x*

+---=0, forxe [~k k],

1 2x 4x° 8x’
+ —+ +

ire_ +...=.—1.—‘ {Stﬁ}
1-x

1#x 1+x? 1+x* 14x*

for —k < x < k. Since k is arbitrary in [0, 1), (5.6) is valid for all x with—1<x<1.

Section 2.

2

5 Let f(x)= ~,x € [0, 1]. Show that the sequence {f,} is uniformly

X
x? +(1-nx)
bounded on [0, 1]. Does the sequence contain a uniformly convergent
subsequence? Is the sequence {f,} equicontinuous?

11




Solution: For xe [0, 1], we have

}li
el =y !

Therefore, {f,} is uniformly bounded on [0, 1]. (heren=1).

We show that {f,} does not hdve any subsequence which is uniformly
convergent on [0, 1]. For xe [0, 1], we have

2
f{x}-lsz {x) = im—————
o x? 4+ +m]’

Thus {f,} converges pointwise to f on [0, 1], where f(x) =0, xe [0, 1]. Let, if possible,
{f;) have a subsequence {f“‘ fwhich is uniformly convergent to f on [0, 1]. Let0 <€ <
1. then there exists a positive integer K such that

xe[0,1]andk2K. (5.7

0y

Mow, for each k,. ie [01] andf, [—I—] =1,
ni:

Thus fu,{ 1 I—f[i]= |1 — 0] = 1 which is not less than & for all k,
n, i

n,
contradicting (5. '?} Hence the claim.

The sequence {f,} can not be equicontinuous, because, u&lenumc together with
the fact that (£} is uniformly (so pointwise) bounded, it wﬂ.l imply that {f;} contains a
uniformly convergent subsequence.

6. Prove theorem 2.3

Solution: Let e>0 be given. Since{fy} converges uniformly on [a,b], there exists an
integer m such that

s:-g forallnzm and xe(a, b]. .,.‘{S.E}I

Also since f;, 1 < i< m are continuous on [a,b] they are uniformly continuous on [a, b]
and therefore there exists & > 0 such that

]f,-{x.}—f,.(jr]E-:g whenever |x—y|<:ﬁ, ven(5.9)

x, ¥y € [a b] and | i< m. For n>m, we have

12




f,(x) =, (9] S Jf, () = £ ()| + [ () =, (¥)
+fa (0 ~£, ()|
<g,
whenever x, y € [a, b] with |x-y|~:5.'1"husforajlrh
[f.(x)=f.(y)| <€, wheneverx,ye t&b] with | x - y|<8.
Hence {f;} is equicontinuous on [a, b].
Section 3
7. Prove that a power series Za.x" cnﬁv:rges uniformly on any closed ml.r.-na] '
contained in (=R, R) where R is the radius of convergence of the power series.
ar

Prove theorem 3.5(a).

Solution: Lete > 0 be given. For lxiER—E, we have

.

Let M, = | a,(R-€)"|. Since R - € lies in the region (-R,R) of convergence of Ta.x",
the series Za,(R—€)" converges absolutely, i.e. the series EM, converges. Therefore, in
view of (5.10), it follows by Weierstran M-test that the series Za,x" converges
uniformly on [-R+€, R-€].

<la,R-e)"| ...{5.10)

Now, if I is any closed interval contained in (—R,R), then we can find £>0 such
that I c [-R+€, R —€]. Since Zax" converges uniformly on [-R+&,R—£], it converges
uniformly on L

8. Show that a power series can be differentiated term by term within the interval on
convergence or Prove theorem 3.5 (b).

Solution: Let R be the radius of convergence of the power series Yaox" and let xo€ (R,
R), the interval of convergence of Za,x". We choose £>0 such that x, € [-R+€, R—€].

Let f.(x) = a,x". Then f, is differentiable on [-R + &, R— €] and f,'(x) = nax".
Now, consider the power series Za.x", Since

fim] e | = i o, [+ imn®
i a,

n =R,

Ina,x" has the same interval of convergence as of Zax". Therefore, (by
13 :




theorem 3.5(a)) Ena.x" = Ef,(x) converges uniformly on [-R+g, R—€]. Thus by
theorem 1.10 (b) , the sum function of Xa,x" is differentiable and

i(Za,x‘]: Zi‘;(x] :Zrm‘x“,
at every point in [-R+¢, R—€], and in particular

d -]

E(Za,x“]a_h =Y na x;.

Since xg is arbitrary in (R, R), Za.x" can be differentiated term by term in (-R, R).
Section 4: '

9. Prove Theorem 4.6

Solution: Let | denote the integral over [a, b], and I the sum from 1 to n. Now, .
[t = [ Y0 00 = 2 ¥ [ 100 = 2 Y
Again. f|tf =10 = [(T1.0.)(Z% 8)= T T 10 %[ 000 = X/ 1al’

_  [0ifm=k
Jout. :{1 if m=k.

Therefore, ﬂf'lnf::.[[f—t.]E-E)ﬁﬂt‘|’_-ftf-j?t,+f|lu.|’

=flff -Tea¥a-Xora+ X val
= [1£] + {0 —c) a ~6a)-cutn]

=l + Zlta-cal - Zleal

which obviously take the minimum value if and only if Yo = cm. Thus
b b 9
I! fasn|2dx < It f-t,[ dx,

and the equality holds if and only if ¥ = ¢ for all m.

10. With the notations as in theorem 4.6, prove that

hsﬂ -f‘ildx=j"[ F|Idx—ici_
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Solution: We have
flaf = o= J(Eeuea S8 ) - Seal
Thus -J'ft“sf—jf' s.)(f-5.)= j|r| —jrs —jfs +j|si
Jlef - Sleaf -Zea + Feaf
=flef -3
11. Prove theorem 4.7.

Solution: Let s_(x)= ic,qlm(x]. Then, as in example (10), we have
b b -
flf=s, [ax=[|f[ax-)c.|"
b 2 - b
Since [|f-s,[ 20, weget 0¥ e,/ <[|f[. ceed(5.11)
® m={ "

b - b
Asthe [|f|" isindependent of n, letting n—> o we get 3 |c, ' < f|£[".
a m=| [

Since fis integrable, 3| c,,| is a convergent series and therefore limc, =0.
6. Exercises:

1. Show that zsmnx

is uniformly convergent on [8, 72} for any 5>0.

2. Prove theorem 1.5.
3. Examine uniform convergence of the series

2x 4x’ 8x’
+ +
1+x* 1+x* 1+x°

fpvai

15




4. Show that the series
i[kxe"“ —(k=Dxe *)
k=

converges pointwise but not uniformly on [0, 1].

5. Prove theorem 1.7. Use theorem 1.7 () to show that the sequence {f,}, where fu(x)
= x", is not uniformly convergent on [0,1].

6. Prove theorem 2.4.

7. Suppose {f.} is a equicontinuous system of functions on [a, b] and (f;} converges
pointwise on [a,b). Prove that {f, }converges uniformly on [a,b].

8. Show that the sequence {f,}, where f,(x)=nxe™ is equicontinuous on [0,1].

9. Use theorem 3.4 (b) to show that
Z— =¥'x*  for—1<x<1. Deduce that
a1 0 B=]
1 12 ]
L YL
DE 1-x 2 3

10.Define orthonormal and orthogonal family of functions.
Show that

(a) —-]i-e"". n=12...

NFz3

cosX sinx cos2x sin ix

O TR R

[-x, ]

.. are orthonormal families of functions on

For proofs of the theorems stated and for more exercise, see the following books:
1. W.Rudin, Principles of Mathematical Analysis.

2. S.C.Malik & S,Arora, Mathematical Analysis.




G.U. Questions
1996

2 (a) Let {f,} be a sequence of functions such that limf_(x) = f(x) for all x [a,b], and
let

M, =sup { |, (x)- f(x) | :xe(ab]}.

Prove that {f,} converges uniformly to f on [a,b] if and only if limM_ =0. 5

(b) Examine uniform convergence of the series

2x 4y’ 8x’
+

11
+ + e for xe [-—.=]. 5
1+x? 1+x* 1+x° L 2 2]

(c) Show that the series 3, h"“‘-'hr +(k = xe * .I

. converges pointwise but not uniformly for xe [0,1]. 2+4=6 -

3. (a) If {f,) is a sequence of equicontinuous function on [a,b] and if {f,}converges
pointwise on [a,b], prove that {f, }converges uniformly on [a,b]. 6

(b) Prove that a power series ¥a,x" converges uniformly on any closed interval
contained in (—~R,R) where R is the radius of convergence of the power series. 5

(¢) Define an orthogonal family of functions and give an example. What is the
Fourier series of a function relative to a sequence of orthonormal functions
defined on a closed interval? 2+1+2 =5

1997

2. (a) Let D be a subset of R and a sequence of functions {f.} be uniformly convergent
on D to a limit function f. Let x,e D and lim f_(x) = a,_. Then prove that
E—41p

{i) the sequence {a,} is convergent,

(ii) lim f{x) exists and equals lima_. 342=5

Z—¥%g

(b) Show that E

n=|

sin nx

is uniformly convergent on [5,%] for any &>0. 5

n

{c) Show that t‘-_.:ur xe{—1,1)




1 2x 4x° 8x’ 1
+ ‘+ 4_|. *+_..= . ﬁ
1+x I1+x° 1+x 1+ x 1-x

1. (a) ForeachneN, let

(i) Show that the sequence {f,} converges pointwise to a limit function f on [0, 1].

(ii) Calculate M, where M, = sup

ae[0L1]

f,(x)-f(x)}]

Show that the sequence {f,} is uniformly continuous on [0, 1] 3 +3 =6

(b) Show that a (real) power series can be differentiated term by term within the
interval of convergence. 5

(c) If {t,}is orthonormal on [a, b] and if Zcﬂtb LX)

is the Fourier series of f relative to {é,},then prove that

Sle.

b
" <[]0 | dx

and deduce that ¢, —» 0 as n— =, 4+1=5
1998

2. (a) Define uniform convergence of a sequence of functions defined on an interval
of the real line. Using this definition establish a necessary and sufficient
condition for uniform convergence of a sequence f,}defined on [ablcR. 1+6=7

(b) Suppose {f,} is a function of monotonic functions on [a,b], and {f,} converges
pointwise to a continuous function f on [ab]. Prove that the convergence is
uniform on [a,b]. 4

-(c) If {f,} is a uniformly convergent sequence of continuous functions on [a,b], then
prove that it is equicontinuous on [a,b]. 5




3. (a) Justifying all the steps to prove that

[$haeg :

o=l n f=] .I.'.-I.z{n""[j-

(b) If a series Zf;, of differentiable functions converges pointwise to f on [a,b], and
cach £, is continuous on [a,b], and the series If," converges uniformly to g on
[a,b], then prove that f '(x) = g(x). 5

(c) What is a trigonometric series? When a trigonometric series is said to be the
“Fourier series of a function f? How is this notion generalized to the notion of a
Fourier series of a function relative to a sequence of orthonormal functions
defined on a closed interval of R? - 14143=35
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UNIT 2
The Riemann-Stieltjes Integral
LIntroduction :

Calculus deals with two geometric problems: finding the tangent line to a curve,
and finding the area of a region under a curve. The first is studied by a limit process
known as differentiation and the second by another limit process — integration. The
formation of a independent theory of integration is due to the German mathematician,
Georg Friedrich Bernhard Riemann, who gave a purely arithmetic treatment to the
subject and thus developed the subject entirely free from the intuitive dependence of
the geometric concepts. The Riemann integral, which is studied in any undergraduate
course of mathematics, has many refinements and generalizations, the most noteworthy
being Lebesgue theory of integration. In this chapter, we discuss the extension due to a
French mathematician Thomas Jan Stieltjes known as the Riemann-Stieltjes integral.
The Riemann-Stieltjes integration is the process of integrating a bounded function f
with respect to another bounded(monotonic) function ct. In case a(x) = X, this integral
becomes Riemann integral of f.

2. Riemann-Stieltjes Integral
A partition P of [a,b] is a finite set of points, say
P={xp, X1,-...--Xa}, ' (1)

such that a=Xp<xi<...... <x;=b. We shall use the symbol Ax; to denote the ith
subinterval [x;1, x;], of the partition as also its length x; — ;... The mesh or norm of Pis
defined by

w(P) = maxfAx,, Ax,, -, Ax, }

A partition P’ of [a,b] is finer than P(or a refinement of P) if Pc P’. Clearly, in that case
u(P’)< pP) If P, and P; are two partitions of [a, b] then by their common refinement we
mean the refinement P=P,UP; of both P, and P;.

Definition 2.1 Let f and o be bounded real functions on [a,b] and & be monotonically
increasing on [a,b], b=a. Let P be a partition of [a,b]. We write

MI = [""('xi}_ U‘('Ki—lli - Ir:Z,'",I'.I..

Since o is monotonically increasing, Aoy = 0. We have
_*'1,_g:1m,- = afb) - afa)

Let m; and M; be the infimum and the supremum of f on Ax;. The upper and the lower
sums of f corresponding to P are defined by

20




U, f,a) = ¥ MjAa;,
jl
L(P.f. &) = ¥ m,Ac;,
iml
The upper and lower integrals of f with respect to « are defined as follows:

b b
[ fdo = inf U(P, f.0x) [fdo = sup L(P,f,ex),

where the infimum and the supremum are taken over all partitions P of [a,b]. We say
that f is Riemann-Stieltjes intergrable (or simply integrable) with respect to o on [a,b]
and write f € Rio) if

In that case, the Riemann-Steiltjes integral of f with respect to a is defined to be

b b b
[fdo = [fda = [ fdo.
I._ [}

Theorem 2.2 (Riemnn's Condition of Integrability) A function f is integrable with
respect to o on [a.b] if and only if for every € >0 there exist a partition P of [a,b] such
that UPfo) -LPfa) <e.

Theorem 2.3 Suppose f € R(a) on [ab], m<f<M, ¢ is continuous on [m,M] and
h(x)=d(f(x)) on [a,b]. Then h e R(c) on [a,b].

3. The Integral as a Limit of Sums

Definition 3.1 Corresponding to every partition P of [a,b] let us choose points t;, tz,
...r ta such that x,.,St:=x4{i=1,2,...,n), and let us consider the sum '

s, f, ) = 3 1t ey 2)
i=l1 .
. _ 3
We say that u-d!iﬂ . S(P,f,a) = A (3)

if, for every € >0, there exists a 8>0 such that p(P)< & implies [S(P, f, &) — A| { & with
all choices of t;.

Theorem 3.2 If lim S(P.f.c) exists as WP)—0 then

b
f e Rlw) and ; {Ejr:ﬂ S(Pfa)= !fdu.
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Theorem 3.3 If f is continuous on [ab), then feR(x) on [ab]. Moreover,
"[gz}nmsﬂP,f, a)exists and equals [ fda .
Reduction to a Riemann integral
Theorem 3.4 If f € R(i.e. if f is Riemann integrable) on [a,b] and ©. is monotonic
increasing on [a,b] such that o € R on [a,b], then fe R(xt), and

b b

ffdo = | fo'dx

Integration by parts
Theorem 3.5 If [ is continuous and monotonic mc;feming and « is monotonic

increasing on [a,bl, then

tj'fn:ht:t = [F()e(x)E -Ijeadf,

ie. ?fda + Tudr = f(bu(b) - fla)ula)

4. Integration of vector valued functions

Definition 4.1 Ler fy, 5, ....fx be real valued functions on [a,b], and for xe[a,b] let
()= ()2 (x) . F (x)). Then T is a vector valued function of [a,b] into R* . If a is
monotonically increasing on [a,b], then we say f is Riemann-Stieltejes integrable with
respect to o on [a,b] (and write T e R(e)) if f; € R(a) on [ab) for i=1,2,....k. If this is
the case, then we define

b— b b b
deﬂ- = [l f-.d-'ll. j fzdm. ¥ I fkdﬂ'.]

a

If 7 is a vector-valued function of [a,b] into R*, then by |F| we mean the real valued
function defined by

710 = 626+ 26+ - + )

Theorem 4.2 If fmaps into R* and if f eR(Q) for some monotonically increasing
function . on [a,b], then ﬂ e Ri{a), and

Et_‘da.‘ < ?ﬁdm

2




5 Functions of Bounded Variation

Definition 5.1 Let f be a vector valued function defined on [a,b]. Corresponding to-a

partition P of [a,b], we consider the sum ¥ [f(x,) - F{xH} If the set of these sums for
i=1"

different partitions of [a,b] is bounded above, then the function f is said to be of
bounded variation on [ab]. In that case we define

‘\-’ﬁ:; a.b) = sup iii |f{1. } —.F':J‘i -1 1+

where the supremum is taken over all partitions of [a,b], and we call V(f:a,b} the total
variation of f on [a,b].

" Theorem 5.2 Let T =(f1.fz,....fi) be a vector valued function of [a,b] into R*. Then T is
of bounded variation on [ab] if and only if each of the functions f;, i=1,2,...k, is of
bounded variation on [a,b). For 15i<k, we have

V(f;;a.b) < V{; a,0) < 3 V(i a,b)
=1

It is easy to see that if f is of bounded variation on [a,b], then f is of bounded
variation any subinterval [ac] and [cb], where a<c<b, and

on
vif,a,b) = V[, a.¢)+ vif,cb).

Definition 5.3 Let f be a function of bounded variation on [a,b]. For any x € [a,b]
define v;(x)= v[f.a.x]Then v; is a monotonic increasing bounded real function on

[a,b] and is called the variation function of T .

Theorem 5.4 (Jordan Theorem) Iff is a real function of bounded variation on [a,b]
. then there exists monotonic increasing functions p and q en [a,b] such that , for

a=x<h, f(x)=p(x)-g(x) and v{x)=p(xHg(x).
6. Mean Value Theorems

Theorem 6.1 [First Mean Value Theorem] If  is continuous on [ab)], and o is
monotonic increasing on [a,b], then there is § € [a,b] such that

b
[fdo = fENalb) - ola)}
a

Definition 6.2 Let o be a real function on [a,b] of bounded vaniation. Then o=y, for

some monotonically increasing functions P and ¥ on [a,b] . If feR{p) and f e R(Y) on
[a,b] , then we say that fe R{ct) on [a,b] and define

b b b
(fda = | fdfi — | fdy.
n a a




Theorem 6.3 [Second mean Value Theorem] If f monotonic and (. is continuous and

of bounded variation on |a,b] then there exists £ € [a,b] such that
} tdo: = f@ale) - aa)] + f6Yob) - o)

Change of variable
Theorem 6.4 If

(i) f is continuous on [a,b], and

.(ii) & is a continuous and strictlly monotonic function on [0, ], where

a=h(a),

b=6(B), then | F(x)ix = Eftmwy}

Solved Problems
1. Prove Theorem 2.2.

Solution : First, let the given condition be satisfied. For every P we have

b b
L(P, f, ) < | fda < [fda < U[P,f, @)
!__ a

Thus the given condition implies
B b
0< fdo—[fdo<e

Hence, if the given condition is satisfied for every £0, we have

that is, f € R{c).

Conversely, suppose fe R(e), and let € >0 be given.

partitions P; and P; such that

U{ﬂf,ﬂ]-?fdu{%,

[fdoe—L(P,,f, &)< %‘

Then there exists




We choose P to be the common refinement of Py and P; . Then by the fact that
L, f, a) < L[P, f, ) < U, f, @) < UP, f, «)

we have
UP.f,0)-L{P.f,a)< UP, f,0)-LEP,.f,a)e

This proves the result. |

2. If f € R(x), ge R{o) on [a,b] then f+g € R{a),cf € R{ax) for every constant ¢, and
b I b
- J{f + ghe =] fda + | gdar,
; b Ll a
Jefda = cf fda

Solution: First, we prove the result for cf . We note that for any partition P of [a,b]

L(P,cf, @) = cL(P,f,a) and U(P,cf, a)=cUP, f,a) ifc = 0, and
L(P.cf, @) = cUP.f.a) and U(P,cf, a) = cL{P,f, &) ifc < 0.

Consequently, we have

] b .
[ fdar = supcL (P, f, )= csupL(P,f,a)=c| fdo ifc20, and

L] b
[efdar = supcU(P, £, @) =cinf UP.f,o)=c| fdau if c<0.

Similarly,

1

b
cfde = ¢f fdo ifcz 0 and

B,

b
=c¢f fda ifc <0
&

Since f € Rio), both upper and lower integrals of f are equal to its integral.
Consequently, replacing them by [* fdain the above equations we see that the upper

and lower integrals of cf are both equal to ¢ |° fde . Hence, cf € R(ct) and
IP cfda = cff fda.

Next, we prove the result for (f+g). Suppose h=f+g. Note that for a.ny partition P
of [a,b] we have '

L(P,f,a)+ L(P,g,a) < L(P,h,a) < U(P, h,a) < U(P, f,a)+ UP, g.a) (1)
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Let e>0be gi\rcnl. Since, f, g € R(ox),there exist partitions P, and P> such that

UG, f.0)-L(,£.0)< 5 and U, £.0)-LE.50)< 7.

These inequalities persist if P, and P, are replaced by their common refinement P.
Then (1) implies
U(P,h,a)-L(P,h, ) <€

and hence h =f + g € R(a). Now, with the same P we have
U(P,f,a)< }‘fdu+% and U(P,g,a)< jgdu+%,

and hence by (1) we have

[hdax < U(P,h, o)< [fdo + [gda+€
Since € was arbitrary, we conclude that |

[ hdo < | fda + | gdow (2)
Replacing f and g in (2) by —f and —g we get

- fhda < - fde — | gdo,
that is,

[ hdex = | fdor + | gder (3)
Combining (2) and (3), we get the required result.
3. Prove Theorem 2.3.

Solutien: Choose £ >0. Since ¢ is uniformly continuous on [m,M], there exists &0
such that § < € and |p(s)- ¢{t] <€ if |s-t|<Sands,te [m,M]

Since f € R(a), there is a partition P = {xo,X1,.--%s }of [a,b] such that
U(p. f, &) - L{P, f, @) < 8°. (1

Let m;, M; be the infimum and the supremum of f on Ax; and m; , M;" be the analogous
numbers for h. We divide the numbers 1,2,...,n into two classes: i € A if M - m; < 8,
ie Bif M; - m; 25. :

Fori €A, our choice of 8 shows that M; -m; < €.
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Fori €B, M;-m;" <2K, where K = supj¢(t}. m < t < M.. By (1), we have

8% Aw; s X (M; - m o < &
el

ieB

sothat ¥ Aa; < &. It follows that

=B

U o)~ Lbo) = 3 04 - mi B + 3 (] - m
<e falb) - «fa)] + 2K8 <e [alb) - afa) + 2K]

(2)

Since e is arbitrary, Riemann’s Condition of Integrability implies that he R{c).
4. Prove theorem 3.2,

Solution : Let lim S(P,f,x) exists as u(P)—0 and equals A. Given £ >0 there exists §>0
such that p(P)<b implies '

£ E
A——<SIP,f, A+—.
g (P.f.o)< A+ %

WE choose one such P. If we let the points t; range over the intervals [x;.;, xi] and take
the lub and the gib of the numbers S(P,f,ct) obtained in this way, then from the above

inequality we get
A—%EL(PJ,(:}E UP.f,a)< ﬁ+§~. (1)

Thus
U(P.f,a)-L(P,f,a)<e,

and hence, by Riemann’s condition of integrability, we have f e R(o) on [a,b].

Moreover, because L(P, f, a) < ?fdu < L(P, f, @), from (1) we get

b
[fda = A = u{}»ﬂus{l"f‘“l

a

5. Prove that a monotonic bounded function on a closed interval is of bounded
variation. Show by an example that a continuous function may not be so.

Solution: Let f be bounded and monotonic increasing on [a,b] . For any partition
P={xg, X1, ....%g }Of [a,b] we have

£106) - 1611) = £ 6 - ()} = 16) - 16 -
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and, consequently, f is of bounded variation and V(f:a.b)=f(b)-f(a). Similarly, if f is
bounded and monotonic decreasing then V(fia,b)=f(a)-f(b) and the result follows.

Next, consider the function f defined on [a,b] by

g n
f[x]= xsinx — ,when0 < x =1
whenx = 0.

Then, f is a continuous function but not of bourided variation (verify).

6. Prove that the variation function v-of a vector valued function f of bounded
variation is continuous if and only if f is Continuous.

Solution : First, Let v; be continuous at a point ce [a,b). Let € > O be given. Then
there exists 6=0 such that

v, (x)- v:(c] <efor allxe [a,b]with |x -c| < &
Moreover, F{x} - FI:(:I = lv;(x] = 'H';{Cl Hence
F{x]—f[cI <¢ for all xe[a,b] with|x-c| <3,

which implies that f is continuous at c.

Conversely, let  be continuous at ¢, and ket € > 0 be given. Then there exists

& > 0 such that [f{x)—E(e]{gfmauxe[a.h]wimtx-c;-:a, )

By definition of total variation, we can find a partition of [c,b] such that

3, )-x,.)> Ve, b)- E— 2)
and such that 0<x; c<8. (3)

Thus F{x, ]—f{c1 < % Again (2) gives on using (3) ,

V(f;c.b)——;- < §+§‘;F{xi)mf[xi_!1 < %+V{f;x,,h]
ie. V(f;c, b)— V(f;x,,b}c. g or !"i("w]‘ v.(c]<e
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This shows that
lim v;(x) = v;(c) Similarly,it can be shown that lim v:(x) = v:(c)
A=kC¥ . E—¥C—

Hence ve 15 continuous at c.

The result follows because c is an arbitrary point of [a,b].
Exercise

1. If P’ is a refinement of P, then prove that
L(P",f,) = L(P.,f, @) and U(P"/f, @) < U(P/f, v).
2. Using Ex.1 prove that for any two partitions P;, P; of [a,b)
L(Py.f, o) < U(Pof, @) ..
b e e
3. Prove that | fdu_;ifg_’fgiqﬁi;l-'__ .
4. If feR(w), then there exists a number A between the bounds.of f such that :
[ fdee = AMolb) - oa)}
5. ffeR(o), g eR(a) on [a,b], a < b such that f(x) = g(x) for all x € [a,b], then
‘b b
[ fdee 2 | gdoc
6.If feR(cx) on [ab], and if a<c<b, then f & R(c) on [a,c]and on [c,b], and
€ b b
[ fde + [fde = | fde
a [+ a

7.1f f e R(a,) and f e R(a), then f e R(o,+o,)and

b b b
ffdloy + o) = [fdey + | fday;

b b
if f € R(e) and ¢ is a positive constant, then f € R(ctr)-and J'fd{m}: c_[fdr.-.
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8. If f e R(xx) and g € R(a) on [a,b], then show that

(a) fgeR(m)y
. b
() || € R(a)and Eﬁ:lui < [|fie
9. Suppose « increases on [a,b], 2 < xp <b, @ is continuous at xo.f(xo)=1, and f(x)=0 if
x#xXg. Prove that fe R{a)and that |jJ fdae = 0.
a
10. Suppose f 2 0, { is continuous on [a,b], and t_f fde = 0. Prove ﬂmt fix)=0forall x e
]
[a,b].

3
11. Show that [ xd(x - [x]) = =, where [x] is the greatest integer not exceeding x.
0

b | w2

12. If f is monotonic on [a,b], and if & is continuous on [a,b), then show that fe R(a)
on [abl].
13. Show with an example that a function f may be integrable with respect to an
increasing function @ on an interval [a,b], although &%S{Ef.u}ma}r not exist.
“ a
14, If f is continuous on [a,b] and o has a continuous derivative on [a,b], then
b b
[fde = | foldx.
15. Prove that a function of bounded variation is always bounded. Give an example to
disprove the converse of this result.

16. If a vector valued function f with domain [a,b] and a range of subset R™ is of
bounded variation on [a,b] and v: is continuous at ¢ € [a,b], then prove that f is
continuous at c.

Questions from G.U. Question Papers
1996

1(a) Letf and ot be bounded functions on [a,b] and & be monotonic increasing on
[a,b]. If lim S(P.f, o) exists as W(P)—0, then prove that

b
feR(a)and lim S(P.f, o) = | fdo
u(p)=0 '

0




: b
State a sufficient condition for existence of “{Liin oS(P' f,o) = [fdo. 5+1=6

(b) If fe R(ct) on [a,b] and c is any constant, then prove that cfe R(or) on [a,b]and
"B b
fefdo = ef fdo. 4

(c) If a vector valued continuous function f with domain [a,b] and range a subset

of R™ is of bounded variation on [a,b], then the variation vi is continuous on

[a,b]. 6
1997

1. (a) Suppose fe R(ax) on [a,b] cR, m <f(x) <M, ¢ is continuous on [m,M] and
h(x)= ¢ (f(x))on [a,b]. Prove that fe R(c) on [a,b). 6

(b) If fe R{ot, Jand fe R(ay,) then prove that fe R(o,+o) and
b b b »
[ fdley + ;) = [fder, + [ fdot, 4

(c) Prove that a bounded monotonic function is of bounded variation, but a

continuous function may not be so.

ﬁmrlr.. For proofs of the stated theorems and hints for the exercises the followinig
two books are recommended.

1. Walter Rudin, Principles of Mathematical Analysis. 3 Edition.

2. S.CMalik and Savita Arora, Mathematical Analysis, 2™ Edition.
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Integration in R* and R’

In this chapter, we discuss the various forms of generalizations of Riemann integration
of functions of one variable to the integrals of those functions whose domains are in R
and R’. The classes of functions we will discuss will contain both scalar and vector-
valued functions of two or three variables. We will introduce Green's theorem and its
generalizations, viz. Stoke’s theorem and Gauss’ theorem.

1. Integration in R’

1.1 Definition : A plane curve is a function C with domain a subset of R and range a
subset of RZ. Generally, the range of a plane curve is also called a plane curve and
usually described as the set of points (x, y) in R? for which

x=X{t)h, y=Y({),ast=h

The cuirve is said ti be closed if X(a) = X(b) and Y(a) = Y(b), smooth if X’ and Y’
exists and do not vanish simultaneously, and simple if it does not have multiple points,
i.¢. if it does not pass through a point more than once.

1.2  Line Integral: Let x = X(t), y = Y(1), a<t<bbe aplane curve C anf f be a
bounded function defined at every point on C. The Riemann-Stieltje's integrals

fr(e,y)ax = Y Y()ax()

and  fe(e,y)ay = [N ¥()av()

if they exists are called the line integrals of f over C. For a vector-valued function
F=(f,5) defined on C, the line integral of F over C is defined to be

. j'ﬁ-df=j'(rdx+gdy]

13  Definitions: A domain is an open connected set of points, region is a domain
bounded by close curves together with the boundary points. A region is regular with
respect to y-axis , if any line parellel to y-axis meets its boundary at atmost two
points(i.e. if the boundary of the region is givenby x=a, x=b y=%x), ¥y=
w(x), ¢ and  are continuous and ¢=\y). A region which is regular with respect to x-
axis is similarly defined. A piece-wise regular region is one which can be expressed as
" a finite union of regular regions. The contour(boundary) of a region is said to be
described in a positive sense, if the interior of the region lies to the left as one
advances along the contour.

1.4 Double Integral: Let E be a region and f be a bounded l‘uﬁctiun of two variables
defined at each point of E. Consider any partition P of E. That is, P is a finite set {AS;,
AS,, ...,ASy] of small arcas obtained by dividing the region. E by finite number of
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curves. Let (£, ;) be any point in AS;, i = 1,2,...,n. Consider the sum
S{P'f)ZEf(};u“i}iSi'

i uB%S{P,f] exists, (where by p(P) we mean the maximum of the areas AS,), then
we say that f is integrable over E and define the double integral of f over E to be

J’jfdxdpug%s(nf)

1.5 Reduction to Iterated Integral: If a double integral [[f dx dy exists for a function
E .
f defined on a closed regular domain E bounded by the curves

¥y =0(x), y = wix); x=:1,x=lb .

}
where ¢,y are continuous, and ¢(x)=w(x), for all xe[a,b] and if the integral ’Ifdy
& #lx)

b wix)
exists for each fixed point x& [a, b], then the iterated ‘integral de de}r also exists, and
i)

%)

~ [[fdxdy = jdzjfdy.
E 3 x)

Note: If f is continuous in E, then f is integrable over E and so the double integral can
be evaluated as iterated integral, if E is regular.

1.6 Green’s theorem in R*: If a domain E, regular with respect to both the axes,
is bounded by a contour C, and f and g are two single valued functions which along
with their partial derivatives f, and g, are continuous on E, then

_[j(gfu—gf—y: xdy =£{fdx + gdy}

Note: Green's theorem provides a formula connecting a line integral alung a closed
contour with an appropriate double integral over the domain bounded by that contour.

1.7Change of variables in a double integral : Let E, be a region in uv-plane,
bounded by a contour C,. Suppose that the transformations x=X(u,v), y=Y(u,¥)
transforms the region E, to a region E in xy-plane, bounded by a contour C in such
a way that the mapping gives ont-to-one correspondence between the points of E,
and E and between the points of C; and C. If the functions X and Y posses
continuous first order partial derivatives and if the Jacobian

i3




o) Y ¥
du

dv

does not change sign in E, then

[[raxdy = [[£ (.Y )| du v,
E E
for any function f(x,y) for which the double integral ”t‘dxdjr exists.
E

2 Integration in R’
2.1 Line integrals:

In analogy to a plane curve, a curve C in space is a mapping from an interval
[a,b] into R’, and is given by

x=X(1), y=Y(®),z=2(), a<t=<h. wndl)
By C we also mean the set of points (X(t), Y(t), Z(t) ), ast<h.
Let C be such a curve. Let a bounded vector-valued function F=(f.g.h) be

defined at every point of the curve C. Then the line integral (if it exists) of F along C
is defined as

Ifdx+gdy+hdz¥j_ﬁ-df. D)
C C

(Here F=if +jg+kh and F=ix+jy+kz).

If X, Y, Z posses continuous derivatives in [a,b] and if F =(f, g, h) is continuous at
every point of C, then the line integral (2) exists and

[fdx + gdy +hdz = ][f(x, v, Z)X + (X, Y.Z)Y"+h(x,Y,Z)2 bt

2. 2 Line integral with respect to arc length:

Let the curve C as in (1) be smooth, then it can be represented as x = 8(s), y =
®(s), z = y(s), O<s < ¢, where { is the length of the curve as t varies from a to b. The
line integral (2) then reduces to

J-{f{ﬂ-qk '4’)%3+ g{& ¢'.\P‘):—§ + h[ﬂ.ntb,w}gz }ds.
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:i[f—‘ dy h—J—dt
o - (T ]

2.3 Surface Integral:

A surface in R’ is a vector-valued function with domain a subset of R and
range a subset of R’ If E is a domain {or region) in R? and X, Y, Z are real valued
functions defined on E, then

x=X(u, v),y=Y(u,v),z=Zu, v), (u, v)eE, .3

and equivalently the range set

{(Xw, v), Y(u, v), Z(u, v)) : (u, v)e E}
represents a surface.

If E is a region in xy-plane, then z = y(x, y), (x, y) €E, represents the surface
{(x, y, w(x, ¥)) : (x, ¥) €E} in R, This surface has the property that any line parallel to
z-axis cuts it atmost at one point and so said to be regular with respect to z-axis. In this
case, E is the projection of the surface on xy-plane. Similarly, x = 6(y,z) and y =
#(z,x) with appropriate domains are surfaces which are said to be regular with respect
to x and y axes respectively.

The surface (3) is said to be smooth if X, Y and Z posses continuous first order
partial derivatives at each point of E and

a(v,z) a(zx) a{mY]
o(u,v) 9w v) au,v)

do not all vanish simultaneously at any point.

2.4 Area of a surface: If a smooth surface is regular with respect to z-axis with E as
its projection on xy-plane, then the area of the surface is ;

BB B

Similarly S= jj‘(|+[g:] [2] dy dz, and
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S#J;!JH[%T +[%]2dzd?t,

if the surface is regular with respect to other axes (E; and E; are projections of the
surface on yz and zx planes respectively).

2.5 Surface integral of a scalar function:

Let S be a smooth surface bounded by a contour C. Let f be a real valued function of
three variables x, y, z defined at each point of the surface S. Then the surface integral of
f over S is defined by :

”f[x.y,z]ds. ()

If the surface is regular with respect to z-axis and described by z:ﬁﬁ{x,y}, (x.y)eE,
where E is the projection of S on xy-plane, then the surface integral (4) reduces to a
double integral as follows : '

. [If(x‘ y,z)dS= jﬁjf (x, v wlx, y))Jl + [g—i ]2 + [gy—z]z dxdy .

Similarly, if the surface is regular with respect to other axes (as described in the
beginning of the section), then '

[y s abnae (2] o o

[fe.y.2)as = {Jf{x.q{x,x]zl‘{H@—iT {%Tm.

3

2.6 Orientation of a surface: A two sided surface is one which has two distinct
sides in the sense that it is not possible to pass from one side to the other along a
continuous path which lies on the surface and which does not cross any boundary
curve of the surface. For example, the surface of a sphere is-two sided, whereas
that of the Mabius strip is not. g

Let S be a smooth two-sided surface. Let NPN’ be the normal to the surface at a
point P. The two opposite vectors PN and PN’ are obtained, one of which is called the
positive normal and the other the negative normal to the surface. The side of the
surface, which faces the positive normal at P is called the positive side and the other the
negative side of the surface. Now the positive direction of the normals at all other
points of the surface is fixed.
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N +ve

+ve

Let C be any contour on a surface S. The direction in which C is described is
considered to be positive if the interior of C lies on the left side when a person walks in
that direction with his heads towards the positive normal. Otherwise, C is considered to
be negatively described.

2.7 Surface integral of a vector-valued function:

Let S be a smooth two sided surface and let F=(f,g,h) be a vector valued

function defined at each point of the surface. If fi denotes the unit vector along the
normal at any point along the side of S under consideration, then the surface integral
of Fover S is defined to be the surface integral (of scalar function)

H?ﬁdSEH[I‘ cosaL + gcusﬂ+hws’r)d5 (if ﬁ=?cma+}m&ﬁ+ﬁcuﬂ.)
1 3
If the surface S is regular with respect to the three axes with Dy, Dy, D as its
projections on yz, zx and xy planes respectively, then

[[F-ds = [Ji(c.y,2)dyde+ [fale.y.2)adx + [[x.yiz)axey.

§ [+

So, the surface integral is generally denoted by

jjf dydz + g dzdx + h dxdy.

Note : (1) The surface integral of a vector-valued function taken over the opposite
sides of a surface have opposite signs, i.e.

”F fidS= _HF .7idS, where S and S’ are two sides of the surface.
5 5

(2) If a smooth surface S is represented by
x=X(u, v),y=Y(u, v),z=2Z(u, v), (u,v) €D,

then the surface integral of F=(f, g, h) over S is given by
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2.8 Stokes’ Theorem (First generalization of Green’s Theorem) :

If S is a smooth oriented surface bounded by a curve C oriented in the same
sense, and f, g, h are three functions which along with their first partial derivatives are
continuous in a three dimensional domain containing S, then

l{fdx+gdy+hd2]=ﬂ[[$ gi]dydz [gi gh ]dzd [g—f—gﬂd xd }

In vectorial notation, if F=(f, g, h) is the vector-valued function in the consideration,
we have :

J’F-df:j curl - dS.
C 5 .

[Stokes’ theorem connects a line integral to an appropriate surface integral.]

2.9 Volume integrals (triple integrals):

Let E be a three dimensional region (i.e. an open subset of R’ together with its
boundary) and f be a bounded function of three variables defined at each point of E.
Consider a partition P of E, a finite set {AE;, AE;, ... , AE;} of small volumes obtained
by dividing the region E by finite number of surfaces. Let (x;, yi, Z) be any point in AE;,
i=1, 2, ..., n. Consider the sum

S{P1f}: zf{xi’yi'zl}ﬁEl'

If Hn StP f) exists, (where by W(P) we mean the maximum of the volumes AED),

then we say that f is integrable over E and the triple integral (volume integral) of f
over E to be

[[[f dv = [J[ £ dxdydz= FE%S(P. f)

In analogy to a regular region in R® , a three dimensional region E is regular with
respect to z-axis if it is bounded by the surfaces —

z=0(x,¥), z=Y(x, ¥) (B(x,y) 2 ¥(x,y)

and (on the sides) a lateral cylindrical surface. Let E be such a region with D as its
projection on xy-plane. If f is a function defined on E such that the triple integral over
wixy)
E exists, and if for each point (x, y) €D, the integral |f '[n, ¥, z]dz exists, then
alx.y)
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wizy]

”L f(x,y,2)dxdydz = -UD ‘Jf(x, ¥, z}dz:| dxdy.

ely)

A sufficient condition for existence of the triple integral of f over a region E
bounded by pairwise smooth surfaces is that f is continuous in E.

2.10 Change of variables in triple integrals:
Let the functions x=X(u,v,w), y=Y(v,w), z=Zu,v,w)

transform a domain E in cartesian co-ordinates x, y, Z onto a domain E’ in the new co-
ordinates u, v, w in one-to-one manner. Let X, Y, Z have continuous first order partial
derivatives, and let f be a function defined on E. If the triple integral of f over E exists,
then

JIff dxdydz= [[[ Flu,v,w)s| dudvdw,

where F(u, v, w) = f{X{u, v, w), Y{u, v, w), Z(u, v, w)) and J is the Jacobian

9X X dX|

du dv dw
];B{X,Y,Z);Ey_ a_Y a_Y
aiu,v,wi du v ow|
9Z dZ dZ|

du dv ow

For Cylindrical polar cu-urdinr;,tes :
x=rcosf, y=rminB, z=z
Jacobian J=r.
For spherical polar co-ordinates :
X = rsinb cosd, y =rsinf sing, Z=rcos8,
Jacobian J =r’sin®.
2.11 G:aum’ Theorem:
If a three diménsianal regular (or piecewise regular) domain E is bounded hy.a
smooth (or piecewise smooth) oriented surface S and f, g, h are real-valued functions

which along with their partial derivatives f,, gy, h; are continuous at each point of E
and 5, then

_”L(fu +E, +h5)dxd}'d1= _[_Lf dydz + g dzdx + h dxdy. -

In vectorial notation, if F = (f, g, h), then
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J/fdivEav=[[F-nas.

The Gauss Theorem 1s also called the divergence theorem or the Green’s theorem in
space.

3 Solved Examples:

3.1 Prove that the line integral
L x dy - ydx
x4y
taken over any closed contour R* with the origin inside it and described in the
positive direction is 2x.
Solution:
Consider a circular path ' with C
centre as origin, described positively
and lying completely inside C. Let E
be the region lying between C and I'.
S0 E is a piecewise regular region

bounded by C-I' By Greens' R
theorem

xdy — ydx d y
c’!r x*+y? ‘U‘{ax[n +y? ] ﬁ[fuzj}‘hd”

-l

- ”E(}dxdy =0.

. xdy — ydx xd.— dx
s L jlzr }’= "'J,- }: }'} =0
X +y‘ T +y

Therefore,

_f xdy—ydx  xdy-—ydx
I—‘L x2+3‘|2 _Jr x2+}rz-

Onl,x=acosh, y=asin® and therefore

ix_12 2 2 =2
+
{ Iamsﬂ asmﬂdﬂ

o

2
a




Tdﬂ =2r
L

3.2 Evaluate the double integral
I_L Jx_f +y?dydx

over the region enclosed by triangle y = 0, y = x, x = 1, changing it to polar co-
ordinates.

Solution: In polar co-ordinates the triangle has sides 8 = 0, 8 = /4 and rcosf = 1 and
so it is given by 0 £ 0 < w/4, 0 < r < sec. Thus the required integral

secl

de _fr-rdr , (as |J|:r]

o

O N i | W

sec il E
e jr*dﬂ - j
] (1]

(= ]

sec’ 0d0 =%iﬁdt=l[\/i+lugﬁﬁ)]

1
3 6

3.3 Show that

J{x + y)dS =42a%,

:
where I' is the quarter circle

x2+3ri+zi=a1,:.r:x
lying in the first octant.

Solution: The curve I is the part for which x 20, y 2 0, z 2 0, of the intersection of
the surfaces.

i z?
r
P+ =a ie. ————+—=1 andy=x.

B
V2 )
In parametric form, the curve is given by
-2 cosd y= 5.5
2 V2

where (0<¢p=wn/l

cosd z=asing,
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J2

i St |

!(K+j"}d5=

.= ﬁa’}m@d@: J2a%.

3.4 Find the area of the surface of the paraboloid

x_+-"’.r——=23
a b

§ ) x? },z
inside the cylinders —+ ey =k
a
Solution: The surface is given by
P :
and so it is regular with respect to z-axis. We have

Z=—+,

2a 2b’

GG -6

The projection of the surface on xy-plane is the region E bounded by the ellipse

F 2

—’-‘—-+;—==k
Thus the required area
s=[[ i+ i Tdnd:-.r =abf[ Vi+X? +Y?dXdY
a) \b)
(where X =2, =2,}jj=ab E is the region in the XY-planc bounded by the circle
a
X2+Y*=k)
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I Ak :
= ahjdﬂ JJI +r? rdr (transforming to polar co-ordinates)
LA '

- mﬁfrmar - %@h[[l +k) —1].

3.5 State and prove Stokes theorem.
Solution : For the statement, see 2.8.
Proof : Let the surface S be represented by
x =x(u, v), ¥y =y(u, v), 2= z(u, v), (u, v) €D,
where D is an oriented surface in u'u;-plalr with boundary " represented by

u=ut), v=v(t), astsh.

Now I=L{fdx+gd}f+hdi)

A e
S[EIE RN ION

2 3oz a o

(using Greens’ theorem)

_[ofox ofdy ofdz)ox . 9d°x (ofox of dy ﬂﬁ]a_x ¢ 9%
oxu Oyou 0zdu 'ov uav |oxdv Oyov dzdv ou  dvou
df[dzax dzax] offaxdy axdy] af alex) af A, y)

g oy P




Similarly,

3( ay) a( ay) dgdley) 383 (s.2)
F[gﬁ]_ﬁ(gﬁ_ka‘xa u,v F

du u, 3z 9 (u,v)
_a- hé]_i hﬁ_W:ﬂ}ua{y'z)_?ﬂa{l»l)
dul dv, dv| du, ay 9 (u,v) % 0 (u,v)

N gh ogloly,z) (of oh a(z.,n) og of Yalx.y)
Thus, I-J‘L[{g-—-é%}gm+[5;—§; a[“-‘-’f[gi-ré;]m] dudv

_rffoh og | af odh dg of
_J‘q%——g]dydz+[-a—z—i]d;dx+[-a—l—§]dldy

J
' In vectorial notation, L?' -df = churll_?.ﬁ ds.
3.6 Evaluate Iydx + zdy + xdz, where I isthe curve
r
X +y +z -2ax-2ay=0,x+y=2a

and it begins at the point (2a, 0, 0) and goes at first below the z-plane.

Solution: We use Stokes’ theorem and transform the line integral to a surface integral.

Let S be the portion of the plane x +y =21a bounded by T, which is a circle of radius

V2a

The given integral is the line integral

I= fﬁ .dr, where F=(y,z,x). By
r

Stokes’ theorem
1= Lcurll_F-‘-ﬁdS,
Now, curl F=(-1,-1,-1)

A 1 1
and i Z[E‘E‘G]




curl F-fi=-—==—/2. On §, y =2a - x. Thus,

1= [[fV2)as = (V2 fos
=(—J§)~<m‘eacf5= ﬁXﬂ(ﬁﬂ}z =—242ma’.

3.7 Evaluate IL{y - z]dydz +(z - x)fizdn + {x - y]dxd}f

where S is the portion of the surface x* + y° - 2ax + az=0, z > 0.

- SO | gy O
Solution: Put:ﬁngf=y i .gzz ail Jh== Ty #
2 2 2
we have
ﬁ—.g'-g.-=)r--z_' a_f_—aizz—x and a_g_-a_fzx--}r
dy oz oz ox ax oy :

Thus by Stokes’ theorem

j_L{y ~ z)dydz +(z - x )dzdx + (x - y )dxdy

='é',[c6" '*Z“)ixu[z2 +x*)i:r+l{x" +y* he,

where C is the boundary of S and is given by

{x—a}z+y1=a1. z=0.

On putting x = a + acosb = a(1 + cosB), y = asin®,

the line integral becomes

%I‘Eﬁ sin® B(—asin H:}+ az{I +r.'us): a;:-:.sﬂ}dﬂ
:%f j(— sin’ @+ cos@+ _21:'.1:33;'_'3+'3'11'~3>1 B)dﬁ

=%a’ _[chsz 8d8 [the other integrals are zero]
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xfl
= 4a’ Icos’ Edﬂ:tla!l?l:n:a’.
J 22

3.8 State and prove Gauss Theorem (or Greems’ theorem in space or divergence
theorem).

Solution: For the statement see 2.11.

Proof: Let us first consider the domain E to be regular with respect to z-axis, bounded above
and below by surfaces S, and S; determined by

z=vy(x,y) and z=0(x,y), (y2¢)

and by a lateral cylindrical surface S; (which may reduce to the commeon curve of 5; and 8;)
with generators parallel to the z-axis. Then $=5;US;US;. Let D be the common projection of
S, and S; on the xy-plane. Clearly, the orientation of D as projections of §; and S; are
opposite. Thus, '

Jf{ . axdydz = jL[:E‘JEdz] dxdy

= [[ Ibc.y. w)-hix.y.o)laxay
= [ h(x.y, whixdy + [[_hlx,y,0)dxdy
= _f_L h(x, v,z Jixdy + -[-L; h(x, y,z]dxd)'

- ([, 2)iey (ginc: J[ naxdy = n.]

Thus, [[[ h,dxdydz= | L h dxdy. )

If E is piecewise regular with respect to z-axis, then it can be divided into regular
regions by surfaces. The triple integral over E is sum of the triple integrals over the
subregions. Moreover, sum of the surface integrals over the oriented boundaries of these
regions is the surface integral over S, since each new surface introduced will be counted
twice with opposite orientations as boundaries of different subregions. Thus, (1) is also valid,
when E is piecewise regular with respect to z-axis.

Since E is regular (or piecewise regular) with respect to all the axes, we get

[f[ f.axdydz= [[f dydz )

and  [[[ g,dxdydz = [[g dzdx 0




~ Adding (1), (2) and (3) we get the required result.

3.9 Evaluate J’L@w dydz - y? dzdx + yzdxdy)

where $ is the outer surface of the cube bounded by x=0,y=0,z=0,x=1,y=1,z=1.

Solution: The cube E bounded by the oriented surface S is regular with respect to the axes.
If f = 4xy, g = -y", h = yz, then f, g, h and their partial derivatives f,= 4y, g= -2y, h=y are
continuous at each point of E and 5.

Thus by Gauss theorem,

[[f dydz+ g dadx + h dxdy = [[[ €, +g, +h, )axdydz
- ”L 3y dxdydz = 3jdxjydyj dz = %
L1} [} o

3.10 Evaluate
jozz dydz+ (x2y - z° Hzdx + (2xy + y*z ixdy
whm; S is the outer side of the entire surface of the hemispherical region bounded by
z=4a’-x"-y* and z=0. "

Solution: Let E be the upper half of the spherical region, which is bounded by S. Then E is
regular with respect to axes.

Let f = xz’, g= xzy-zj, h=2x}r+}rzz_
Then f, g, h and their partial derivatives f,=z°, g,::z. h;=y’ are continuous in E and S.

Thus by Gauss theorem

[[.f dydz+ g dzdx + haxdy = [[[ (f, +g, +h, Jdxdydz

= [[[ (2 +y* +2*) dxdydz
= I@Eda _Ir‘(r’ sin@)dr = Idd: Esina ;[r‘ dr

—Gn)e) [55—]=§a
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3.11 Evaluate
”L{x +y+ z}'“ xyz dxdydz

where E={(x,v,2)€ R*:x20,y20,220,x+y+z <1}.
Solution: E is a regular region bounded by the surface S which is the tetrahedron with sides
x=0y=0,z=0,x+y+z=1.

Thus the given integral is

x  l-x-y
I—Idx jdy j:}rz(x+3r+z)’dz
. 0
(since the region is described by 0<x <1, 0<y<1-x,0< z < 1-x-y)
Now,weput Xx+y+z=u X+y=wvu and Xx=uvw,

ie. x=uvw, y=uv(l-w), z=u(l-v).

It may be seen that when x, y, z are positive and x + y + z £ 1, then each of u, v, w lie
between 0 and 1 and conversely. So, the region E is fully described when0<u=<1,0sv<=]1,
0= w= . Moreover,

p| = E{%_: |— u’v| =u’v (on simplification)

1 ] 1
Therefore, I:_fu"sﬁujvg(l—v}iv_[w(l—w}:lw
o o 0

D N M 0 Wy PO,
n+6 (4 5,\2 3, 120(n +6)

4 Exercises
{a) Integration on R?

xdy ydx

4.1 Compute I , where T is the circle x* + y* = 1 in the positive direction on xyr-

plane.

4.2 Evaluate

I‘LJEE ~x*—y?)dxdy where R is the upper half of the circle x* + y* ~2ax = 0 in xy-
plane




4.3 Evaluate ILsin . - : Y dedy, where E is the region bounded by the co-ordinate axes
: x+y

and x + y = 1 in the first quadrant.

(b) Integration on R’

4.4 Find the line integral [(y” +27 Jax + 7+ x* Jay + (x* +y* Jaz
C

where the curve C is the part for which z 2 0 of the intersection of the surfaces

x> +y +2 =2ax, x° +y = 2bx, a> b >0, the curve begins at the origin and runs at
first in the positive dctant. *

4.5 Find the line integral

L{y+z)dx+{z+x]dy+{x+y)dzwhemCis thecircle X’ +y* +z =a°, x +y +z=0.

4.6 Show that Jyzdx+udy+xydz:ﬂ
r

where I is the arc of the carve x = b cott, y =b sint, z = at / 2m, frumﬂle.p-uintit
intersects z = 0 to the point it intersects z = a.

4.7 Show, using Stokes’ theorem, that

na®

_Lx’3r3dx+dy+zdz=- . where C is the circle X’ +y* =2’ , z=0.

4.8 Find the area of that part of the surface of the cylinder  x" +y*=a" which is cut out by
the cylinder x* + z* = a°.

4.9 Show that the surface a;ca of the sphere x> + y* +2° = | that lies inside the cylinder
20 +y) =3 -y is

n-442 {\(E’:lug (ﬁ+ﬁ]—2lug{l +.,,EJ }
410 Evaluate  [[(x dydz+dzdx +xz® dxdy)
where S is the outer side of the part of the sphere x* + y* + 2= 1 in the first octant.
4.11 Evaluate J]s x dS, where S is the entire surface of the solid bounded by the cylinder
xX*+y =1andthe planesz=0,z=x + 2.

4.12 Compute ﬂ{xz dxdy + xy dydz + yzdzdx]. where S is the outer side of the pyramid

formed by the planes x=0,y=0,z=0andx+y+z=1.
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4.13  Evaluate J'thcosa+ ycosp+z’ cnsT}dS, where S is the closed surface of the

region bounded by the cone X+y = z* and the plane z = 1, and cosct, cosp, cosy are the
direction cosines of the outward drawn normal of S.

4,14  Evaluate the surface integral J_Lylz dxdy + xz dydz + x’y dzdx, where S is the outer

surface of the region situated in the first octant and formed by the paraboloid of
revolution z = x* +y* , cylinder x* + y* = 1 ‘and the co-ordinate planes.

4.15 Evaluate the surface integral I_Lx* dydz+y® dzdx + z* dxdy taken over the surface

) x! Yl kS
of the ellipsiod —+-5+—F=1.
a- b ¢

4.16 Compute the integral ”_L xyzdxdydz over the domain bounded by x =0, y = 0,

=0, x+y+z=1.

4.17 Compute the volume of the solid bounded by the sphere x*+y +7 =4 and the
surface of the paraboloid x° +y* =3z

[the volume of the region E is given by jﬁ;dxd}rdz J

418 Evaluate [[[ z? dxdydz, taken over the region common to the surfaces
g

x2+y + 2 =a*and x* +y =ax.

Suggested Book
S. C. Mallik and S. Arora, Mathematical Analysis, 2™ ed, Wiley Eastern Ltd, 1991.
G.U. Questions:
1996
4. (a) State and Prove Stoke’s theorem : 2+7=9

-(b) Evaluate
_[_szl dydz + (x*g,r— z )dzdx + (2x:,r+ y’z)dxd:f

where S is the outer side of the entire surface of the hemispherical region bounded by

z=Ja’-x*-y* and z=0. 7




1997

4. (a) State and prove Gauss® divergence theorem. 2+47=9

(b) Evaluate _[ydx+zdy+xdz where T is the curve x* + ¥ + 78 ~2ax —2ay = 0,

x+y=2a, and it begins at the point (2a, 0, 0) and goes at first below the z-plane. 7

1998

4, (a)State and prove Stoke’s theorem. 2+7=9

(b)Evaluate HL (x + y+2z) dxdydz

whmﬂz{(x.y;z}eR3:x2ﬂ,yzﬂ,zzﬂ.x+y+z£}}‘

Qo
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UNIT 3 and 4
Lebesgue Measure and Integration

Riemann's definition of integral, which was put forward in 1854, had many limitations. The
functions considered in this definition are necessarily bounded. Though, this drawback could
be removed using the notion of improper integrals, the pointwise limit of a bounded sequence
of Riemann integrable functions may not be integrable in this sense. At the beginning of
nineteenth century, the French mathematician Lebesgue introduced a new concept of integral,
removing most of the shortcomings of Riemann integral. In this chapter, we discuss the
basics of Lebesgue measure and integration.

1. Lebesgue Quter measure

Definition 1.1. Let E be any subset of the real line. We define m'(E), the Lebesgue Outer
measure (or briefly the Outer measure) of E as follows:

m'(E) = inf{ifu“ }},
ma=f

where the infimum is taken over all countable collections {I,}of 1upen intervals such that

Ec| 1, (i.e. (I,}is a covering of E by open intervals).

Here (1) denotes the length of the interval I, defined as follows: If I is bounded with
end points a,b € R(a<b), then £(I) =b-a, IfLis unbounded, then £ (1) = o=,

Note 1. 2 Let E  R. From the definition of outer measure it follows that given g = 0, there
exists a countable collection {1, }of open intervals such that

ieuny <m’(E)+€
o=l

Note that m'(E) may be e as well

All the sets we consider in the sequel without specifications, are subsets of the real line.

Theorem 1.3.(Properties nf outer measure)

(a) m'(E)20

(b) m'(9)=0

(c) Outer measure is monotonic increasing, i.e. if ECF, then m’(E)sm'(F).

(d) Outer measure is translation invariant, i.e. for any real number x, m'(E+x) = m (E).
where E+x={y+x:yeE}.

(e) If 1is any interval, then m ()= £ (D)
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(f) Outer measure is countably subadditive, i.c. if Ec| JE, , then m'(E)< ) m'(E, ).

n=l o=l
() If E is countable, then m (E)=0.
2. Lebesgue measurable sets

Definition 2.1. A set E is said to be Lebesgue measurable(or briefly measurable), if for
each set ACR we have

m (A)= m (ANE)}+ m'(ANES) (2.1)
(Here, by E° we mean the complement R-Eof Ein R.)

If E is measurable, then we define m(E), the Lebesgue measure of E to be the outer measure
of E, i.e. m(E)=m'(E).

Note 2. 2 By Theorem 1.3(f), for any set E and A, we have
m'(A)sm(ANE)+ m (ANE")
Thus, a set E is measurable if and only if for every set ACR we have
m'(A)2 m (ANEH+ m'(ANE") a2y -
Theorem 2.3. .
(a) ¢ and R are measurable.
{(b) If E is measurable, then E° is measurable.
(c) If m'(E)=0, then E is measurable.
{(d) If E is measurable and x is any real number, then E+x is measurable and
m(E+x) = m(E).

(e) If Ey, Ey, ....E, are measurable sets, then | JE, is measurable. Further, if E; are

disjoint, then

m[[:JlE-l ]=im{Ei).

i J i=l

Theorem 2.4. If {E, }is a disjoint sequence of measurable sets and E=|_JE,, , then for any set

n=]

A
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m(ANE)=Y m (ANE,).

n=l

Theorem 2.5. If {E, }is a sequence of measurable sets, then E= UEn is measurable. Further,

n=l

if E; are disjoint, then m(E)= i m(E,_ ).

n=l
Theorem 2.6. Every interval is measurable and its measure is its length.
Theorem 2.7. Every open (closed) set is measurable.

Theorem 2.8. Every conutable set is measurable with measure zero.

3, Measurable functions.

Definition 3.1. Let f be an extended real valued function defined on a measurable set E.
Then f is said to be measurable if for every real number o

E(f>o)={ xe E:f(x)>a}is a measurable set.
[An extended real valued function on E is one which takes values in Ru{te=}]
Examples 3.2. Every constant function on a measurable set is measurable.
More generally, every continuous function defined on a measurable set is measurable.
Theorem 3.3. For a function f defined on a measurable set E, the following are equivalent.
(i) fis measurable on E.
(ii) E(f200)={ xe E:f(x)20 }is measurable for every e R.
(iii) E(f<ot)={xeE:f(x)<ot}is measurable for every ate R.
(iv) E(f<a)=(xe E:f(x)<o}is measurable for every o€ R.

Theorem 3.4. If f is measurable on E, then E(f=0)={xe E:f(x)=0} is measurable for every
extended real number a.

Definition 3.5. A property P is said to hold almost everywhere (a.e.) if the measure of the
set

[x: P is not true for x}

is zero. For example, if f and g are extended real valued functions defined on a measurable
set E, then
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(i) f = 0 a.e. means m({xe E:f(x)z0})=0
(i) f = g a.e. means m({xe E:f(x)=g(x)})=0
(iii) f 2 g a.e. means m({xe E:f(x) < g(x)})=0

Theorem 3.6. A bounded function f defined on a closed interval is Riemann integrable if and
only if f is continuous a.e.(i.e. if and only if the set of points of discontinuity of f has
Lebesgue measure zero)

Theorem 3.7. Let f and g be extended real valued functions defined on a measurable set E. If
f =g a.e. and f is measurable, then g is measurable.

Theorem 3.8. Let {f,)be a sequence of measurable functions (with same domain of
definition). Then

() max(f, b ...f) (i) min{fy, f5, ...f} (i) supfy GV)inffe (V) limf,
(vi) limf, are all measurable.

Theorem 3.9. Let E be a measurable set of finite measure, and {f,} is a sequence of
measurable functions defined on E. Let f be a real valued function such that for each x in E
we have f,(x)—f(x). Then given £> 0 and &> 0, there is a measurable set ACE with mi{A)<d
and an integer N such that for all x¢ A, and for all n=N, |f(x)-f(x)}<e '

Definition 3.10. A real valued function f is said to be a simple function, if there exists
measurable sets E; of finite measure and real numbers o, 1< i <n, such that

f= iu,xgi i

P
where 7 is the characteristic function of E in R defined by
1e (X)=1 ifxeE
=0 ifxeR-E
Definition 3.11. Let [a,b] be an interval and P: a=xo< ;< ...< X,=b a partition of [a,v]. For
any real numbers o, 1< i <n, the function f = imiin , where E; are disjoint intervals with

end points x;.; and x;, 1< i <n, is called a step function on [a,b].

4. Lebesgue Integral

Definition 4.1. The Lebesgue integral is defined for different classes of functions in several
steps as follows:
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(1) For simple functions: The Lebesgue integral for a simple function f =Y g, is

i=l

defined by _ffd;.tziuim{Ei) (4.1

In fact, the sum in (4.1) is independent of the representation of f. If E is any measurable
set, then the Lebesgue integral of f over E i$ defined to be

[fdp=[f-xedn.
E
(2) For bounded functions defined on a measurable set of finite measure: Let f be
defined and bounded on E, where E is measurable and m(E)<ee.
Then f is said to be Lebesgue integrable if
inf | wdu =5 4.2)
nf [ =sup o 42)
where the infimum and the supremum are taken over all simple functions y and ¢,

 respectively, with ¢< < .

[A necessary and sufficient condition for (4.2) te hold is that f is measurable, see
example.] 3

In that case, the Lebesgue integral of f is defined as dep = sup_{#du, where ¢ is simple.
el

(3) For non-negative measurable functions:

Let f be an extended real valued measurable function defined on a measurable set E such that
f(x)20, VxeE. The Lebesgue integral of f is defined by

I fdp=sup[hdy, ~ Where h is any bounded measurable function
h=f
defined on E such that measure of {x:h(x)#0}is finite. In this case, f is said to be Lebesgue
integrable if [fdyu <.

(4) General Lebesgue Integral : Let f be any extended real valued function. Then the
positive part f * and the negative part { ~ of f are defined by

f *(x) = max{f(x),0}
f(x) = max[-f(x),0}.
Then f* and f ~are nonnegative functions such that f=f"-f",

Now, let f be a measurable function. Then, by Theorem 3.8(i), f * and  are
measurable functions. The function f is said to be Lebesgue integrable if f* and f~ are
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Lebesgue integrable as nonnegative measurable functions (i.e. as in the sense of (3)). The
Lebesgue integral of f in this case is defined by

jnm: frdu—[fdy .
Note : (1} A function f is Lebesgue integrable {or briefly integrable) if and only if jfdu is
defined in one of the senses of Definition 4.1 and Ifdu <oa (i.e. the integral is finite).

(2) The notation fe £(1) or fe £(m) is used to write that f is Lebesgue integrable.

(3) If f is an integrable function, and E is a measurable set contained in the domain of
definition of f, then the function f. (g is integrable. The integral of f over E is defined to be

ffdn= [ xedp.
E

Theorem' 4.2. (Bounded Convergence Theorem ) Let {f }be a sequence of measurable
functions defined on a set E of finite measure, and suppose that there is a real number M such
that |f,(x)}<M for all n and x. If f(x) = limf, (x) for each xeE, then f is integrable over E and

Jfd = lim [ £, du
E G

Theorem 4.3.(Fatou’s Lemma) If {f,}is a sequence of nonnegative measurable functions
and f(x)—x a.e. on a set E, then

[fdu < lim [ £, dyt
E E

Theorem 4.4. (Monotone Convergence Theorem) Let (f;}be an increasing sequence of
nonnegative measurable functions, and let f = lim f_ a.e. Then _[ fdp = lim jfndu

Theorem 4.5.{Dnrninated Convergence Theorem ) Let {f,}be a sequence of measurable
functions defined on a measurable set E and suppose that there is an integrable function g

such that |f(x)|<g(x) for all xeE. If lim f_=f a.e. in E, then f is integrable over E and
fi—io=

!fdpznlimi:rndu.

5. Solved Examples
5.1. Prove theorem 1.3(e).

Solution :(i) First, let I be an open interval and let (!-——'rﬁ'(l}. Since I covers itself, therefore,
from defihition we get o < £(I). If possible let & < £(I), say a=£ (I)-¢, where € is a posilive
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real. Now, we can find a conulable collection {I.}of open intervals such that IQUIn and

n=]

Yea)sa+y=D-%,
a=1

(see Note 1.2). Let I={a,b) and for O< & < b-a, let I{8)=[a+8,b-6]. Then I(H)clc UI,, . Since

n=l

k
I(3) is compact, there is a +ve integer k such that I8)c| J1I,, .

n=l

Clearly,
k -
b-a-28= L@ Y L(1,) S Y L) S UD—%.
o=l n=l
Since & is arbitrary, we get .
D = (b-a)s L)%,
which is absurd.

Hence a=£(T) i.e. m (D= £ (I).

(ii) Next, let I be any bounded interval. Then given £>0, we can find open intervals J; and J,
such that Jy—IcJ; and that

£ £(0)+eand £(J)< £(D+E

Then I(I)- e<I(J)=m"(J;) (by (i)}
| <m'(D< m'(J2) (by Theorem 1.3(c))
=£(J,) (by (1))
< i+t

Letting £—0, we get m (D)= £(I).

(iii) Finally, let I be any unbounded interval. Then given any real number M, we can find a
bounded interval J such that J<l and £ (J)=M. Thus

m (D2m'(N)= £ (J)=M

Hence m (D=0 = £(J)
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5.2. Prove Theorem 1.3(g).

Solution: Let E be a countable subset of the real line and let E={x,X2,X3,...}. Let £>0 be'.
arbitrary. Consider the open intervals

L= x,,——E-n,xn+i].n=l.2,....
3 2:1 2“)

Then xq€ I, and therefore E:U I, .By definition of m'(E), we have
~T

e .2:|—I

oxm'E)s ¥ q1,)= i'ié-"-” =2 ,
n=1

i.e. 0=m'(E)<2e. Since £>0 is arbitrary, we must have m (E)=0.

5.3. Let E and F be (Lebesgue) measurable sets. Prove that EUF and ENF are
(Lebesgue) measurable.

Solution : Let A be any subset of the real line. Since E is measurable, we have
m'(A)=m'(ANE)+ m'(ANE") (1)

Again since F is measurable, we have
m'(ANE)=m"(ANENF)}+ m (A~ENF)

and  m'(ANE)=m"(ANE‘"F}+ m (ANE‘NFY),

Putting these in (1), we have

m(A)=m (ANENF}H m (ANENF 4+ m (ANE‘NF+ m (ANENFY) el 2
Since (2) is true for any ACR, we replace A by A~EUF) to get
m (AEUF))= m (ANENF)+ m' (ANENF )+ m (ANE'NF), )

(because ANEUFNWENF)i=ANENF, ANEUFNENF )=ANENF,
ANEURNENF)=ANE‘AF , ANBUF)NWE ~F)=f, and because m'($)=0).

Moreover, AnE‘~F= An{ENF)°. Hence from (2), we get
m'(A)=m"( ANEUF))+m'( AN(EUF))-

This shows that EUF is measurable.
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Since E and F are measurable, we have E° and F* are measurable (by Theorem 2.3(b)).
By above result, we have ESUF® is measurable. Hence, again by Theorem 2.3(b),
EF=(E“"_F) is measurable.

5.4. Show that every interval is measurable and its measure is its length.

Solution : Let | be any interval. Let A be any subset of the real line. We show that
m'(A)2m (AnD+ m (ANT). |

Clearly, the result is true, if m"(A)= e. So, let m'(A)< co.

Let £>0 be given. Then there exists a countable collection {1, }of open intervals such that

if(ln} =m*(A)+e£ .

n=|
1f I'y=1,~1 and I”,= I,T5, then I, and [”, are intervals (or empty) and

E()= LU+ £(I"p)=m (I m (7).

Further, Aﬁl;[ilﬂ }\I=Dfln ﬁI}=CJIL '

o=l n=1 ns=}

And similarly AnI°c|_JI7 . Therefore, we get using countable subadditivity of outer measure

n=l
m (AND+ m (ANE) < m'(Ul'p+ m'(Ul"y)
<Tm'()+ Em'(17n)
=E(m’ () + m'(I"4)
=1 ()
<m'(A) +€
Since e>0 is arbitrary, we get
m (ArD+ m (ANF)<m (A),
and therefore I is measurable. Moreover, m(D)=m (D)= ¢ .

5.5. Prove that every countable set is measurable with measure zero. Does there exist a
uncountable set which is measurable?

Solution : Let E be any countable subset of R. To prove that E is measurable, we first show
that m (E)=0. (Do as in Example 5.2).




Now, let A subset of R. We show that
m’(A)zm (ANE}X m'(ANE).

Since ARECE we have 0<m’(ANE)S m'(E)=0 i.e. m'(ANE)=0. Again, ANE'CA implies
that m (ANE®)S m'(A). Therefore

m’(ANE)+ m'(ANE")< 0+m (A)=m (A).
Hence E is measurable. Moreover, m(E)= m'(E)=0.

There are many uncountable measurable sets. For example, if a,be R with a<b, then
E=[a,b], being an interval, is measurable, which in uncountable.

5.6. Prove that a constant function is measurable.

Solution : Let E be a measurable set and ¢ a real number. Let f be the function defined on E
by f(x)=c,V x€E.

To show that f is measurable.
Let o be any real number; Then we have
E(f>o)={ xe E:f(x)>a}=E, if a=c
=¢, if o=c.

Since both E and § are measurable, the set E(f>c) is measurable and hence f is a measurable
function. :

5.7. Prove that every continuous function is measurable.

Solution : Let E be a measurable set and f:E—R be a continuous function. To show that f is
measurable.

Let o be any real number. Then
B(f>a)=(xe E:f(x)>0}=f ' (0,00).

Now (0t,=) is an open subset of R and f is continuous. Thus, f '{o,==) is an open subset of
E(in its subspace topology, induced from the usual topology of R). Therefore,

E(f>0)=ENG,

where G is an open subset of R. Since every open subset is measurable, G is measurable.
Now, E being measurable E(f>0)=ENG is measurable and hence f is a measurable function.
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5.8. If f and g are measurable functions defined on the same domain, prove that f+g and
fg are measurable. :

Solution : If f and g are measurable functions defined on E. To show that f+g is measurable,
we are to show that, for an arbitrary aeR, the set E(f+g>o)={xeEf(x)}+g(x)>0}is
measurable,

Let {riieN} be an enumeration of the rational numbers. It can be seen that

E(f+g>a=| JIE(f > 1) nE(g > a—r)].

i=l

Since f and g are measurable, E(f>r;) and E(g>0-r;) are measurable, and therefore their
intersection is measurable, for each i. Thus E(f+g>«) is countable union of measurable sets
and therefore is measurable. Hence f+g is a measurable function.

To prove that fg is measurable, we first show that the following: if f is measurable on
E and ce R, then cf is measurable.

If ¢=0, then cf is the constant function zero, and therefore is measurable. Let c20, For
any real o we have '

E{cf‘::-u}:E[f >2) o0
€

:E[qu] if c<D.
<)

Since f is measurable, both E)| f }E]aml E[f -:Eware measurable, Therefore E{cf>a) is
c, ¢,
measurable and hence cf is measurable function.

Next, we show that if f is measurable on E, then f * is measurable on E. For any real
o, we have

E(f >a)=E, if a< 0
—E(f >Va)UE(f<—Va), if a0,
and therefore E(f 2>t is measurable. Hence f * is measurable on E.

Finally, we have

fg = %l(ﬁg)z-{f—gf}.

_and if { and g are measurable on E, then by the above three results, fg is measurable on E.




5.9. Prove Theorem 3.7.

Solution : Let C={xe E:f(x)#g(x)}. Because f = g a.e. on E, we have m(E)=0. Now, let o be
any real and let '

A={xe E:f(x)>}
B={xeE:g{x)>a}.

'As f is measurable, A is a measurable set. To show that B is measurable. We have A-BCE
and B-ACE.

Since m{E)=0), we have
0<m(A-B)sm (E)= m(E)=0

i.e. m (A-B)=0. This implies that A-B is measurable. Similarly, B-A is measurable. Now, we
have

ANB=A-(A-B)=A{A-B)"
and therefore measurable. Finally,
B=(AnBy(B-A)
and therefore measurable. This completes the proof. ;

5.10. Prove that a bounded function defined on a measurable set of finite measure is
integrable if and only if is measurable.

Or

Let [ be defined and bounded on a measurable set E with m(E) finite. In order that
inf {w(x}du = s‘g?!ww

for all simple functions ¢ and v, it is necessary and sufficient that f is integrable.

Solution : First, let f be measurable. Since f is bounded, there exists a +ve number M such
that [f(x)}<M for all xe E. For any positive integer n, consider the sets

E;:[xeﬁ:ﬁqux)s EM}, n<k<n
n n

Clearly, E; is measurable for each k and ExnEs. = for k=k".

Also E=0{Eo-n<k =n).
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Thus we get
Em(Ek] =m(E).
k=—n

Now consider the functions y, and ¢, defined by

M
wn(x}=-n— 3 kg, (%)

k=-n

M n
00 (0 =— Y (k= Dy, (x)

k=-n

Then W, and &, are simple functions such that ¢, < f<y,.

Thus we get
infjwdpg_[mndu:ﬂ ikm{Ek),
vEIE B n )
: M 1]
and sup [dp 2 [, dp=— 3, (k—m(Ey).
osf g E LYy —
Thus

Uﬂ%ﬂijwdu—supjtpdui—ri[ im{Ek}zﬂm(E}.

| Wt n
Since n is arbitrary, letting n—== we get
inf lwdu = s;g!ttdu
Thus f is integrable, i.e. the condition is sufficient.
Conversely, let the function f be integrable, i.e. let

inf lwdu =sup £¢dr~t

Then given any positive integer n, there exist simple functions ¢, and y, such that @, f<
Wi, and

Iwndu—jmduﬂf%-
E E




Consider the functions W'=inf Wy, ® =sup .. As ¢, and W, are measurable (because they are
simple), " and ¢" are measurable. Moreover, ¢'< f < y'. We show that ¢'=f = ¢ a.e. For
this, consider the set

A = [xe E: ¢' ()Y (x)}
= (xeE: &' ()< y'(x)}

= {xeE: ¢ (x) - $'(x)>0}

Then A= Uﬁk , where
k=]

A=xeE: V) - ()
i 28
CIxeE: Wa(x) - 0a(x)> - J=AP, say.
Now, [wadn-[o,dn<~
E E n
|
= [y, ~0,)dp < —
- n
= m(aP) L < [(y, ~ 6,)dn <~
k k a— 4 n n n
= m{ﬁ[:}} < L
n

k
=m{A )<—.. -
n

As A, is independent of n, we get m(A)=0 for each k. Consequently, m(A)=0. Thus =y ae.
and therefore ¢'= f =y a.e. Since ¢’ and " are measurable, we get f is measurable.

5.11. Prove that every Riemann integrable function is Lebesgue integrable. Show that
the converse is not true.

Solution : Let f be a bounded function defined on a closed interval [a,b]. For a partition P of

[a,b], the lower sum L(P,f)= Y m;Ax; (with usual notations) in fact is given by L(P,f)= _[q:d,u,
E

i=1

where § is the step function ¢:Zmlxﬁi ,E=Ax, and E=[a,b]. Clearly, ¢ <f. We have
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e &P

fdx =supL(P,f) = supIdeu. ;
P ol ;

1-

where the supremum is taken over all step functions ¢<f. Since every step function is a
simple function, we get

b
I fdx < supftpdj.t.
g il
where § is simple. Similarly,
[fax2 inf ];Mu (v is simple).
We therefore have

b T
[ fax Ss:g:l!#td;.l's iﬂflwd}l < fﬁix

b et
If f is Riemann integrable, then I fdx= ffdx,andthmfﬂre

pon =t v

and f is Lebesgue integrable.

5,12 If  and g are bounded measurable functions defined on a set E of finite measure
and a, be R, then show that

J[af+bg}:alf+bjg.
E E

E

Solution : Clearly af, bg, and af+bg are bounded measurable functions on E. First, we show
that [af =af.
E E
If a =0, then clearly jaf -—-'l}r-aIF . Let a=0. We note that a function ¢ is simple if and only
E E
if ag is s0.
Case 1. a>0.

For any simple function v, we have w2f if and only if ay 2 af. Thus

66




‘!:lf = i:lztl:!aurz ai:g!y:aif.
Case 11 a<(.

For any simple function ¢, we have ¢=<f if and only if a$ = af. Thus
af = inf [a0=inf [ad=asup [o=a[f.
=t i [=eipfe=d]

Therefore, for any a, fafzajf

. E E

Next, we show that for any bounded measurabie functions f and g on E,
If+g=Jf+jg
E E E

If v, and y; are simple functions such that y; 2 f and y: 2 g, then y;+y: is a simple function
such that y+y»2 f+g. Thus

£f+g=_i§fﬂ£v5§gf£w;+wz_=igf£w.+§rg'£‘l'z=£f+£5~
12
e jf+g£jf+]g
E E E
Similarly we have (with ¢, ¢, $: simple functions)
[reemgmfeagplnremupfoenplosfife
Le.If+gzjf+fg,}lﬁméjf+g=ff+jg
E E E E E E
Finally, using the above results
J(af+hg}=_{af+_[hg=a_[f+b_|'g,
E E E E E

513 If [ is bounded measurable function defined on a measurable set E of finite
measure, then show that ;

jf=jf+fr,

E E; Ez.

where E=E|UE,, EjnEx=$.

Solution : As E=E;UE; and E;nEy=¢, we have ) = Xe, +XE, - Therefore,
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£ =[x = [f0e, +Xe,)
e o

Zj{f'xz. +£:2Xg, )
=[x, + [T e,

.—_Jf+é|;f.

E;
[Here we have used the result that for bounded measurable functions f and g defined en E of
finite mea.such-f +g=|f +J’g 9

5.14. If f is a bounded measurable function defined on a measurable set E of finite
measure, then show that

;[r 5!]”.

Solution : First, we show the following. If f and g both are bounded measurable on E and if
f<g, then [f <|e.
E E

For any simple function ¢ with ¢=f, we have ¢=g.

Therefore,

f= = == :
! 3,‘2}’!'1’ sup [ lg

=g g
ie. _[f = _[g.
E E

Now, if f is bounded measurable on E, then so is Ifl. Moreover, -|f| < f < [f| on E. Therefore by
the above result, we have

I—{fiﬂ[ffjfi

e fIf1< £ < if
E E E

i.e. j f

E

<[
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* 5,15. Let f be integrable over E and c any real number. Show that cf is integrable over E
and Icf — cjf : :

Solution : First, we note (see example 5.12) that if f is bounded measurable, then cf is
bounded measurable and ch = v.:‘[lr ;

Case I: f is nonnegative integrable and c>0.

Let h denote an arbitrary bounded measurable function which vanish outside a set of finite
measure. Since c>{0, we have h<f if and only if ch<cf. Therefore,

[ef =sup [h=sup [ch

B bscefp  hsf g

= supcjh = cs::p_[h cjf

hsf g

Moreover, Jc[" < oo, because _[f < oo . Therefore cf js integrable over E.

General Case: f is general integrable function and ¢ any real number.

If ¢ =0, then cf = 0 and so integrable over Eand [cf =0=c[f.Letc#0. .
E E
Let f* and f ~ be the positive and the negative parts of f respectively. We note that the
positive and the negative parts of are given by
(cfy'=cf * and (cf)y=cf ™ if c>0
and (cf)'=(<)f " and (cfy=(-c)f * if c<D.

Since f is integrable over E, by definition f * and f ~ are integrable over E. By case I, (cf) *
and (cf) ~ are integrable over E and therefore cf is integrable over E. Moreover, if ¢0,

Jef = Jtefy* — [ct) = [ef* -J'cf

E E 'E E
=cjf+_cjf-=c[jf+;jf-} of
E E E E
and if c<0,

fef = _f{cf] —j’(cfr jf—c}f‘ J’(—c;f

E

_.;*c{jf- jf 1 c[!f*-ﬁ[f‘}:c!f

}
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This completes the proof.

' 5.16. lffisamemmhlnﬁ:ncﬂnndehasﬂnfmmmmﬂﬁnshnwthatfk
integrable over E and jf=ﬂ.
b

Solution : First, let f be bounded on E. Let [f(ls M VxeE. Let ¢= -Mye and ¥ =Myg
Then ¢ and  are simple functions such that ¢= f e <W, and therefore

0=-MmE)= [¢< [t < [y=Mm(E)=0  and we get [£=0.
E E E E

Next, let f be nonnegative on E. Then

!f=supjh.whemhishnumiede.
E bIEg

=0,

because Ih = 0 for any such h. In particular Jf < o= and so f is integrable over E.
E E

Finally, let f be any measurable function. Let f* and f ~ be the positive and negative
parts of f respectively. Then, by the above, f* and f ~ are integrable over E and

If+ = [” =0. Thus f is integrable over E and jf=jf*—j'f'=ﬂ.
E E E E E

6. Exercises
6.1. Prove Theorem 1.3(c).
6.2. If E is measurable, then show that E° is measurable.

6.3. Show that every open set is measurable. Use 6.2 to show that every closed set is
measurable.

6.4. Prove Theorem 3.4.

65 If f and g are measurable functions, then show that max{f,gland min(f,g} are
measurable. Use it to show that the positive and the negative parts of a measurable
function is measurable. '

6.6. Prove that every simple function is measurable.

6.7.1f f and g are bounded measurable functions defined on a measurable set E of finite
measure such that f<g a.e., then show that jt‘ < I g.
E E




6.8.1f f and g are nonnegative measurable functions defined on a measurable set E, then
show that

' jf+g=If+jg,
E E E
6.9. If f and g are integrable, then show that f+g is integrable and _[r+g=J’r+jg,
6.10. 1ff=0ac. then show that f is integrable and [f =0.

6.11. Iffis integrable and f = g a.e. then show that g is integrable and Ig =1

6.12. If f is integrable on a measurable set E, then show that |f] is integrable on E and

L’f 5'E[|f|.

Gﬂ-U- '&lﬁﬁm
1996
S.(a). Define a measurable set and prove that every interval is measurable, (6)

(b). If f and g are two measurable functions on E c R, then show that f+g and fg are also
measurable on E. (6)

(c). If f is Lebesgue integrable on a measurable set E, then prove that |f| is Lebesgue

!fdp‘ < £|ffdu : (6)

integrable on E and

1997

5.(a) Prove that the union of two measurable sets is measurable, (6)

{(b) If f = g almost everywhere and if f is a measurable function, then show that g is also
measurable,

{c) If f and g are bounded measurable functions defined on a measurable set E of finite
measure, then prove that

Jm’+ﬂg:csz+ﬁj'g where o and P are any two real numbers. (6)
E E E

7




1998

5(a) when is a function defined on a measurable set with values on the extended real line said
to be measurable 7 Give an example (with justification) of such a function. 14+3=4

(b) If f and g are two measurable functions on a set ECR, then show that f + g and fg are also
measurable on E. 2+2=4

(¢} Prove that every bounded measurable function on a measurable set EcR(with finite

measure) is Lebesgue integrable on E. 5

(d) Prove that every function which is Riemann integrable on an interval is also Lebesgue

integrable on that interval. 5.
‘e
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