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Paper 102

TOPOLOGY

UNIT 1
INTRODUCTION

The word “Topology” is derived from two Greek words ‘topos’ meaning ‘surface’ and
‘logos’ meaning “discourse’ or ‘study’ . Topology thus literally means the study of surfaces .
It is also often described as ‘rubber sheet geometry’ . For an excellent and exciting history of
the development of topology , interested readers may consult the book - * The Genesis of
point set Topology , by Jerome . K. Manheim.’

Topology is one of the fundamental pillars of modern mathematics , and its
outstanding characteristic is enormous applications in different branches of mathematical
science. This work is an exposition of the fundamental ideas and results of ‘General
Topology’ prescribed for the previous year students of the Mathematics Department under
Gauhati University. It has been assumed , necessarily , that the reader has some prior
familiarity with the basic notions of the theory of metric spaces and topological spaces .
Problems after each chapter have been designed so as to stimulate the reader in such a way
that they will encounter exciting challenges to solve them . Suggestions for improvement of
the work are always welcome , and the author is highly pleased to answer to any question
raised by the reader.

The main reference books are ;

1) George F. Simmons, Introduction to Topology and Modem Analysis, McGraw-
Hill Book Company, 1963.

2) J.R.Munkres, Topology, A First Course, Prentice- Hall, New Delhi, 1978.

3) M.A.Ammstrong , Basic Topology, Springer, 1993.

PREREQUISITES

Much of the material in this chapter is assumed to be known. The purpose of this
chapter is three fold: first, 1o give a quick review of the basic ideas of metric spaces required
in the course; second, to set down some of the conventions and terminology that will be
adhered to throughout this work; and the third, to give the student a chance to fill in on some
concepts he may be unfamiliar or not-so-familiar with.

Since this chapter is not in the prescribed course, proofs of many results are not
provided. I recall with due emphasis that the only way to learn mathematics, is to do
mathematics. That tenet is the foundation of do -it-yoursell, Socratic or Texas method, the
method in which the teacher plays the role of an omniscient but largely uncommunicative
referee between the leamer and the facts.




Metric Space
1.1  Metric and Metric Space :

Let X be a non empty set of elements X,Y.Z,........ . A metric (or a distance function) is
a mapping d of X>X into R (the set of reals) satisfying the following conditions :

dix,y)=0 { non-negativeness)
d(xy)=0 e x=y (identity)

d(x.y) = d(h'.x.} (symmetry)

d(x,z) < d(x.y) + d(y.2) (triangle inequality)

A metric space consists of two aspects; a non-empty set X and a metric d on X. The
elements of X are called the points of the metric space (X.d) . Whenever it can be done
without causing confusion, we denote the metric space (X,d) by the symbol X which is used
for the underlying set of points.

One can enjoy the beauty of metric spaces if he himself tries to work out the following
examples of metric spaces, some of which are even useful in studying complex analysis and
functional analysis.

Example 1. II.,et X be an arbitrary non-empty set, and define d by
dixy)=0 - ifx=y
= 1 ifx#y
This definition yields d as a metric known as the discrete metric on X
Example 2. Let C be the se't of all complex numbers , show that the mapping
d : C x C = R defined by
d(zi, 22) = | 21-22| is a metric on R

The following two inequalities are of some use in working out some of the following
examples.

Let (X}, X2, -+ , Xp) and (11, Y2u «vene » Yo) DE WO n-tuples of real or complex numbers
.Then , ‘

L
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21?:1)’1' = [E |KLI1 ][E lYiFW . (Cauchy's inequality)
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Example 3. Let X = R " denote the set of all ordered n-tuples of real numbers for a fixed
neN. Let x = (xy, X2, ..... , Xp) and ¥ = (y1, ¥z, .- ... , ¥n). Define the mapping

n -
+[Z|y.‘|‘] , (Minkowski's ineqality)
i=I J

d:R*xR"— R by

d(xy) = [2 (x, - H;JZF

Prove that d is a metric on R" . This is called the Euclidean metric.

Example 4. Let [0,1] denote the set of all real -valued continuous functions defined in the
closed interval [0,1] . For f,g € C [0,1] define a-map p by setting

p(tg) = sup| f(x)-g(x)|, ~ xe(0.1]

Then show that p is a metric on C [0,1] . This space is called the space of continuous
functions with the Chebyshev metric.

Example 5. Let ¢ denote the set of all convergent sequence of real numbers ,

If x={x;} and y = {y;} are elements of c, we introduce the distance between the sequences x
and y by setting

plx, y) = suplx; - yi
“d

Then (c.p) is a metric space.

Example 6. Let £, (p21) be the set of sequences x = {x;} of real numbers subject to the
condition that comment . Show that £ is a metric space with a metric defined by

= | =

- P
d(113’)=[2|51 - yil 1 , X, yelp
i=1

©
1.2 Open and Closed sets in a Metric Space.

Let (X,d) be a metric space . If Xo is a point of X and r is a positive real number , the
open sphere denoted by S{xp) or S(xor) , with center x and radius r is the subset of X
defined by :

Sdxo)={ xe X : d(x,xp) = r}.




An open sphefe is also called an open ball denoted by B{xg) or B(Xy,r). An open sphere is
always non-empty , for it contains its center.

Similarly a closed sphere (or a closed ball ) is denoted and defined by
Sdxol = { xe X : d{x.%g) =1}

A subset G of the metric space X is called an open set if, given any point x in G , there exists
a positive real number r such that S{xo)< G , that is if each point of G is the center of some

_open sphere contained in G . Moreover , a subset F of X is said to be a closed set if its
complement F° , is an open set.

We are now in-a position to highlight below some of the fundamental properties of open sets
and closed sets.

Theorem 1.03 In a metric space (X,d) , prove the following .

i) The empty set ¢ and the whole space X are open sets.

ii) Every open sphere is an open set , but the converse is not necessarily true.
iii) The union of an arbit;"ary collection of open sets is open.

iv) The intersection of finite number of open sets is open, but in case of infinite intersection
the result may not be true.

v) A subset of X is open if and only if it is the union of a family of open spheres.

vi) If X is discrete , every set is open.

Theorem 1.04 In a metric space (X,d) , the following are true .

The empty set @ and the whole space X are closed sets.

Every closed sphere is a closed set , but the converse is not necessarily true.

The union of finite number of closed sets is closed, but in case of infinite union
the result may not be true.

i) The intersection of an arbitrary collection of closed sets is closed.

Every finite subset is always closed , that is, the cumplc;nunl of a finite set is
always open.

If X is discrete , every set is closed.

The following concepts are very useful in many branches of mathematics in addition to our
present work. Throughout the following , X denotes a metric space with a metric d.




Theorem 1.05. Limit Points, Derived Scts

A point xe X is called a limit point (or an accumulation point ) of a subset A of X,
if every open set G containing x contains a point of A distinct from x.

Thus x is a limit point of A iff every open set G containing x intersects A in a point different
from x , thatis , if { G\ {x}) N A # @ for all open sets G containing x.

The derived set of A , denoted by D(A) , is the set of all its limit points. The basic properties
. of derived sets are the following:

Theorem 1.06. Let (X,d) be a metric space and let A and B be the subsets of X . Then prove
the following:

i) D(®)=D
i) AcB =D(A) < D(B).
i) xeD{A) = xe D(A-{x});
iv) D(AUB) = D(A)uD(B);
v) D(ANB) c D(A) N D(B);
[show with a counter example that the equality may not hold in general]
vi) D{A)is always a closed set;
vii} A is closed if and only if D{A)CA,;
viii) - AUI{A) is a closed set;
ix) the derived set of a finite set is the null set;
x) A point xe X is a limit point of A if and only if every open sphere S,(x) contains
infinitely many points of A.
§ 1.07. Closure Points and the Closure

A point xe X is called a closure point of a subset A of X , if every open set G
containing x contains a point of A . The set of all closure points of A is called the closure of
A, and it is denoted by A or cl(A). Equivalently A is a closed superset of A which is
contained in every closed superset of A , that is, A is the smallest closed superset of A; or
equivalently A, equals the intersection of all closed supersets of A.

The following are some illuminating properties of closures.

LY

) O=;




) A=A:
i)y Ac A;

vy AcB= Ac B;

v) AuB-= AU _B_

vi) ANB © A~ B :(show with a counter example that the equality does not
hold in general)

vii))h A=A uD(A);

viii) Aisclosede A=A;

ix) AxB=AxB;
x)  The closure of a finite set is the set itself.
§ 1.08. Interior points and the Interior.

Let (X,d) be an arbitrary metric space , and let A be a subset of X . A point in A is
called an interior point of A if it is the center of some open sphere contained in A ; and the
interior of A , denoted by A° or Int(A) or A’ , is the set of all its interior points . Symbolically

A%={ x| xe A and S{x)cA for somer}

Equivalently , A° is the largest open set contained in A ; or A" is the union of all open sets
contained in A. Its basic Properties are demonstrated by the following theorem.

Theorem 1.10 Let A and B be subsets of X. Then
i) =D
i) AcB=A%B’; -
i) (AnB)”=A"B’;

ivy A"UB'c(AuU B)° ; (Exhibit a counter example to show that the equality
may not hold in general)

vi A isopeqifandon]yifﬁ“=ﬁ;
vi) A® =A°;

vie A’cAc A:

- .
viii) A = (A")




§ 1.09 Boundary Points and the Boundary:

A point in X is called a boundary point of A if each open sphere centered on the point
intersects both A and A° : and the boundary of A, denoted by b(A) or A” , is the set of all its
boundary points . This concept possesses the following properties.

Theorem 1.12 Prove
i) b{A) is a closed set ;
i) B(A)= An A°= A-A";
iii) Aisclosed < it contains its bﬂunﬂﬂl')' -
§ 1.10 Everywhere dense and nowhere dense sets : Separable spaces.

. A subset A of X is said to be dense (or everywhere dense ) if A =X . For example ,
the set Q of rationals is dense in R with respect to the usual metric . The following theorem
states the fundamental properties of a dense set.

Theorem 1.14 Let X be a metric space and A a subset of X . Then
A is dense

& the only closed superset of A is X.

«= the only open set disjoint from A is @.

& A intersects every non-empty open set.

&> A intersects every open sphere.

A subset A of a metric space is said to be nowhere dense if its closure has empty

0
interior i.e. A = ®. For example , the set N of natural numbers is nowhere dense inR . The
basic merit of a nowhere dense set can be obtained from the following theorem. ’

§ 1.11 Let X be a metric space and A a subset of X . Then
A is nowhere dense -
& A does not contain any not - empty open set
& each non - empty open set has a non-empty open subset disjoint from A

&> each non-empty open set has a non-empty open subset disjoint from A.

& each non-empty open set contains an open sphere disjoint from A.




A set A is said to be perfect if A is dense in itself and closed , i.e. if A =D(A). A
metric space X is said to be separable if X contains a countable dense subset , i.e. if there
exists a countable subset A of X such that A = X . If we consider the metric space (R.d)
where d denotes the usual metric on R , then Q is a countable dense subset of R and so (R,d)
is a separable space.

In the same spirit , we should emphasis that the Cantor set is of particular importance
in the study of many intrinsic properties of metric and topological spaces.

The Cantor Set : To construct the Cantor set, we proceed as follows:

Let Fy = [0,1]. Divide F; into three equal parts and remove the middle third open
interval I, ; = (1/3,2/3). This leaves two disjoint closed intervals J;; = [0, 1/3] and I, =
[2/3,1] each having length 1/3. Let Fi= J; . Ji5 . This completes the first stage of our
construction .We now divide the two closed intervals J, ; and J, ; into three equal parts and
remove their middle third open intervals [ | = (1/9,2/9) and 1,5 =( 7/9, 8/9). This leaves four
(ie. 2*° ) disjoint closed intervals Iy = [0,19], Jia = [2/9,1/3], Ja5 = [2/3,7/9] and
J1_4 e [E-"lg',l], each hﬂ.\"iﬂg lﬂﬂgth 1."'32 .Let Fp= JL[U 522 Lt J3|3 Lt 13\4 ¥ and Gz - lgr]U [1.2‘ In
general at the nth stage we remove 2" - | open intervals I , L;s...... , Ina".; and are left
with 2” closed intervals J,; , Ju2......, Jaa" , each having length 1/3". Let

i o ol |
LetF, = | JJox andG, = |JI.x meN)
k=1 ]

Then Cantor’s ternary set F is defined by
= N = b1l [U G, J
n=1 n=1

F is a closed set and consists of those points in the closed unit interval [0,1] which
“ultimately remain” after the removal of all the open intervals (1/3,2/3),(1/9,2/9),(7/9,8/9),
. Clearly , F contains the points : 0,1,1/3,2/3,1/9,2/9,7/9,.8/9, ..... .

Problem Set 1

Ex1: Prove that each of the following sets is a metric space with a metric indicated in each
set:

i) Let m be the set of bounded number sequences x = {x, X3, ..... } with a metric defined by
dix,y)=sup | x-vy; |, wherex={ x; } , ¥y={ ¥i | belong to m.

i) Let M[0,1] denote the set of all bounded functions x(t) of a real variable t , defined on the
segment [0,1] . Introduce the metric by setting

10




d(x,y) =sup{ | x(t)-y(t) | } te[0,1].
iii). The set M[0,1] of bounded measurable functions with a suitable metric to be defined by

YO

Ex 2: Let X be a metric space , let x be a point of X , and let r be a positive real number .
Give an example to show that the closure of S,{x) is not necessarily equal to Sx] .

Ex 3 : Let X be a metric space , and let A be a subset of X . If x is a limit point of A , show
that each open sphere centered on x contains an infinite number of distinct points of A
. Use this result to show that a finite subset of X is closed.

Ex 4: Show that a subset of a metric space is bounded < it is non-empty and is contained in
some closed sphere.

Ex 5: Describe the intenior of the Cantor set.

Ex 6 : Describe the boundary of each of the following subsets of the real line : the integers ,
the rationals, [0,1],(0,1). Do the same for cach of the following of the complex plane :

{z:lZ<1}; {z:jd=1}; {z:U(z) > 0}.

11




CONVERGENCE , COMPLETENESS AND BAIRE’S THEOREM:

One of our main aims in considering metric spaces is to study convergent sequences in
a context more general than that of classical analysis. The fruits of this study are many , and
among them is the added insight gained into ordinary convergence as it is used in analysis.
Moreover , this chapter highlights two important theorems , viz. Cantor’s Intersection
Theorem and Baire’s Category Theorem which crop up from time to time as an indispensable
tool.

§ 2.01 : The Cauchy Sequence or the Fundamental Sequence

Let X be a metric space with'a metric d , and let {Xa} = {Xi, X2,...s Xayoooin} e 2
sequence of points in X . We say that { x,} is a Canchy sequence or a fnndmnental
sequence if for each £ > 0 , there exists a positive integer np suchthatm,n2ng= d(Xm.Xn)
< ¢ . For example , the sequence {1,1/2,1/3, ....., I/n, ...} is a Cauchy sequence in X = (0,1]
with the usual metric.

§2.02 : Convergent sequence :

We say that the sequence {x, } is convergent if there exists a point x in X such that
either

iy for each & > 0, there exists a positive integer ng such that n 2 np = d (X,Xg) <€ ; Or
equivalently

ii) for each open sphere S, (x) centered on x , there exists a positive integer np such that Xp 15
‘in 5, (x)foralln=ng.

The point x is called the limit of the convergent sequence {X,}, and we usually symbolize this
by writing x, = x. :

§ 2.03 Complete metric space :

A metric space (X,d) is said to be complete if every Cauchy sequence in it is’
convergent . For example the Euclidean space (R" d) with the usual metric is a complete
metric space .

The following theorem is illuminating , but can be proved easily.

§ 2.04 .. Let (X,d) be a metric space . Then

i) aCauchy sequence is not necessarily convergent;

i) aconvergent sequence is Cauchy , and has a unique limit;

iiiy a Cauchy sequence is convergent <> it has a convergent sub-sequence ;
]
iv) If a convergent sequence in a metric space has infinitely many distinct points , then its
limit is a limit point of the set of points of the sequence ;




v) if {X,} and {ya} are sequences in X such that x,— x and y, — y then d(x, , ya)— d(X,y) ;
vi) if yis a fixed pointin X, x,— X, in X then d(x, .y) = dix,y).

Problem 2.05 : Let (X,d) be a complete metric space , and let Y be a subset of X. Prove that
Y is complete if and only if Y is closed. Use the result to examine if each of the following
sets in R is complete.

The set of natural numbers;

The set of irrationals ;

Y ={1,1/2,1/3, ....., I, ...} .
Solution : First part

We assume first that Y is complete as a subspace of X , and we will show that it is
closed .Y will be closed if we can show that it contains all its limit points.

Let y be a limit pointof Y .
= for each positive integer n , the open sphere S,,(y) contains a point ¥, in Y ,
= ¥n € Sinly) -
= d(y, Ya) < I/n
=y yinX
= {ya} is a Cauchy sequence in X.
=+ {¥n}is a Cauchy sequence in Y ,.hecausc YocXandy, €Y,V n.
= {ya} is convergent in Y , because Y is complete.
=y, yinY.
=vye Y. i
Thus , Y contains all its limit points :md s0 Y is closed.
Conversely , we assume that Y is closed. We need to show that it is cmnplgtc.
Let {va} be a Cauchy sequence in Y.
= {yn} is a Cauchy sequence in X.
= ¥a—> x in X, because X is complete .

We now want to show that x is in Y . If {y,} has only finitely many distinct points then
(¥a} must be of the form [y, ¥2,----. ¥a, X, X,-...} where x is infinitely repeated . Sox € Y. On

13




the other hand , if {y,} has infinitely many distinct points , then by theorem 2.04 (iv) , x is a
limit point of the set of points of the sequence . Since Y contains this set , and moreover ,
since ACB =D(A) < ID(B), x is a limit point of Y. Because Y is closed , it follows that x
Y . This leads Y to be complete.

Second part
DN={123,...... Y
Since DIN) =@, I_\I=N,hcnc¢hyﬂ1eah0vcmullNismmp]ew,
i) Q°= the set of irrationals .
Wo know that Q° =3 , sad s0 Q° i not closed . Thersfiore , by the above theoren O ia
not complete.
i) A ={1,1/2,173, ..., Un, ...} .
We know , 0 is the only limit point of A (prove!) , and so D(A) = {0}
Thus A=AUD(A)=A U {0} 2A.
Hence , A is not closed and so by the above result A is not complete.

A sequence {A,} of subsets of a metric space is called a decreasing sequence or a
nested sequence if

Ao Ao Ao ...

The Cantor’s Intersection Theorem gives conditions under which the intersection of
such a sequence is non-empty.

Preblem 2.06 Prove Cantor’s Intersection Theorem : Let X be a complete metric space , and
let {F,} be a decreasing sequence of non-empty closed subsets of X such that 5(F,)—0 as

n—eo. Then F = n F, contains exactly one point. Here 8(F,) = sup {d(x¥): x,¥ € F,}.

n=1

Give an example to show that the set F in the above theorem may be empty if the hypothesis
&(F,)—0 is dropped.

Solution: Let X be a complete metric space . For each n , we choose x,eF, . Since 8(F,)—0,
for every £ > (), there exists a positive integer my such that 8(F,) < €. Again, since <F,> is
decreasing we have :

n,m=my=F,, F,C Fan
= X.,I.“E Fmﬂ = d{xlnxm]{E

= {x,} is a Cauchy sequence . = x, — X, forsome xpe X.

14




We assert that xp ﬂ F, .

n=1
To prove this, let mge N be arbitrary . Then

n>mg=>x, € F,, ,becausex, e Foandn>my = F,C F, .

Now if {x,} has only finitely many distinct points then x, is that point infinitely repeated, and
is, therefore in F,, comment . If {x,}has infinitely many distinct points , then x; is a limit
point of the set of points of the sequence . This means that x, is a limit point of the subset {x,
: n = myg} of the set of points of the sequence . Since the set {x, : n 2 my} is contained in
Fu, , because F,, isclosed.

To show uniqueness , let there be another point X € ﬂFn .

n=|

Then d(xg,xo ) < 8(F,) for every n.

Therefore , d(xe,xo ) = 0, since 8(F,)—0 as n— hence xo= X, and so (Fa = {x0}-

n=1
Second Part : Consider the real line with the usual metric .

Let Fy={123,.c.., ...}

Then F]_ jF] :!F3 = seassnas o e .

and &(F,)— = as n—ye=,
But [JF, =@.
n=|

Definition 2.07 : Let X be a metric space . A set A < X is said to be of the first category if A
is the union of a countable family of nowhere dense sets. If A is not of the first category , it is
said to be of the second category. )

Problem 2.08: Show that the set of rational numbers is of first category.

15




Solution ; Since the set Q of rational numbers is countable , it can be represented as

Q = {31, Ryucins Kagnunids
Write, A; =[x}, Az={x2}, ..... , Ag= i, (5

Now foreachne N, A,? =@, and s0 A,'s are nowhere dense sets. Now , Q = {A;} and 15
therefore , of the first category.

The following theorem , known as the Baire Category theorem , is important in the
sense that a complete metric space can't be covered by any sequence of nowhere dense sets.

Theorem 2.09 : Every complete metric space is of the second category as a subset of itself.

Proof : Let (X,d) be a complete metric space . We need to show that X is of the second
category.

Suppose , if possible , X is of first category , so that X is the union of a sequence {Aq)
of nowhere dense sets . Since X is open and A, is nowhere dense , there is an open sphere S,
of radius less than 1 which is disjoint from A; . Let F, be the concentric closed sphere whose
radius is one half of that of S, , and consider its interior . Since A; is nowhere dense , int(F;)
contains an open sphere S; of radius less than % which is disjoint from A; .Let F; be the
concentric closed sphere whose radius is one half of that of S;, and consider its interior.
Since A; is nowhere dense , int{F,) contains an open sphere S; of radius less than % which is
disjoint from A; . Let F; be the concentric closed sphere whose radius is one half of that of S;
. Continuing in this way , we get a decreasing sequence {F,} of non-empty closed subsets of
X such that 8(F,)—0. Since X is complete , Cantor's Intersection theorem guarantees that
there exists a point x in X+which is in all the F;’s. This point is clearly in all the Sy’s , and
therefore, (since S, is disjoint from A,), it is not in any of the A;'s . This is a contradiction .
Consequently , X must be of the second category.

Problem Set 2
Ex 1 prove that

-1 if a comn'=tc metric space is the union of a sequence of its subsets , Then the closure of at
least one set in the sequence must have non-empty interior .

b) If {A,} is a sequence of nowhere dense sets in a complete metric space X, then there
exists a point in X which is not in any of the A,'s.

- Ex 2 Is the set of irrational numbers a set of second category?
Ex 3 Show that the Cantor set is nowhere dense.
Ex 4 Show that a closed set is nowhere dense < its complement is everywhere dense.

Ex 5 Explain in details why the set of complex numbers is of second category.

16




CONTINUOUS MAPPINGS

INTRODUCTION :

The central theme of analysis is that of a continuous function . The continuity of a
function f at a pnmx X in a2 metric space is a local property , and the continuity at a point is of
interest primarily in analysis. In topms dealing with more primitive mathematical structure
such as topological structures , one is interested only in functions which are continuous at
every point of the domain of definition. This chapter is primarily concerned with some
intrinsic resylts of continuous mappings and uniformly continuous mappings .

§ 3.01 Definition : Let (X,d;) and (Y,d;) be two metric spaces and f : (X.d;)—=(Y,d2), a
mapping of X into Y . f is said to be continuous at a point X in X if either of the following
equivalent conditions is satisfied :

i) foreache> 0 there exists 6 > 0 such that d,(x, xo) <8 = da(f(x), fixp)) <€ :

i) for each open sphere S (f(xg)) centered on f(xo) there exists an open sphere 5,(xp) centered
on Xy such that

f(Ss(x0)) = S.(f(x0)).

If f is continuous at every point in the space X , then we say , f is continuous ( on the whole
space) . In general, & depends both on xp and & . However, if & works uniformly over the
entire space X in the sense that it does not depend on xg , f is said to be uniformly continuous
on X . The formal definition is :

§ 3.02 Definition : A mapping f of X into Y is said to be uniformly continuous if for each € >
0 there exists & > 0 such that dy(x;, x2) < 8§ = dafix;), f(x2)} < € . It is clear that any
uniformly continuous mapping is automatically continuous.

3.3 Problem : Explain the notions : ‘continuity’ and *uniform continuity’ in metric spaces .
Examine these with each of the following functions :

ity FR—-R, f(x)=>5x, xe R,

i) ZR-R, gx)=x*+1,xeR, )

i) h: (0,1)—= R, hix}=1/x, xe (0,1}

iv) ®:(0,1)»R, &(x)=1/2x), x e (0,1),
v ¥:(0,)=R, W(x)=sin(l/x),x € (0,1).

S-ulutmn (i):Let xo be chosen arbitrarily, and after choice we keep it fixed. Let € be any
arbitrary positive quantity. We consider the real line R with the usual metric.
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Now | f(x)-f(x,)} xe R(Domain)
=| 5x -5x, |
=5 x-x, |

<& whenever0<3andd>|x-x, |

<E whr:re,ﬂ‘-:ﬁ*_:% L e L L)

Thus |x—xg[<8=s|f(x)-f(xy)|<e.

Hence f is continuous at x . Since Xxo was arbitrary, it follows that f is continuous at every
point of R.

(1) reveals that & depends only on € , but not on xo and therefore , f is uniformly continuous
on its domain 3. '

(ii) Here , |g(x) - glxo)| = | x> + 1 - 11} 1|=|x-xo| | x + xol = x - xo||x Xo+2xdS  |x-
xol (| x - xo] +2 [ %0 )

<8(3+2|x)) , whenever 0<dandd> |x - x|
<e, where ,0<8<- [xo| + (xg° +€)"° e (2
Thus, | x - Xoj< 8 = [g(x) - g(x0)| < &.

Hence g is continuous at Xp . Since Xo was arbitrary , it follows that g is continuous at every
point of R (domain space).

From the relation (2) , it is evident that g depends both on xp and &, and therefore, g is not
uniformly continuous .

Wc recall that a subset M of a metric space ( X, d ) is compact if every sequmtct: in M
has, a sub-sequence convergent to a point of M.

Note:

i) If the domain space is a bounded closed interval [ ab ], then g is uniformly continuous
because of the fact that [a,b] is a compact set.

ii) In analysis , there are other standard methods in order to examine the uniform continuity
of the functions given in the problem.

iii) the rest of the given mappings are lefi as exercise for the students.

We provide some fundamental theorems below , the first one expresses CUI'ILII!I]]'E)’ at a point
in terms of sequences which converges to the point.

Theorem 3.04 Let X and Y be metric spaces and f a mapping of X into Y . Prove that f is
continuous at xg if and only if x, —»xp =f(xs )—2f(x0 ).
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Proof : We first assume that f is continuous at xp . If {x,} is a sequence in X such that
Xn —*Xp , we must show that f(x, }—fi{xg ). Let S fixo) be an arbitrary open sphere centered on
f(xo) and with radius € > 0 . By our assumption , there exists an open sphere S,(xg) centered
on X such that f{S,(xo)) < S f(xo) . Since x, —xp , there exists a positive integer no such that
n2np=> X, € S;(xo) = fixy ) € £ (S, (xp))

= f(x, )e Sf(xg) ( because f(5,(x0)) < S.f(xo) ).
Thus , for £ >0, 3 a positive integer ng such that n = ny

. = f(xn e 5f(xo) =M(x5 )—f(x0).

Conversely , let us assume that x, —xg =f(x,; )—=1(x0 ). We are to show that f is continuous at
Xo . Suppose , if possible , f is not continuous at xo . Then there exists an open sphere S f(xo)
with the property that the image under f of each open sphere centered on xg is not contained in
it . Consider the sequence of open spheres 5,(xg), Si2(Xao), -.... Sim(Xo), -... . Form a sequence
{xa) such that x, € Syu(Xo) and f(x,) & S,f(xo). This yields that x, —xo but f(x, ) does not
converge to f(xg ) which is a contradiction to our assumption . So our desired result must be
true.

Corollary 3.05 : Let X and Y be metric spaces and f a mapping of X into Y . Then f is
continuous if and only if x, —x =f(x, )—f(x ) for any x in X.

The proof of the following theorem can be obtained from any standard book on metric
spaces, and hence they are left for the readers.

Theorem 3.06 : Let X and Y be metric spaces and f a mapping of X into Y. Prove
i) fiscontinuous & f  (G) is open in X whenever G is open in Y.
ii) fiscontinuous ¢>f (F) is closed in X whenever Fisclosed in Y.
iii) f is continuous < f( A) = T(A) for every subset A of X.

Problem 3.07 : Let X and Y be metric spaces and A a non-empty subset of X . If f and g are
continuous mappings of X into Y such that f(x) = g(x) for every x in A , show that fix) =

g(x) foreveryxin A.

Proof : We first show that ifx € A, then there is a sequence {x,} in A such that x, —x.
Since xe A, foreachne N , the open sphere S,4(x) contains a point X, € A. Thus , x, €
Sin(@.n=123,.......

=d(X,,x)<l/n—>0asn— e = X, X

Now, fixs) = g(x.) . V=123, ....... . because x,"s are in A .

= lim f(x,) = lim g(x,)
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= f( lim (x,)) = g( lim (x,,)), because f and g are continuous .= f(x) =g(x) , V x € A.
e fi—bsa

Problem 3.08 : Prove that the image of a Cauchy sequence under a uniformly continuous
mapping is again a Cauchy sequence.

Proof : Let f: ( X, d;) =( Y, d3) be a uniformly continuous mapping . Let {x,} be a Cauchy
sequence in X . We show that {f(x.,)} is a Cauchy sequence in Y . Let € > 0 be given . Now , f
is given to be uniformly continuous , and so for £>0,3 5> 0 such that d;(x, x) < &=
dy(f(x) , f(ix') <e, x.x'e X ....(I) Since {x,} is a Cauchy sequence , for &> 0 3 a positive
number ng such that

mn = np = di(Xa , Xm) <& => do( f(xa) , f(xm)) < €,  [applying (D]
The above result ensures that
{f(x, )i isaCauchy sequenceinY .

Problem 3.09 : Let f be a continuous real function defined on R which satisfies the function
f(x + y)= f(x) + f(y) . Show that this function must have the form f(x)=mx, for some real
number m.

Solution : Itis given that fi(x + v)=fi(x) + f(y) . Vx,y eR = (L)
.Put x=0=y in(l) .
Then f(0) = {0} + f{0) = f{0) + 0= f(lﬂ) +f(0) = f(0) =0 ( by the left cancellation law in
: the additive group of real numbers) (2)
Next,Put y=-x in(l)
Then, f(0)=f(x - x) = f( x +H{(-x)) = fi(x) + f(- x)
= 0= f(x) + f(- x), ( by involving the result (2) )
=fl-x)=-f(x) N - |

Case (I) : Let x be a positive integer

Thenfix)=f(1 +1 + L+ ... +1)= f1) + f() + ... + f(1) , [thanks to (1))

Efimes xtimes
=xf()=mx, wherem=f1)
So , the result is true if x is a positive integer.

Case (IT) Let x be a negative integer . Put x = -y where y is a positive integer.

Now, fix)=f(-y)=-f(y) [by appealing to (3)]




=— ft‘{]] as in the case (1)
=mx where m=f(1) Hence the result is true if x is a negative integer.

Case (ITI}) Let x be a rational number.

Put
x=E£, q > {isa positive integer
q
= p=qx

= f(p) = f(gx) .

= mp = f(x + x + --x) left hand side result is due to case (T) and case(II}
q times

= mp = qf(x), [owing to (1)]

= f(x) = mx.

Hence the result is true if x is rational.

Case IV Let x be an irrational . Then there exists a sequence {X;} of rationals such that
XX,

Now, by the case (III),
f(x,) = mx,, forallne N
= lim f(xn} = lim (mx,)
e L ]
= f[lim xn] = mx becausef is continuous.

i —pma
= f(x) = mx.

Thus, the proof is complete for all reals of x.

Uniformly continuous mappings — as opposed to those which are merely continuous
‘— are of particular significance in analysis. The following theorem expresses a property of
these mappings which is often useful .

Theorem 3.10: Let X be a metric space , let Y be a complete metric space, and let A be dense
subspace of X . If f is uniformly continuous mapping of A into Y , then f can be extended

uniquely to a uniformly continuous mapping g of X into Y.

Proof :

£
Xd) T (V)
' ;

@

21




f(x)=g(x), forall xeA

If A=X, the conclusion is obvious, because by putting f=g we get the required result. We
therefore assume that A=X . We begin by showing how to define the mapping g . If x is a
point in A, we define g(x) to be f(x). Now let x be a point in X—A . Since A is dense, x is
the limit of a convergent sequence {a,} in A. Since a, is a Cauchy sequence and fis
uniformly continuous , {f(a,)} is a Cauchy sequence in Y , by problem 3.08. Since Y is
complete, there exists a point in ¥ — we call this point g(x) — such that f(a,)—>g(x). We must
make sure that g(x) depends only on x, and not on the sequence {a,}. To show this, let {by}
be another sequence in A such that b,—x. Then d;(2,by)—di(x,x)=0, and by the uniform

continuity of f, dx(f(a,),f(by)) —0.
Thus, '
lim 4,0} £6,) = 0

= dyf lim (2, 1 16,)) = 0

= dz[[g{x} JI_:L f[hn})] =0

= nli-?l flb,) = g(x) becaused, is a metric.
We next show that g is uniformly continuous. Let € >0 be given, and use ﬂ'u: uniform
continuity of f to find & > 0 such that for aand a’ in A.

We have di(a") < 8 =>d(fa).faD)<E.

Let x and x’ be any points in X such that d;(x,x")< 8 . It suffices to show that d(g(x),g(x"))<
e. Let {a,} and {a,’ }be sequence in A such that a,—x and a,"—x’. By the triangle inequality,
we see that d;(aq,a,") < diag,x+ di(x,x)+ di(x".,a,"). This inequality, together with the facts
that di(asx) =0, di(x,x)<d, and di(x’.a") —=0 implies that dx(f(a,), f{a,") )< € for all
sufficiently large n.

Now dy(g(x) g(x) = lim d,(¢(a, ) £(a3))

< £ by the above result
Hence, di(x.x)<8 = dz(g(x), g(x") )<
=» g is uniformly continuous.
Finally we want to show that g is unique.
Suppose f has two extensions g and g’
Then, f(x)=g(x)=g'(x) for all xe A.
Then by problem 3.07,
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g(x)=g'(x), forall xe A.
= g(x)=g'(x), forallxe X =>g=g  Thus fhas a unique extension.

Suppose that X is an arbitrary non-empty set , and consider the set L of all real
functions defined on X. It is clear that L is a real linear space with respect to the standard
operations of addition and scalar multiplication of functions. We now restrict ourselves to the
subset B consisting of the bounded functions in L, B is obviously a linear subspace of L, so
it is a linear space in its own right.

We next assume the underlying set X is a metric space . This enables us to consider
the possible continuity of functions defined on X . We define C (X, R) to be the subset of B
which consist of continuous functions . C (X, R) is thus the set of all bounded continuous real
functions defined on the metric space X, and it is non-empty. The following is an
enlightening result.

Theorem 3.11: Prove that C (X, R) is a closed subset of the metric space B.

Proof : Let f be a function in B which is in the closure of C (X, R) . We show that f is
continuous , and therefore in C (X, R) , by showing that it is continuous at an arbitrary point
%p in X . Since a set which equals its closure is closed, this will suffice to prove the lemma.
Let d be the metric on X , and let € > 0 be given. Since f is in the closure of C (X, R), there
exists a function fy in C (X, R) such that d(f, fo) <&/3, from which it follows that | f(x) -
fo(x)| < /3 for every point x in X . Since fp is continuous , and hence continuous at xg, we
can find a & > 0 such that '

d (x,%0) < 8= | fo(x) - fi(xo)| =| f(x) - fo(x) + fo(x) - folxo)+ fo(xo) - f(x0)]
< | f(x) - fo(x)b | folx) - fo(xo)}+ | folxo) - F(xo)
< ER+eF+ef3=¢
Hence , C (X, R) is a closed subset of B.

Note: C (X, R) plays an important role in many branches , particularly in functional analysis
and Housdroff spaces. We will discuss later some more exciting results on this space.

PROBLEM SET 3

Ex 1A map f: (X d;)— (Y,d) is said to be an open ( a closed map ) if the image of every
open set (closed set ) in X is open (closed) in Y . Give an example of

a continuous map which is not open and closed,;
an open map which is not continuous;
a closed map which is not continuous;

Ex2If f is not continuous in theorem 3.04 , construct a sequence {x,} such that x, —
Xp may not imply f(x,) — f(xg).
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Ex 3 Refer to problem 3.08 . Show with an example that the image of a Cauchy sequence
under an ordinary continuous mapping may not be a Cauchy sequence.

Ex 4 Can we extend the problem 3.09 to the n dimensional Euclidean space R" ?

Ex 5 Produce a counter example to show that the result in theorem 3.10 may not be true if
is not uniformly continuous .

Ex 6 Let X be a metric space with metric d , and let xg be a fixed point in X . Show that the
real function f, defined on X by f, = d(x,xo) is continuous . Is it uniformly

continuous ?

Ex 7 Cunstmct a sequence of continuous functions defined on [0,1] which converges
pointwise but not uniformly to a continuous limit .

Ex 8 Construct a sequence of continuous functions defined on [0,1] which converges
pointwise to a discontinuous limit.

Ex 9 Let X and Y be metric spaces with metrics d; ,d» and let {f,} be a sequence of mappings
of X into Y which converges pointwise to a mapping f of X into Y , in the sense that
fu(x) = fix) for each x in X . Define what ought to be meant by the statement that f;
converges uniformly to f, and prove that under this assumption f is continuous if each f,
is continuous.
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UNIT 2

TOPOLOGICAL SPACES
FUNDAMENTAL CONCEPTS AND RESULTS

bl

Introduction :

This chapter is devoted primarily to explain the concept of a general topological space
and some elementary results in order to lay down a solid foundation so that its walls and
beams should be firmly and truly placed , and each part should bear a meaningful relation to
every other part. We wish initially to highlight some prominent ingredients like bases,
subbases, countable spaces, separable spaces etc which play important role in ther basic
theory of topological spaces. We shall also develop the point of view that there is a constant
illuminating interplay between the structure of these spaces and the properties of the
continuous functions which they carry. .

Definition 4.01 Let X be a non-empty set . A class T of subsets of X is called a topology on
X if it satisfies the following three conditions :

t;) ®e T, XeT, that is , the empty set and the whole space belong to T;
t;) If Ae T and Be T, then AnBe T, that is the intersection of two sets in T belongs to T;

ts) If A,e T for every Ae A, A being an arbitrary index set , then | Ja, e T, i.. the union of
Aed >
everyclassof setsinTisasetin T.

A topology on X is thus a class of subsets of X which is closed under the formation of
arbitrary unions and finite intersections . A topological space consists of two objects : a non -
empty set X and a topology T on X . The sets in the class T are called the open sets of the
topoogical space (X,T) and the elements of X are called its points. The complement of an
open set is called a closed set . We often encounter another concept - a metrizable space
which is defined to be a topological space X with the property that there exists at least one
metric on the set X whose class of generated open sets is precisely the given topology . A
metrizable space is thus a topological space which is so far as its open sets are concerned ,
essentially a metric space . Please note that a metric space is always made to be a topological
space , but a topological space may not be a metrizable space.

4.2 Examples of topological spaces:

Given a non-empty set X , we always have two obvious topology on X, namely the
indiscrete topology and the discrete topology . The students are strongly advised to carry out
the detailed proof of the following examples in order to acquire the very concrete and
comprehensive idea about the concept of topology. ;

Examplel. Let X be a non-empty set and 1= {® , X } . Then I is a topology on X known as
the indiscrete topology on X ,and (X,I) is called an indiscrete topological space.

Example 2. Let D consists of all subsets of X . Then (X,D) is a topological space known as a
discrete topological space with the discrete topology D.
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Example 3. Let T be the collection of all those subsets of X whose complements are finite
together with the empty set . Then T is a topology on X called the co-finite topology or the
finite complement topology . This is a very ideal example which may be demonstrated as a
counter example to disprove many tGpaIngu:al results.

Example 4. Let U be the collection of all those subsets G of R (the set of reals) having the
property that to each xe G there exists an open interval I, such that xe I;[p,q)=G . Then U is
a topology on R called the usual topology on R.

Example 5. Let R be the set of all real numbers and let S consists of subsets of R defined as
follows :

a) de S,

b) a non-empty subset G of R belongs to S if to each x €G there exists a right half open
interval [p,q), where p, g € R, p < q such that xe[p,q) ©G. Then § is a topology on R
termed as the lower limit topology on R.

Example 6. Let T be the class of subsets of N (the set of all natural numbers) consisting of
the empty set and all subsets of N of the form

As={nn+ln+2,......},ne N.
Then T is a topology on N.

Some complicated examples will be percolated through time to time in later chapters ,
particularly in the ‘separation chapter’ to produce counter examples . Exciting examples may
be formulated with the aid of measure theoretic concepts.

Definition 4.03 : Let (X.T) be a topological space and let Y be subset of X . Then T-relative
topology on Y is the collection T™ given by

T'={GNY|Ge T}

The topological space ( Y, T" ) is called a subspace of ( X,T ). A property of a topological
space is said to be hereditary if every subspace of the space has that property.

Definition 4.04 : Let X and Y be topological spaces , and f a mapping of X into Y .f is called
a continuous mapping if f '(G) is open in X whenever G is open in Y , and an open mapping
if f(G) is open in Y whenever G is open in X . A mapping is continuous if it pulls open sets
back to open sets, and open if it carries open sets over to open sets . Any image f(X) of a
topological space X under a continuous mapping [ is called a continuous image of X.

A homeomorphism is a one-to- one continucus mapping of one topological space onto
another which is also an open mapping. Two topological spaces X and Y are said to be
homeomorphic if there exists a homeomorphism of X onto Y (and in this case, Y is called the
homeomorphic image of X) If X and Y are homeomorphic , then their points can be put into
one-to -one correspondence in such a way that their open sets also correspond to one another.
The two spaces therefore differ only in the nature of their points, and can from the point of
view of topology, be considered essentially identical. A topological property is a property




which, -if possessed by a topological space X, is also possessed by every homeomorphic
image of X. The subject of “topology’ can now be defined as the study of all topological

properties of topological spaces.
Note: The concepts, ‘the closure of a set *, “the derived set’, ‘the interior of a set’, * the
boundary of a set’, nowhere dense sets, everywhere dense sets efc. in a topological space can
be extended smoothly from these concepts in a metric space, and their fundamental properties
are similar to those discussed in metric spaces.

Some elementary results are now in order.
Problem 4.05 Let X be a non-empty set , Then
i). Arbitrary intersection of topologies on X is a topologyon X ;

ii) The union of two topologies may not be a topology on X ; however the result is true if one
topology is weaker than the other;

iii) any intersection of closed sets in X is closed and any finite union of closed sets in X is
closed.

Proofs are routine , and so, left for the readers.

Problem 4.06 Show that a subset of a topological space is dense <> it intersects every non-
empty open sets.

Solution : Let (X,T) be a topological space ,and let Ac X..
Now, A is nowhere dense < A =X ( i.e. each point of X is a closure point of A )
«+ The only closed superset of A is X
citlmn_rnly open set disjoint from A is .
<> A intersects every nonempty open set.
Problem 4.07 : Let X be a topological space A an arbitrary subset of X . Then prove that
i) int(A%= A€, (c denotes the complement of a set )
iy A= { x|each neighbourhood of x intersects A}
Solution
i) xeint(A°)e< xe A°and there exists an open set G, containing x such that G, < A°
+> X is not a closure point of A .

e xe A°,therefore int (A% = A°
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ii) we begin by proving that A is contained in the given set ( the set on the right ) by
showing that any point not in the given sét is not in A . Let x be a point with a
neighbourhood which does not intersect A. Then the complement of this neighbourhood
is a closed superset of A which does not contain x, and since A is the intersection of all
closed supersets of A , x is not in A. In the same way , it can easily be shown that A
contains the given set. -

Problem 4.08 : Show that
i) asubsetofa topological space is closed < it contains its boundary ;
ii) asubsetofa m;m]dgical space has empty boundary ¢ it is both open and closed.
Solution
i) Let A be a subset of a topological space X.
Let A be closed.
=A= A
Then,b(A)= Arn A°=An A° (since A= A)
CA
Thus , if A is closed then b(A) :; A, i.e. A contains its boundary.
Conversely, let b{A) C A , we are to show that A is closed , i.e. A= A
Now,b(AJcA= An ACA  eeeeee M

Suppose, if possible, A is strictly superset of A , that is there is at least one point x € A
such that x¢ A . Then x € A°. So, every open set G, containing x intersects both A and A°
and therefore, x € b(A) . By (1), x € A which is a contradiction . Hence , we must
have A=A .So, A is closed.

i) We first assume that b(A) = ® . We are to show that A is both open and closed.

bA)=® =~ AN A= L. )

Ifx € A issuchthat x¢ A, then x € A® . So, in that case , every open set Gy containing x
intersects both A and A° and therefore, x € b(A) which is a contradiction to (2). So, such an x
can’t exist . This implies that A = A ie. A is closed . Similarly , we can show that A® is
closed . Thus both A and A° are closed , and hence both A and A° are open.

Conversely , let A be both open and closed . To show that b{A) =P .
Nowb(A)= A A°=AnNA° (since A=A, A° =A%)

= .




Problem 4.09 :
i) Show that the boundary of a c[oséd set is nowhere dense . Is it true for an arbitrary set 7
i) Show that the Cantor set is nowhere dense.
Solution
i) Let A be closed subset of a topological space (X.,T)
Aisclosed = A=A

Now,b(A)= An A°=An A"
b(A) is a closed set and so b(A) = b(A).
Let x be an interior point of b(A) . Tﬁan there exists an open set Gy such that

xe Gigh(A)c A .....(I) (because A is closed and hence b(A) C A, by problem 4.081 )
but x € b(A) and hence G, must intersect both A and A”. ........(II)
(1) and (1) are contradictory statements , and hence the interior of b(A) must be empty .
So, b(A) is nowhere dense.

However , the result may not be true for an arbitrary set . For example , consider the
real line R with the co-finite topology .

Let A = Q, the set of all rationals.
Thenb( Q)= Qn Q°=RAR=R.

again , int(b(Q)) = int (R ) = R , because R is both open and closed. So, b(Q) is not nowhere
dense. .

Let I' be the contor set . " is closed and so T'=T" contains only specific rotational points in

[0,1] . If xeT" and G, is an open set containing x. Then the structure of an open set in the

. usual topology on R implies that G, contains infinite number of irrationals in [0,1]. Hence, Gy

can't be contained in I'. Thus no point of T is an interior point of I" . This means that
[°=I'=. Hence T is a nowhere dense set.

Definition 4.10 Local base at a point

Let (X,T) be a topological space. A non-empty collection B(x) of open set containing
x € X is called a local base at the point x if for every open set G containing x, there exists a
set B in B(x) such that BcG.

Example : Let X={abc,de} and let T={ ¢,{a},{a,b},{a,c,d}.{a,b,c,d},[abe},X}. Then a
local base at each of the points a,b,c,d,e is given by
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Ba={{a}), B(b)={{ab}}). Blc)={{abc}}, Bd)={{acd)}). Be)=({abe}).
We may, however, define other local bases at these points. For example, the collection
{{a}.{a,b}} forms a local base at a. '

Definition 4.11 A topological space is said to be a first countable space if each point of X
possesses a countable local base.

Example : A discrete space (X,D) is first countable. For , in a discrete space, every subset of
X is open. In particular, each singleton (x}, x€X is open and so in a neighbourhood of x.
Also every neighbourhood N (i.e. open set containing X in this case) of x must be a superset
of {x}. Hence, the collection {{x}] constituting of the single neighbourhood {x} of X
constitutes a local base at x. But a collection consisting of a single member is countable.
Hence there exists a countable base at each point of X.

Definition 4.12 Base for a topology

Let (X,T) be a topological space. A collection B of subsets of X is said to form a base
{or an'open base ) for T if

0] BT
(i)  for each point xe X and each open set G containing x there exits a member
Bep such that xe B <G.

Example : Consider the usual topology U for R . Let B be the collection for all open intervals
onR . Then Bisa base for U, because

(i)  each open interval is U-open so that BcU, and °

(ii)  foreach x eR and each open set G containing x , there exists an open interval
{a,b) such that xe (a,b) c G.

Definition 4.13 A topological space (X,T) is said to be a second countable space if there
exists a countable base for T.

For example, (R,U) is a second countable space. A space (X,T) is said to be separable if there
exists a countable dense subset of X. For example, the set of rationals is a countable dense
subset of R , and s0 R is separable.

Theorem 4.14 : Let (X.T) be a topological space. Prove that s sub-collection p of T is a base
for T iff every open set can be expressed as the union of sets 3.

Proof :

The only if part : Let P be a base for T and let G € T. Let H=U{B: Be f} and BcG}, that is,
let H be the union of all subsets in B which are contained in G and let xe G. Since G is open
and P is a base, by definition of a base there exists a set B in B such that xe BCG.




Since BcH, it follows that xe H.

Hence GcH AU W |
Also if xe H, then xe B forsome Bep

Hence HEG PPRONE T
(1} and (2) together imply G=H.
This shows that every open set can be expressed as the union of sets in .

The if part Here BcT ami]eteverynpensetﬁheﬂrumonﬂfsetsmﬂ We have to show
that B is a base for T Wchave.

(i) BcT ({given)

(ii) LetxeX and let G be any open set containing x. But G is the union of sets in
. Hence there exists aset B in B such that xe BoG. Thus B is base for T.

Theorem 4.15 Let X be a non-empty set and let p be a collection of subsets of X. Then prove
that fl is a base for a unique topology on X if and only if it satisfies the following conditions.

i) X=U(B|BeP},

(ii) chverypmrnfsets By, B; inf} , and every point xe B;ﬁBz,ﬂlﬂtﬂlﬂsaB
€ P such that xe B By~Ba.

Proof : Straightforward , and so, left for the readers.

Definition 4.16 Let (X, T) be a topological space. A class ¥ of subsets of X is called a
subbase for T if finite intersections for sets in Y form a base for T . It follows that y is a
subbase for T iff every open set is the union of finite intersections of sets in .

Example :Consider the space (R,U). Let y={(-==,b) or (a,==} |baeR }. Then v is a subbase for
U, because the collection of all finite intersections of ¥ contains all open intervals (ab)
which form a base for U .

The following theorem is simple but many pleasant applications.

Theorem 4.17 : Let X be a non-empty set, and let S be an arbitrary class of subsets of X.
Prove that S can serve as an (open) subbase for a unique topology on X.

Proof : If S is empty, then the class of all finite intersections of its set is the single-element
class {X}, and the class of all unions of sets in the class is the two element class {¢, x} .
which is the discrete topology on X. Next, assume that S is non-empty. Let P be the class of
all finite intersections of sets in S, and let T be the class of all unions of sets on . We must
show that T is a topology. T clearly contains & and x , and is closed under the formation of
arbitrary unions. All that remains is to show that if {G,,G.,......., G, }is a non-empty class of
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n
finite sets in T then G =ﬂ{}-, is also in T. Since the empty set is in T , we may assume that G
i=l
is non-empty. Let x be a point in G. Then x is in each G; , and by the definition of T, for each
i there is a_set B; in b such that xe BicGi. Since each B; is a finite intersection of sets in S,
the intersection of all sets in S which arise in this way is a set in B which contains x and is
contained in G. This shows that G is a union of sets in 8 and is thus itself a set in T.

To show the uniqueness, let T and T" be the two topologies generated by the class S .
Let GeT. :

= G = | JB),  (Byisabasic opensetforeachd € A,Aan index set]
! hed

k
= By = [|Cy.  whereCy; € S,kbeing a finite integer.

Again, since S also generates T"
. ¥i=12--k
S
o {andfureachle A
k L]
= NCyeT because T is a topology
i=1
=B, T, ¥ Ae A

= G= UB, e T,
e
Thus, Ge T =Ge T =TcT' Similarly, we can show that T'CT, and hence T=T", i.e. S
generates a unigue topology as a subbase.

Problem 4.18 Let X={abc). Let S={{a},{c},{ab}} be a class of subsets of X. What
topology will be generated by S as a subbase?

~ Solutien:  Here, S= {{a},{c}.{a,b}}.
Let B = finite intersection of sets in S
={0X.{a}{c].{ab})
which is a base for all the desired topology.
and T = all unions of sets in P
= {¢.X.{a).{c}.{abk(ac}})
which is the wanted topology.

A few theorems described below show some beautiful properties of a second countable
space. ;
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Theorem 4.19 (Lindelof”s Theorem) Let X be a second countable space. If a non-empty
open set G in X is represented as the union of a class {G;}of open sets, then G can be
represented as a countable union of G;'s.

Proof. X is-given to be second countable and so X has a countable base fb.

B={B\,B2Bs......... Bayeerennnn. )

Let x be a point in G . The point x is in some G; , and we can find a basic open set B, such
that xe B,cGi. If we do this for each point x in G, we obtain a subclass of our countable base
whose union is G, and this subclass is necessarily countable. Further , for each basic open set
in this subclass is necessarily countable . Further, for each basic open in this subclass we can
select a G; which contains it. The class of G's which arises in this way is clearly countable ,
and its union is G.

As an application of this result, we have the following :

Theorem 4.20 . Let X be a second countable space. Then any base for X has a countable
subclass which is also a base.

The readers may consult Simon's book for its illuminating proof.

Problem 4.20 . Show that a second countable space is separable, but that the converse is not
necessarily true. .

What class of topological space is the converse true?

Solution. First Part : Let (X.T) be a second countable space. Then X has a countable basis,
B={B,Bs,........Bq,.......}. Now select a_point x, in such non-empty basic o[pen set By, and
form the countable set A={x,}. Let x be any point in X and G be any open set containing x.
Since i is a base, 3 a set B, in B such that xe B,cG. The G contains x, € A. So x is a closure
point of A. Thus A=X. Thus X has a countable dense subset , and so X is separable.

Second Part: We next show with a counter example that a separable topological space is not
necessarily countable,

‘Consider the real line R with the co-finite topology. Consider the set Q of all rationals.
Then Q=R, and hence Q is a countable dense subset of R, thus R is a separable. topological
space.

We now show that it cannot be second countable. If possible, let there exist a
countable open base B for T. Let x be ant point in X. we,can claim that ~{G|G is open ,
xeGl={x} )

For, if possible, let {x,y} be this intersection. Let H=R—{y}. Then H is an open set
containing x, and so the intersection cannot be {x,y} but (x}.

Now, for each open set G containing x , we can find a Be B such that xe BcG. As G
runs through all open set containing x, G runs through all these sets in § which contain x.
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Hence the intersection of all those sets in f} containing x is {x}. Let D be the collection of all
those sets in B which contain x. Then,

M{H: He D}=({x) ; R SRR 4
Taking complements of both sides of (1), we get
MN{R - H:Hxe D}=RX -- {x}
= a countable set = an uncountable set
This is an absurd result. So X is not second countable.
Third part: However, the converse is true for a metrizable space.

Let X be a separable metric space, and let A be a countable dense subset. If we
consider the open spheres with rational radii centered on all the points of A, then the class B
of all these open spheres is a countable class of open sets. We show that it is an open base.
Let G be an arbitrary nonempty open set and x a point in G. We must find an open sphere in
our class which contains x and is contained in G. S,(x) be an open sphere centered on x and
contained in G, and consider the concentric open sphere S (x)with one third its radius. Since
: 3 .

A is dense, there exists a point a in A which is in S, (x). Let r; be a rational number such that
i .
1/3 <ry<21/3. Then xeS, (a)c S, (x)cG. Consequently X is second countable.

Some very deep and profound results on second coumtable space will be discussed
later in the chapter of metrizable spaces.

Problem set 4

Ex 1. Let f : X—Y be a mapping of one topological space into another, and let there be given
a base in X and a subbase with its generated base in Y. Then prove that '

(i) f is continuous < the inverse image of each basic open set is open < the inverse
image of each subbasic open set is open;

(ii) f is open <> the image of each basic open set is open.
Ex 2. (i) Can any class of subset of a nonempty set X form a base for some topology on X ?
(ii) Can any class of suhét:ts of a npnempty set X form a subbase for some topology on X?
Ex 3. Let f : X—Y be any arbitrary mapping from X into Y. Can we always assign a
topology to X so that f is continuous ? What is the weakest topology on X so that f is

continuous ? If T is a fixed topology on X, what is the largest topology to be assigned
to Y so that f is continuous ?

Ex 4. Let X be the set of all positive integers equipped with discrete metric. Show that C X
R) is not separable.




Ex 5. Show that if f is any nonempty set equipped with the discrete metric, then C(X, R) is
separable < x is finite.

Ex 6. Prove in detail that the open rectangles in the Euclidean plane form an open base.
Ex 7. Let X be an uncountable set equipped with the cofinite topology.
(2) Show that any infinite subset of X is dense.

{b) Show that X is not second countable.

Ex 8. A subset A of a topological space is called a perfect set if A=D(A). Show that a set is
perfect < it is closed and has no isolated points. Show that the Cantor set is perfect.

Ex 9. Show that a set A is nowhere dense < every nonempty open set has a nonempty open
subset disjoint from A.

Ex 10. Show that a closed set a nowhere den.;,e & its component is everywhere dense. Is this
true for-an arbitrary set 7

Ex 11. Is every second countable space first countable ? Justify your answer.

Ex 12. Construct an example of a first countable space which is not second countable.

Ex 13. Construct a topology on an infinite set X so that X is first countable, second
countable and separable. ;

Ex 14. Let f : X—Y be a continuous map of a topological space (X,T) into a topological
space (Y,V).

Examine if a continuous image of
(a) a base for T is a base for V;
(b) a subbase for T is a subbase for V;
(c) a second countable space is second countable;
(d) a separable space is separable.
Ex 15.
(i) Is a separable space metrizable ?
(ii)  Is a metrizable space always
(a) separable
(b) first countable
(c) second countable?

S
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CONTINUOQUS FUNCTIONS ON TOPOLOGICAL SPACES
Introduction:

Although continuous functions on metric spaces are briefly highlighted in Chapter 3,
it is the purpose of this section to define continuous functions on topological spaces and
establish their elementary properties. The notion of distance could be effectively suppressed
in defining continuity of functions betwv.n metric spaces, by introduction of the use of
neighborhoods or open sets.

Definition 5.01. Let X and Y be topological spaces and let f: X—Y be a mapping. Then f is
said to be continuous at x.,e X iff for each neighborhood V if f(x o) in Y there is a
neighborhood U of x, in X such that f(U) c V. We say f is continuous on X iff fis
continuous at each x,= X.

It is left to the reader to verify that the effect of the definition is not altered if ‘nbhd’ is
replaced by ‘open set’ throughout. :

A map f:X —Y is said to be an open mapping (closed mapping) if f(G) is open
(closed) in Y whenever G is open (closed) in X. A homeomorphism is a one-to-one
continuous mapping of one topological space onto another which is also an open mapping.
Two topological spaces X and Y are said to be homeomorphic ‘if there exists a
homeomorphism of X onto Y (and in this case,Y is called a homeomorphic image of X), if X
and Y are homeomorphic, then their points can be put into one-to-one correspondence in such
a way that their open sets also correspond to one-another. The two spaces therefore differ only
in the nature of their points and can, from the point of view of topology, be considered
essentially identical.

The proofs of the following few theorems can be established in the line of proofs
described in Chapter 3. The first theorem provides an alternative set of characterizations of a
function f:X —'Y which is continuous on all of X.

Theorem 5.02. If X and Y are topological spaces and f:X —Y, then the following are
all equivalent: 5

a) fiscontinuous,

b) foreach cpenset GinY, £ (G) is open in X,

c) foreachclosedset Kin'Y, f ' (K) is closed iri X,
d) foreach AcX, f(A)c f(A),

e) the inverse image of each basic open set is open,

f) the inverse image of each subbasic open set is open.
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Theorem 5.03. If X,Y and Z are topological spaces and f:X —Y and g:Y—Z are continuous,
then ge [:X—Z is continuous. .

Proof: If H is open in Z, then g™' (H) is open in Y, by continuity of g. Hence, by continuity of
f, f ' [g”" (H)] = (gof) " (H) is open in X. Thus g f is continuous.

Definition 5.04. If £X—Y and AcX, we will use fFA (the restriction of f to A) to denote
the map of A into Y defined by (f |A] {a)=fia) foreach a e A.

Theorem 5.05. If Ac X and f :X—Y is continuous, then (f|A ):A—Y is continuous.

Proof: If H is open in Y, then (f]A)"(H) = f "(H)NA, and the latter is open in the relative
topology on A. :
Theorem 5.06. If X = AUB, where A and B are both open (or both closed) in X, and if

f:X—Y is a function su-:_h that both f |ﬁ and f |B are continuous, then f is continuous.

Proof: Suppose A and B are open. If H is open in Y, then f~'(H) is open in X, since
£~ (H)=( f|A)"'(H) U( f{B)"(H) and each of the latter is open in an open subspace of X and
s0 open in X. The proof is similar if A and B are closed.

Theorem 5.07. If X and Y are topological spaces and f:X —Y is one-one and onto, the
following are all equivalent :

a} fis a homeomorphism,

b) if GeX, then f{G) is open in Y iff G is open in X,

c) if FcX, then f(F) is closed in Y iff F is closed in X,

d) if AcX, then f(A)=f(A).
Definition 5.08. Topological property or Topological invariant: A topological property is
one which remains invariant under a homeomorphism. Examples: bases, closed sets, open

sets, axioms of countability etc.

Theorem 5.09. Show that every open continuous image of a second countable space is
second countable, i.e. second axiom of countability is a topological property.

Proof: Let (X,T) be a second countable topological space so that 3 a countable base p={B,
|11 e Njfor T.

Let f:(X,T)—(Y,U) be a homeomorphism. We assert that {f(B,) jneN}is a base for the
topology Uon Y.

Now B is countable =B, | ne N} is countable =>{f(B,) | ne N} is countable.
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Since f is open ;EBn}E U,¥neN.

Let Ge U be arbitrary.

f is homeomorphism= f is continuous=> f ~ (G) is T-open set
=~ (G)= U{B, |re AcN} (by a property of a base)
=G=f[U(B, [reA}] =U{f(B,) |rea)

Therefore, the collection p'={f(B,) InE N} is a countable base for U and hence (Y,U) is a
second countable space.

Theorem 5.10. Show that
(i) the first axiom of countability,
(ii)  compactness

(iii)  separability and
(iv)  connectedness
are topological properties.
Proof: Routine
Two another important theorems on continuity are now in order:
Theorem 5.11 If f and g are continuous real or complex functions defined on a topological
space X, then f + g, oof and fg are also continuous. Furthermore, if f and g are real, then fvg

and fag are continuous.

Proof: Let (X,T) be a topological space and x,& X be arbitrary. Let f and g be continuous real
a complex functions on X so that f, g are continuous at x,. Let € > 0, then by definition of
continuity, 3. Gy, Gze T with xpe Gy, xpe G; such that

xe G, =&|f{x}-f{xﬂ)|{s
x€G, =g(x)-g(x )| <€
Take G =GNGEeT. Then

xeG,NG,=G = xe Gy, xe G

Our first aim is to show that f + g is continuous at x,.
(F +@)(x) = (£ +8)(x,) |=] £(x) - £(x,) + B(X) — 8(X,) | <| £(x) = £(x )|+ g (x) - g(x,) |

<g+E=2e=g
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This ensures the continuity of f + g at xo. Similar routine work will imply the continuity of fg
and of.

Next we suppose that f and g are real continuous functions. Let A=(a, + =),

B=(—oo, b). We know that the sets of the type A and B form an open subbase for the real line.
If we show that inverse image of any such set is open, then the functions will be continuous.

(fv g)'(A) = (x: max (f.g)>a)
={x:f(x) =apo{x: g(x)>a)
= union of two open sets = open set. '
(fv gy (B)={x: max {f(x),g(x)}<b}
=(x : f(x) <b}n[x : g(x) < b}= intersection of open sets = open set.
=~ A,B are open =(fv g)'(A), (fv g}'.‘{B}are open = fv g is continuous.
Similarly, we can show that the function f A g is continuous.

Theorem 5.12. We show that f is continuous by showing that it is continuous at an arbitrary
point xo in X. Let € >0 be given. Since f is the uniform limit of the f, s, there exists a positive

integer ng such that |t'[x}—fnn [x}|-=:}§ for all points x in X. Since f, is continuous, and
thus continuous at X, there exists a neighborhood G of xg such that Zelt

xe€G=|f,, (x)~f,, (x,) | < %. The continuity of fat xo now follows from the fact that.
xeG=>| £(x)—f(x,)]|
='| ﬁ(x]—f.,{x)]»« [f,u{x}—f.,, hn}]+ -.(‘n};f{"ﬂ}] |
<—4—+=—=8 Thus, f is continuous.

Remark: any uniform limit of continuous functions is continuous.

Problem Set 5

Exercise 1. (i) Let U denote the usual topology on R. Let & be any non-zero real number.
Then each of the following maps is open as well as closed.

f:{ R,U) —( R, U) such that fix)=a+ x,
g: (R,U)— (R,U) such that g(x) = ax

In this case if o=0, then this map is closed but not open.

=

i L _- . = g

6.0 Introduction:

The great mathematician Frechet was the first to use the term ‘compact’ at the
beginning of Twentith century (present century) and compactness is the next best thing to

finitenese Manv af the mogt imnnrtant thenreme in a conres in claceifral analucic ars nrnved



(ii) The identity map f: (X,U)—(X,U) is open as well as closed.
(iii) A map from an indiscrete space into a topological space is open as well as closed.
(iv) A map from a topological space into a discrete space is open as well as closed.

Exercise 2. Show that characteristic function of A — X is continuous on X iff A is both open
and closed in X.

Exercise 3. Let X be a topological space defined as follows :

X consists of integers 0,1,2,: A consists of 0; B consists of 0,1. The topology T on X
consists of @, A,B and X. Let f be a continuous map of X into itself such that

f(1)=0and f(2) = 1. What is f(0)?

Exercise 4. Show that
(i) [a,b] is homeomorphic to [0,1]
{ii) R is homeomorphic to (0,1)
(i) R is homeomorphic to (-1,1).

Exercise 5. Show that sequential cnﬁtinuity and continuity in metric spaces are identical, but
it is not true in topological :-;paccs

Exercise 6. Give an example of a sequence of continuous functions dcﬁmd on [(,1] which
converges point wise but not uniformly to a continuous limit.

Exercise 7. Give an example of a sequence of continuous functions defined on [0,1] which
converges point wise to a discontinuous limit, '

Exercise 8. Give an example of a one-one onto map which is continuous but not
homeomorphism.

Exercise 9. Let f be a continuous real or complex function defined on a topological space X,
and assume that f is not identically zero, i.e. that the set Y={x: f(x)=0}is non-empty. Prove in

detail that the function % defined by (}) (x)= ¥,,, is continuous at each point of the subspace
Y.




UNIT 3
COMPACTNESS
6.0 Introduction:

The great mathematician Frechet was the first to use the term ‘compact’ at the
beginning of Twentith century (present century) and compactness is the next best thing to
finiteness. Many of the most important theorems in a course in classital analysis are proved
for closed bounded intervals (e.g. a continuous function on a closed bounded interval assumes
its maximumy). The basis for the proof of such theorems is almost without exception the
Heine Borel Theorem, that a cover of a closed bounded interval by open sets has a finite
subcover. It is not surprising, then, that the (topological) property of closed bounded intervals
thus expressed has been made the subject of a definition in topology, the definition of
compactness:

This Chapter is long, but falls naturally into three parts: In this first we study
compactness and their general properties, in the second locally compact spaces are alluded
with examples and basic properties, and in the third, some fundamental results of
compactness in Metric spaces are highlighted with a few applications.

6.01. Compact spaces: Let X be a topological space. A class {G;};,] being an index set, of
open subsets of X is said to be an open cover of X if each point in X belongs to at least one
G, that is, if UG ; =X. A subclass of an open cover which is itself an open cover is called a

subcover. A compact space is a topological space in which every open cover has a finite
subcover. A compact subspace of a topological space is a subspace which is compact as a
topological space in its own right. X is said to be countably compact iff each countable open
cover of X has a finite subcover. Evidently, X is compact iff X is countably compact and
- second countable. We begin by proving two simple but widely used results.

Problem 6.02. Show that any closed subspace of a compact space is compact, but a compact
subspace of a compact space may not be closed.

Proof: Let Y be a closed subspace of a compact space X, and let {G;}be an open cover of Y.
Each G, being open in the relative topology on Y, is the intersection with Y of an open subset
H, of X. Since Y is closed, the class composed of Y’ and all the H;'s is an open cover of X,
and since X is compact, this open cover has a finite subcover. If Y’ occurs in this subcover,
we discard it. What remains is a finite class of H;'s whose union contains X. Our conclusion
that Y is compact now follows from the fact that the corresponding G; s forms a finite
subcover of the original open cover of Y.

Second part:
Let X={1,2,3}
T=({9.X.{1}}

Let Y={1,3}. As a finite subspace, Y is compact, but Y is not closed in X.
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Problem 6.03: Show that any continuous image of a compact space is compact. Furthermore,
show with a counter example that if f: X—Y is a continuous map from a topological space X
onto a compact space Y, then X may not be compact.

Solution: first part:- Let f: X—Y be a continuous mapping of a compact space X into an
arbitrary topological space Y. We must show that f(X) is a compact subspace of Y. Let{G;}be
an open cover of f(X). As in the above proof, each G, is the intersection with fi(X) of an open
subset H; and Y. It is clear that {f "'(H;)} is an open cover of X, and by the compactness of X
it has a finite subcover. The union of the finite class of H; "s of which these are the inverse
images clearly contains f(X), so the class of corresponding Gi's is a finite subcover of the
original open cover of f(X), and f(X) is compact.

Second part: Consider the real line R with the usual topology and its subspace Y ={1}
equipped with the relative topology. Define f: R —Y by f(x) = 1,Vxe R. Then f is
continuous, Y is compact, but R is not compact.

The proof of the following theorem is easy and may be collected from Simmon’s Book:
Theorem 6.04: Prove that a topological space is compact if

(i) Every class of closed sets with empty intersection has a finite subclass with empty
intersection,

(ii) Every class of closed sets with the finite intersection property has uon-c.mpty
intersection,

(iii) Every basic open cover has a finite subcover,
{(iv) Every subbasic open cover has a finite subcover.

Theorem 6.05:(The Heine-Borel Theorem) Every closed and bounded suhsparxofm:mal
line in compact.

Proof: A closed and bounded subspace of the real line is a closed subspace of some closed
interval [a, b], and so it suffices to show that [a, b] is compact. If a = b, this is clear, so we_
may assume that a<b. We know that the class of all intervals of the form [a, d) and (c, bl,
where ¢ and d are any real numbers such that a<c<b and a<d<b, is a subbase for [a, b];
therefore the class of all [a, c]'s and all [d, b]'s is a closed subbase. Let S={[a, ¢i.[d;, b]}be a
class of these subbasic closed sets with the finite intersection property. It suffices to show that
the intersection of all sets in S is nonempty. We may assume that S is non-empty. If S
contains only intervals of the type [a, ;] or only intervals of the type [dj, b}, then the
intersection clearly contains a or b. We may thus assume that S contains intervals of both
types. We now define d by d= sup{d;}, and we complete the proof by showing that d <c; for
every i. Suppose that c; <d for some ip. Then, by the definition of d, there exists a d; such

that €, <d;,- Since [a, ¢, JN[d,;, . b)=0, this contradicts the finite intersection property for
S and concludes the proof.

The converse of the Heine-Borel Theorem is also true.




Theorem 6.06: Every compact subspace of the real line is closed and bounded.

Proof: Let C={AJne N}, where A,=(-n, n). Then evidently C is an open cover of R and
hence it is an open cover of any subset of R. Let now A be any compact subset of R. Since C
is an open cover of A and A is compact, there exists a finite number of positive integers
My M2yeeeee.e i such that the subcollection.

Ci={ A, A, ,-nA, Jof Ccovers A.
let ny=max {n;,n,....,n }. Then evidently Ac A =(-no, no)

This implies that A is bounded.

Next, we aim at proving that A is closed. We shell show that no point outside A can be a limit
point of A.

Let ac R-A so that a¢ A. Consider the family of closed sets F.=[a £ %, a+ %] for each

neN. Then C;={ R -F; | ne N}is a family of open sets. It is evident that the set r“-{F.| neN}
consists of the single point a, and since a is not in A, it follows that,

Acl R - {F,| neN}]
=u{ R-F,| neN}

Thus the set A is covered by the family C’". Hence, by compactness of A, there exists a finite
subcover of C’. That is there exists a positive integer n; such that every point of A is
contained in at least one of the open sets

It then follows that n, point of A is contained in, Fm:[a—l,a+-l—:|. This implies that a is
m, n

not a limit point of A. Thus, we have shown that no point outside A can be a limit point of A.

It means that all limit points of A are points of A itself. Hence A is closed.

Theorem 6.07 Remarks:

(i)  The Heine-Borel Theorem can be extended to a metric space as “ A compact subspace
of an arbitrary metric space is closed and bounded”. There are many ways to prove
this result. One way of arguing this is that a metric space is a Hausdorff space, and a
compact subspace of a Hausdorff space is closed. Moreover, a compact metric space
is totally bounded and hence bounded. These ascertain that a compact subspace of a
metric space is both ¢losed and bounded.

However, the converse of this result may not be true in a general metric space that can
be formally described as follows:
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(ii) A closed and bounded subspace of an arbitrary metric space is not necessarily
compact.

For example, consider the real line R with the discrete metric d defined by
d(x, ¥) =1 if x2y and d(x, y)=0 if x = y. Consider the set N of natural numbers. Then
8(N)=sup {d(x, y)| x, ye N }=1. And hence N is bounded.

Again every subset of R is both open and closed, and hence N is closed. Thus, N is
both bounded and closed.

However, the class C={G,= {n}l n eN}is an open cover of N which does not have
any finite subcover and hence N is mot compact.

§ Locally Compact Spaces:

A topological space is said to be locally compact if each of its points has a
neighborhood with compact closure. For example, the n-dimensional Euclidean space R" is
locally compact, because any open sphere centered on any point is a neighborhood of the
point whose closure, being a closed and bounded subspace of R", is compact.

Theorem 6.08: Every compact space is locally compact.

Proof: Let (X,T) be a compact space and xe X. Now X is a neighborhood of x whose closure
is X. But X is given to be compact. Hence every point of X has at least one neighborhood (the
whole space) whose closure is compact. It follows that (X, T) is locally compact.

Theorem 6.09: Every closed subset of a locally compact space is locally compact.

Proof: Let (X, T) be a locally compact space and let Y be a closed subset of X. We have to
show that the subspace (Y, T') is locally compact. Let y be an arbitrary point in Y. Since X is
locally compact at y, there exists a T-neighborhood N of Y such that N is compact. Since
N o N is a T-closed and compact nbhd of Y.

LetM= NnY

Since N and Y are T-closed, it follows that M is also T-closed. Also M is closed in N as
well as in Y. Hence M is compact in N, being a closed subset of the compact set N. It
follows that M is compact in X and consequently compact in Y, Also M is a T*-nbhd of Y.

Since M =M, it follow that M is a T*-nbhd of Y such that M is compact in Y. Hence (Y, T*)
is locally compact. :

A Counter Example : Show by means of an example that a locally compact space need not
be compact.

Solution: Consider any discrete topological space (X, D) where X is infinite. Then X is not
compact since the collection of all single sets in an infinite open cover of X which has no
finite sub cover. But X is locally compact. For, let x be any point of X. Then {x} is a nbhd of
x whose closure is {x}. Also {x} is a compact subset of X. Hence every point of x has a nbhd
whose closure is compact.




Compactness For Metric Spaces:

In all candor, we must admit that the intuitive meaning of compactness for
topological spaces is some what elusive. This concept, however, is so vitally important
throughout topology that we consider it worth while to devote this and the next section to
giving several equivalent forms of compactness for the special case of a metric space. Some if
these are quite useful.

.,

We begin with some definitions:

Definition 6.11: A metric space is said to have the Bolzano-Weierstrass property if every
infinite subset has a limit point. A metric space is said to be sequentially compact if every
sequence in it has a convergent subsequence. OQur main purpose in this section is to prove that
cach of these properties is equivalent to compactness in the case of a metric space.

Theorem 6.12: Prove that a metric space is sequentially compact > it has the BWP.

Proof: Let X be a metric space, and assume first that X is sequentially compact. We show
that an infinite subset A of X has a limit point. Since A is infinite, a sequence {x,} of distinct
points can be extracted from A. By our assumption of sequential compactness, this sequence
has a subsequence which converges to a point x. This yields that x is a limit point of the set of
points of the subsequence, and since this set is a subset of A, x is also a limit point of A.

Next, we assume that every infinite subset of X has a limit point, and we prove from
this that X is sequentially compact. Let {x,} be an arbitrary sequence in X. If {x,} has a point
which is infinitely repeated, then it has a constant subsequence, and this subsequence is
clearly convergent. If no point of (X} is infinitily repeated, then the set A of points of this
sequence is infinite. By our assumption, the set A has a limit point x, and it is easy to extract
from {x;} a subsequence which converges to x.

Theorem 6.13: Prove that every compact metric space has the Bolzano-Weierstrass property:

Proof: Let X be a compact metric space and A an infinite subset of X. We assume that A has
no limit-point, and from this we deduce a contradiction. By our assfimption, each point of X
is not a limit point of A, so each point of X is the centre of an open sphere which contains no
point of A different from its centre. The class of all these open spheres is an open cover, and
by compactness there exists a finite sub cover, Since A is contained in the set of all centres of
spheres in this sub cover, A is clearly finite. This contradicts the fact that A is infinite and
concludes the proof.

6.14 Definition: Let (X, d) be a metric space and {G;} an open cover of X. A real number
a>0 is called a lebesgue number for our given open cover {G;} if each subset of X whose
diameter is less than a is contained in at least one G;. If >0 is given, a subset A of X is called
an e-net if A is finite and X = | JS,(a), that is, if A is finite and its points are scattered

asA
through X in such a way that each point of X is distant by less than € from at least orier point
of A. The metric space X is said to be totally bounded if it has an £-net for each £>0. The
proofs of the following theorems can be obtained from Simmon’s Book.
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Theorem 6.15: (Lebesgue’s Covering Lemma) In a sequentially compact metric space,
every open cover has a lebesgue number.

Theorem 6.16: Prove that
Every sequentially compact metric space is totally bounded.
Every sequentially compact metric space is compact.

Theorem 6.17: Any continuous mapping of a compact metric space into a metric space is
uniformly continuous.

Proof: Let f be a continuous mapping of a compact metric space (X, d;) into a metric space
(Y, d2). Let £50 be given. For each point x in X, consider its image f(x) and the open sphere

S%{f{x]] centered on this image with radius % Since f is continuous, the inverse image of

each of these open spheres is an open subset of X, and the class of all such inverse image is
an open cover of X. Since X is compact, this open cover has a lebesgue number o. If x;and xa
are any two points in X for which d,(x,, x2)<8, then the set {x,, x;} is a set with diameter less
than &, both points belong to the inverse image of some one of the above open spheres both
fi(x;) and f(x;) belong to one these open spheres, and therefore da(f(x,), f(xzj}-::f., which shows
that f is indeed uniformly continuous.

Remark 6.18: This theorem guarantees that any real valued continuous mapping defined on a
bounded closed interval [a, b] is always uniformly continuous, because of the fact that [a, b}
is a compact subset of R, (prove this).

~ Theorem 6.19: Prove that a metric space is compact < it is complete and totally bounded.
Proof: Let X be a metric space.

We first assume that X is compact. Hence it is sequentially compact. We first want to
show that X is totally bounded. Let £>0 be given. Choose a point a; in X and form the open
sphere S (a;). If this open sphere contains every point of X, then the single-element set {a;} is
an g-net. If there are points outside of 5(a;), let a; be such a point and form the set .
S(a; )8 (az). If this union contains every point of X, then the two element set {ay, &} is an &-
net. If we continue in this way, some union of the form S (a;)uS(a:)... US(ay) will
necessarily contain every point of X; for if this process could be continued indefinitely then
the sequence {aj,a;,....,4,... } would be a sequence with no convergent subsequence, contrary
to the assumed sequential compactness of X. This implies that some finite set of the form
{a1,a3,....,8; }is an e-net, so X is totally bounded.

Next we want to show that X is complete. Suppose, if possible, X is not complete.
Then there exists a Cauchy sequence {x,} which does not converge to any point in X. Let
pe X. Since lim x,#p, there exists a number £,>0for which it is not possible to find a positive
integer n, such that x, € S,(p). Now the collection C= { Sz! (p) |pEX}iS an open cover
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of X. Since (X, d) is compact, there exists a finite number of points py,p2,ps....... Px in X such
that Ci=(S,_(p; i =12,....k }is a cover of X.
5

Let e=min{€p, | i=12,...k ). Since {x,} is a Cauchy sequence and >0, there is an integer
n(g) such that

m, 1 2n(E) = &(Xm, Xa) e.:% ......... I0)

Since C; is a cover of X and x,,_€X, there exists a member S‘u (p;)of Cy such that

]

X, E S‘E[pj}.Hcmc d(x%,pi]-:s,;{.......“.ﬁi}

It follows that if m 2n,, then  d(Xm, pj) < d(xm, X, HA(X, . P}

E " ¥ i
{5 + E% by using (i) and (ii)

En
2

— =£p
Hence, xye S, (p;). Thus if m 2 n, , Xy is in the sphere of radius ep; and centre p;. But this
eontradicts the choice of ep; It follows that X is complete.

Conversely, we assume that X is complete and totally bounded, and we prove that X is
compact by showing that every sequence has a convergent subsequence. Since X is complete,
it suffices to show that every sequence has a Cauchy subsequence. Consider an arbitrary
SEquEnce S]={l”, X172, 113“,..}.

Since X is totally bounded, there exists a finite class of open spheres, each with radius %
whose union equals X; and from this. we see that S; has a subsequence S:={x2;, X22, Xz3... } -
all of whose points lie in some one open sphere of radius —]i Another application of the total
boundedness of X shows similarly that S, has a subsequence S;=[x3, X3z, X3...}Jall of
whose points lie in some one open sphere of radius % We continue forming successive

subsequences in this manner, and we let S={xy;, X2, X33, }be the “diagc_rnal“ subsequence of
S1. By the nature of this construction, S is clearly a Cauchy subsequence of S, and our proof
is complete.

We now turn to the problem of characterizing compact subspaces of C(x, R) or
C(X, C). Set (X, d) be a metric space and let A be a nonempty set of continuous real or
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complex functions defined on X. If f is a function in A, this function is uniformly continuous
that is for each € > 0, there exists 8 > 0 such that d(x, xY <& = |f{x}—f[xr]|{ E.

In general, & depends not only an € but also on the function f. This leads to the following
definition:

Definition 6.20: Let A be a nonempty subset of C(X, R) or C(X, C). A is said to be
equicontinuous if for each €, a & can be found which serves at once for all functions f in A,
that is, if for each £>0 there exists §>0 such that for every f in A, d (x, x"}<6=
If(x) - f(x")|<e.

Theorem 6.21: (Ascoli's Theorem), If X is a compact metric space, then a closed subspace
of C(X, R) or C(X, C) is compact < it is bounded and equicontinuous.

Proof: Let (X, d) be a metric space and let F be a closed subspace of C(X, R} or C(X, C). We
first assume that F is compact, and we prove that it is bounded and equicontinuous.

F is compact and hence it is sequentially compact. Again a sequentially compact set is
totally bounded and hence it is bounded. Thus, F is a bounded subset of C(X, R). We next
prove that F is equicontinuous as follows:

Let £>0 be given, Since F is compact, and therfore totally bounded, we can find an ﬁﬁ' -net
(fi.k....... fa}in F. Each f; is uniformly continuous, so for each k=1,2,3....,n,there exists &>0
such that d(x, x)<&=> |f,(x)—f (x)|<%. We now define & to be the smallest of the

numbers 8,.3.......,5,. If f is any function in F and fy is chosen so that [f —f, | < % then

dix, x)<8=> [f(x)— (x| < |F(x) =, )] +[f () = £ (X +[f (x) = £ (x) ‘=§+§+-§F=L

This shows that F is equicontinuous.

We now assume that F is bounded and equicontinuous, and we demonstrate that it is
compact by showing that every sequence in it has a convergent subsequence. Since F is
closed, and therefore complete, it suffices to show that every sequence in it has a Cauchy
subsequence. Moreover, since a compact metric space is separable, X has a countable dense
subset. Let the points of this subset be arranged in a sequence {x;}={x;,X2.X3........ X}, }

Now let Si= {fiy, fiz, fis-eeeen i

be an arbitrary sequence in F. Our hypothesis that F is bounded means that there exists a real
number K such that | f] < K for every f in F, or equivalently, such that | f(x) | < K for every f

in F and every x in X. Consider the sequence of numbers {f;j(x2)}, j=1,2,3... and observe that
since this sequence is bounded, it has a convergent subsequence. Let S:={fz fa, fas....} bea
subsequence of S;such that {fx(x2)] converges. We next consider the sequence of numbers
{f;(x3)}, and in the same way, we let S;={fy;, fi2, f15....} be a subsequence of S; such that
{f3i(x3) } converges. If we continue this process, we get an array of sequences of the form.




Si= {4, fia, f1a...}, Sa={fa, fa, fa3....}, S={f o fn. L), s

in which each sequence is a subsequence of the one directly above it, and for each i the
sequence 5; ={fi, fiz, fis.....} has the property that {fij(xi) }is a convergent sequence of
numbers. If we define fy, 2, fs..... by fi=fy;, fi=fx, fi=fss,.......... , then the sequence

- 8=( i, f3, fy.....} is the ‘diagonal’ subsequence of S;. It is clear from this construction that for
each point x; in our dense subset of X, the sequence {fy(x;)} is a convergent sequence of
numbers. It remains only to show that S, as a sequence of functions in C(x, R) or CX,C),isa
cauchy sequence.

Problem Set 6

Ex. 1. Show that a closed bounded interval [a, b] is compact.

Ex 2. Show that a continuous real or complex function defined on a compact space in
bounded. More generally, show that a continuous mapping of a compact space into any metric
space is bounded.

*Ex 3. If X is a compact space, and if {f,} is a monotore sequence of continuous real
functions defined on X which converges point-wise to a continuous real function f defined on
X, show that f, converges uniformly to f. [The assumption that {f,} is a monotone sequence
means that either ish<fhiz..orf2 H2fH2....... J: .

Ex 4. Show that a topological space is locally compact <>there is an open base at each point -
whose sets all have compact closures.

Ex 5. Show that a continuous image of a locally compact space need not be locally compact.
Ex 6. Show that a subspace of R " is bounded ¢=it is totally bounded.

Ex 7. Prove the Bolzano-Weierstrass theorem for R™ if X is a closed and bounded subset of
R", then every infinite subset of X has a limit point in X.

Ex 8. Show that a compact metric space is separable.

Ex 9. By considering the sequence of functions in C[0,1] defined by fi(x)=nx, for
O=x= ~]-, fu(x) =1 for 15 x 1, show that C[0,1] is not locally compact.
n n

Ex 10. Every locally compact T;-space is a regular space.

Ex 11. Is every open subspace of a locally compact space is locally compact? Give reasons in
support of your answer.

Ex 12. If a metric space (X, d) is totally bounded, then X is bounded. Produce a counter
example to show that a bounded metric space may not be totally bounded.
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Ex 13. Show that every totally bounded metric space is separable. Is the converse true?
Justify your answer. -

Ex 14. Show that a metric space is Lindelof space if and only if it is second countable.

Ex 15. Let f: X =Y be a continuous map from a compact space X into a metric space Y.
Prove that f is uniformly continuous. If X is not compact, Y is compact, is f still uniformly
continuous?
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UNIT 4
Separations
- SEPARATION-AXIOMS

7.0.Introduction: The Ti-space nomenclature, for i =0,1,2,34,5 ... was introduced by
Alexandroff and Hopf. The symbol “T" refers to the German word 'Trmnungs-ulmn which
means, “separation axiom™. The separation properties are of concern to us because the supply
of open sets possessed by a topological space is intimately linked to its supply of continuous
functions; and since continuous functions are of central importance in topology, we naturally
wish to guarantee that enough of them are present to make our discussions fruitful. Hausdorff
spaces and Normal spaces, and their applications in Urysochn lemma, T}:tz:c Extension
Theorem, Metrization Theorem etc play crucial role in this chapter.

7.01. T,-axiom of separation or Kolomogorov Space.

A topological space (X, T) is said to satisfy the T,-axiom of separation if given a pair of
distinct points x, y in X, either 3 Ge T s.t. xe G, y¢G; or 3 He T s. t. ye H, x& H. In this case
the space (X,T) is called a T,-space.

7.02 Ex. show that every discrete space is a T,-space.

Solution: Let (X, D) be a discrete topological space and let x, y be distinct points of X. Since
I:lwspanemdxscrﬁe {x} is an open nbhd. of x which does not contain y. [tfolluwthat(X.D}

is a Ty-space.
7.03 Ex. Show that an indiscrete space is not a T,-space.

Solution: Let (X, I) be an indiscrete space and let x, y be two distinct points of X. Now, the
only open nbhd of x is X which also contains y. Thus there exists no open nbhd of x which
does not contain y. Hence (X, I) is not a T,-space.

7.04 Theorem: prove that a space being a T,-space is both hereditary and topological
property.

The proof is routine and so left for the readers.
7.05 Ty-axiom or Frechet axiom of separation:

A topological space (X, T) is said to satisfy the T;-axiom of separation if given a pair
of distinct point x, ye X, 3 G, HeT such that xeG, y¢ G and ye H, x¢ H. In this case the
space (X, T) is called a T-space or Frechet space.

7.06 Ex: Show that the real line 3 with the usual topology U is a T,-space.

Solution: Let x, y be any two distinct real numbers and y>x. Let y - x = k. Then
G=(x—%,x+%} and H=(y—§,y+%j are U-open sets such that xe G but y¢ G and ye H
but x¢ H. Hence (R ,U) is a T;-space.
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7. 07 Theorem: Show that a topological space (X, T) is a T\-space if and only if every finite
subset of X is closed.

Proof: We first assume that (X, T) is a T,-space. Let A={x;,X;....Xa} be a finite subset of X.
We wish to show that A is closed. \

If A = X, then obviously A is closed. Next suppose that A#X. Let x € X — A. Since X
is T)-space, for each i=1,2,...n. there exists an open set G; such that xe G; and x2G;. Put
Gzrr:;G-;. Then G is an open set such that xe G, x;¢ G, Vi =1, 2,.....,n. This implies that x is

not limit point of A. Hence A contains all its limit points and so A is closed.

Conversely, suppose that every finite subset of X is closed. We are to show that X is
T,-space. Let x, y be any two distinct points of X. Then X-(x} is an open set which contains y
but does not contain x. Similarly, X-{y} is an open set which contains x but does not contain
y. Hence (X, T) is a T;-space.

7.08 Theorem: Show that every finite T)-space is discrete.

Proof: Let (X, T) be a T;-space where X is finite. Since the space is Ty, every singleton
subset of X is closed and consequently every finite subset of X is closed. Since X is finite, it
follows that every subset of X is closed and hence open. Therefore, the space must be
discrete.

7.09 Theorem: Prove that for any set X there exists a unique smallest topology T such that
(X,T) is a T;-space.

Proof: Left for the readers.

7.10 Definition: A topological space (X, T) is said to be a HausdorfTl space or a Tr-space if
for every pair of distinct points x, y of X, there exist disjoint neighborhoods of x and y, that
is, there exists neighborhoods N of x and M of y such that N n M=¢. If (X, T) is a Hausdorff
space, then T is said to be a Hausdorff topology on X.

7.11 Example: Let X={a,b,c} and let
Ti={#,{a},{b).{c}.(a, b}.{b, c}.{c,a}.X}and T2={9,{a},{b, c}.X}.

Then (X, T)) is a Hausdorff space since each singlton set is T-open so that distinct points -
have disjoint nbhds. But (X, T>) is not a Hausdorff space since there exists no disjoint nbhds
of b and c.

7.12 Example: Consider the cofinite topology on an infinite set X and show that it is not T>.
Proof: Straightforward.

7.13 Example: If f and g are continuous functions on a topological space X with values in a
Hausdorff space Y, then prove that the set of all points x in X such that f(x)=g(x) is closed.
Deduce that if f and g agree on a dense subset of X, then f=g. .
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Proof: Let A={xeXI|f(x)=g(x)}. To prove that A is closed, that is, to prove that X-
A={xe J{ff{x) #g(x)}is open. Let x, be any point of X-A. Then f(x,)#g(x,) with f(x.),
g(x)e Y. Since Y is Hausdorff, there exist open sets G and H in Y such that f(xp)eG,
gxp) e Hand GrH = ......(1)

Since f,g are continuous, f ~(G)and g "'(H) are open sets in X such that x.ef G) and
%€ 8" (H), and so their intersection f *(G)ng(H) is also an open set in X containing x,.

Let E= f(G)ng™ (H). We now prove that E < X — A. Suppose, if possible, EZ X -A . Then
there is at least one point in E, say z, such that ze Eand z ¢ X - A.

Now, zeE=ze f (G) and z e g'(H) =f(z)e G and g(z Je H.......(2)

and zeX-A=zeA= f(z)=g(z)

now (2) and (3) show that f(z)e G and f(z)e H, and hence f(z)e GH which contradicts ( 1)
since GNH =¢. It follows that x,e FX-A. We have.thus shown that X-A contains a nbhd of
each of its points and consequently X-A is open, that is, A is closed.

Deduction: Let f and g agree on a dense subset B of X, that is, let f(x) =g(x), ¥ x€ B.

To prove that f =g. Let x be any arbitrary point of X. Then 3 a sequence [x,} in B such that
Kg—rX. ;

NO“", r{xﬂ}= S‘:xn]m VDE N

= lim f(xp)= lim g(xg)=>1] lim X,])=g[ lim x,]=>f(x)= g(x), Vxe X=>f=g.
n—sx O—w n=%1 N—+L

7.14Theorem: Prove
Every compact subset of a Hausdorff space is closed,

A one-one continuous map of a compact space onto a Hausdorff space is a hnmeomqrphism,
For proofs see Simmon's Book.

7.15 Theorem: Prove that in a Hausdorff space, any point and disjoint compact subspace can
be separated by open sets, in the sense that they have disjoint neighborhoods.

Proof: Let X be a Hausdorff space, x a point in X, and C a compact subspace of X which
does not contain x. We construct a disjoint pair of open sets G and H such that xe G and
CcH. Let y be a point in C . Since X is a Hausdorff space, x and y have disjoint
neighborhoods G, and H,. If we allow y to vary over C, we obtain a class if Hy's whose
union contains C; abd sunce C is compact, some finite subclass, which we denote by

(Hy,Ha.....Ha}, is such that C;j:;l-li. ¥ Gy,Ga.......00 arc the nbisds of x which comespond
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to the H;'s, we put G=.f""|Gi and H:_:{H-,. and observe that these two sets have the required
= =] .

properties.

7.16 Definition: Let X be an arbitrary topological space and {x,] a sequence of points in X.
This sequence is said to be convergent if there exists a point x in X such that for each
neighborhood G of x a positive integer n, can be found with the property that x, is in G for all
n = n, The point x is called a limit of the sequence, and we say that x, converges 10 x (and
symbolize this by x,—x),

7.17 Theorem: Every r.:n:rnvr:rggnt sequence in a Hausdorff space has a unique limit.
Proof: Let (X, T) be a Hausdorff space and let {x,} be a convergent sequence in X. We want
to show the limit of this sequence is unique. If possible, let the sequence {x,} converge to two

distinct points x and y. Since the space is Hausdorff, there exist two open sets G and H such
that xe G, ye H and GnH=$. i

Since {Xa} converges to x, there exists nge N such that n =2n=>x:€ G.
Again since {x,} converges to y, there exists mge N such that n 2 my=> %€ H-

Let n;=max {n,, mo}. Then x, € GnH. But this contradicts the fact GNH =.

Hence, the limit of the sequence must be unique.
7.18 Example: Give an example to show that the converse of the above theorem is not true.

Solution: Consider the co-countable topology T on an uncountable set X. We know that this
space is not Tz. But in this space every convergent sequence has a unique limit.

As another example, consider the indiscrete topological space X consisting of at least .
two points. This space isn't T, but in this space any sequence converges 1o every point of the
space.

7.19 Theorem: Let (X, T) be a first countable space. Then (X, T) is a Hausdorff space if and
only if every convergent sequence in X has a unique limit.

Proof: We first assume that (X,T) is a Hausdorff space. To prove that every convergent
sequence in X has a unique limit. For proof, see theorem 111,

Next, let us assume that (X,T) be a first axiom space in which every convergent
sequence has a unique limit. To prove that the space is Hausdorft. Suppose, if possible, (X,T)
is not Hausdorff. Then there must exist two distinct points x and y such that every open set
containing x has a non-empty intersection with every open set containing y. Since the space is
first countable, there exist nested (monotone decreasing) local bases at x and y (prove this)

Let B(x)=(By(x) IneN}and

B(y)=( Bu(y) |neN} be the nested local bases at x and y respectively. Then we must have
Ba(X)" Be(y)#$, ¥ne N, and so there exist xq€ X such that
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Xq€ By(x) By(y), VneN.
Therefore, x,& By(x) and x.€ By(y), ¥ne N,

Let G and H be arbitrary open sets such that xe G and ye H. Then by the definition of
nested base, there exists an integer ng, such that ,

Bo(x)cG and Bu(y) cH , Vnng

This means that x,€ G and x.€ H, ¥n=ng It follows that x,—x and x,—y. But this contradicts

the hypothesis that every convergent sequence in X has a unique limit. Therefore, (X, T) is a
Hausdorff space.

7.20 Definition: A topological space (X, T) is said to be a regular space if given an element
x€ X and closed set Fc X s. . x¢ F, 3 disjoint open sets Gy, Gy, < X s. t. xe G, FcG..

‘A regular T,- space is called a Ty~ space. A topological space (X, T) is called a
completely regular space if given a closed set Fc X and a point xe X s. t. x¢F, 3 a
continuous map f: X—[0,1] with the property,

f(x)=0, f(F)={1}.

A cumpk:te]y regular T-space is called a T}rchonuﬂ' space. Tychonoff space is also called a
1'3l space.

7.21 Examples:

(i)  LetX={a,b,c) and T={$,{a),(b, c}.X) show that (X, T) is regular, but not T and Ts.
(ii)  Show that (R, U)is T;

7.22 Theorem: A topological space (X, T) is regular iff for every pﬂmt xe X and every nbhd
N of x, there exists a neighborhood M of x such that M < N,

Proof: It is enough to prove the theorem for open neighborhoods.
The only if part. Let (X, T) be a regular .Spnﬂc and let N be an open neighborhood of x. Then

X-N is a T-closed set which does not contain x. Since the space is regular, there exists two
open sets L and M such that X-Nc L, xe M and LM =. Since LnM =0 we have M cX-L

c X-L=X-L..........[1)
Also, X-Nc L =2X-(X- NoX-L =N>X-L
Then (1) gives Mc N.

If part: Let the condition hold. Let F be a T-closed set and x a point of X such that xeF.
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Then, xe X-F. Since X-F is an open set containing x, by hypothesis, there must exist an open
set M such’that.

- xeMand M cX-F.
But Mc X-F=X-M 5X-(X-F), thatis, Fc X-M .
Further, since M is closed, X-M is an open set such that M (X-M) =¢.

Thus, M and X-M are two disjoint open sets containing x and F respectively. It follows that
the space is regular.

7.23 Theorem: Let F be a closed subset of a completely regular space (X,T) and x,& F°, then
prove that there exist a continuous map f:X—[0,1] s. t. f(ixo)=1,f(F)={0}. '

Solution: Suppose (X, T) is a completely regular space and F a closed subset of X s. L
%€ X-F so that x,2F. By definition of a completely regular space, 3 a continuous map
g: X—[0,1] 5. t. g(x,)=0, g(F)={1}. Now, we define a map

If:X—}[{}.l] s. t. f(x)=1-g(x).
Then f(x.}=1-g(xo)=1-0=1
- f(x)=1-g(x), ¥xe X.
-~ f(x)=1-g(x), ¥xeF.
=1-1=0.
- fi(x)=0, VxeF This =f(F)={0}.
g is continuous = |-g is continuous  =f is continuous
Fmail}f,_w;e have a continuous map f:X—[0,1] s. t. f(xo)=1 and f(F)={0].
';.1'.24 Normal space.and s;:nmpleteiy Normal Space:

A topological space (X, T) is said to be a normal space if given a pair of disjoint
closed sets F; and Foc X there exists disjoint open sets G; and G;c X such that F\,cG,
F»cG,. A Ty-normal space is called a Tq-space. Two sets A, B, are called separated sets if,
A#0, B#9, A B =9, A~ B=0. A space (X, T) is said to be completely normal iff given a
pair of separated sets, there are disjoint open sets U and V 5. t. ACU, BCV. A T,-completely
normal space is called a Ts-space.

7.25. Show that
i) (X, T) where X={a, b, c}and T={#9, x, {a}, [b,c}} is a normal .spaﬁe.

ii) - Every metric space is a Ts-space.
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Proof: Routine
7.26 Theorem: Complete normality is a topological property:

Proof: Let (X, T) be a completely normal space and let (Y, V) be its homeomorphic image
under a homeomorphism f. To show that (Y, V) is also completely normal.

Let A, B be any two separated subsets of Y so that A~ B= and AN B =. Sinee f is a
continuous mag, we have

(fF (AN cf(A)and (f7(B) cf(B)... 1)
Hence, f '(A)n (F'(B)) cf A N fY(B)=f" (An B)=f '(¢)=p

and f(A)f '(B) = £ AN '(B)=f (AN B)=f"(9)=0,

Thus, f '(A) and f "'(B) are two separated subsets of X. Since (X, T) is completely normal,
there exists T-open sets G, H such that

f(A) G, f '(B) c H and GNH =b.
These relations imply that A= f [f '(A))lc G), B=f[f(B)] <f (H)
and f{G)(H)=HGH)=f{($)=p
Note that since f is onto, we have
f(f '(A))=A, f(f '(B))=B and since f is one-one, we have,
f(G)(H)=f(GH)

Also since f is an open map, f(G) and f(H) are V-open sets. Thus, we have shown that for any
two separated subsets A, B of Y there exist V-open subsets G;=f(G) and H,=f(H) such that
Ac Gy, BcH; and Gy Hy=b. It follows that (Y, V) is also a completely normal space.
Hence, complete normality is a topological property.

7.27 Theorem: Prove that a topological space (X, T) is normal if and only if for any closed
set F and open set G containing F, there exists an open set V such that FCVand Vc G .

proof: The only if part: Let (X, T) be a normal space and let the closed set F be contained in
the open set G, that is FcG. Then X-G is a closed set such that

F (X-G)cG n (X-G)=p

Thus X-G and F are disjoint closed subsets of X. Since the space is normal, there exist open
sets U and V such that X-G cU, FcV and UnV =¢,
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But UnV 0=V X-U=VcX-U=Vc XU .
Also, X-GAU=2XA{X-G)2X-U =202X-U = i (2)
From (1) and (2), we get V cG. Thus there exists an open set V such that FCV and V cG.
The if part: Let the condition hold. Let L and M be closed subsets of X such that LnM =$.
Now, LM =$p=>Lc X-M.

Thus, the closed set L is contained in the open set X-M. By hypothesis there exists an open
set V such that L<V and V cX-M

Now, VcX-M =X- v SX-(X-M) = X- VoM. Also Vi (X- v Y=

Thus, V and X~V are two disjoint open sets such that LcV and M cX-V. It follows that
the space is normal.

7.28,Theorem: Show that every compact Hausdorff space is normal (Ts).

Proof: Let (X, T) be a compact Hausdorff space, and let A, B be a pair of disjoint closed
subsets of X. Since every normal space is regular, for each xEA, there exists T-open sets Gy
and H; such that xe G;, Bc H, and G, H; =9,

Then the collection C={G,~BlxeA)isa T*-open cover of A, where T* denotes the
relative topology for A,

Now, (A, T*) is a compact subspace of (X, T) and hence there exists a finite subcover of C,
say :

C*=(G,,nAli=12,...n} sothat (G, N Ali=1,2,...n }=A
LetG=u {G, li=12..n} and H=n (H, |i=12,..n)

Then, G, H are T-open sets such that AcG, B H and GNH =9,

Hence (X, T) is normal. Since every Hausdorff space is a T;-space, it follows that (X,T) is
also a Ty-space.

A topological space is not only rich in open sets, but also rich in continuous functions.
The following are some fundamental theorems in this direction.

7.29 Definition: Dyadic Fraction. A real number of the form w%n, n=12,..., and .

m=1,2,....,2°-1, is called a Dyadic Fraction. For example, the dyadic fractions in the interval
(0,1) are

113135

§ ) ] s

2°4’4’8°8°8"
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7.30 Theorem: State and prove Urysohn’s lemma.

Urysohn’s lemma: A topological space (X, T) is normal iff given a pair of disjoint closed
sets A, B © X, there is a continuous function f: X—[0,1] such that f(A) ={0} and f(B)={1}.

Proof: We assume first that for given a pair of disjoint closed sets A, B X; there exists a
continuous map F:X—[0,1] s. t. f(A)={0}, and f(B)={1}.To prove that (X, T) us a normal
space.

Let G=f" (Jo,4] Jand H=£"'( |.1] ). We shall show that G and H are disjoint open sets in
X such that ACG and Bc H.

Since E),%-) and [ %,‘l ] are U*-open subsets of [0,1] and f is T-U* continuous map, it

follows that G and H are T-open subsets of X. Further,

fA=(0})=>F'({0)oA and  (O}cfo.d)=f -:{m:u:[[ ﬂﬁf (10)<G
: /

Hence, we obtain AcG. Similarly, we can show that BcH.
Also GrH=f (.1 ))f (. 4]=9,

Therefore, (X, T) is a normal space. Conversely, we suppose that (X, T) is a normal space.
Now, B’ is a neighborhood of the closed set A, and so by the normality of X, and Theorem
7.27, A has a neighborhood U}‘{ such that

A;U};;ﬁ}z;ﬂ’,

Uy, and B’ are neighborhoods of the closed sets A and ﬁ.min&mmwaymmmst
open sets U}i and U}: smhmmﬁguzgﬁgcuggﬁ;ux;ﬁ;;ﬂ'.

If we continue this process for each dyadic rational number t=m/2", we have an open set of
the form U, such that ti< t;=>Ac U, < U, c U, cU,, cB’. We now define our function f by
f(x)=0 if x is in every U, and f(x)=sup{t:x¢ U,}, otherwise. It is clear that the values of f lie in
[0,1], and that f(A) =0 and f(B)=1. All that remains to be proved is that f is continuous. All
intervals of the form [0,a) and (a.,I] where O<ac<l, onnst;tute an open subbase for [0,1]. It,
therefore, suffices to show that f "'([0,a)) and f "'((a,1]) are open. It is easy to see that
f(x)<acsx is in some U, for t < a; and from this it follows that f '([0,a))=(x:f(x)<a}= VU,

which is an open set. Similarly f(x)>a<>x is outside of U, for some t >a; and therefore f

‘(@ 1D={(x | fx>a}=y T, , which is an open set

7.31 Theorem: State and prove the Tietze Extension Theorem.
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Solution: Statement: A topological space (X, T) is normal if and only if for every real valued
continuous mapping f of a closed subset F of X into the closed interval [a, b], there exists a
real valued continuous mapping g of X in to [a, b] such that g is a continuous extension of f
over X. S

Proof: The “if part’ We suppose that for every real-valued continuous mapping f of a closed
subset F of X into [a, b], there exists a continuous extension of f over X. To show that (X, T)
is normal.

Let A, B be two closed subsets of X such that A~B=$ and let [a, b] be any closed
interval. We define a mapping.

f: AUB—{a, b] such that f(x)=a if x€ A and f(x)=b if xe B. This mapping is certainly
continuous over the subspace AUB. For if H be any closed subset of [a, b], then

A ifacH and beH,

B ifbeH and a¢H,
fl(H)=

AUB ifacH and beH,

) ifagH and be H.

It follows that f "{H) is closed in AUB. Hence f is a continuous map over the subspace
AUB. Therefore, by hypothesis, f can be extended to a continuous map g over X. This means
that there exists a continuous map, g: X—[a, b] such that g{x)=a if xe A and g(x)=b if xB.
The mapping g now satisfies the condition stated in Urysohn's lemma, and hence (X, T) is
normal. ’

The ‘only if part’ ;

Suppose X is a normal space, F a closed subspace, and f a continuous real function
defined on F whose values lie in the closed interval [a, b]. To prove that f has a continuous
extension g defined on all of X whose values also lie in [a, b],

If a = b, then the constant function é{x}:a.,‘v’xe X will serve the purpose. Next, assume
that a<b. For numerical convenience, we take [a, b] to be [-1,1]. We begin by defining f, to be
f. The domain of f, is our closed subspace F, and we define two subséts A, and B, of F by

ﬁu={x:fn[x}£-% } and By ={x:fi(x)2 % }. A, and B, are disjoint, nonempty and closed in F;
and since F is closed, they are closed in X. A, and B, are thus a disjoint pair of closed
subspaces of X, and by the Urysohn lemma there exists a continuous functiorn

g.;:x-—}[—;;,?;v] such that g (A,) = :

e and g,(B,)= % We next define f; on F by fi= frﬁm

and we observe that | t‘,{xjf 5% If Ap={x | fi(x)<(- _Ij]% } and By={ x| mxp(%]{%n, then

in the same way as above there exists a continuous function g;:X—[( - % }{—;—I],% E%]] such
i 22 2
that gy(A, }={—¥} {E}, and E|{:.B]}_={%}[§ ). We next define f; on F by f; = fi-g; = fo(got21)




2
] . By continuing in this manner, we get a sequence

and we observe that |f2(x)i£[%
J

{fﬂ, fi, fz} defined on F such that

fu{xjﬁi[%] and a sequence {go, g1, £2..--}
4

defined on X such that |gl(x}t£[%l~§] with the property that on F we have,
/ ;

fo = fo-( 8o+ g1+ B2t 4 8a1)-

We now define s, by s,= go+ g1+ g2+.... 48 and we regard the s, s as the partial sums of

an infinite series of functions in C(X, R). We know that C(X, R) is complete, so by

lg,(x]l*_: [%I%W and the fact that E[%I%] =1, we see that s, converges uniformly on
J o=d /

X to a bounded continuous real function g such that | g(x) [<1. We conclude our proof by

noting that since | £4(x)|€ (2/3)" , sq converges on F to fo=f, and that therefore g equals f on F
and is a continuous extension of f to the full space X which has the desired property.

7.32 Remark: The above theorem is false if we omit the assumption that the subspace F is
closed. For example, let X be the closed unit interval [0,1], F the subspace (0,1] and f the

function defined on F by f(n}:sin[l]. X is clearly normal, F is not closed as a subspace of

X
J
X, and f cannot be extended continuously to X in any manner whatsoever.

Problem Set 7

Ex 1: prove that Ts=T=T=T=T=T, Furthermore, construct counter examples to show
that the converse route of the above implication is not true in general.

Ex 2: Prove that the T-spaces i=1,2,3,4,5 have both hereditary and topological properties.
Ex 3: Construct a bijective continuous map that is not a homeomorphism.

Ex 4: If f is a continuous mapping if a topological space X into a Hausdorff space Y, prove
that the graph of f is a closed subset of the product X x Y.

Ex 5: Show that if :X— Y is a continuous mapping of one topological space into another,
then x,—»x in X=>f(x,)—f(x) in Y. prove that the converse of this is true if each point in X
has a countable open base.

Ex 6: If T is the cofinite (cocountable) topology on an uncountable set X, prove that (X, T) is
a T-space but not a T.-space. :

Ex 7: Show that a topological space (X, T) is a Tj-space iff T contains the cofinite topalbgy
on X.
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Ex 8: Prove that a closed subspace of a normal space is a normal space. Show further with a
counter example that an open subspace of a normal space may not be normal.

Ex 9: Prove that a regular second countable space is normal.
Ex 10: Prove Urysohn's lemma by using the Tietze’s Extension theorem.

Ex 11: State and prove a generalization of Tietze's theorem which relates to functions whose
values lie in 3.

Ex 12: Let X be a normal space, and let A and B be distinct closed subspaces of X. If [a, b] is
any closed interval on the real line, then there exists a continuous real function f defined on
X, all of whose values lie in [a, b], such that f{A)={a}. and f(B)}={b}.
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UNIT S
CONNECTEDNESS
8.0 Introduction:

The notion of ‘connectedness’ is fundamental in higher analysis, geometry and
topology and is originally derived from the property of the intermediate value theorem in
calculus. The modern notion of connectedness was proposed by Jordan and Schoenfliesz in
1893 and put on firm footing by Riesz. The definition of connectedness for a topological
space is a quite natural one. One says that a space can be “disconnected” if it can be broken
up into two “globs”- disjoint open sets. Otherwise, one says that it is connected. From this
simple idea much follows:

8.01 Separated Set: Two subsets A and B of a topological space (X, T) are said to be
separated if A=), B9, AnB=$p and A "B=¢. In other words, we can also say that the
nonempty sets A and B are separated if AnD(B) =, D(A)"B=¢.

8.02 Disconnectedness: Let (X, T) be a topological space and Ac X. The set A is said to be
disconnect subset of X if 3 G, He T such that AnG # ¢, ArnH # , (AnG)(AnH)=$ and
A=(AnG)U(ANH). In this case, GUH is called a disconnection of A. The set A is
connected if it is not disconnected.

A topological space (X, T) is said to be disconnected if JGHeT such that
G 26, H# ¢, GH=t and X=GuUH. X is said to be connected if it is not disconnected.

8.03 Examples:

Every indiscrete space is connected,

Every discrete space is disconnected if the space contains more than one point.

If X={a, b, c, d,} and T={#, X, {a}, {a, b},{ab,c}}. Then the topological space (X, T)is
connected.

8.04 Arcwise connected: Let (X, T)be a topological space. Let I be the set of all real numbers
belonging to the closed interval [0,1] with usual topology.Let a, be X be arbitrary.

A continuous map f:I—=X with the properties f{0) = a, f(1) = b is called a path from the point
a to the point b. In this case, a is called the initial point and b is called the terminal or final
point of the path. Let (X, T) be a topological space and Ac X. A is called arcwise connected
if for anv.™~  points a, be X, there is a path f: I=X, from a to b such that f(I)c A.

8.05 Theorem: Prove that X is disconnected if and only if 3 a nonempty proper subset of X
which is but:: open and closed. .
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Proof: Let (X, T) be a disconnected topological space so that 3 a disconnection GUH of X.
Then, G, He T such that G # ¢, H ¢, GH =, X=GH. To prove that 3 a nonempty proper
subset of X which is both open and closed.

GrH =§, He T=G=X-H, X-H is closed =G is closed.
X=GuUH, G#p+H=GcX, G=X =G is a nonempty proper subset of X.

Finally, we have shown that 3 a nonempty proper subset G of X which is both open and
closed.

Cunversely, let A be a nonempty proper subset of a topological space (X, T) such that
A is both open and closed in X. To prove that X is disconnected .

Az, A is closed =X-A#p, X-A is open
=B=0, B is open, where B=X-A.
X-A=B=AUB=X, AnB =,

Thus, the sets A and B are nonempty, disjoint subsets of X which are also open in X such that
X=AUB. Consequently, A_B is a disconnection of X. So, X is disconnected.

Remark SJ}E From above we can conclude that X is connected if and only if X has no
proper subset which is both- open and closed in X. This means that ¢| and X are the only
subsets of X which are both open and closed in X.

+ 8.07 Theorem: Prove that if f; X—Y is a continuous map from a connected space X onto a
topological space Y, then Y is also connected.

If f is continuous, Y is connected, does this imply that X must be connected?
Proof: First part:

Assume that Y is disconnected. Then 3 two open sets G and H such that Y = GUH
and GH =§. Then f{G) and f(H) are two open subsets of X such that X =f{G}f(H) and
F(G)~f(H)=). This asserts that X is disconnected, a contradiction. Hence Y is also a
connected space. '

Second part:
The result is not necessarily true. For example, let
X={1.2,3}, T={¢.X, {1}, [2,3}],

Y={4], D={¢,Y}.

_Let f: (X, T)=(Y, D) be a map such that f(x)=4 ¥xeX. Then as a constant map f is
continuous, and further obviously Y is connected. However, (X, T) is not connected.




Theorem 8.08: Let (X, T) be a topological space and let E be a connected subset of X' such
that Ec AuB where A and B are separated sets. Then EC A or EC B.

Proof: The proof is every easy and so left for the readers.

Theorem 8.09: Let (X, T) be a topological space and let E be a connected subset of X. If F is
a subset of X such that Ec FcE, then F is connected. In particular, E is connected.

Proof: Suppose if possible, F is disconnected. Then there exists nonempty separated sets A
and B such that F= AUB. Since Ec F, we have Ec AUB.

Since the connected set E is contained in the union of two separated sets A and B, it follows
from the preceding theorem that EC A or EC B. Let EC A.

Now, Ec A= EcA =EnBcANB =b
Since ¢ is a subset of every set, we have EnB=b
Again F=AUB and Fc E=BcFcE. Hence ENB=B

The above results imply that B =$, which is a contradiction, since B is nonempty.
Therefore, F is connected.

Since ECE cE, it follows that E is connected.

Theorem 8.10: If every two points of a subset E of a space X are contained in some
connected subset of E, then E is a connected set.

Proof: Straightforward.

Theorem 8.11: Let {C,| A A, A an index set} be a nonempty collection of connected subsets
of X such that N{C,| Ae A}#$. Then U{C,| Ae A} is a connected set.

Proof: Let E = U(C, |AeA}, and suppose E is not connected. Then the definition of
disconnectedness is equivalent to the existence of two nonempty sets A and B such that

E=AUB, Ay =$, ArnB =b.
By hypothesis, there exists some point
pen(C,lAeA}

Then, p must belong to E. Since E=AUB, either pe A or pe B. Without loss of generality, we
may suppose that pe A. Since pe C,, ¥ Ae A, we have C, nA=p, VieA. NoweachC,isa
connected subset of X, so that we have. :

CcAorCcB.




Since A'and B are disjoint sets and C, NA#$, YA A, we must have C,cA VheA and
consequently Ec A, that is, AUBC A which yields that B =¢. But this is a contradiction since
B is nonempty. Hence E must be connected.

Connectedness on the real line.

Theorem 8.12: Prove that a subset E (containing at least two pmms} of the real lmc Jis
connected iff it is an interval. In particular, R is connected.

Proof: Let E, be connected, and suppose, if possible, E is not an interval. Then there exist
real numbers a, p, b with a< p<b such that a, be E but pg E.

Let G=(-==, p), H=(p, =). Then ae G and be H so that G, H are nonempty disjoint open sets.
Let A=ENG, and B=EH. Then A, B are nonempty sets since ac A and be B.

Also, ANB=(ENG)ENH) =E~(GNH)=Er=0
And AUB=(ENG) w (EnH)= En(GUH)=EN[(-s=, ph(p, ==)]=EN( R-[p})
=E ("-p ¢ E, we have EC R-(p})

Thus, GUH is a disconnection of E which contradicts the hypothesis ttmtElsmnmcm
Hence E must be an interval.

Conversely, let E be an interval. Then, we have to show that E is connected. Assume
the E is disconnected and let GUH be a disconnection of E so that G, H are closed sets.

Let A=EG and B=E~H. Then A, B are nonempty disjoint sets where union is E that is,
A0, B£, AnB=$, AUB=E. Since A, B are nonempty, we may choose a point ac A and a
point be B. Now, a=b since AnB#¢. Thus either a<b or a>b. Without loss of generality, we
may assume a<b. Since E is an interval, we have [a, b] cE and since E=A\UB, each point of
[a, b] is either in A or in B. :

Let u =sup ([a, b]nA),

Evidently, a<u<b so that ue E. Since a is closed in E, the definition of u shows that ue A. This
give us the strict inequality u<b.

Moreover, the definition of u shows that u +€ belongs to B for e>0 such that u +€ <b.
Since B is closed in E, ue B. Thus, we have shown that u belongs to both A and B which is a
contradiction since A, B are disjoint.

Hence E is connected.

8.13 Problem: The range of a mnr.munus real-valued map defined on a connected space is an
interval.

Solution: Let f be a continuous real valued map defined on a connected set A.




To prove that f(A) is an interval. Our assumption implies that
(i) f:tA—> R, fii) f is continuous, (iii} A is connected
(i) and (ii) = f(A) is connected. f(A)c R is connected =f(A) is an interval.
8.14 Theorem: Continuous image of an arcwise connected set is arcwise connected.
Solution: Let f: (X, T) —(Y, V) be a comtinuous map and let Ac X be arcwise connected.
To prove that f(A) is arcwise connected.
Let p,qe f(A) be arbitrary, then 3 py, q; € A s. t. f(pi)=p, f(gi)=q.

Let I=[0,1]. A is arcwise connected implies that 3 a path g:1—-X from p; to g; such that
g(D) cA. It means that g(0)=p,, g(1)=q,

g is a continuous map.
g: I-»X and f: XY are continuous maps and hence so is the map f o g: [-Y.

(f o go)=f(g(0)=f(p:)=p

(fog)(1)=fg(1)=f(q)=q

(fog)(D=fgM)=HA)
Finally, f o g: I=Y is a continuous map such that for any arbitrary point p, ge f(A), we have
(fogh0)=p, (fogkl) = q, and (fogDc f(A). This proves that f{A) is arcwise connected.
8.15 Theorem: Prove that arcwise connectedness is a topological property.

Solution: Suppose f:(X, T)—(Y, U) is a homeomorphism and X is arcwise connected, the
result will follow,

f is a homeomorphism = f is one-one onto and f is continuous. Then, by theorem
8.07, the required result follows:

Ihemmts of a Space

If a space is not itself connected, then the next best thing is to be able to decompose it
into a disjoint clan of maximal connected subspaces. Our present objective is to show that
this can always be done.

8.16 Definition: A maximal connected subspace C of a topological space X is called a
component of the space.

Thus, C is a component of X iff C is connected and C is not properly contained in any
larger connected subspace. A component of a subset Y of X is a component of Y with its
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relative topology, since singlton sets of a topological space are connected, it is evident that
components are nonempry. :

8.17 Example:
(i) Lét (X, T) be connected. Then X has only one component, namely X itself.

(i) Let (X, T) be a discrete space. Then singleton sets are the only connected subsets of X
and consequently they are the maximal connected sets. Hence, each singleton set is a
component for a discrete space.

8.18 Problem: Show that every component of a topological space (X, T) is closed. Is it also
necessarily open? Justify your answer.

Solution: First part:

Let C be a component of X. Since C is connected, its closure C is also connected.
Now C, being a component, is a maximal connected set. Hence, C < C. Also, we always
have Cc C . Therefore, C=C, If follows that C is closed. '

Second part:
A component may not be open. This can be illustrated with the following example.

Let X be the subspace of the real line which consists of all rational numbers. We
observe two facts about X. First if x and z are any two distinct rationals and of x<z, then
there exists an irrational y such that x<y<z, and therefore

X=[Xi(-=, y)JU[X Ay, +e=)] is a disconnection of X which separates x and z. We
see from this that any subspace of X with more than one point is disconnected, so the
components of X are its points. Second, the points of X are not open, for any open subset of
R which contains a given rational number also contains others different form it. Here, then, is
a space whose components are its points and whose points are not open. This example also
shows that a space need not be discrete in order that each of its points be a component.

Theorem 8.19: Prove the following for any arbitrary topological space (X, T).
Each points in X is contained in exactly one component of X

Each connected subspace of X is contained in a component of X; and

A connected subspace of X which is both open and closed is a component of X

Proof: (1) Let x be any point in X. Consider the class {C;}of all connected subspaces of X
which contain x. This class is nonempty, since, x itself is connected. Now C=UC, is a
I

connected subspace of X which contains x.C is clearly maximal, and therefore a component
of X, because any connected subspace of X which contain C is one of the Ci's and is thus
contained is C. Finally, C is the only component of X which contains.x. For if C" is another, it
is clearly among the C's and is therefore contained in C and since C* is maximal as a
connected subspace of X, we must have C*=C.
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(2) Let C be any connected subset of X. If C =¢, then C is comained in every
component. If Cf, then C contais a point x,€X. Then by the construction in (1), 3 a
component C, such that x.e C, and C, is the union of all connected subsets of X

containing X, . Hence, cc C;a .

(3) Let A be a connected subset of X which is both open and closed. By (2), A is
contained in some component C. If A is a proper subset of C, then it is easy to see that

C=(CnAMHCNA) is a disconnection of C. This contradicts the fact that C, being a
component, is connected, and we conclude that A =C.

Totally Disconnected Space, -

8.20 Definition: A totally disconnected space is a topological space X in which every pair of
distinct points can be separated by a disconnection of X. This means that for every pair of
points x and y in X such that xy, there exists a disconnection X=AB with x€ A and ye B

8.21 Example: (i) show that every discrete space is totally disconnected.

Solution: Let, (X, D) be any discrete space and let x, y be any two distinet points of X. Then
A={x}and B=X-{x}, are both nonempty open disjoints sets whose union is X such that xe A
and ye B. Hence AUB is a disconnection of X with x€ A and ye B. It follows that (X, D) is
totally disconnected. :

(ii) Show that (a) the set of all rational numbers, (b) the set of all irrational
numbers, (c) the Cantor set, are all totally disconnected spaces.

Proofs ate simple, and so left for the readers,
8.22 Theorem: The components of a totally disconnected space are its points.

Proof: IF X is a totally disconnected space, it suffices to show that every subspace Y of X
which contains more than one point is disconnected. Let x and y be distinct points in Y, and

let X=AUB be a disconnection of X with xe A and ye B. If is obvious that
L]

Y=(yA).{(yB) is a disconnection of y. Hence, the required result.

8.23 Theorem: Let X be a Hausdorff space. If X has an open base whose sets are also closed,
then X is totally disconnected.

Proof: Let x and y be distinct points in X. since X is Hausdorff, x has a neighborhood G -
which does not contain y. By our assumption, there exists a basic open set B which is also
closed such that x € BcG.

X=BUB® is clearly a disconnection of X which separates x and y

8.24 Theorem: Let x be a compact Hausdorff space. Then X is totally disconnected iff it has
an open base whose sets are also closed.




Proof: The ‘if part’ follows from the theorem 8.23.

" To prove the ‘only if part’ we assume that X is totally disconnected. We want to show
that the class of all subsets of X which are both open and closed forms an open base.

Let x be a point and G an open set which contains it. We must produce a set B which
is both open and closed such that xe BCG. We may assume that G is not the full space, for of
G=X then we can satisfy our requirement by taking B=X. G is thus a closed subspace of X,
and since X is compact, G’ is also compact. By the assumption that X is totally disconnected,
for each point y in G’ there exist a set Hy which is both open and closed and contains y but
not x. G* is compact, so ther exists some finite class of H;s which we denote by {H,, Ha,
Ha.......H,}, with the property that its union contains G’ but not x. We define H by

H=_T;IIHL. and we observe that since this is a finite union and all the Hy s are closed as well as

open, H is both open and closed, it contains G*, and it does not contain x. If we now define B
to be H', then B clearly has the properties required of it.

Locally Connected Space:
8.25 Definition: A locally connected space is a topological space with the property tht if x is
any point in it and G any neighborhood of x,then G contains a connected neighborhood of x.

This is evidently equivalent to the condition that each point of the space have an open base
whose sets are all connected subspaces.

8.26 Example: Show that every discrete space (X, D) is locally connected.

Solution: Let x be any arbitrary point of X. Then {x}is a connected neighborhood of X. Also
every neighborhood of x must contain {x }. Hence (X, D) is locally connected.

8.27 Theorem: Every component of a locally connected space is both closed and open.
Proof: We have already verified that a component of any space is closed (theorem 8.18)

Next, to show that a component C of a locally connected space X is open, let aeC.
Since X is a locally connected, a must belong to at least one connected open set G,. Since C
is a component, we must have

ae G,cC
It follows that C:L.J{GJ ae C}. Hence C is open being a union of open sets.

8.28 Show that a space X is locally connected if and only if for every open set U of X, each
component of U is open in X.

Proof: Suppose that X is locally connected; let U be on open set in X; let C be a component of
U. If x is a point of C, we can choose a connected nbhd V of X such that VcU. Since V is
connected, it must lie entirely in the component C of U. Therefore, C is open in X.




Conversely, suppose that component of open sets in X are open. Given a point x of X
and a nelghbomhmd U of x. Let C be the component of U containing x. Now C is connected;
since it is open in X by hypothesis, X is locally connected at x.

8.29 Problem:
Give an example of a locally connected space which is not connected.
Give an example of a connected space which is not locally connected.

Proof: Consider the real line R with the discrete topology. Let xe R. Then the singtlon set
{x} is both open and connected. If G is any open set containing x, then 3 a connected open set
C=(x }such that xe CCG. Since x is arbitrary, it follows that R is locally connected at each
point xe R, and therefore (R,D) is locally connected.

Since the singleton set {x }is a nonempty proper subset of R which is both open
and closed, it follows that (R,D) is not connected. Alternatively if A=(1,2).43,5) is the union
of two disjoint open intervals, then A is locally connected, but not connected.

Let X be the subspace of the Euclidean place defined by X=A\UB, where
A={(x, y) | x=0 and -1< y <1} and B={(x, y)| 0<x<1 and y =sin(L)}. Now, B is the image of
the interval (0,1 under the continuous mapping f defined by f(x)=(x, sin{L)), so B is

connected (a continuous image of a connected space is connected). If (0,a) is any point in A,
then 3 a sequence.

2nm+sinT a

-+I——,.s'mL - wh:re.x.,:—-l—linBsuch that
2nm+sin a X

[x ,5in— ]—}{ﬁ a). Hence every points of A is a limit point of B, and so B=X.
X

Since B is connected, B is also connected.: Thus, X is a connected space.
Next consider the point (0,1 ) in A and consider an open sphere S, (0,1) with center
Y

(0,1) and radius % Then this open sphere contains some line segments of B, but the union

of all those line segments is not a connected open set containing (0, 1 ). Thus, the open sphere
does not contain any connected open subset of X. Hence X is not locally connected at (0, )
and therefore X is not locally connected. '
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Problem set 8
Example 1. Can we have a topological space which is both
Connected and disconnected,
Connected and totally disconnected,
Connected and locally connected,
Locally Connected and totally disconnected.

Example 2. Consider the real line R with the usual topology. Is each of the following subsets
of 3 connected? Justify your answer.

@ 05 () 7T2U03) (i) (11,2 W211) (VA= {1,%15,...} (W<, (v
Q (vii) The Cantor set.

Example 3. Let X be a connected space. Can we construct a continuous map form X onto
(1,3)?

Example 4. Prove that a topological space X is disconnected <> there exists a continuous
mapping of X onto the discrete topological space {0,1}.

Example 5. Show that the spaces R" and C" are connected.

Example 6. Show that a topological space is connected <>every nonempty proper subset has
a nonempty boundary.

Example 7. Show that the graph of a continuous real function defined on an interval is a
connected subspace of the Euclidean plane.

Example 8. Prove that the component of a topological space X form a partition of X, that is,
any two component are either disjoint or identical and the union of all the components is X.

Example 9. Prove that the product space XxY .Is connected if X and Y are connected, Is
totally disconnected if X and Y are totally disconnected, Is totally connected if X and Y are
locally connected.

Example 10. Show that an open subspace of the complex plane is connected < every two
points in it can be joined by a polygonal line.

Example 11. Prove thﬁu the deleted comb space

C=([0,1]x0p A Kx[0,11), where K= 1 Inez, }, is connected but not locally connected.
1 ;

Example 12. If f: X—Y is continuous and X is locally connected, is f(X) necessarily locally
connected? What if f is both continuous and open?
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