

(1)

M.Sc.-IT-19-I-1056GAUHATI UNIVERSITY

Institute of Distance and Open Learning

First Semester

(under CBCS)

M.Sc.-IT

Paper: INF-1056

ADVANCED DATABASE

MANAGEMENT SYSTEM

Contents:

BLOCK I: RELATIONAL MODEL CONCEPTS, LANGUAGES,

 DESIGN THEORY AND METHODOLOGY

Unit 1 : Relational Data Model and Relational Database Constraints

Unit 2 : Relational Algebra and Relational Calculus

Unit 3 : Structured Query Language I

Unit 4 : Structured Query Language II

Unit 5 : Semantic Modelling

Unit 6 : Normalization and Functional Dependencies

BLOCK II: DATABASE QUERY, TRANSACTION PROCESSING

 AND SECURITY CONCEPTS

Unit 1 : Query Processing and Optimization

Unit 2 : Transaction Processing

Unit 3 : Concurrency Control and Recovery Techniques

Unit 4 : Database Security

BLOCK III: INTRODUCTION TO OBJECT ORIENTED,

 DISTRIBUTED, MULTIMEDIA AND SPATIAL

 DATABASES

Unit 1 : Object Oriented Database System

Unit 2 : Distributed Databases

Unit 3 : Image and Multimedia Database

Unit 4 : Spatial Database

(2)

Contributors:

Dr. Sisir Kumar Rajbongshi (Block I : Unit- 1)
Asstt. Prof., Dept. of Computer Science
PDUAM, Goalpara

Mr. Surajit Medhi (Block I: Units- 2 & 5)
Asstt. Prof., Dept. of B.Sc.(IT)
B. Borooah College, Guwahati, Assam

Dr. Ridip Dev Choudhury (Block I : Units- 3 & 4)
Associate Prof., HCB School of Science & Technology
KKHSOU, Assam

Dr. Sonia Sarmah (Block I : Unit- 6)
Asstt. Prof., Dept. of Computer Applications
Assam Don Bosco University, Assam

Mrs. Epsita Medhi (Block II: Unit- 1)
Research Asstt., Dept. of Information Technology
Gauhati University, Assam

Dr. Pranab Das (Block II: Unit- 2)
Asstt. Prof. (Sr.), Dept. of Computer Applications
Assam Don Bosco University

Dr. Manash Protim Bhuyan (Block II: Unit- 3)
Asstt. Prof., Dept. of Computer Science
& Engineering, Golaghat Engineering
College, Golaghat, Assam

Mr. Deepjyoti Kalita (Block II: Unit- 4)
Asstt. Prof., Dept. of Computer Science
Mangaldai College, Darrang, Assam

Dr. Dipen Nath (Block III: Unit- 1)
Asstt. Prof., Dept. of Computer Science
Mangaldai College, Darrang, Assam

Dr. Utpal Barman (Block III: Units- 2, 3 & 4)
Asstt. Prof., Dept. of Computer Science
& Engineering
GIMT, Guwahati, Assam

Content Editor:

Dr. Khurshid Alam Borbora

Asstt. Prof. in Computer Science

IDOL, Gauhati University

Course Coordination:

Prof. Dandadhar Sarma Director, IDOL, Gauhati University
Prof. Anjana Kakoti Mahanta Prof., Dept. Computer Science, G.U.

Cover Page Designing:

Bhaskar Jyoti Goswami IDOL, Gauhati University

May, 2022

© Copyright by IDOL, Gauhati University. All rights reserved. No part of this
work may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, or otherwise.
Published on behalf of Institute of Distance and Open Learning, Gauhati
University by the Director, and printed at Gauhati University Press, Guwahati-
781014.

BLOCK I:

RELATIONAL MODEL CONCEPTS,

LANGUAGES, DESIGN THEORY

AND METHODOLOGY

1 | P a g e

Space for learners: UNIT-1: RELATIONAL DATA MODEL AND

 RELATIONAL DATABASE

 CONSTRAINTS

Unit Structure:

 1.0 Introduction

 1.1 Unit Objective

 1.2 Relational Model

 1.2.1 Advantages of Relational Model

 1.2.2 Limitations of Relational Model

 1.3 Components and Relational Terminologies

 1.4 Keys in Relational Model

 1.5 Relational Model Constraints

 1.5.1 Domain Constraints

 1.5.2 Key Constraints

 1.5.3 Entity Integrity Constraints

 1.5.4 Referential Integrity Constraints

 1.5.5 Operation in Relational Model with Constraint

 Violations

 1.6 Synthesizing ER diagram to Relational Schema

 1.7 Summing Up

 1.8 Answers to Check Your Progress

 1.9 Possible Questions

 1.10 References and Suggested Readings

2 | P a g e

Space for learners: 1.0 INTRODUCTION

In this unit, you will study about the relational database model: the

various components, characteristics and limitations. This unit will

also familiarize you with the key terms related to relational model

such as domain, attribute, tuple, & the various types of keys such as

primary, alternate, foreign, candidate, logical and super key with

examples. Here, the emphasis will also be given on the various

relational constraints, e.g., domain constraint, key constraint, entity

integrity constraint and referential integrity constraint. And you will

also learn about the Entity-Relationship diagram.

1.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand in detail the relational model, its advantages,

limitations and applications

 Explain the key terms of relational model

 Structure of the relational model

 Learn various characteristic of relations

 Understand the different keys in relational model

 Learn about the relational constraints

 Operations in Relational Model with Constraint Violations

 Analyze the E-R diagram

1.2 RELATIONAL MODEL

Storing and managing information is one of the most important

tasks for computers. The way in which information is organized can

have a profound effect on how easy it is to access and manage.

Perhaps the simplest but most versatile way to organize information

is to store it in the forms of tables. Table is the backbone of the

relational model.

The relational model is centered on this idea: the organization of

data into collections of two-dimensional tables called “relations.”

The data and relationships are represented by collection of inter-

3 | P a g e

Space for learners: related tables. Each table is a group of column and rows, where

column represents attribute of an entity and rows represents

records. The table name and column names are helpful to interpret

the meaning of values in each row. In the formal relational model

terminology, a row is called a tuple, a column header is called an

attribute, and the table is called a relation. The data type describing

the types of values that can appear in each column is represented by

a domain of possible values.

Originally, the relational model of database was introduced in 1970,

by English Computer Scientist Edgar F. Codd. The relational data

model was developed for databases — that is, information stored

over a long period of time in a computer system — and for database

management systems, the software that allows people to store,

access, and modify this information. Databases still provide us with

important motivation for understanding the relational data model.

They are found today not only in their original, large-scale

applications such as train booking systems or hospital management

systems, but in desktop computers handling individual activities

such as maintaining expense records, homework grades, and many

other uses.

1.2.1 Advantages of Relational Model

The relational model is the most dominant database model. It has

lots of advantages:

1. Simple Model

Compared to other types of models, a relational database model is

much simpler. It is free from query processing and complex

structuring. As a result, it does not require any complex queries. A

simple SQL query is sufficient enough for handling.

2. Data Accuracy

In the relational database system, there can be multiple tables

related to one another with the use of primary key and foreign key

concepts. Hence, there is no repletion of data. There is no chance

for duplication of data. Hence the accuracy of data in the relational

database is more than any other database system.

4 | P a g e

Space for learners: 3. Easy Access to Data

In the Relational Database System, there is no pattern or pathway

for accessing the data, as to another type of databases can be

accessed only by navigating through a tree or a hierarchical model.

Anyone who accesses the data can query any table in the relational

database. Using join queries and conditional statements one can

combine all or any number of related tables in order to fetch the

required data. Resulting data can be modified based on the values

from any column, on any number of columns, which permits the

user to effortlessly recover the relevant data as the result. It allows

one to pick on the desired columns to be incorporated in the

outcome so that only appropriate data can be displayed.

4. Data Integrity

Data integrity is a crucial characteristic of the Relational Database

system. It ensures that all the data in the database confines within

suitable arrangements and the data necessary for creating the

relationships are present. This relational reliability amongst the

tables in the database helps in avoiding the records from being

imperfect, isolated or unrelated. Data integrity aids in making sure

of the relational database’s other significant characteristics like

Ease of use, precision, and stability of the data.

5. Flexibility

A Relational Database system by itself possesses qualities for

leveling up, expanding for bigger lengths, as it is endowed with a

bendable structure to accommodate the constantly shifting

requirements. This facilitates the increasing incoming amount of

data, as well as the update and deletes wherever required. This

model consents to the changes made to a database configuration as

well, which can be applied without difficulty devoid of crashing the

data or the other parts of the database.

A Data Analyst can insert, update or delete tables, columns or

individual data in the given database system promptly and easily, in

order to meet the business needs. There is supposedly no boundary

on the number of rows, columns or tables a relational database can

hold. In any practical application, development and transformation

are restricted by the Relational Database Management System and

the hardware contained by the servers. So, these changes can create

5 | P a g e

Space for learners: an alteration in other peripheral functional devices connected to the

particular relational database system.

6. Normalization

The normalization process provides a set of regulations,

characteristics, and purposes for the database structure and

evaluation of a relational database model. Normalization aims at

illustrating multiple levels of breaking down the data. Any level of

normalization is expected to be accomplished on the same level,

that is, before moving ahead to the next levels. A relational

database model is usually confirmed to be normalized, only when it

satisfies the necessary conditions of the third normalization form.

Normalization offers an impression of reassurance on the database

plan, to be extra strong and reliable.

7. High Security

As the data is divided amongst the tables of the relational database

system, it is possible to make a few tables to be tagged as

confidential and others not. This segregation is easily implemented

with a relational database management system, unlike other

databases. When a data analyst tries to login with a username and

password, the database can set boundaries for their level of access,

by providing admission only to the tables that they are allowed to

work on, depending on their access level.

8. Feasible for Future Modifications

As the relational database system holds records in separate tables

based on their categories, it is straightforward to insert, delete or

update records that are subjected to the latest requirements. This

feature of the relational database model tolerates the newest

requirements that are presented by the business. Any number of

new or existing tables or columns of data can be inserted or

modified depending on the conditions provided, by keeping up with

the basic qualities of the relational database management system.

1.2.2 Limitations of Relational Model

The relational model suffers from certain limitations. The relational

model has been developed to meet the requirements of business

information processing. While applying the relational model to the

6 | P a g e

Space for learners: application areas, such as Computer-Aided Design (CAD),

simulation and image processing, many shortcomings have been

noticed in this model also. The various shortcomings of this model

may be discussed as follows:

1. Cost

The underlying cost involved in a relational database is quite

expensive. For setting up a relational database, there must be

separate software which needs to be purchased. And a professional

technician should be hired to maintain the system. All these can be

costly, especially for businesses with small budget.

2. Performance

Always the performance of the relational database depends on the

number of tables. If there are a greater number of tables, the

response given to the queries will be slower. Additionally, more

data presence not only slows down the machine, it eventually

makes it complex to find information. Thus, a relational database is

known to be a slower database.

3. Physical Storage

A relational database also requires tremendous amount of physical

memory since it is with rows and columns. Each of the operation

depends on separate physical storage. Only through proper

optimization, the targeted applications can be made to have

maximum physical memory.

4. Complexity

Although a relational database is free from complex structuring,

occasionally it may become complex too. When the amount of data

in a relational database increases, it eventually makes the system

more complicated.

5. Information Loss

Large organizations tend to use a greater number of database

systems with more tables. This information can be used to be

transferred from one system to another. This could pose a risk of

data loss.

6. Structure Limitations

The fields that are present on a relational database has limitations.

Limitations are in that sense that it cannot accommodate more

7 | P a g e

Space for learners: information. Despite if more information is provided, it may lead to

data loss. Therefore, it is necessary to describe the exact amount of

data volume which the field will be given.

1.3 COMPONENTS AND RELATIONAL

TERMINOLOGIES

The main principle of the relational model is the information

principle: all information is represented by data values in relations.

The three components- structural, manipulative and integrity- make

up this model. These components are defined as follows:

 The structural component is concerned with how data is

represented.

 The manipulative component is concerned with how data is

operated upon.

 The integrity component is concerned with determining

which states are valid for a database.

The various relational terminologies are described as follows-

Domain: A domain is a set of values permitted for an attribute in a

table. Domain is atomic. For example, ROLL_NO can only be a

positive integer. A data type or format is also specified for each

domain. It is possible for several attributes to have the same

domain.

Fig 1.1: Relational Model Concepts

Attribute: Attributes are the characteristics of a relation. Each

column in a table is the attribute. Attributes are the properties which

define a relation. e.g., ROLL_NO, FIRST_NAME etc of the

relation Student. Each attribute in a relational model must have

8 | P a g e

Space for learners: domain information. Domain information contains the following:

 Data Type: Databases provide support for different types

of data and their variants. For example, integer, float etc.

 Length: Length means number of characters or digits that

an attribute value has. For example, when we assign a PIN

code, it has 6 digits.

 Date format: A date contains day, month and year. These

three must be given in combination. Such as

DD/MM/YYYY or MM/DD/YYYY or YYYY/MM/DD

etc.

 Range: A range is specified by lower and upper bounds of

data values that an attribute may have.

 Constraints: These are particular type of conditions that

put restrictions on values that are allowed.

 NULL support: There is a support for NULL values in

relational model. Some particular attribute may remain

blank. For example, in a relation the column

“PAN_Number” may be blank as a person may not have a

PAN number.

 Default Value: If nothing is entered, database assigns a

default value. Relational model supports the facility that

the default value may be set for every attribute.

Attributes can be of many types:

 Composite vs Simple attribute: Composite attributes can

be subdivided into smaller attributes. For example, the

“Name” of a student can be divided into “First_Name”,

“Middle_Name” and “Last_Name”. On the other hand,

simple attributes are the attributes that can’t be subdivided

into smaller attributes. For example, the “Roll_No” of a

STUDENT.

 Single Valued vs Multivalued: Single valued attributes are

the attributes that have a single value for a particular entity.

For example, the “Last_Name” of an EMPLOYEE. But the

multivaled attributes can have more than one value for a

particular entity. For example, “Mobile _Number” of an

9 | P a g e

Space for learners: EMPLOYEE.

 Derived vs Stored attributes: Derived attributes are the

attributes whose vales can be derived from the value of

some other attributes. For example, the age of a student

can be derived from date of birth of the student. The

“Date_of_Birth” is called the stored attribute from which

you can derive some other attribute.

 NULL attribute: A certain entity may not possess a value

for an attribute. This will mean “not applicable” or that the

value is unknown” or “non-existent”. For example, there

may be chance when a student has no phone no. In that

case the “Phone_No” attribute is called NULL attribute.

Tuple – It is nothing but a single row of a table, which contains a

single record.

Relations- are in the table format. It is stored along with its

entities. A table has two properties rows and columns. Rows

represent records and columns represent attributes.

Relation Schema- A relational schema is the design for the table.

It includes none of the actual data, but is like a blueprint or design

for the table, so describes what columns are on the table and the

data types. It may show basic table constraints (e.g., if a column

can be null) but not how it relates to other tables.

A relation schema R, denoted by R (A1, A2, ..., An), is made up of

a relation name R and a list of attributes, A1, A2, ..., An. Each

attribute Ai is the name of a role played by some domain D in the

relation schema R. D is called the domain of Ai and is denoted by

dom(Ai). The relation schema R(A1,A2, ...,An), also denoted by

r(R), is a set of n -tuples r= {t1,t2, ...,tm}.

Degree- is the number of attributes n of its relation schema. A

relation of degree four, which stores information about college

students, would contain four attributes describing each student as

follows:

STUDENT (Roll_No, First_Name, Last_name, Sex)

Cardinality: Total number of rows present in the Table.

Relation Instance – Relation instance is a finite set of tuples at a

10 | P a g e

Space for learners: given time. Relation instances do not have duplicate tuples.

Null Value: A field with a NULL value is a field with no value.

Primary key can’t be a null value.

Table 1.1: STUDENT Relation

Roll Name Phone Age

1 Nipun 1234567890 26

2 Nava 1234567891 28

3 Mohit 1234567892 19

Characteristics of Relations

● Interpretation (Meaning) of a Relation: The relation

schema can be interpreted as a declaration or a type of

assertion. Each tuple in the relation can then be interpreted

as a fact or a particular instance of the assertion. For

example (Table 1.1), the first tuple in above table asserts

the fact that there is a STUDENT whose Roll Number is 1,

Name is “Nipun”, Phone is 1234567890 and Age is 26,

and so on.

 Ordering of Tuples in a Relation: A relation is defined as

a set of tuples. The tuples in a relation do not have any

particular order. In other words, a relation is not sensitive

to the ordering of tuples. However, in a file, there always is

an order among the records. Tuple ordering is not part of a

relation definition because a relation attempts to represent

facts at a logical or abstract level. Many tuple orders can be

specified on the same relation. For example, tuples in the

STUDENT relation (Table 1.1) could be ordered by values

of Name, Roll, Age etc. The definition of a relation does

not specify any order: There is no preference for one

ordering over another.

 Ordering of attributes in a Relation: The ordering of

attributes is not important, because the attribute name

appears with its value. There is no reason to prefer having

one attribute value appear before another in a tuple. When

a relation is implemented as a file, the attributes and the

values within tuples are ordered.

 Values in a tuple: All values are considered atomic. A

11 | P a g e

Space for learners: special null value is used to represent values that are

unknown or inapplicable to certain tuples. In general,

NULL values, means value unknown or value exists but is

not available.

Relational Model Notations

We will use the following notation in our presentation:

● A relation schema R of degree n is denoted by R(A 1 , A 2 ,

..., A n).

● The uppercase letters Q, R, S denote relation names.

● The lowercase letters q, r, s denote relation states.

● The letters t, u, v denote tuples.

● In general, the name of a relation schema such as

STUDENT also indicates the current set of tuples in that

relation—the current relation state—whereas STUDENT

(Roll , Name , ...) refers only to the relation schema.

● An attribute A can be qualified with the name of the

relation, R, to which it belongs by using the dot notation

R.A - for example (Table 1.1), STUDENT. Name or

STUDENT. Age. This is because the same name may be

used for two attributes in different relations. However, all

attribute names in a particular relation must be distinct.

● An n-tuple t in a relation r(R) is denoted by t = <v 1 , v 2 ,

..., v n >, where vi is the value corresponding to attribute A i

.

Fig 1.2: Illustration of Relational Schema

12 | P a g e

Space for learners: 1.4 KEYS IN RELATIONAL MODEL

Keys are very important part of Relational database model. A Key

can be a single attribute or a group of attributes, where the

combination may act as a key. They are used to establish and

identify relationships between tables and also to uniquely identify

any record or row of data inside a table.

Why do we need a Key?

In real world applications, number of tables required for storing the

data is huge, and the different tables are related to each other as well.

Also, tables store a lot of data in them. A table generally extends to

thousands of records stored in them, unsorted and unorganised.

Now to fetch any particular record from such dataset, you will have

to apply some conditions, but what if there is duplicate data present

and every time you try to fetch some data by applying certain

condition, you get the wrong data. How many trials before you get

the right data?

To avoid all this, Keys are defined to easily identify any row of data

in a table.

For example: In STUDENT table (Fig 1.2), The attribute ID is used

as a key because it is unique for each student. In PERSON table,

passport_number, license_number, SSN are keys since they are

unique for each person.

Types of Keys:

Different types of keys are shown in the following figure (Fig 1.3):

Fig 1.3 Different types of Keys

 Primary key

o It is the first key which is used to identify one and only

one instance of an entity uniquely. An entity can contain

13 | P a g e

Space for learners: multiple keys as we saw in PERSON table (Fig 1.2). The

key which is most suitable from those lists become a

primary key.

o In the EMPLOYEE table (Fig. 1.4), ID can be primary

key since it is unique for each employee. In the

EMPLOYEE table, we can even select License_Number

and Passport_Number as primary key since they are also

unique.

o For each entity, selection of the primary key is based on

requirement and developers.

Fig 1.4: Illustration of Primary Key

 Candidate key

Candidate keys are defined as the minimal set of fields which can

uniquely identify each record in a table. It is an attribute or a set of

attributes that can act as a Primary Key for a table to uniquely

identify each record in that table. There can be more than one

candidate key.

For example: In the EMPLOYEE table (Fig 1.5), Employee_id is

best suited for the primary key. Rest of the attributes like SSN,

Passport_Number, and License_Number, etc. are considered as a

candidate key.

14 | P a g e

Space for learners:

Fig 1.5: Illustration of Candidate Key

 Super Key

Super Key is defined as a set of attributes within a table that can

uniquely identify each record within a table. Super Key is a superset

of Candidate key.

For example: In the above EMPLOYEE table (Fig 1.5), for

(EMPLOEE_ID, EMPLOYEE_NAME) the name of two employees

can be the same, but their EMPLYEE_ID can't be the same. Hence,

this combination can also be a key. The super key would be

EMPLOYEE-ID, (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

Let's take a simple STUDENT table (Table 1.2) with the

attributes: student_id, name, phone and age.

Table 1.2 STUDENT Relation

student_id name phone age

1 Rohit 1234567890 17

2 Rohit 1234567891 18

3 Mohit 1234567892 19

In the table defined above super key would

include student_id, (student_id, name), phone etc.

Confused? The first one is pretty simple as student_id is unique for

every row of data; hence it can be used to identity each row

uniquely.

15 | P a g e

Space for learners: Next comes, (student_id, name), now name of two students can be

same, but their student_id can't be same hence this combination can

also be a key.

 Foreign key

o Foreign keys are the column of the table which is used to

point to the primary key of another table. If an attribute can

only take the values which are present as values of some

other attribute, it will be a foreign key to the attribute to

which it refers. The relation which is being referenced is

called referenced relation and the corresponding attribute is

called referenced attribute and the relation which refers to the

referenced relation is called referencing relation and the

corresponding attribute is called referencing attribute.

o In a company, every employee works in a specific

department, and employee and department are two different

entities. So, we can't store the information of the department

in the employee table. That's why we link these two tables

through the primary key of one table.

o We add the primary key of the DEPARTMENT table (Fig

1.6), Department_Id as a new attribute in the EMPLOYEE

table.

o Now in the EMPLOYEE table, Department_Id is the foreign

key, and both the tables are related.

Fig 1.6 Illustration of Foreign Key

16 | P a g e

Space for learners: Moreover, the above main keys, we can have the following also:

Composite Key

Key that consists of two or more attributes that uniquely identify any

record in a table is called Composite key. But the attributes which

together form the Composite key are not a key independently or

individually.

Fig 1.7 Illustration of Composite Key

In the above picture we have a Score table which stores the marks

scored by a student in a particular subject. In this table, Fig

1.7, student_id and subject_id together will form the primary key

and hence it is a composite key.

Secondary or Alternative Key

The candidate keys which are not selected as primary key are known

as secondary keys or alternative keys.

Non-key Attributes

Non-key attributes are the attributes or fields of a table, other

than candidate key attributes/fields in a table.

Non-prime Attributes

Non-prime Attributes are attributes other than Primary Key

attribute(s).

17 | P a g e

Space for learners: 1.5 RELATIONAL MODEL CONSTRAINTS

Constraints enforce limits to the data or restrictions on data that can

be inserted/updated/deleted from a table. The whole purpose of

constraints is to maintain the data integrity during an

update/delete/insert into a table. Constraints on databases can

generally be divided into three main categories:

1. Constraints those are inherent in the data model, we call these

inherent model-based constraints or implicit constraints.

2. Constraints that can be directly expressed in schemas of the

data model, typically by specifying them in the DDL.

3. Constraints that cannot be directly expressed in the schemas of

the data model, and hence must be expressed and enforced by the

application programs. This is known as application-based or

semantic constraints or business rules.

The schema-based constraints include: domain constraints, key

constraints, entity integrity constraints, and referential integrity

constraints.

1.5.1 Domain Constraints

Each table has certain set of columns and each column allows the

same type of data based on its data type. The column does not

accept values of any other data type. Domain constraints can be

defined as follows:

Domain Constraint = data type + Constraints (NOT NULL /

UNIQUE / PRIMARY KEY / FOREIGN KEY / CHECK /

DEFAULT).

Let us consider the following STUDENT relation (Table 1.3):

Table 1.3: STUDENT Relation

18 | P a g e

Space for learners:

Here, value A is not allowed since only integer values can be taken

by the age attribute.

1.5.2 Key Constraints

An attribute that can uniquely identify a tuple in a relation is

called the key of the table. All the values in the primary key

column must be unique.

Table 1.4: STUDENT Relation

This relation/table (Table 1.4) does not satisfy the key

constraint as here all the values of primary key are not

unique.

1.5.3 Entity Integrity Constraint

Entity integrity constraint specifies that in a relation no attribute

value of primary key attribute must contain a null value. This is

because the presence of null value in the primary key violates the

uniqueness property.

Table 1.5: STUDENT Relation

This relation (Table 1.5) does not satisfy the entity integrity

ROLL NAME AGE

1 Rahul Sarmah 23

2 Smriti Gogoi 22

3 Shahidul Khan 24

4 Rupak Chetri A

19 | P a g e

Space for learners: constraint as here the primary key contains a null value.

1.5.4 Referential Integrity Constraint

Referential Integrity constraints work on the concept of Foreign

Keys. A foreign key is an attribute of a relation which must be a

primary key or the part of the primary key in another relation.

A set of attributes FK in relation schema R 1 is a foreign key of R

1 that references relation R 2 if it satisfies. R 1 is called the

referencing relation and R 2 is the referenced relation.

Fig 1.8: Illustration of the concept of Referential Integrity Constant

Table 1.6: STUDENT Relation

Table 1.7: DEPARTMENT Relation

20 | P a g e

Space for learners: From the table 1.6 and 1.7 it is clear that,

● The relation ‘Student’ does not satisfy the referential

integrity constraint.

● This is because in relation ‘Department’, no value of

primary key specifies department no. 14.

● Thus, referential integrity constraint is violated.

1.5.5 Operations in Relational Model with Constraint

Violations

Four basic operations performed on relational database

model are insert, update, delete and select.

● Insert Operation: Insert operation is used to insert data

into the relation. Insert can violate any of the four types of

constraints mentioned above. Domain constraints can be

violated when an attribute value is given that does not

appear in the corresponding domain or is not of the

appropriate data type. Key constraints can be violated when

a key value in the new tuple “t” already exists in the

relation “R”. Entity integrity can be violated when any

part of the primary key of the new tuple “t” is null.

Referential integrity can be violated when the value of

any foreign key in a tuple “t” refers to a tuple that does not

exist in the referenced relation. If an insertion violates one

or more constraints, the default option is to reject the

insertion. If the insertion is not rejected then, the insertion

violation can cause cascade in the relation. A foreign key

with cascade delete means that if a record in the parent

table is deleted, then the corresponding records in the child

table will automatically be deleted. This is called a cascade

delete.

● Delete Operation: This operation is used to delete tuples

from the table (Table 1.6 & 1.7). The delete operation can

violate only referential integrity. This occurs when the

tuple being deleted is referenced by foreign keys from

other tuples in the database. Here are some examples.

Operation: Delete the Department tuple with Dept_No =

21 | P a g e

Space for learners: 1. Result: This deletion is acceptable and deletes exactly

one tuple.

Operation: Delete the Student tuple with Dept_No = 1.

Result: This deletion is not acceptable, because there are

tuples in Department those refer to this tuple.

Fig. 1.9: Relations (Department & Employee)

Several options are available if a deletion operation causes a

violation. The first option, called restrict, is to reject the deletion.

The second option, called cascade. A third option, called set null or

set default, is to modify the referencing attribute values that cause

the violation. The combinations of these three options are also

possible.

● Update Operation: This operation is used to

change/modify the values of the attributes in existing

tuples. Consider two tables in figure-1.9, EMPLOYEE

(Ssn, Name, Salary, Dno) and DEPARTMENT (Dno,

Dname)

Operation: Update the salary of the EMPLOYEE tuple

with Ssn = ‘123’ to 2800. Result: Acceptable.

Operation: Update the Dno of the EMPLOYEE tuple with

Ssn = ‘123’ to 7. Result: Unacceptable, because it violates

referential integrity.

22 | P a g e

Space for learners: Operation: Update the Ssn of the EMPLOYEE tuple with

Ssn = ‘123’ to ‘321’. Result: Unacceptable, because it

violates primary key constraint

Updating an attribute that is neither part of a primary key

nor of a foreign key usually causes no problems.

The Transaction Concept: A transaction is an executing program

that includes some database operations, such as reading from the

database, or applying insertions, deletions, or updates to the

database. At the end of the transaction, it must leave the database

in a valid or consistent state that satisfies all the constraints

specified on the database schema. A single transaction may involve

any number of retrieval operations C and any number of update

operations. For example, a transaction to apply a bank withdrawal

will typically read the user account record, check if there is a

sufficient balance, and then update the record by the withdrawal

amount.

CHECK YOUR PROGRESS

Multiple Choice Questions

1. What is the instance of a Database?

a) The logical design of the database system

b) The entire set of attributes of the database put together in

a single relation

c) The data or collection of information stored in a database

at a particular moment of time.

d) The initial values inserted into the database

2. An attribute is a ____________ in a relation.

a) Row

b) Column

c) Value

d) Tuple

3. Constraints define a condition, which needs to be satisfied

while storing data in a ________.

a) Data

b) Database

c) Attribute

d) Task

23 | P a g e

Space for learners: 4. An alternate key is a candidate key that is not the

___________.

a) Entity

b) Attribute

c) Secondary Key

d) Primary Key

5. Advantages of relational model are

a) Simplicity

b) Data Integrity

c) Flexibility

d) All of the above

 Fill in the Blanks

6. Primary key of a table never contains NULL and

__________________ values.

7. A _________ key allows us to identify uniquely an entity in

the entity set.

8. What is the degree of a table with 1000 rows and 10

columns?

9. In a relational database a referential integrity constraint can

be specified with the help of _________.

10. The format or data type must be specified for ________.

1.7 SUMMING UP

 A Relations is a tabular structure defined by the heading and

the data is entered in the body containing a set of rows.

 Domain is set of possible values an attribute can acquire.

 A row of a relation in a relational data model that gives

complete information of an entity is known as Tuple.

 Relational Schema can be defined as the description of the

database that is specified during database design.

 An Attribute is the column header in a relation which is the

properties of entity.

 The number of tuples in a relation is known as Cardinality.

 Foreign Key is an attribute of one relation R2 whose values

are required to match those of the primary key of some

24 | P a g e

Space for learners: relation R1

 Relation that contains a foreign key in known as Referencing

Relation.

 Super Key can be defined as the superset of primary key that

can uniquely identify any data row in the table.

 Candidate Keys can be defined as the set of keys that is

minimal and can uniquely identify any data row in the table.

 Constrains are used to enforce limits to the data or type of that

data that can be inserted/updated/deleted from a table.

 E-R Diagram describes interrelated things of interest in a

specific domain of knowledge.

1.8 ANSWERS TO CHECK YOUR PROGRESS

1. (c)

2. (b)

3. (b)

4. (d)

5. (c)

6. Duplicate

7. Super

8. 10

9. Foreign key

10. Domain

1.9 POSSIBLE QUESTIONS

Short-Answer Questions

1. What are the different features of relational model?

2. What are the advantages of the relational model?

3. State the various features of relations.

4. Discuss the various components of domain information.

5. What is key? What is the importance of key in a relation?

6. With the help of example define a tuple in a relation.

7. What is constraint? Why they are important?

8. With the help of an example define a super key.

9. With the help of an example define foreign key.

25 | P a g e

Space for learners: 10. With the help of an example define candidate key.

Long-Answer Questions

1. Discuss the relational model.

2. Explain the different types of constraints with example.

3. Explain the different types of keys with example.

4. What are domains? Explain its constraints.

5. Explain the different types of attributes with example.

6. Explain the different types of entity with example.

7. Discuss the advantages of relational model.

8. Discuss the tabular structure that is used to represent a

relation in relational model.

1.10 REFERENCES AND SUGGESTED READINGS

• Ramez, Elmasri. Fundamentals of Database Systems. Pearson

Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank

Sudarshan. Database system concepts. McGraw-Hill, 1997.

26 | P a g e

Space for learners: UNIT 2: RELATIONAL ALGEBRA AND

REALTIONAL CALCULUS

Unit Structure:

 2.1 Introduction

 2.2 Unit Objective

 2.3 Relational Algebra Operations

 2.3.1 Relational-Oriented Operations

 2.3.2 Set-Oriented Operations

 2.4 Relational Calculus

 2.4.1 Tuple Relational Calculus

 2.4.2 Domain Relational Calculus

 2.5 Examples (Relational Algebra)

 2.6 Summing Up

 2.7 Answers to Check Your Progress

 2.8 Possible Questions

 2.9 References and Suggested Readings

2.1 INTRODUCTION

Relational algebra uses a procedural query language or formal query

language. Relational algebra deals with the study of relational

operations on single or multiple relations. After implementing a

relation, it returns a new relation which can be again reuse in another

relational operation. When we talk about of relational algebra it is

having a fixed set of operation denoted by symbols.

Relational algebra is necessary as because-

i) it represents the extraction or retrieval of data easily and clearly,

ii) from a relational algebra statement, a practical SQL notation can

easily be derived.

27 | P a g e

Space for learners: 2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the fundamental concepts of relational algebra and
relational calculus.

 know different relational algebra operations.

 know different types of relational calculus.

2.3 RELATIONAL ALGEBRA OPERATIONS

Relational algebra operations can be divided into two parts-

 Relational-oriented operations

 Set-oriented operations

2.3.1 Relational-Oriented Operations

emp_no emp_name emp_age designation emp_address

1 Avik 35 Manager Guwahati

2 Prakhya 50 Accountant Jorhat

3 Rajib 45 Peon Nalbari

4 Tridip 53 Peon Golaghat

Table-1: EMPLOYEE Relation

2.3.1.1 SELECT (σ)

The SELECT operation retrieves specific rows from a relation or table.

Sigma (σ) symbol is used to denote the SELECT operation.

The general syntax of select operation is

σ<selection_condition>(<realtion-name)

28 | P a g e

Space for learners: Where σ is used for select operation, selection_condition is nothing but

a boolean expression which contains the specific attributes of relation

and relation-name is the name of the table.

Considering table-1, to extract tuple having emp_name= “Avik” from

Employee table, the query can be written as follows:

σemp_name=”Avik” (Employee)

We can also extract rows in which the age of the employees is more

than 40 using the following query:

σ emp_age>40 (Employee)

We can also use relational operators (=, ≠ ,<, >, ≤, ≥) as well as logical

operators (˄, ˅, ̚).

Again, suppose we want to retrieve tuples which contain the emp_name

“Prakhya” and emp_address “Guwahati”; to do so we can write the

following query:

σemp_name=”Prakhya” ˄ emp_address=”Guwahati” (Employee)

2.3.1.2 PROJECT (π)

The project operation retrieves attributes or columns from a relation or

table. Pi(π) symbol is used to denote the project operation. The general

syntax of project operation is:

 π<attribute_list> (relation-name)

Here, π is used for project operation, attribute_list is a list of specific

attributes of relation and relation-name is nothing but a table name.

Now from table-1, Suppose we want to retrieve the emp_no and

emp_name from Employee table, we can write the following query:

 πemp_no,emp_name (Employee)

Let us take another example. Suppose we want to retrieve the name and

designation of those employees whose age are less than 50, then we can

write the following query-

 πemp_name,designation (σage<50 (Employee))

29 | P a g e

Space for learners: 2.3.1.3 JOIN

Join operations are used to combine two or more relations to form a

single new relation. Join is a combination of Cartesian product and

selection process. “⋈” symbol is used to denote the join.

 Inner join- when we write an inner join in a query, inner join

extract only those rows which are satisfy the matching criteria.

There are three types of inner join- theta join, equi join and natural

join.

 Theta join- The symbol “θ” is used to denote the join condition and

“θ” can use any comparison operator(=, ≠ ,<, >, ≤, ≥). It is a

general case of join. When we want to join two or more relation

based on some condition, we use the theta join.

Let us take an example-

Example-1:

Suppose we have two relations, called “P” and “Q”.

P
Emp_id Emp_name Age

10 Raj 40

20 Rajib 35

30 Aman 36

Q

Emp_id Dept_id DOJ

10 111 10-10-2000

30 112 10-10-2017

40 113 01-02-2009

Then, we write the query using theta join

P ⋈P.emp_id<Q.emp_id Q

30 | P a g e

Space for learners: Table-2: The Resultant Table

P.Emp_id Emp_name Age Q.Emp_id Dept_id DOJ

10 Raj 40 30 112 10-10-

2017

20 Rajib 35 30 112 10-10-

2017

If we use Cartesian product for the above query then the equivalent

query is-

 σP.Emp_id<Q.Eid(PxQ)

 Equi join- Equi join is a special case of theta join. Equi join uses

only equivalence(=) condition. If we write the following query we

will get the same result as mentioned in table 1-

P⋈p.Emp_id=Q.Emp_idQ

 Natural join- In natural join also equivalence (=) operator is used but

the difference is that attributes appear only once in natural join.

Using natural join, we will get a new table that does not have any

duplicate columns.

 Outer join- An outer join is a type of join that is used to show all

tuples from one relation even when some of these are not found in

second relation. There are three types of outer join-left outer join,

right outer join and full outer join.

Consider the example 1 to describe the types of outer join-

Left outer join- P Q

Emp_id Emp_name Age Dept_id DOJ

10 Raj 40 111 10-10-2017

20 Rajib 35 NULL NULL

30 Aman 36 112 01-02-2009

31 | P a g e

Space for learners:

Right outer join- P Q

Emp_id Emp_name Age Dept_id DOJ

10 Raj 40 111 10-10-2017

20 Rajib 35 112 NULL

40 NULL NULL 113 01-02-2009

 In left outer join, it contains all the tuples from left relation and

only matching records from right relation.

 In right outer join, it contains all the tuples from right table and

only matching tuples from left table.

 In full outer join, it contains all the tuples from both relation and

the tuples of both relation which do not match the join condition,

these attributes are made NULL.

2.3.2 Set-Oriented Operations

2.3.2.1 SET-UNION

The symbol “∪” is used to denote the union operation. Suppose P and Q
are two compatible relations. Now P∪Q denotes SET-UNION of P and
Q, which is a relation that includes all rows that are either in P or in Q
or in both P and Q. In set union, duplicate rows would be eliminated.

Example-2: P and Q are two compatible relations where P holding the
details of department in which project P1 is assigned and Q holding the
details of those departments in which project P2 is assigned.

P:

Dept_id Dept_name

D1 Physics

D2 Chemistry

32 | P a g e

Space for learners: D3 Computer Science

Q:

Dept_id Dept_name

D1 Physics
D3 Computer Science
D4 Electronics

The result of UNION operation is:

P∪Q:

Dept_id Dept_name

D1 Physics

D2 Chemistry

D3 Computer Science

D4 Electronics

2.3.2.2 SET-INTERSECTION

The symbol “∩” is used to denote SET INTERSECTION operation and
the result contains all rows that are in both P and Q.

Considering the example-2 above, the result of P∩Q will be a relation
which gives departments to those both P1 and P2 are assigned.

P∩Q:

Dept_id Dept_name

D1 Physics

D3 Computer Science

2.3.2.3 SET-DIFFERENCE

P-Q is used to denote the set difference operation. It finds the rows
those are in one table or relation but not in another table.

From example 2 , to select all those departments which are present in P
but not in Q. The result is-

33 | P a g e

Space for learners: P-Q

Dept_id Dept_name

D2 Chemistry

2.3.2.4 CARTESIAN PRODUCT (CROSS PRODUCT)

Cross product is denoted by P x Q and returns a table on rows whose
schema contains all fields of P (in the same order, they appear in P)
followed by all fields of Q (in the same order as they appear in Q).

Suppose, we have two relations P and Q-

Example 3:

P

Dept_id Dept_name

D1 Physics

D2 Chemistry

D3 Computer science

D4 Electronics

Q

Project No

P1

P2

The result of the operation PxQ is follows-

 PxQ

Dept_id Dept_name Project_No
D1 Physics P1
D1 Physics P2
D2 Chemistry P1
D2 Chemistry P2
D3 Computer science P1
D3 Computer science P2
D4 Electronics P1
D4 Electronics P2

34 | P a g e

Space for learners: 2.4 RELATIONAL CALCULUS

Relational Calculus is a non procedural query language. In relational

calculus, a query is formed as a formula consisting of a number of

variables and an expression involving these variables. It uses

mathematical predicate calculus. It tells what to do but never explain

how to do. There is no such mechanism to evaluate the formula. DBMS

decide how to transform such non procedural query language into

equivalent and efficient procedural queries. There are two types of

relational calculus. One is tuple relational calculus (TRC) and domain

relational calculus (DRC).

2.4.1 Tuple Relational Calculus

It was proposed by E.F. Codd in the year 1972. A tuple calculus

expression is essentially a non procedural definition of some relation in

terms of some given set of relations. A query in tuple relational calculus

is formed as: {t|cond(t)}, where t denotes a tuple variable and cond(t)

denotes predicate or condition involving t. The result of the query is the

set of all tuples “t” such that predicate p is true for t.

Example 4:

Consider the following relation-

DEPT (D_id, D_name D_location)

To find all department whose D_location are “Guwahati”, we can write

the following construct of the tuple relational calculus:

{t| DEPT(t) and t.D_location=“Guwahati”}

The condition DEPT(t) specifies that the ranges relation of table

variable t is department. Each department tuple “t” that specifies the

condition t.D_location=“Guwahati” will be retrieved. The above query

retrieves all attributes values for each selected department tuple t. To

retrieve only some of the attributes, we can write- {t.Dept_id,

t.Dept_name|DEPT(t) and t.D_location=”Delhi”}.

35 | P a g e

Space for learners: 2.4.2 Domain Relational Calculus

In Domain Relational Calculus, variables use the domain rather than

relations. It uses the same operators as tuple calculus. It uses ˄ (and),

˅(or) and ̚ (not) logical connectives. It also uses Existential (∃) and

Universal Quantifiers (∀).

Syntax: {x1, x2, x3, ….. xn|p(x1,x2,…..xn)} where x1,x2,…xn are

attributes and p is the formula which is formed by inner attributes.

For example: {<emp_id, emp_name, dept_name>|∃

EMP˄dept_name=“sales”}

This query will retrieve the emp_id, emp_name and dept_name from

the relation EMP where dept_name is sales.

2.5 EXAMPLES (RELATIONAL ALGEBRA)

Consider the following table structure:

EMPLOYEE (E_id, E_name, DOB, D_id)

DEPARTMENT (D_id, D_name, D_loc)

PROJECT (P_id, P_name, D_id)

WORKS_ON (E_id, P_id, Hours)

Query1: Get names of the employee who worked in department “D1”.

Answer: πE_name(σD_id=”D1” (EMPLOYEE⋈DEPARTMENT))

Query2: Get all the information about employees whose date of birth

are before 01-01-1990.

Answer: σDOB<”01-01-1990”(EMPLOYEE)

Query3: Print the D_id and D_name of those departments which are

located in guwahati.

Answer: πD_id,D-name(σD_loc=”guwahati”(DEPARTMENT))

Query4: Get details of employees working on project P1.

Answer: EMPLOYEE⋈ πE_id(σP_id=”P1”(WORKS_ON))

Query 5: Get details of employees working on DBMS project.

36 | P a g e

Space for learners: Answer: EMPLOYEE⋈ πE_id(WORKS_ON) ⋈

(πP_id(σP_name=”DBMS”(PROJECT)))

CHECK YOUR PROGRESS

Fill-in the blanks:

1. The _____________ operation retrieves specific rows from a

relation.

2. ______________ is used to combine two or more relations to

form a single new relation.

3. The symbol _________ is used to denote the union operation.

4. Relational Calculus is a ________________ query language.

5. Tuple Relational Calculus was proposed _______________.

2.6 SUMMING UP

 Relational algebra uses a procedural query language or formal

query language.

 Relational algebra operations can be divided into two parts-

 Relational-oriented operations

 Set-oriented operations

 The SELECT operation retrieves specific rows from a relation or

table. Sigma (σ) symbol is used to denote the SELECT operation.

 The project operation retrieves attributes or columns from a relation

or table. Pi(π) symbol is used to denote the project operation.

 Join operations are used to combine two or more relations to form a

single new relation. “⋈” symbol is used to denote the join.

 The symbol “∪” is used to denote the union operation.

 The symbol “∩” is used to denote SET INTERSECTION

operation.

37 | P a g e

Space for learners:  “ - ” is used to denote the set difference operation.

 Cross product is denoted by “ x ”.

 Relational Calculus is a non procedural query language. In

relational calculus, a query is formed as a formula consisting of a

number of variables and an expression involving these variables.

 A tuple calculus expression is essentially a non procedural

definition of some relation in terms of some given set of relations.

 In Domain Relational Calculus, variables use the domain rather

than relations. It uses the same operators as tuple calculus. It uses ˄

(and), ˅(or) and ̚ (not) logical connectives. It also uses Existential

(∃) and Universal Quantifiers (∀).

2.7 ANSWERS TO CHECK YOUR PROGRESS

1. SELECT

2. JOIN

3. U

4. Non-procedural

5. E. F. Codd

2.8 POSSIBLE QUESTIONS

Short Answer type questions:

1. What is Relational algebra?

2. What is the purpose of Relational algebra?

3. Discuss the selection operation.

4. Discuss the project operation.

5. Discuss the theta join.

6. What do you mean by Equi-join?

7. What do you mean Relational calculus?

8. What do you mean by Tuple relational calculus?

9. What do you mean by Domain relational calculus?

38 | P a g e

Space for learners: 10. Discuss the Cartesian product in Relational algebra.

Long answer type questions:

11. Explain selection and projection with examples.

12. Explain different types of Outer join with examples in
Relational algebra.

13. Explain different types of set-oriented operations with examples
in relational algebra.

14. Explain the different types of relational calculus with examples.

2.9 REFERENCES AND SUGGESTED READINGS

• Ramez, Elmasri. Fundamentals of Database Systems. Pearson

Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank

Sudarshan. Database system concepts. McGraw-Hill, 1997.

39 | P a g e

Space for learners: UNIT 3: STRUCTURED QUERY LANGUAGE - I

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 MySQL installation in Windows

3.4 Types of SQL Commands

3.4.1 Data Definition Language (DDL)

 3.4.2 Data Manipulation Language (DML)

3.5 Summing Up

3.6 Answers to Check Your Progress

3.7 Possible Questions

3.8 References and Suggested Readings

3.1 INTRODUCTION

SQL stands for Structured Query Language. It is used for storing,

manipulating and retrieving data stored in a relational database.

With the help of SQL, within a few microseconds, the records in a

table(s)/relation(s) can be searched, retrieved and manipulated.

Various RDBMS are available to work with SQL. Some of the

popular RDBMS are: MySQL, PostgreSQL (both are free and

open source), Oracle, SQL Server etc. MySQL is the most popular

open-source Database Management System and now it is

distributed and supported by Oracle Corporation. In this unit, we

will discuss the SQL commands using MySQL.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define SQL

 understand the installation and working process of MySQL

in Windows Environment

 use various DDL commands

 use various DML commands

40 | P a g e

Space for learners: 3.2 MYSQL INSTALLATION IN WINDOWS

The latest version of MySQL can be download from the link:

https://dev.mysql.com/downloads/installer/ as shown below (Fig.

3.1):

Fig. 3.1

After downloading the Installer, simply double click over the file

and the following window will appear (Fig. 3.2).

Fig. 3.2

41 | P a g e

Space for learners: Click the Next button. The following window will appear (Fig.

3.3):

Fig. 3.3

Click the Next button. You may see Upgrade Now option in a

window. If shown, click on it. The following window will appear

(Fig. 3.4):

Fig. 3.4

After upgradation completed, the following window (Fig. 3.5) will

appear:

42 | P a g e

Space for learners:

Fig. 3.5

Now, you can skip the process of product configuration process.

So, you can click the Cancel button.

MySQL is now installed in your computer.

You can now check whether MySQL server is working or not. For

that, open the DOS prompt as shown (Fig. 3.6) below:

Fig. 3.6

STOP TO CONSIDER

For MySQL 8.0 on Windows, the default installation directory

is C:\Program Files\MySQL\MySQL Server 8.0 for

installations performed with MySQL Installer.

43 | P a g e

Space for learners: Type cd\ to go to the drive C as shown (Fig. 3.7) below:

Fig. 3.7

Then go to the default installation directory as shown (Fig. 3.8)

below:

Fig. 3.8

Then type the following command

 mysql -uroot -proot

Here,

-u signifies that the word follows is the User Name which is root,

-p signifies that the word follows is the Password which is root.

The mysql prompt will be displayed as shown (Fig. 3.9) below:

44 | P a g e

Space for learners:

Fig. 3.9

To exit from mysql server, type \q

3.4 TYPES OF SQL COMMANDS

There are five types of SQL commands: DDL, DML, DCL, TCL,

and DQL. In this unit, we will discuss about the DDL and DML

commands.

3.4.1 Data Definition Language (DDL)

Data Definition Language (DDL) commands are used to define the

structure of the database or the database schema. The changes

made in the database using DDL commands are saved

permanently. Following SQL commands falls under the DDL:

(a) CREATE: It is used to create a new database, table, views and

index. Suppose, we want to create a database named “GUIDOL”.

The SQL statement for creating a database is as follows:

CREATE DATABASE database_name;

Let us execute the above statement using MySQL (Fig. 3.10):

Fig. 3.10

45 | P a g e

Space for learners: Let’s now create a table under the database GUIDOL. For this,

first we have to use this database using the following SQL

statement (Fig. 3.11) as:

 USE database_name;

Fig. 3.11

Now, let us create a table named Student under the database

“GUIDOL”. Suppose the attributes or field names of the table are

rollno, name, date_of_birth, vill_town, city, mobile. The SQL

statement will be:

create table student (rollno varchar(10) primary key, name

varchar(30), date_of_birth date, vill_town varchar(20), city

varchar(20), mobile varchar(10));

If you execute the SQL statement in mysql, it will be shown (Fig.

3.12) below:

Fig. 3.12

(b) ALTER: It is used to change the structure of an already

existing table of a database.

The ALTER TABLE statement is used to add, delete, or modify

columns in an existing table.

(i) To add a column in a table, use the following syntax:

ALTER TABLE table_name ADD column_name datatype;

Suppose, We want to add a column name email with data types

varchar(20) to the existing table student. The SQL statement will

be (Fig. 3.13):

46 | P a g e

Space for learners:

Fig. 3.13

To check the structure of the table, use the following SQL

statement (Fig. 3.14):

DESC table_name;

Fig. 3.14

(ii) To delete a column in a table, use the following syntax:

ALTER TABLE table_name DROP COLUMN column_name;

Let us remove the column email that is just created (Fig. 3.15).

Fig. 3.15

47 | P a g e

Space for learners: (iii) To change the data type of a column in a table, use the

following syntax:

ALTER TABLE table_name MODIFY COLUMN column_name

datatype;

Let us change the data type of the column city to varchar(15) (Fig.

3.16).

Fig. 3.16

(c) DROP: It is used to delete a database, table, views or index.

The following SQL statement drops the existing database

"GUIDOL":

DROP DATABASE GUIDOL;

The DROP TABLE statement is used to drop an existing table in a

database. For example,

DROP TABLE student;

Note: Do not try to execute these statements unnecessarily as it

will delete the existing database and existing table and all

information will be lost.

(d) TRUNCATE: It is used to completely remove all data from a

table, including their structure and space allocates on the server.

For Example, TRUNCATE TABLE student;

(e) RENAME: It is used to rename a database table.

The syntax is:

48 | P a g e

Space for learners: RENAME TABLE existing_table_name TO new_table_name;

For example, the table student will be renamed as student_master

(Fig. 3.17).

Fig. 3.17

Here, SHOW TABLES statement shows the available tables under

the current database.

CHECK YOUR PROGRESS - I

1. Fill in the blanks:

(a) ____________ command is used to create a database.

(b) ____________ command is used to create a table.

(c) To change the structure of a table, ___________ command

is used.

(d) ___________ command completely remove all data from a

table, including their structure and space allocates on the

server.

(e) To change the name of a table __________ command is

used.

3.4.2 Data Manipulation Language (DML)

DML stands for Data Manipulation Language. It includes various

types of data manipulation SQL statements. DML statements are

used to store, modify, retrieve, delete and update data in a

database. Followings are some DML statements:

49 | P a g e

Space for learners: (a) INSERT: It is used to insert data into a table. The syntax is:

INSERT INTO table_name (column 1, column 2,column n)

VALUES (value 1, value 2, ……value n);

Or

INSERT INTO table_name VALUES (value 1, value 2, ……value

n);

For example, to insert data into the table student_master, the SQL

statement will be (Fig. 3.18):

INSERT INTO student_master (rollno, name, date_of_birth,

vill_town, city, mobile) VALUES ('2100000001','Rajib

Sarma','1990-12-01','Ganeshguri','Guwahati','98540XXXXX');

Fig. 3.18

MySQL Insert Multiple Rows:

To insert multiple rows into a table, you use the following form of

the INSERT statement:

INSERT INTO table_name (column_list) VALUES

(value_list_1), (value_list_2), ... (value_list_n);

Example (Fig. 3.19):

INSERT INTO student_master (rollno, name, date_of_birth,

vill_town, city, mobile) VALUES ('2100000002', 'Jyoti Saikia',

'1990-01-02','Haripur','Pathsala','98541XXXXX'), ('2100000003',

'Sanjib Kalita','1988-06-07','Belsor','Nalbari', '98640XXXXX');

50 | P a g e

Space for learners:

Fig. 3.19

Suppose, we want to add another two records into the table

student_master. The SQL statement will be (Fig. 3.20):

INSERT INTO student_master (rollno, name, date_of_birth,

vill_town, city, mobile) VALUES('2100000004','Jiten Kalita',

'1990-07-02','Chanmari','Guwahati','98541XXXXX'),

('2100000005', 'Jilmil Choudhury', '1987-09-07', 'Belsor', 'Nalbari',

'98640XXXXX');

Fig. 3.20

(b) SELECT: It is used to display records from a table.

The syntax is:

 SELECT column1, column2, ...FROM table_name;

If you want to select all the fields available in the table, the syntax

will be:

 SELECT * FROM table_name;

51 | P a g e

Space for learners: Example: Display all the records from the table student_master;

 SELECT * FROM student_master;

Example: Display the name and city of the students.

SELECT name, city FROM student_master;

SELECT DISTINCT: It is used to display only the distinct

values.

For example, the following SQL statement will display only the

distinct values from the column city.

SELECT DISTINCT(city) FROM student_master;

52 | P a g e

Space for learners:

WHERE clause:

In MySQL, WHERE is a keyword used for the criteria or

conditions to be applied for filtering the rows from a table or

database. The WHERE clause can be used with INSERT,

UPDATE, SELECT and DELETE statements to filter records and

perform various operations on the data.

Example: Display the name of the student along with the city

name whose roll number is 2100000004.

SELECT name, city from student_master WHERE rollno=’

2100000004’;

LIKE Operator:

The LIKE operator is used in a WHERE clause to search for a

specified pattern in a column. Here, two wildcards are used in

conjunction with the LIKE operator.

53 | P a g e

Space for learners:  The percent sign (%) represents zero, one, or multiple

characters.

 The underscore sign (_) represents one, single character.

Example:

(i) Display the student information whose name starts with

the letter J.

 SELECT * FROM student_master where name LIKE ‘J%’;

(ii) Display the student information whose name ends with

the letter a.

 SELECT * FROM student_master where name LIKE ‘%a’;

(iii) Display the student information whose name contains

‘it’

 SELECT * FROM student_master where name LIKE ‘%it%’;

(iv) Display the student information whose name contains

the letter ‘y’ in the second position.

 SELECT * FROM student_master where name LIKE ‘_r%’;

(v) Display the student information whose name starts with

the letter ‘S’ and ends with the letter ‘a’

 SELECT * FROM student_master where name LIKE ‘S%a’;

AND, OR and NOT Operations:

AND, OR and NOT operators can be combined with the WHERE

clause.

Example:

(i) Display the student information whose name starts with

the letter J and address is Guwahati

 SELECT * FROM student_master where name LIKE ‘J%’

AND address=‘Guwahati’;

(ii) Display the student information whose name starts with

the letter J and address is either Guwahati or Nalbari.

54 | P a g e

Space for learners: SELECT * FROM student_master where name LIKE ‘J%’

AND (address=‘Guwahati’ OR address=‘Nalbari’);

(iii) Display the student information who resides except

Guwahati;

 SELECT * FROM student_master where NOT

address=‘Guwahati’;

ORDER BY Keyword:

It is used to sort the records in ascending or descending order. By

default, it sorts the records in ascending order. To sort the records

in descending order, the DESC keyword is used.

Example:

(i) SELECT * FROM student_master ORDER BY name;

(ii) SELECT * FROM student_master ORDER BY name

DESC;

BETWEEN Operator:

It selects values within a given range. The values can be numbers,

text, or dates. The BETWEEN operator is inclusive i.e. begin and

end values are included.

(c) UPDATE:

The update command is used to update existing data in a table.

Example: Change the name of the student to Rajib Saikia whose

Roll Number is 21000000001.

UPDATE student_master SET name=‘Rajib Saikia’ where

rollno=‘21000000001’;

(d) DELETE

It is used to delete records from a table according to a given

condition.

55 | P a g e

Space for learners: Example: Delete the student record whose roll number is

21000000002.

DELETE from student_master WHERE rollno=‘21000000001’;

JOIN Clause:

The Join command is used to combine rows from multiple tables

in a database. Join operation between multiple tables is done with

a common field with same attribute in the tables.

Let us consider the following two tables:

hostel (hostel_id, hostel_name, type, seat_capacity)

student_master (rollno, name, address, date_of_birth, sex, mobile,

hostel_id)

Here, in the hostel table hostel_id is the primary key and in the

student_master table rollno is the primary key. hostel_id field is

common in both the tables. So, to join the two tables we will use

the hostel_id field.

Example: Write SQL statement to display the name and seat

capacity of the hostel for the student whose roll number is

‘21000000001’.

SELECT hostel.hostel_name, hostel.seat_capacity FROM hostel,

student_master WHERE hostel.hostel_id=student_master.hostel_id

and student_master.rollno=‘21000000001’;

CHECK YOUR PROGRESS - II

2. Fill in the blanks:

(a) To insert data into a table, ____________ command is

used.

(b) ___________ command is used to display data from a

table.

(c) ____________ is a keyword used for the criteria or

conditions to be applied for filtering the rows from a

table or database.

56 | P a g e

Space for learners: (d) The ___________ operator is used in a WHERE clause

to search for a specified pattern in a column.

(e) The ___________ command is used to update existing

data in a table.

3.5 SUMMING UP

 SQL stands for Structured Query Language

 DDL stands for Data Definition Language

 Create, Drop, Alter, Truncate and Rename are DDL

commands.

 DML stands for Data Manipulation Language

 Insert, Select, Update are DML commands.

 To create a new database, CREATE DATABASE command

is used

 Before creating tables in a database, we have to use the

database.

 CREATE TABLE command is used to create a new table.

 INSERT INTO command is used to insert records into a table.

 SELECT command is used to display records from a table.

 ORDER BY keyword is used to sort the records in ascending

or descending order.

 The update command is used to update existing data in a

table.

 The JOIN command is used to combine rows from multiple

tables in a database.

3.6 ANSWERS TO CHECK YOUR PROGRESS

1. (a) CREATE DATABSE

 (b) CREATE TABLE

 (c) ALTER TABLE

 (d) TRUNCATE TABLE

 (e) RENAME TABLE

2. (a) INERT INTO

 (b) SELECT FROM

 (c) WHERE

 (d) LIKE

57 | P a g e

Space for learners: (e) UPDATE

3.7 POSSIBLE QUESTIONS

Short answer type questions:

1. Define SQL. What are the uses of SQL?

2. Differentiate between DDL and DML statements.

3. In SQL, how a new table can be created? Explain with an

example.

4. How multiple records can be inserted into a table? Explain

with an example.

5. How will you display records from a table with certain

conditions? Explain with examples.

6. Explain the uses of ALTER TABLE command with an

example.

7. How records can be displayed in sorted order? Explain

with an example.

Long answer type questions:

1. What are Data Definition Language statements? Explain

with examples.

2. What are Data Manipulation Language statements?

Explain with examples.

3. How will you insert a new field in an existing table? After

insertion, how the data in the newly created field will be

updated? Explain with an example.

4. What is LIKE operator? Explain its uses with examples.

3.8 REFERENCES AND SUGGESTED READINGS

1. https://www.w3schools.com/sql/default.asp

58 | P a g e

Space for learners:
UNIT 4: STRUCTURED QUERY LANGUAGE - II

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Data Control Languages

4.3.1 GRANT

4.3.2 REVOKE

4.4 Aggregate Functions

4.4.1 AVG

4.4.2 COUNT

4.4.3 MIN

4.4.4 MAX

4.4.5 SUM

4.5 GROUP BY Clause

4.6 HAVING Clause

4.7 Summing Up

4.8 Answers to Check Your Progress

4.9 Possible Questions

4.10 References and Suggested Readings

4.1 INTRODUCTION

The full form of SQL is Structured Query Language. It is used for

storing, manipulating and retrieving data stored in a relational

database. With the help of SQL, within a few microseconds, the

records in a table(s) can be searched, retrieved and manipulated.

Various types of RDBMS tools are available to work with SQL.

Some of them are: MySQL, PostgreSQL (both are free and open

source), Oracle, SQL Server etc. MySQL is the most popular open

source database management system and now it is distributed, and

supported by Oracle Corporation. In this unit, we will discuss the

SQL commands using MySQL.

59 | P a g e

Space for learners: 4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 define SQL

 understand the installation and working process of MySQL

in Windows Environment

 describe the use of various DDL commands

 describe the use of various DML commands

4.3 DATA CONTROL LANGUAGES

There are two types of data control languages: (a) grant and (b)

revoke. Let us discuss with examples.

4.3.1 GRANT

It is employed to grant a privilege to a user. GRANT command

allows specified users to perform specified tasks.

Syntax:

GRANT privilege_name on objectname to user; Here,

 privilege names are

SELECT,UPDATE,DELETE,INSERT,ALTER,ALL

 objectname is table name

 user is the name of the user to whom we grant privileges

4.3.2 REVOKE

It is employed to remove a privilege from a user. REVOKE helps

the owner to cancel previously granted permissions.

Syntax:

 REVOKE privilege_name on objectname from user;

Here,

 privilege names are SELECT, UPDATE, DELETE,

INSERT, ALTER, ALL

 objectname is table name

 user is the name of the user whose privileges are removing

60 | P a g e

Space for learners: Examples:

GRANT SELECT, UPDATE ON employees TO Bhanu

Explanation − Firstly, to give the permissions to user, we have to

use GRANT command. The privileges are SELECT because to

view the records and UPDATE to modify the records. The

objectname is table name which is Employee. The user name is

bhanu.

REVOKE SELECT, UPDATE ON employees TO Bhanu

Explanation − Firstly, to revoke the permissions to user, we have to

use REVOKE command. The privileges Need to revoke are

SELECT because to view the records and UPDATE to modify the

records. The objectname is table name which is Employee. The

user name is Bhanu.

4.4 AGGREGATE FUNCTIONS

SQL aggregation function is used to perform the calculations on

multiple rows of a single column of a table. It returns a single

value. It is also used to summarize the data. There are five types of

aggregate functions: (a) avg (b) count (c) sum (d) max (e) min

4.4.1 AVG

The AVG function is used to calculate the average value of the

numeric type. AVG function returns the average of all non-Null

values.

Syntax:

AVG()

or

AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST)

STOP TO CONSIDER

For MySQL 8.0 on Windows, the default installation directory

is C:\Program Files\MySQL\MySQL Server 8.0 for

installations performed with MySQL Installer.

61 | P a g e

Space for learners: FROM PRODUCT_MAST;

Output:

67.00

4.4.2 COUNT

COUNT function is used to Count the number of rows in a

database table. It can work on both numeric and non-numeric data

types.

COUNT function uses the COUNT(*) that returns the count of all

the rows in a specified table. COUNT(*) considers duplicate and

Null.

Syntax

COUNT(*)

or

COUNT([ALL|DISTINCT] expression)

Sample table:

PRODUCT_MAST

PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20

Item2 Com2 3 25 75

Item3 Com1 2 30 60

Item4 Com3 5 10 50

Item5 Com2 2 20 40

Item6 Cpm1 3 25 75

Item7 Com1 5 30 150

Item8 Com1 3 10 30

Item9 Com2 2 25 50

Item10 Com3 4 30 120

Examples:

SELECT COUNT(*) FROM PRODUCT_MAST;

The AVG function is used to calculate the average value of the

numeric type. AVG function returns the average of all non-Null

values.

Output:

10

Example:

62 | P a g e

Space for learners: SELECT COUNT(*) FROM PRODUCT_MAST WHERE

RATE>=20;

Output:

7

Example: COUNT() with DISTINCT

SELECT COUNT(DISTINCT COMPANY) FROM

PRODUCT_MAST;

Output:

3

Example:

SELECT COMPANY, COUNT(*) FROM PRODUCT_MAST

GROUP BY COMPANY;

Output:

Com1 5

Com2 3

Com3 2

Example: COUNT() with HAVING

SELECT COMPANY, COUNT(*) FROM PRODUCT_MAST

GROUP BY COMPANY

HAVING COUNT(*)>2;

Output:

Com1 5

Com2 3

4.4.3 MIN

MIN function is used to find the minimum value of a certain

column. This function determines the smallest value of all selected

values of a column.

Syntax

MIN()

or

MIN([ALL|DISTINCT] expression)

63 | P a g e

Space for learners: Example:

SELECT MIN(RATE) FROM PRODUCT_MAST;

Output:

10

4.4.4 MAX

MAX function is used to find the maximum value of a certain

column. This function determines the largest value of all selected

values of a column.

Syntax

MAX()

or

MAX([ALL|DISTINCT] expression)

Example:

SELECT MAX(RATE)

FROM PRODUCT_MAST;

Output:

30

4.4.5 SUM

Sum function is used to calculate the sum of all selected columns.

It works on numeric fields only.

Syntax

SUM()

or

SUM([ALL|DISTINCT] expression)

Example: SUM()

SELECT SUM(COST) FROM PRODUCT_MAST;

Output:

670

64 | P a g e

Space for learners:

4.5 GROUP BY CLAUSE

The GROUP BY statement groups rows that have the same values

into summary rows, like "find the number of customers in each

country".

The GROUP BY statement is often used with aggregate functions

(COUNT(), MAX(), MIN(), SUM(), AVG()) to group the result-set

by one or more columns.

Syntax

SELECT column_name(s)

FROM table_name

WHERE condition

GROUP BY column_name(s)

ORDER BY column_name(s);

4.6 HAVING CLAUSE

The HAVING clause was added to SQL because

the WHERE keyword cannot be used with aggregate functions.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE condition

CHECK YOUR PROGRESS - I

1. Fill in the blanks:

(a) ____________ command is used to create a database.

(b) ____________ command is used to create a table.

(c) To change the structure of a table, ___________

command is used.

(d) ___________ command completely remove all data from

a table, including their structure and space allocates on the

server.

(e) To change the name of a table __________ command is

used.

65 | P a g e

Space for learners: GROUP BY column_name(s)

HAVING condition

ORDER BY column_name(s);

4.7 SUMMING UP

 Various types of RDBMS tools are available to work with

SQL. Some of them are: MySQL, PostgreSQL (both are

free and open source), Oracle, SQL Server etc.

 MySQL is the most popular open source database

management system and now it is distributed, and

supported by Oracle Corporation.

 GRANT command grants permissions to users on database

objects. It can also be used to assign access rights to users.

For every user, the permissions need to be specified.

 It is used to remove the privileges on user accounts for

access to a database object. It revokes permission granted to

a user on a database object and also revokes the access

rights assigned to users.

4.8 ANSWERS TO CHECK YOUR PROGRESS

 1.

 (a) CREATE DATABSE

 (b) CREATE TABLE

 (c) ALTER TABLE

 (d) TRUNCATE TABLE

 (e) RENAME TABLE

 2.

 (a) INERT INTO

 (b) SELECT FROM

 (c) WHERE

 (d) LIKE

 (e) UPDATE

66 | P a g e

Space for learners: 4.9 POSSIBLE QUESTIONS

Short Answer Type Questions:

1. Define SQL. What are the uses of SQL?

2. Differentiate between DDL and DML statements.

3. In SQL, how a new table can be created? Explain with an

example.

4. How multiple records can be inserted into a table? Explain

with an example.

5. How will you display records from a table with certain

conditions? Explain with examples.

6. Explain the uses of ALTER TABLE command with an

example.

7. How records can be displayed in sorted order? Explain with

an example.

Long Answer Type Questions:

1. What are Data Definition Language statements? Explain

with examples.

2. What are Data Manipulation Language statements? Explain

with examples.

3. How will you insert a new field in an existing table? After

insertion, how the data in the newly created field will be

updated? Explain with an example.

4. What is LIKE operator? Explain its uses with examples.

4.10 REFERENCES AND SUGGESTED READINGS

1. https://www.w3schools.com/sql/default.asp

67 | P a g e

Space for learners:
UNIT-5: SEMANTIC MODELING

Unit Structure:

 5.1 Introduction

 5.2 Unit Objectives

 5.3 E-R Model

 5.4 E-R Diagram

 5.4.1 Symbols used in E-R Diagram

 5.4.2 Example of E-R Diagram

 5.4.3 Transformation of E-R Model to Relational Schema

 5.5 Generalization

 5.6 Specialization

 5.7 Aggregation

 5.8 Summing Up

 5.9 Answers to Check Your Progress

 5.10 Possible Questions

 5.11 References and Suggested Readings

5.1 INTRODUCTION

In DBMS, Entity Relationship (ER) model is one of the

important topics. In 1970 relational databases were introduced.

Whenever we want to develop a software, DBMS plays an

important role. Without a database we cannot build proper

software. In Relational Database Management System, first of all

we have to develop a design using an ER model. And then we

convert this developed model into relations/tables so that we

design a database with required and necessary properties. In an

ER diagram, there are different components which help us to

know the relationship among different entity sets.

68 | P a g e

Space for learners: 5.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the fundamental concepts of ER model

 know different components are used in ER model.

 know how to design database using ER model.

 understand the fundamental concepts of generalization,

specialization and aggregation.

5.3 E-R MODEL

The E-R model was developed by P.P. Chen in around 1976. He

introduced E-R model as well as corresponding diagramming

techniques. A model that contains entity and relationship sets to

represent system data is called E-R (Entity-Relationship) model.

E-R model is an important part of DBMS. E-R model is used to

model the logical structure of a database.

5.3.1 Components of E-R Model

There are different components of E-R model. The major

components of E-R model as follows-

i) Entity

ii) Attributes

iii) Relationships

5.3.1.1 Entity

An entity is any kind of objects having physical existence or

conceptual existence. For example, an entity may be person,

place, event, or concept etc.

Each entity is distinct from the other entities.

Persons: Students, Department, Customer, Supplier.

Places: Building, Department office etc.

Objects: Car, Machine etc.

69 | P a g e

Space for learners: Events: Order, Purchase, Registration etc.

Entity Type: An entity is any object of entity type. For example:

S1 is an entity having entity type student.

Entity Set: The collection of entities which are sharing common

characteristic is called entity set. For example, the set of all

students of a university can be called as the entity set student.

5.3.1.2 Attributes

Attributes are the properties or characteristics of an entity.

Suppose, we have an entity called student, then roll-number,

regn-no, name, address, date-of-birth, phone-number, age

etc. are the attributes. There are different types of attributes of an

entity:

i) Single Valued Attribute: The attributes those have a single

value for a particular entity. For example, student

registration number is a single valued attribute.

ii) Multi Valued Attribute: Attributes having more than one

value are called multi valued attributes. For example, phone

number, email address of a student entity is multi valued

attributes.

iii) Composite Attribute: Composite attributes are the attributes

which can be sub divided into different parts. For example,

Student_id of a student entity is a simple attribute and

address, name of a student can be composite attributes. We

can divide address of a student into house_no, bylane_no,

post_office, pin_no etc. and name can be divided into

first_name, middle_name and last_name.

iv) Derived Attribute: This is the kind of attribute whose values

are derived from other attributes. For example, the age

attribute of the student entity can be calculated from the

date-of-birth attribute and thus age attribute is called as

derived attribute.

5.3.1.3 Relationships

In E_R model technique, Relationships among two entities types

can be classified into three categories. These are: One-to-One,

70 | P a g e

Space for learners: One-to-Many and Many-to-Many. For our discussion, let’s

consider few entity types – Faculty, Department, Student and

Course. But first discuss few terminologies.

Degree:

The Degree of a Relationship is nothing but the number of entity

types which are participating in the relationship. Since we will be

discussing the Relationship Concept in terms of two entities and

therefore the degree will be 2.

Participation Constraint:

This specifies that how strong is the presence of an entity type

when it is related to the other entity type in a Relationship. It is

also termed as the minimum Cardinality Constraint. In simple

term it specifies the no. of entities of an entity type, participating

in a Relationship. There are two types of Participation

Constraints – Total and Partial Participations.

i) One-to-One (1:1) Relationship:

In this kind of relationship, one entity of an entity type can only

be associated with only one entity of the other entity type. Now,

let’s find the Relationship between Faculty and Department

entities in terms of “Head of”. First try to associate Faculty

entities with the Department entities in terms of “Head of” a

Department. It is obvious that only 1 (one) Faculty can be a

“Head of” only 1 (one) Department. Also in a Department, there

will be only 1 (one) Head. Fig.-1 depicts this One-to-One

association/mapping.

Fig.-1: One-to-One Association

71 | P a g e

Space for learners: Thus, we can find a 1:1 Relationship, termed as “Head of”,

between the Department and the Faculty entity types and is

presented in Fig.-2.

Fig.-2: One-to-One (1:1) Relationship

i) One-to-Many (1:M) Relationship:

In this kind of relationship between two entity types, one entity

of an entity type may be associated with more than one entity of

the other entity type. Now, lets’ try to find the Relationship,

“Enroll in”, between Course and Student. For this, let’s assume

that a Student can only “Enroll in” a Course and a Course can

have many Students. This one-to-many association/mapping

between Course and Student is illustrated in fig.-3. Based on this

association we can find the required Relationship, which is 1:M,

shown in fig.-4.

Fig.-3: One-to-Many Association

Fig.-4: One-to-Many (1:M) Relationship

72 | P a g e

Space for learners: i) Many-to-Many (M:N) Relationship:

Entities that have many relationships among each other is called

a many-to-many relationship. For example, we have two entities

namely customer and items and a relationship “buy”. One

customer can buy at least one item or many items and one item

may be bought by one customer or many customers. Suppose we

have five customers C1, C2, C3, C4 and C5 and two items I1 and

I2. Item I1 is bought by C1, C2 and C3 and Item I2 is bought by

C2, C4, and C5. This many-to-many association/mapping

between Item and Customer is illustrated in fig.-5. Based on this

association we can find the required Relationship, which is M:N,

shown in fig.-6.

Fig.-5: Many-to-Many Association

Fig.-6: Many-to-Many (M:N) Relationship

5.3.1.4 Key Attributes

The attribute which uniquely identifies an entity in the entity set

is called key attribute. For example, student_id can be the key

attribute for the entity set student.

73 | P a g e

Space for learners: 5.4 E-R DIAGRAM

E-R diagram stands for Entity Relationship diagram. It is a

graphical representation of the logical structure of the database.

The main constituents of an E-R diagram are entities, attributes

and relationships.

5.4.1 Symbols used in E-R Diagram

The following symbols are used in E-R diagram (Fig.-7).

Fig.-7: Symbols used in E-R Diagram

74 | P a g e

Space for learners: 5.4.2 Example of E-R Diagram

Now let’s try to draw an E-R diagram by considering an example

of a simple company XYZ. Suppose, the entity types associated

are namely – Employee, Department and Projects. Each

department has employees and also different projects (may be

completed or in hand). Thus, each of the employee is associated

with one or more projects. Few of the employees are also

assigned with the responsibility of managing their respective

departments. The company has to keep information of

dependents of each of the employees. Keeping these facts into

consideration, the E-R diagram is depicted in fig. 8.

Fig.-8: E_R diagram of the XYZ Company

75 | P a g e

Space for learners: 5.4.3 Transformation of E-R Model to Relational

Schema

The following steps are to be followed to transform an E-R

model to Relational Schema.

Step1: Convert all strong entity sets into tables/relations. Simple

attributes are mapped. Composite and multi valued attributes are

excluded from tables/relations. In our fig.-8, we have three strong

entities, so we have to create the following three tables (fig.-9).

Fig.-9: Relations from Strong Entities

Step2: Convert all weak entities into tables or relations. Primary

key of the strong entity is added into the weak entity as a foreign

key. In our example we have only one weak entity. So, we have

only one table.

Fig.-10: Mapping of Weak Entity

Step3: Mapping of 1:1 relationship types.

Method 1: Foreign key approach

Let A and B be two entity sets.

i) Identify the entity set with total participation. (say B)

76 | P a g e

Space for learners: ii) Add primary key of A into B as foreign key.

Method 2: Merged relation approach.

If both entity sets are having total participate then they can be

merged into a single relation.

Method 3: Cross reference approach.

Create a third relation comprising primary key of both entity

sets.

In our example there is a 1:1 relationship between

EMPLYOYEE and DEPARTMNET with mange relationship.

Fig.-10: Mapping of 1:1 with mange relationship

Step4: Mapping of 1: M relationship types.

Let A and B be the entity sets (with 1: M) where B is having total

participation in relationships. Add primary key of A in B as

foreign key.

Fig.-11: Mapping 1: M relationships

Step5: Mapping M: N relationship types.

77 | P a g e

Space for learners: Create a third relation containing the primary keys of both the

entity sets and attributes which are in the relation (if any).

Fig.-12: Mapping of M : N relationship having attribute

Step 6: Mapping multi valued attribute,

For each multi valued attribute, create a separate relation. Add

primary key of the entity set in new relation as a foreign key. The

foreign key attribute and multi valued attribute will become

composite key.

Fig.-13: Mapping multi valued attribute

5.5 GENERALIZATION

Generalizations is the process of retrieving similar properties

from a set of lower-level entity sets and create a generalized

entity from it. It is a bottom-up approach. Two or more entities

which have some common attributes can be generalized to a

higher-level entity. For example, Customer and Employee can be

generalized to a higher-level entity called Person as shown in

fig.-14.

78 | P a g e

Space for learners: In the following example, similar attributes like Name, Address

become part of Person entity and Emp_code and Emp_salary

attributes become part of specialized Employee entity.

Fig.-14: Generalization

In the above figure, Person is the higher-level entity set and

Customer and Employee are lower-level entity sets. The higher-

level entity set is called super class and lower-level entity set is

called sub class.

5.6 SPECIALIZATION

It is top-down approach. It is the result of taking subsets of a

higher-level entity set to form lower-level entity sets. For

example, Employee entity can be specialized into set of sub

classes namely Salaried_employee and Hourly_Employee. In the

following figure, fig.-15, EName (employee’s name), address

etc. are common for both Salaried_Employee and

Hourly_Employee. They are become part of higher entity

Employee and attributes like mode of payment is called

specialized attribute.

79 | P a g e

Space for learners:

Fig.-15: Specialization

5.7 AGGREGATION

One limitation of the E_R diagram is that it is not express

relationships within relationships. In those cases, a relationship

with its entities is aggregated into a higher-level entity.

Aggregation is the process of compiling information on an

object, thereby abstracting a higher-level entity sets.

Fig.-16: Aggregation

For example, employee working on a department may need a

manager. So, manages relationships is needed between

relationship Works_on and entity Manager. Using aggregation,

Works_on relationship with its entities. Employee and

80 | P a g e

Space for learners: Department is aggregated into single entity and relationship

manages is created between aggregated entity and Manager.

To represent aggregation via schema we need primary key of the

aggregated relationship; primary key of the associated entity set

and descriptive attribute, if exists.

5.8 SUMMING UP

 In Relational Database Management System E-R Model

helps in developing a design.

 P.P. Chen, in around 1976, introduced E-R model as well as

corresponding diagramming techniques.

 The major components of E-R model are – Entity, Attributes

and Relationships.

Check Your Progress - I

1. What is E-R Model?

2. What is the use of E-R Model?

3. Write down the components of E-R Model.

4. What do you understand by an Entity?

5. What is Degree of a Relationship?

State TRUE or FALSE:

6. A derived attribute is the kind of attribute whose values are

derived from other attributes. T

7. There are two types of Participation Constraints – Total and

Partial Participations. T

8. The attribute which does not uniquely identify an entity in

the entity set is called key attribute. F

9. It is a graphical representation of the physical structure of

the database. F

10. In E-R Diagram, the Diamond symbol represents a

Relationship. T

81 | P a g e

Space for learners:  The Degree of a Relationship is nothing but the number of

entity types which are participating in the relationship.

 Participation Constraints specifies that how strong is the

presence of an entity type when it is related to the other

entity type in a Relationship.

 In E_R model technique, Relationships among two entities

types can be classified into three categories: One-to-One,

One-to-Many and Many-to-Many.

 The steps to be followed to transform an E-R model to

Relational Schema are:

o Convert all strong entity sets into tables/relations,

o Convert all weak entities into tables or relations,

o Mapping of 1:1 relationship types,

o Mapping of 1: M relationship types,

o Mapping M: N relationship types,

o Mapping multi valued attribute.

 Generalization is the process of retrieving similar properties

from a set of lower-level entity sets and create a generalized

entity from it. It is a bottom-up approach.

 Specialization is top-down approach which is the result of

taking subsets of a higher-level entity set to form lower-level

entity sets.

 Aggregation is the process of compiling information on an

object, thereby abstracting a higher-level entity sets.

5.9 ANSWERS TO CHECK YOUR PROGRESS

1. A model that contains entity and relationship sets to represent

system data is called E-R (Entity-Relationship) model.

2. E-R model is used to model the logical structure of a database.

3. There are different components of E-R model. The major

components of E-R model as follows-

82 | P a g e

Space for learners: i) Entity

ii) Attributes

iii) Relationships

4. An entity is any kind of objects having physical existence or

conceptual existence.

5. The Degree of a Relationship is nothing but the number of

entity types which are participating in the relationship.

6. T

7. T

8. F

9. F

10. T

5.10 POSSIBLE QUESTIONS

Short Answer type Questions:

1. What is entity?

2. What entity type and entity set?

3. What do you mean by stored and derived attribute? Give

examples

4. What do you mean by simple and composite attribute?

Give examples

5. What do you mean by single valued and multi valued

attribute? Give examples

6. Why we need relationships between two entities?

7. Write the basic difference between strong entity and weak

entity.

8. What do you mean by 1: 1 relationship?

9. What do you mean 1: M relationship?

10. What do you mean by M: M relationship?

11. What do you mean by key attributes?

12. Why we need convert E_R model into tables in RDBMS.

83 | P a g e

Space for learners: 13. What do you mean by aggregation?

Long Answer type Questions:

1. Explain the different symbols used in E_R diagram with

proper meaning.

2. Explain the E_R diagram with a suitable example.

3. Briefly explain the generalization and specialization with

suitable examples.

4. Briefly explain the rules for converting E_R model into

tables or relations with suitable examples.

5.11 REFERENCES AND SUGGESTED

READINGS

• Ramez, Elmasri. Fundamentals of Database Systems.

Pearson Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank

Sudarshan. Database system concepts. McGraw-Hill, 1997.

84 | P a g e

Space for learners: UNIT 6: NORMALIZATION AND FUNCTIONAL

DEPENDENCIES

Unit Structure:

6.1 Introduction

6.2 Unit Objectives

6.3 Informal Design Outlines for Relational Databases

 6.3.1 Semantics of a Relation

6.3.2 Minimization of Redundancy

6.3.3 Reducing the NULL values in tuples

6.3.4 SPURIOUS TUPLES

6.4 Functional Dependencies

6.4.1 Types of Functional Dependencies

6.4.2 Inference Rules for Functional Dependencies

6.4.3 Closure OF Functional Dependencies

6.4.4 Equivalent Sets of Functional Dependencies

6.4.5 Minimal Cover of Functional Dependencies

6.5 Normalization and Normal Forms

6.5.1 Definition of Keys

6.5.2 First Normal Form

6.5.3 Second Normal Form

6.5.4 Third Normal Form

6.5.5 Boyce Codd Normal Form (BCNF)

6.6 Multivalued Dependency and Fourth Normal Form

 6.6.1 Formal Definition of Multivalued Dependency

6.6.2 Fourth Normal Form

6.7 Relational Decomposition and its Properties

6.7.1 Dependency Preservation Property of a Decomposition

85 | P a g e

Space for learners: 6.7.2 Lossless (Non-Additive) Join Property of a Decompo-

sition

6.8 Algorithms for Relational Database Schema

 6.8.1 Relational Synthesis

 6.8.2 Testing lossless join property

 6.8.3 Testing Lossless Join Property in Binary Decomposi-

tion (Property LJ1)

6.8.4 Successive Lossless Join Decomposition (PROPERTY

LJ2)

6.8.5 Non-additive Join Decomposition into BCNF Schemas

6.8.6 Relational synthesis algorithm into 3NF with depend-

ency preservation and lossless join property

6.8.7 Finding a key K for relation schema R based on a set F

of functional dependencies

6.8.8 Relational decomposition into 4NF relations with loss-

less join property

6.9 Summing Up

6.10 Answers to Check Your Progress

6.11 Questions and Answers

6.12 References and Suggested Readings

6.1 INTRODUCTION

A relational database schema comprises of a number relational sche-

mas, where each relational schema is designed by grouping the re-

lated attributes. While there are numerous groupings possible for the

same set of attributes, not all the groupings lead to a “good” design.

A good design can be easily understood by the users, follows a log-

ical organization of the attributes, and minimize redundancy. In this

model, we are going to discuss some informal guidelines to measure

the “goodness” of a relation. Another important concept- functional

86 | P a g e

Space for learners: dependency, which refers to the constraints that exist among the at-

tributes of a relation, is also introduced in this module. Functional

dependency is an important tool to measure how appropriate is the

grouping of the attributes in a relation. This module also discusses

normal forms and the process of normalization. A relational schema

is said to be in a normal form if it meets certain desirable properties.

The process of converting a relation into a normal form is called nor-

malization. Functional dependency and constraints on key attributes

can be used to analyze which normal form relation is and also help

in further normalizing the relation if possible. Some other advanced

concepts like - multivalued dependency, join dependency and loss-

less join property are also presented in this module.

6.2 UNIT OBJECTIVES

After completion of this module, you will be able to -

• list the informal measures to assess the quality of relational

schema design.

• describe the various functional dependencies and normal

forms.

• understand the concept of null values, redundant infor-

mation, and spurious tuples and how to eliminate these by

performing normalization.

• apply the concept of database normalization (1 NF, 2NF, 3

NF, etc.) to create an efficient relational schema design to or-

ganize the data logically and meaningfully and eliminate re-

dundancy.

• analyze whether a given relational schema design follows the

basic guidelines of design or not.

• evaluate in which normal form a given relational schema is,

and if possible, convert it to a higher normal form.

• create good relational schema designs by applying the algo-

rithms for losses join properties.

87 | P a g e

Space for learners: 6.3 INFORMAL DESIGN OUTLINES FOR RELA-

TIONAL DATABASES

A relational schema can be defined as a set of relational tables and

associated items related to each other. While it is possible to design

multiple relational schemas for the same problem, the challenging

task is to choose the good one. The design guidelines help us to as-

sess the quality of the relational schemas and thus enable us to

achieve good quality relational schema designs. The following are

the four informal design guidelines-

• The semantics of the Relation

• Minimizing redundancy

• Reduction of the null values in tuples.

• Discarding the possibility of generating spurious tuples.

6.3.1 Semantics of a Relation

When we arrange attributes to construct a relation schema, we pre-

sume that each attribute has a specific meaning. This meaning, or

semantics, describes how to interpret the attribute values recorded in

a tuple of the relation, or how the attribute values in a tuple relate to

FACULTY

F_NAME F_ID F_GENDER F_DOB D_NO

 p.k.

DEPART
MENT

D_NO D_NAME D_EMAIL

p.k.

COURSE

C_CODE C_NAME C_CREDIT F_ID D_NO

p.k. f.k. f.k.

Fig-6.1: Relational Schema design with clear semantics

88 | P a g e

Space for learners: one another. For example, in figure 1.1, the relations FACULTY,

COURSE, and DEPARTMENT have distinct semantics. The attrib-

utes in the relations are also self-explanatory. The relation DEPART-

MENT represents details of a department- department num-

ber (D_NO), name of the department (D_NAME), and the depart-

ment email id (D_EMAIL). D_NO is the primary key of the relation,

inferring that each department has a unique department number. The

relation FACULTY, on the other hand, outlines the details of a fac-

ulty, like-name(F_NAME), id(F_ID), gender(F_GENDER),

and date of birth(F_DOB). F_ID is the primary key of the relation.

The attribute, D_NO in FACULTY is the foreign key from the rela-

tion DEPARTMENT, indicating the implied relationship between

the two relations. Similarly, the relation COURSE also has a distinct

meaning. It depicts course details like - name of the

course (C_NAME), course code (C_CODE), and credit (CREDIT).

The attributes, F_ID and D_NO, in COURSE are the foreign keys

from FACULTY and DEPARTMENT respectively and the attribute

C_CODE is the primary key.

Guideline 1: Create a relationship schema that is self-explanatory

and thus simple to understand. If a relation schema relates to a single

entity type or relationship type, the meaning is usually obvious.

However, in a single relation, if attributes from different entity types

and relationship types are combined, the relation becomes semanti-

cally unclear.

6.3.2 Minimization of Redundancy

Redundancy is the repetition of the same fact again and again across

multiples places in the same database. Apart from wastage of storage

space, redundancy also results in various other side effects. In de-

signing a relational schema, therefore, one of the most important

goals is to minimize redundancy across. Proper grouping of the at-

tributes in a relation schema helps significantly in minimizing redun-

dancy. This can be illustrated with the example in figure 6.2. The

relations FACULTY_DEPT and COURSE_DEPT are being de-

signed to represent the faculties and the courses. The relations cover

89 | P a g e

Space for learners: all the aspects the such as - which faculty works for which depart-

ment and which course is offered by which department. However, if

compared with the design in figure 6.1, the design in figure 6.2 con-

sumes more storage space. In figure 6.1, the department number and

department email id have been mentioned only once for a particular

department in the DEPARTMENT relation. However, in figure 6.2,

in the FACULTY_DEPT relation, these two details are repeated for

every employee that belongs to a particular department. The same is

also the case with the COURSE_DEPT relation.

Apart from wastage of storage space, redundancy leads to another

serious issue of update anomalies. Insertion, deletion, and modifica-

tion anomalies are the three categories of update anomalies. A brief

discussion of each is presented in this section.

6.3.2.1 INSERT Anomalies

Consider table 6.1, which is the populated table for the relation FAC-

ULTY_DEPT. Every time we enter a faculty detail, we must also

enter the corresponding department details. While entering these de-

tails, one must be careful about entering all the fields correctly. For

example, two faculty members working for department number 1,

must have the same values for the attributes D_NAME and

D_EMAIL. However, as we can observe from table 6.1, the faculty

members with id 123 and 124 work for the same department but

D_NAME and D_EMAIL values are different. This results in the

inconsistency of the database.

Table 6.1: Populated FACULTY_DEPT table

FACULTY_DEPT

F_NAME F_ID F_GENDER F_DOB D_NO D_NAME D_EMAIL

 p.k.

COURSE_DEPT

C_NAME C_CODE CREDIT F_ID D_NO D_NAME D_EMAIL

 p.k. f.k.

Fig-6.2: Relational Schema design with redundancy

90 | P a g e

Space for learners:

Another difficulty is that there is no option to enter the details of a

department which has not appointed any faculty yet. The department

details can be entered into FACULTY_DEPT relation, only where

there is at least one faculty who is working in that department. These

issues will not occur in the design of figure 6.1 as the department

details are not clubbed with the faculty details and thus there is no

redundancy.

6.3.2.2 DELETION Anomalies

This can be inferred from the second issue in insertion anomaly.

From table 6.1, if we delete the faculty information with id 125, then

we will lose all the details of department 2. This is because the fac-

ulty, with id 125, is the only faculty working in department 2. The

same will be the problem if we delete the tuple with id 126. This

problem does not occur in the database of figure 6.1, as deleting a

tuple from the FACULTY relation will not cause any deletion of tu-

ples from the DEPT table. Thus all the tuples in DEPT will still be

intact.

6.3.2.3 MODIFICATION Anomalies

This again can be inferred from the first issue of insertion anomaly.

If there are some changes made in one department details- such as

the department name, the same has to be updated in all the tuple of

the FACULTY_DEPT relation with that department number. For ex-

ample, if we wish to change the department email id of department

number 1, then we need to update the same in all the faculty tuples

that are working in department 1. Even if we forget to update it in

one tuple, the database will be inconsistent.

91 | P a g e

Space for learners: Guideline 2: Design a schema with minimum redundancy, so that

there are no update anomalies. In case of any unavoidable redun-

dancy, the program must be designed to tackle all the related inser-

tion, deletion, and modification anomalies.

6.3.3 Reducing the NULL values in tuples

A NULL value for an attribute in a tuple can have multiple interpre-

tations, such as-

• The attribute doesn't apply to this tuple.

• The value of the attribute is unknown for this tuple

• The value of the attribute is known but has not been recorded

yet.

The NULL values not only result in wastage of space but also creates

problems in many operations such as JOIN operations, aggregate op-

erations such as COUNT or SUM, etc.

Guideline 3: While designing a relational schema we should group

the attributes in such a way that produces as few NULL values as

possible.

6.3.4 Spurious Tuples

Many a time, a relational schema has to be decomposed into smaller

relations. Inappropriate decomposition of the relation may result in

some information that originally did not exist in the original relation.

For example, let a relation R be decomposed into two smaller rela-

tions R1 and R2. If the natural join of R1 and R2 produces any extra

tuple that does not exist in the original relation R, then that tuple is

called the spurious tuple. Let's consider the relation R in table 6.2(a).

Decomposition of R into relations R1(A, B) and R2(B, C) will result

in the following two relations as shown in tables 6.2(b) and 6.2(c)

respectively. Now the natural join over R1 and R2 will result in table

6.2(d). As we may observe, table 6.2(d) has two extra tuples that are

originally not present in R. These are called spurious tuples. Spuri-

ous tuples represent wrong or invalid information and thus leads to

the inconsistency of the database.

92 | P a g e

Space for learners: Table 6.2 (a): Spurious tu-

ples: Relational schema R

A B C

a1 b1 c1

a2 b1 c2

Table 6.2 (b): Spurious

tuples: Relational schema

R1

A B

a1 b1

a2 b1

Table 6.2 (c): Spurious

tuples: Relational schema

R2

B C

b1 c1

b1 c2

Table 6.2 (d): Spurious

tuples: R1*R2

A B C

a1 b1 c1

a1 b1 c2

a2 b1 c1

a1 b1 c2

Guideline 4: Decompose a relation into multiple relations in such a

way that the natural join of the smaller relations does not produce

any spurious tuple. This can be done by having relations, where the

common attributes are either the primary key or foreign key of the

93 | P a g e

Space for learners: relations. In case of an unavoidable situation where two relations

have common non-key attributes, extra care should be taken not to

join such relations.

6.4 FUNCTIONAL DEPENDENCIES

In Database Management System (DBMS), functional dependency

(FD) refers to the relationship between two attributes in a table or

relation. For any relation, if the value of the set of attributes Y is

determined by the value of the set of attributes X, then Y is said to

be functionally dependent on X. This is symbolically represented

by X→Y . This notation can be read as “X functionally determines

Y” or “Y is functionally determined by X”. If this functional depend-

ency holds, then for every valid instance of X there will be a unique

value of Y in the table. Usually, the functional dependency exists

between a prime key attribute and a non-key attribute(s). Thus, in a

relation R, if two tuples, say t1 and t2 have the same values of X,

then they must have the same values of Y as well. A functional de-

pendency is the property of the attributes in a relation. It must hold

for every tuple in a relation. The concept of functional dependency

was introduced by E.C. Codd. It helps in avoiding bad design and in

avoiding data redundancy. To better understand functional depend-

ency, let us consider the relations in figure 6.1. Tables 6.3, 6.4, and

CHECK YOUR PROGRESS - I

1. Redundancy in a database lead to _______, _______ and

_______ anomalies.

2. If the natural join of two relations results in extra tuples that are

not in the original relation, then those tuples are called as

_______ tuples.

3. State true or false

a. NULL vales in a relation always have specific meaning.

b. Spurious tuples represent wrong or invalid information.

c. A good relation always has complex semantics.

94 | P a g e

Space for learners: 6.5 are the populated tables for the relations FACULTY, DEPART-

MENT, and COURSE respectively.

Table 6.3: Populated FACULTY relation

F_ID F_NAME F_GENDER F_DOB D_NO

123 Ravi Singh Male 06-02-1972 1

124 Rahul Bose Male 05-04-1980 1

125 P. Joseph Male 12-07-1979 2

126 Sima Mishra Female 08-11-1985 3

Table 6.4: Populated DEPARTMENT relation

D_NO D_NAME D_EMAIL

1 Geography geo@gmail.com

2 Social Science Sssc@gmail.com

3 Mathematics maths@gmail.com

Table 6.5: Populated COURSE relation

C_NAME C_CODE CREDIT F_ID D_NO

Physical geography 230 3 123 1

Anthropology 231 3 125 2

Graph Theory 232 3 126 3

Real Analysis 233 4 126 3

We can see from table 6.4, D_NAME is uniquely determined by

D_NO. Thus in this relation the functional dependency, D_NO→

D_NAME holds. Similarly, a few other functional dependencies that

hold in the relations DEPARTMENT, FACULTY, and COURSE

are-

• F_ID → F_GENDER

• F_ID → F_GENDER

95 | P a g e

Space for learners: • D_NO → D_EMAIL

• C_NAME → C_CREDIT

• C_CODE → F_ID

• C_NAME → F_NAME

6.4.1 Types of Functional Dependencies

Functional dependencies can be classified into the following forms-

• Trivial functional dependencies

• Non-trivial functional dependencies

• Multivalued functional dependencies

• Transitive functional dependencies

• Full Functional dependencies

6.4.1.1 Trivial functional dependencies

A functional dependency X→Y is said to be trivial if Y is a subset

of X. For example, the functional dependency {F_ID, F_NAME}→

F_NAME is a trivial functional dependency since F_NAME is a sub-

set of {F_ID, F_NAME}. Similarly, {D_NUMBER, D_NAME}→

DNAME is also another example of trivial functional dependency.

6.4.1.2 Non-trivial functional dependencies

Unlike in trivial function dependency, in non-trivial functional de-

pendency, the set of attributes on the right-hand side is not a subset

of the attributes on the left-hand side. In other words, if X→Y, and

Y is not a subset of X, then the functional dependency is said to be

non-trivial. For example, the functional dependency, F_ID→

{F_NAME} in table 6.3 is an example of non-trivial functional de-

pendencies. Another example of non-trivial functional dependency

from table 6.5 is

COURSE_ID →C_NAME.

6.4.1.3 Multivalued functional attributes

If there exists a functional dependency of the form X→ {Y, Z} such

that there is no dependency between Y and Z, then the FD is said to

96 | P a g e

Space for learners: be a multivalued functional dependency. In other words, multi val-

ues dependency occurs when two or more attributes in a table are

functionally independent of each other but are functionally deter-

mined by a specific attribute. Multivalued dependency is represented

by the symbol “→→”. For multivalued dependency, we must have

at least three attributes in the relation. A more detailed discussion of

the multivalued attribute is presented in section 6.5.

6.4.1.4 Transitive functional dependencies

In a relation, if the functional dependencies X→Y and Y→ Z exist,

then the functional dependency X→Z also exists. This is called tran-

sitive dependency. For transitive dependency to exists, there must be

at least three attributes in the relation. For example, consider table

6.6. In this table, S_ID determines S_Name and S_Name determines

S_Age. Due to transitive dependency, we can also state that S_ID

determines S_Age. Thus we can summarise as-

• S_ID→S_Name

• S_NAME→S_Age

• S_ID→S_Age [due to transitivity]

Table 6.6: Example of transitive dependency

S_ID S_Name S_Age

1 Ravi 20

2 Rohan 19

3 Sukanya 21

4 Puja 20

•

6.4.1.5 Full Functional dependencies

A functional dependency X→Y is said to be a full functional de-

pendency if removal of any attribute from X means the functional

dependency doesn't exist any longer. For example, consider table

6.7, showing the number of hours (per week) assigned to the em-

ployees for different projects. In this table {E_ID, PROJECT_ID}→

HOURS. If we remove any attribute from the left-hand side then the

97 | P a g e

Space for learners: dependency no longer holds as neither E_ID→HOURS nor PRO-

JECT_ID→HOURS. Thus, it is an example of full functional de-

pendency.

Table 6.7: Example of full functional dependency

E_ID PROJECT_ID HOURS

1 3 16

1 2 20

2 1 12

3 3 10

6.4.2 Inference Rules for Functional Dependencies

While designing a relational schema R, the designer also specifies a

set of functional dependencies. Let’s consider that this set of func-

tional dependencies is denoted by F. Usually, the schema designers

list only the functional dependencies that are semantically obvious.

Apart from the functional dependencies in F, it is possible to infer

several other functional dependencies that hold in any legal relation

instances in R. For example, one of the functional dependencies that

hold for the FACULTY relation in figure 6.1 is F_ID→ {F_NAME,

F_GENDER, F_DOB, D_NO}. We can easily infer a number of

other functional dependencies from the given FD. Some of these are-

• F_ID→ {F_NAME}

• F_ID→{F_GENDER, F_DOB}

• F_NAME→{F_DOB}

It is not practically possible to mention all the functional dependen-

cies that hold in a relation schema. However, we can systematically

infer the other functional dependencies with the help f the inference

rules. This set of inference rules were first introduced by William W.

Armstrong in 1974. These rules are thus also called Armstrong’s ax-

ioms. These axioms define a set of rules which, if applied repeatedly,

generate all the other functional dependencies that can be inferred

98 | P a g e

Space for learners: from a set of functional dependencies originally specified by the de-

signer.

Armstrong’s Axioms:

• IR1: Axiom of reflexivity:

 If Y is a subset of X, i.e, Y⊆X, the X→Y.

• IR2: Axiom of augmentation:

 If in a relation the functional dependency X→Y holds, then

the functional dependency XZ→YZ also holds in that relation.

• IR3: Axiom of transitivity:

 In a relation if the two functional dependencies X→Y and

Y→Z hold, the functional dependency X→Z also holds.

Armstrong showed that the inference rules from IR1 to IR3 are sound

and complete. Soundness means - if we consider any relational

schema R with a set of functional dependencies as F, then for any

legal relational instance r of R, which satisfies the functional depend-

encies in F also satisfies the functional dependencies inferred using

IR1 to IR3. On the other hand, the rules are complete in the sense

that, application of the rules IR1 to IR3 over F until no additional

functional dependencies are generated will result in all the possible

dependencies that can be inferred from F.

Some other important secondary rules that can be derived from the

above inference rules are-

• IR4:Decomposition or Projective rule

 If X→YZ holds in a relation, then the functional dependen-

cies X→Y and X→Z also hold.

Proof:

 Step 1: X→YZ [Given]

 Step 2: YZ→Y [Applying IR1, as Y⊆YZ]

 Step 3: X→Y [Applying IR3 on step 1 and

step 2]

Similarly, we can prove that X→ Z.

• IR5: Union or additive rule:

 If the functional dependencies X→Y and X→Z hold in a re-

lation, then the functional dependency X→YZ also holds in the re-

lation.

99 | P a g e

Space for learners: Proof:

 Step 1: X→Y [Given]

 Step2: X→Z [Given]

 Step3: XY →YZ [Applying IR2 on step2]

 Step4: XX→XY [Applying IR2 on step1]

 Step5: X→XY [As XX=X]

 Step6: X→YZ [Applying IR3 over steps 5

and 3]

• IR6: Pseudo Transitivity

 If the functional dependencies X→Y and WY→Z hold in a

relation, then the relation WX→Z also holds in the same relation.

Proof:

 Step 1: X→Y [Given]

 Step 2: WX→WY [Applying IR2 on step 1]

 Step 3: WY→ Z [Given]

 Step 4: WX→Z [Applying IR3 on step2 and step 3]

CHECK YOUR PROGRESS - II

4. The functional dependency {ISBN,

Book_Name}→Book_Name is an example of _________

functional dependency.

5. If in a relation named COMPANY, C_name → C_location

and C_location → C_pincode, then we can say infer that

C_name → C_pincode due to _________.

6. If A→B and A→ C then, due to additive rule we can infer

that _______ .

7. State true or false

a. Functional dependency represents the relation between

two tables.

b. If A and B are two sets of attributes and A is a subset

of B, then we can say that B → A.

c. The three axioms- reflexivity, augmentation and transi-

tivity represent the complete and sound sound set of in-

ference rules.

100 | P a g e

Space for learners: 6.4.3 CLOSURE of Functional Dependencies

For any relational schema R, if the set of functional dependencies is

specified as F, then the set of all the functional dependencies that can

be inferred from F, is called the closure of F. The closure of F is

denoted as F+. The closure of a set of functional dependencies F, F+,

can be derived by repeatedly applying the inference rules over F un-

less a point is reached where no additional functional dependencies

are generated.

To find closure of a functional dependency F systematically, first,

we need to identify each set of attributes X that occurs as the left-

hand side of any functional dependence in F. The next step is to iden-

tify the set of all attributes that are dependent on X. As a result, for

each such set of attributes X, we find the set of attributes that are

functionally determined by X based on F; this is referred to as the

closure of X under F and is denoted by X+.

Example: Let’s consider a relation STUDENT (ID, NAME, CGPA,

LOCATION) with the set of functional dependencies specified is

F={ID → NAME, NAME→CGPA, ID →LOCATION}

For finding the closure of F, we need to find the closure of the attrib-

ute present in the left-hand side of the functional dependencies.

Thus, we need to find ID+ and NAME+

 Step 1: ID → ID [Due to IR1]

 Step 2: ID →NAME [Given]

 Step 3: ID →{ID, NAME} [Applying IR5 on

step1 and 2]

 Step 4: ID →LOCATION [Given]

 Step 5: ID →{ID, NAME, LOCATION} [Applying IR5

on step3 and 4]

 Step 6: NAME→CGPA [Given]

 Step7: ID → CGPA [Applying IR3 on step

2 and step 6]

 Step 8: ID →{ID, NAME, LOCATION, CGPA} [Applying

IR5 over step 5 and 7]

Thus

ID+={ID, NAME, LOCATION, CGPA}

Similarly, we can find that

101 | P a g e

Space for learners: NAME+={NAME, CGPA}

Thus, the closure set with respect to F is:

 ID+={ID, NAME, LOCATION, CGPA}

 NAME+={NAME, CGPA}

6.4.4 Equivalent Sets of Functional Dependencies

Let F and G be two sets of functional dependencies for a relational

schema R. G is said to be covered by F if all the dependencies in G

can be inferred from F. In other words, F covers G if G+ is a subset

of F+ i.e. G+ ⊆ F+. On the other hand, F and G are said to be equiv-

alent if the following contains are satisfied:

• All the functional dependencies in F can be derived from func-

tional dependencies in G.

• All the functional dependencies in G can be derived from func-

tional dependencies in F.

In other words, if the closure of is equal to the closure of G, i.e., if

F+= G+, then F and G are said to be equivalent. Alternatively, we

can also say that F and G are equivalent if F covers G and G covers

F.

Example: A relation R (P, Q, R, S, T) is has two set of FDs F and G

specified as follows-

 F={P → Q, PQ → R, S → PR, S → T}

 G= { P → QR, S → PT}

Determine whether F covers G:

Step-1:

• (P)+ = { P, Q, R } // closure of left side

of P → QR using set G

• (S)+ = { P, Q, R, S, T } // closure of left side of

S → PT using set G

 Step-2:

• (P)+ = { P, Q, R } // closure of left side

of P → QR using set F

• (S)+ = { P, Q, R, S, T } // closure of left side of

S → PT using set F

102 | P a g e

Space for learners:

From Step-1 and Step-2, we can conclude that F covers G i.e. F ⊇

G, as the FDs in F can determine all the attributes that are deter-

mined by the FDs in G.

Determining whether G covers F

Step-1:

• (P)+ = { P, Q, R } // closure of left side

of P → Q using set F

• (PQ)+ = { P, Q, R } // closure of left side of

PQ → R using set F

• (S)+ = { P, Q, R, S, T } // closure of left side of

S → PR and S → T using set F

Step-2:

• (P)+ = { P, Q, R } // closure of left side

of P → Q using set G

• (PQ)+ = { P, Q, R } // closure of left side of

PQ → R using set G

• (S)+ = { P, Q, R, S, T } // closure of left side of

S → PR and S → T using set G

From Step-1 and Step-2, we can conclude that G covers F i.e. G ⊇

F, as the FDs in G can determine all the attributes that are deter-

mined by the FDs in F. Thus we can conclude that F=G.

6.4.5 Minimal Cover of Functional Dependencies

A set of FDs, Fmin is said to be the minimal cover of another set of

functional dependency F if-

• Fmin is the minimal set of functional dependencies and

• Fmin is equivalent to F.

A set of functional dependency Fmin is said to be minimal if the fol-

lowing conditions are satisfied-

• Each functional dependency in the set has only one attribute to

the Right Hand Side (RHS)

• Any dependency in Fmin, say X→Z, can not be replaced by

some other functional dependency Y→Z, where Y ⊂ X.

103 | P a g e

Space for learners: • If we remove any dependency from Fmin, the resultant set will

no longer be equivalent to Fmin.

Algorithm 6.1: Finding minimal cover of a functional dependency

Step1: Identify the functional dependencies that have more than one

attribute to the RHS. Transform them into a series of functional de-

pendencies having only one attribute to the RHS.

Step2: Remove the redundant attributes on the left-hand side.

Step3: Eliminate the redundant functional dependencies.

Example:

Let’s consider the functional dependency F={P → R, PQ → R, R →

SU, RS → U, TR → PQ, TU → R}

Step 1: F1={P→R, PQ→R, R→S, R→U, RS→U, TR→P, TR→ Q,

TU→R}

Step 2: To find the redundant attributes, we need to first find the

closure of each attribute.

i. P+-=PRSU

ii. Q+ =Q

iii. R+=RSU

iv. S+=S

v. T+=T

We can see from (i) that P+ includes R. Thus Q is extraneous in

PQ→R and thus Q can be removed. So, this dependency can be re-

written as P→R.

From (iii), we can see that R+ includes U, thus in RS→U, S is extra-

neous. So, we can rewrite it as R→U.

Thus the new reduced set of functional dependencies can be written

as,

F2={P→R, R→S,R→U, TR→P, TR→Q, TU→R}

Step 3: The last step is to eliminate the redundant dependencies

Here, TU→R is redundant as R can be determined using P due to

the functional dependency P→R. Thus the final set of minimal

cover for F is

Fmin={P→R, R→S,R→U, TR→P, TR→Q}

104 | P a g e

Space for learners:

6.5 NORMALIZATION AND NORMAL FORMS

In DBMS normalization is used to minimize redundancy. As we

have already discussed in section 6.2.2, redundancy in relations may

lead to insert, delete, and modification anomalies. Normalization

helps in breaking down big relations into smaller relations and en-

sures that data is stored logically with minimal redundancy.

Normal form a relation reflects its degree of normalization. It refers

to the highest normal form condition that the relation satisfies. The

normal forms that will be discussed in this unit are- first normal form

(1NF), second normal form (2NF), third normal form (3NF), Boyce-

Codd normal form (BCNF), and fourth normal form (4NF). In prac-

tice, the database designer has to normalize the relations to the high-

est normal form possible (usually up to 3NF, BCNF, or 4NF).

6.5.1 Definition of Keys

• Super Key: For a relational schema R={A, B, C,….., J}, a super

key, S, is a set of attributes such that S⊆R and for each legal tu-

ple in R, S has a unique value.

CHECK YOUR PROGRESS - III

8. If a and B are two sets of functional dependencies such that A

covers B and B covers A, then A and B are said to be _______.

9. If G is a set of functional dependencies, then its closure is de-

noted by ______ .

10. In a relation R, the functional dependencies A→BC and B→D

hold. The closure of the attribute A in that relation is ______.

11. State true or false

a. Two sets of functional dependencies F and G are said to be

equivalent if F+=G+.

b. F is the minimal cover of G. If we remove any functional

dependency from F then it will still be equivalent to G.

105 | P a g e

Space for learners: • Key: A key, K is a minimal super key. This implies that if we re-

move any attribute from K, then K will no longer hold the super

key property.

• Candidate Key: A relational schema sometimes may have more

than one key. In that case, each key is referred to as a candidate

key. The designer may assign any of the candidate keys as

the primary key. The other candidate keys are then referred to

as secondary keys.

• Prime and non-prime attributes: If an attribute is a member of a

candidate key, it is referred to as a prime attribute, otherwise as a

non-prime attribute.

6.5.2 First Normal Form

The first normal states that each attribute in a relation must have

atomic values. For a relation to be in1NF, each tuple in that relation

must have single values for each attribute. Thus, 1NF disallows mul-

tivalued and composite attributes.

Let’s consider the relation shown in table 6.8(a). It is not in 1NF as

E_PHONE_NO is a multivalued attribute. We can convert it to 1NF

by distributing the multiple values of phone number across the rows

and making E_ID and E_PHONE_NO a combined primary key as

shown in table 6.8 (b). By definition, each relation in a relational

model by default is in 1NF.

Table 6.8(a): Example of a relation that is not in 1NF

E_ID E_NAME E_PHONE_NO

1 Ravi Sharma 912346795

2 Erica Swift 8123456745

3 Rahul Nath {6712387453, 6532478456}

4 Prabin Kumar 77345546734

106 | P a g e

Space for learners: Table 6.8 (b): Normalized version of the relation in table 6.8(a)

E_ID E_PHONE_NO E_NAME

1 912346795 Ravi Sharma

2 8123456745 Erica Swift

3 6712387453 Rahul Nath

3 6532478456 Rahul Nath

4 77345546734 Prabin Kumar

6.5.3 Second Normal Form

The second normal form is based on full functional dependency. A

relation is in second normal form it is already in 1NF and all the non-

prime attributes in the relation are fully functionally dependent on

the prime key. Let's consider the following relation in table 6.9(a)-

Table 6.9(a): Example of a relation that is not in 2NF

S_ID COURSE_ID S_NAME COURSE_NAME GRADE

1 1 Ravi Java A+

1 2 Ravi Python B

2 1 Rahul Java A

2 2 Rahul Python A+

The above table stores the grade scored by the students in different

subjects. The primary key of the table is {S_ID, COURSE_ID}. The

following are some of the functional dependencies that hold in the

above relation-

i. {S_ID,COURSE_ID}→GRADE

ii. {S_ID}→S_NAME

iii. {COURSE_ID}→COURSE_NAME

The FD (i) is full functional dependency as GRADE is dependent on

the S_ID and the COURSE_ID. Neither S_ID nor COURSE_ID

alone can determine the GRADE. However, as we can see that the

107 | P a g e

Space for learners: FDs (ii) and (iii) are partial dependencies as S_NAME can be deter-

mined by S_ID alone. Similarly, COURSE_NAME can be uniquely

identified by COURSE_ID only. Due to these partial dependencies,

the relation is not in 2NF.

A relation that is not in 2NF, can be converted to 2NF by breaking it

into multiple relations where the nonprime attributes are fully de-

pendent on the primary key. For example, the relation in table 6.9 (a)

can be normalized to 2NF by breaking it down into Grade, Student

and Course tables as shown in tables 6.9(b)-6.9(d).

Table 6.9 (b): Grade table which is in 2NF

S_ID COURSE_ID GRADE

1 1 A+

1 2 B

2 1 A

2 2 A+

Table 6.9(c): Student table(2NF)

S_ID S_NAME

1 Ravi

2 Rahul

Table 6.9(d): Course table (2NF)

COURSE_ID COURSE_NAME

1 Java

2 Python

108 | P a g e

Space for learners: 6.5.4 Third Normal Form

The third normal form is based on transitive dependency. To be in

3NF, a relation must also be in 2NF, and no non-prime attribute

should be transitively dependent on the primary key. An attribute, Z,

in a relation is transitively dependent on the primary key X, if the

functional dependencies X→Y and Y→Z hold, where Y is neither a

candidate key nor a subset of any key in that relation.

Consider the relation in table 6.10(a) that stores the information of

the students and the corresponding programs they are enrolled in.

The primary key of the table is S_ID.

Table 6.10(a): Example of a relation violating 3NF

S_ID S_NAME PROGRAM_NAME PROGRAM_DURATION

1 Ravi B. Tech 4

2 Rahul BCA 3

3 Arati BCOM 3

4 Arif MCA 2

Some of the functional dependencies that hold in the relation are-

i. S_ID→S_NAME

ii. S_ID→PROGRAM_NAME

iii. PROGRAM_NAME→PROGRAM_DURATION

iv. S_ID→PROGRAM_DURATION

We can see that the FD (iv) is a transitive dependency that can be

inferred from FDs (i) and (ii) using the IR3. However, PRO-

GRAM_NAME is not a candidate key in this relation neither it is a

subset of any key. Thus, it can be concluded that the relation is not

in 3NF as PROGRAM_NAME is transitively dependent on the pri-

mary key S_ID via the non-prime attribute PROGRAM_NAME. We

can covert it to 3NF by breaking it into two relations as shown in

table 6.10(b) and 6.10(c).

109 | P a g e

Space for learners: Table 6.10(b): Student relation which is in 3NF

S_ID S_NAME PROGRAM_NAME

1 Ravi B. Tech

2 Rahul BCA

3 Arati BCOM

4 Arif MCA

Table 6.10(c): Program relation which is in 3NF

PROGRAM_NAME PROGRAM_DURATION

B. Tech 4

BCA 3

BCOM 3

MCA 2

6.5.5 Boyce Codd Normal Form (BCNF)

The Boyce codd normal form is a stricter version of 3NF. Originally,

it was proposed to simplify the definition of 3NF, however ended up

putting more constraints on the relation. Every relation to be in

BCNF must be in 3NF.

The general definition of 3NF states that- whenever a non-trivial

functional dependency X→Y holds then it must satisfy either of the

following conditions-

i. X is a super key in the relation.

ii. Y is a prime attribute.

In BCNF the condition (ii) is eliminated. This implies that a relation

is in BCNF if, for each functional dependency X→Y, X is a super

key of R.

Example: To better understand the concept let's consider the relation

in table 6.11(a).

110 | P a g e

Space for learners: Table 6.11(a): Example of a relation which is not in BCNF

S_ID COURSE INSTRUCTOR

101 Java Rupam

101 DBMS Priya

103 DBMS Trisha

104 Python Ashmita

105 Java Kalyan

The constraints in the above table are-

• A student can enrol in multiple courses

• For each course, an instructor is assigned to the student.

• A course can be thought by multiple instructors.

The primary key in this relation is {S_ID, COURSE}, as it uniquely

determines the INSTRUCTOR. Another point to be noted is that the

course is dependent on the instructor as one instructor can teach only

one subject. Thus the functional dependencies are-

i. {S_ID, COURSE} →INSTRUCTOR

ii. INSTRUCTOR → COURSE

The table is in 3NF as there are both the FDs either the right-hand

side is a key or the left-hand side is a prime attribute. However, it is

not in BCNF as in the FD (ii) INSTRUCTOR is not a prime attribute.

To covert the relation to BCNF, we may decompose the relation into

two other relations as shown in table 6.11(b) and 6.11(c).

Table 6.11(b): Student_instructor table

S_ID INSTRUCTOR

101 Rupam

101 Priya

103 Trisha

104 Ashmita

105 Kalyan

111 | P a g e

Space for learners: Table 6.11(c): Instructor_course table

INSTRUCTOR COURSE

Rupam Java

Priya DBMS

Trisha DBMS

Ashmita Python

Kalyan Java

Consider another example. The relation in table 6.11(d) stores em-

ployee details- id, name, pan number, and age. The candidate keys

for this relation are- E_ID and PAN_NO. From these E_ID has been

chosen as the primary key. Following are some of the dependencies

that exist in the relation-

iii. E_ID→ E_NAME

iv. E_ID→PAN_NO

v. PAN_NO→ AGE

vi. PAN_NO→E_ID

As we can see that in all the FDs the left-hand side is a candidate

key, so the relation is in BCNF.

Table 6.11(d): Example of a relation which is in BCNF

E_ID E_NAME PAN_NO AGE

1 Xavier Mavely ABCFX985B 48

2 Manish Pandey PQRET654X 34

3 Rakesh Sharma GFRTE4563B 54

4 Shilpi Molohtra FDREU004T 43

112 | P a g e

Space for learners:

6.6 MULTIVALUED DEPENDENCY AND FOURTH

NORMAL FORM

In section 6.3.1.3, we introduced the concept of multivalued de-

pendency. In this section, we will present an elaborate discussion

on multivalued attributes and the fourth normal form (4NF).

6.6.1 Formal Definition of Multivalued Dependency

Lets X and Y be two attributes in a legal relation and let t1 and t2

be any two legal tuples in that relation such that-

t1(X)=t2(X) .

The multivalued dependency X→→ Y holds in the relation, if there

exists another two tuples t3 and t4 with the following conditions-

t1(X)=t2(X)=t3(X)=t4(X)

t1(Y)=t3(Y)

t2(Y)=t4(Y)

Example: Consider the relation in table 6.12. We may observe that

the students Ravi and Rahul have interests in multiple indoor and

CHECK YOUR PROGRESS - IV

12. A legal relational schema by default is in _______ normal form.

13. If a relation is in 2NF, then non no-prime attribute can be

_______ dependent on the key.

14. For a relation R to be in BCNF, if the functional dependency A

→ B holds in R then A must be a _____.

15. In a relation, which is in 3NF, no non-prime attribute is ________

dependent on the primary key.

16. State true or false

a. BCNF is stricter than 3NF.

b. Normalization is a tool to minimize NULL values.

113 | P a g e

Space for learners: outdoor games. In the first four tuples, S_Name is the same, i.e, Ravi.

As the tuple (Ravi, Badminton, Cricket) and (Ravi, Table Tennis,

Football) exist in the relation, another two tuples (Ravi, Badminton,

Football) and (Ravi, Table Tennis, Cricket) also exist in the same

relation. Sam can be observed from the last four tuples as well. Thus,

we can say that-

S_Name→→ IndoorGame

S_Name→→ OutdoorGame

Table 6.12: Example of multivalued dependency

S_Name IndoorGame OutdoorGame

Ravi Badminton Cricket

Ravi Table Tennis Cricket

Ravi Badminton Football

Ravi Table Tennis Football

Rahul Chess Cricket

Rahul Volleyball Football

Rahul Chess Football

Rahul Volleyball Cricket

6.6.2 Fourth Normal Form

The definition of the fourth normal form is based on multivalued de-

pendency. For a relation to be in 4NF, it must be in BCNF and should

not have any multivalued dependency. The relation in table 6.12 is

in BCNF but not in 4NF as it contains multivalued dependencies. To

transform the said relation into 4NF, we may decompose it into ta-

bles 6.13(a) and 6.13(b).

114 | P a g e

Space for learners: Table 6.13(a): Student_Indoor Games relation

S_Name IndoorGame

Ravi Badminton

Ravi Table Tennis

Rahul Chess

Rahul Volleyball

Table 6.13(b): Student_Outdoor Games relation

S_Name OutdoorGame

Ravi Cricket

Rahul Cricket

Ravi Football

Rahul Football

Both the relations in table 6.13(a) and 6.13(b) are in 4 NF as there is

no multivalued dependency.

6.7 RELATIONAL DECOMPOSITION AND ITS

PROPERTIES

In the earlier sections, we have discussed the normal forms- 1NF,

2NF, 3NF, BCNF, and 4NF. In all the cases we have seen a relation

can be upgraded to a higher normal form by decomposing it into

multiple relations. Decomposition helps in removing redundancies

and inconsistencies.

While decomposing a relational schema into multiple relational

schemas one must make sure that the decomposition preserves all

the original attributes. If a relational schema, R, is decomposed into

multiple relations D={R1, R2, R3,……, Rn}, then each attribute in

R must appear in at least one relation Ri in D. This property is called

the attribute preserving property of decomposition. Another addi-

tional aim of decomposition is that each relation Ri in D must be at

least in either 3NF or BCNF. Unfortunately, these two properties

115 | P a g e

Space for learners: alone don't guarantee a good database design. In the following sec-

tions, we discuss some additional criteria that must hold in a decom-

position.

6.7.1 Dependency Preservation Property of a Decom-

position

Let's consider the decomposition of the relational schema R into D

as discussed above. The dependency preserving property of a de-

composition states that- every functional dependency X→Y speci-

fied in R, must appear either directly in one of the relations Ri ∈ D

or can be inferred from other dependencies specified in some relation

Ri ∈ D. Let F be the set of FDs specified in R. Let F1, F2… Fn is the

set of functional dependencies specified in R1, R2…. Ri respec-

tively. The decomposition D is said to be dependency preserving if-

(F1∪ F2…∪Fn)+=F+

Example: Let’s consider a relation R (W, X, Y, Z). The specified

set of functional dependencies for this relation is F= {WX → Y, Y

→ Z, Z → W}. R is decomposed into two relations - R1(W, X, Y)

and R2(Y, Z). Let F1 and F2 be the set of functional dependencies

for R1 and R2 respectively. First, we will find the closure of F1. To

do so, we will consider the combinations- W, X, Y, WX, XY, and

XY.

W+ = { W } // Trivial

X+ = { X } // Trivial

Y+= {Y, W, Z} = {Y, W} [As Z is not in R1, it has been

removed from the closure]

Y→ W [Removing Y from right side

as it is trivial attribute]

WX+ = {W, X, Y, Z} [As Z is not in R1, it has been

removed from the closure]

 = {W, X, Y}

WX → Y [Removing WX from right-

side as these are trivial attributes]

XY+ = {X, Y, Z, W}

116 | P a g e

Space for learners: = {W, X, Y}

XY → W [Removing XY from right

side as these are trivial attributes]

WY+ = {W, Y, Z}

WY → Z [Removing WY from right

side as these are trivial attributes]

Thus, F1 ={Y→ W, WX → Y, XY → W}

Similarly, F2= { Y→ Z }

In the original relation R,

F={ WX → Y, Y → Z, Z → W}

WX → Y is present in F1.

Y → Z is present in F2.

But, Z → W is not preserved.

given decomposition is not depend-

ency preserving

6.7.2 Lossless (Non-Additive) Join Property of a De-

composition

Another important property that a decomposition should satisfy is

the lossless or non-additive join property. This ensures that if we re-

construct the relation R by performing natural join (*) on R1, R2 …

and Rn, then it should not produce any spurious tuples. To put it in

another way, the decomposition is -

• lossy if R1*R2*…..*Rn ⊃R

• Lossless if R1*R2*…..*Rn = R

The problem of spurious tuples has already been discussed in section

6.2.4.

To illustrate this concept lets consider the following relational

schema in table 6.14(a).

117 | P a g e

Space for learners: Table 6.14(a): Employee_Department relation

E_ID E_NAME E_AGE DEPT_ID DEPT_NAME

1 Xavier 42 1 Sales

2 Pallavi 34 1 Sales

3 Arun 42 2 Marketing

4 Susane 28 3 HR

If we decompose this relation into two smaller schemas R1(E_ID,

E_NAME, E_AGE, DEPT_ID) and R2(DEPT_ID, D_NAME), then

following tables 6.14(b) and 6.14(c) will be the result of the decom-

position.

Table 6.14(b): Decomposition of Employee_Department relation to

relation R1

E_ID E_NAME E_AGE DEPT_ID

1 Xavier 42 1

2 Pallavi 34 1

3 Arun 45 2

4 Susane 28 3

Table 6.14(c): Decomposition of Employee_Department relation

to relation R2

DEPT_ID DEPT_NAME

1 Sales

2 Marketing

3 HR

If we perform natural join over R1 and R2 then we will get back

exactly the tuples present in the relation R. Neither will any extra

tuple be generated nor will there be any missing tuple. Thus this de-

composition is lossless.

118 | P a g e

Space for learners: However, if the same relation R is decomposed into two other rela-

tions- R3(E_ID, E_NAME, E_AGE) and R4(DEPT_ID, D_NAME,

E_AGE), then this would result in the following tables 6.14(d) and

6.14(e).

Table 6.14(d): Decomposition of Employee_Department relation

to relation R3

E_ID E_NAME E_AGE

1 Xavier 42

2 Pallavi 34

3 Arun 42

4 Susane 28

Table 6.14(e): Decomposition of Employee_Department relation

to relation R4

DEPT_ID E_AGE DEPT_NAME

1 42 Sales

1 34 Sales

2 42 Marketing

3 28 HR

The natural join of R3 and R4 (R3*R4) would result in table 6.14(f).

Table 6.14(f): Natural join of R3 and R4

E_ID E_NAME E_AGE DEPT_ID DEPT_NAME

1 Xavier 42 1 Sales

1 Xavier 42 2 Marketing

2 Pallavi 34 1 Sales

3 Arun 42 2 Marketing

4 Susane 28 3 HR

119 | P a g e

Space for learners: As we can see that the natural join of R3 and R4 results in extra

information that does not exist in the original relation R. Thus, the

decomposition of R into R3 and R4 is a lossy join.

6.8 ALGORITHMS FOR RELATIONAL DATABASE

SCHEMA

In this section, we present some algorithms related to the decompo-

sition of a relational schema.

6.8.1 Relational Synthesis

Algorithm 6.2: Relational Synthesis into 3NF with Dependency

Preservation

Input: A universal relation R with a set of a functional dependency

F

Step 1: Find the minimal cover G of F.

Step 2: For each left-hand side of X of a functional dependency in

G, construct a relational schema with attributes

{X∪A1∪A2….∪Ak} with X as key, where X→A1, X→A2…

X→Ak.

CHECK YOUR PROGRESS - V

17. For multivalued dependency to occur in a relation, it must

have at least ____ attributes.

18. A decomposition is loss-less if natural join of the relations in

the decomposition does not produce any _______ tuple.

19. 4NF is based on ______ dependency.

20. _________ states that each attribute of the original relation

must appear in at least one of the relation in its’s decomposi-

tion.

120 | P a g e

Space for learners: Step3: Place the remaining attributes (which could not be placed in

any relation in step2) in single relation.

Claim: All the relational schemas created by algorithm 6.2 are in

3NF.

6.8.2 Testing Lossless Join Property

Algorithm 6.3: Testing for lossless or non-additive join property

Input: A universal relation R, R’s decomposition D = {R1, R2, . . .,

Rm}, and a set of functional dependencies F.

Step1: Create an initial matrix S with dimension ‘m’ rows and ’n’

columns, where ‘m’ is the number of relations in D and ’n’ is the

number of attributes in R.

Step2: Set each S(i,j) in the matrix to bij, where bij is a distinct

symbol associated with S(i,j).

Step 3: For each row i in S:

 For each column j in S:

 If Ri contains attribute aj then

 set S(i,j)=aj

Step 4: Repeat the following loop until S remains unchanged after

a complete loop execution: For each A→B in F:

 For each row i in S, having the same symbol in the

column corresponding to attribute for A:

Set the symbols in each column correspond-

ing the attribute B to be the same. If there

exists an ‘a’ symbol for any of these col-

umns, set all other columns to symbols ‘a’,

else chose any of the ‘b’ symbols that appear

for any of these columns and update the

symbols in the rest of the columns in all such

rows to ‘b’.

Step5: The decomposition has lossless join property only if there

exists a row in S that contains only ‘a' symbol. Otherwise, the de-

composition is lossy.

121 | P a g e

Space for learners: Example: Lets consider a relation R = {E_ID, E_NAME, P_NO,

P_NAME, P_LOC, HOURS} with the following set of functional

dependency-

F = {E_ID → E_NAME, P_NO → {P_NAME, P_LOC},

{E_ID, P_NO} → HOURS}

Let D = {R1, R2, R3} be the decomposition the relation,

where,

R1 = {E_ID, E_NAME}

R2 = {P_NO, P_NAME, P_LOC}

R3 = {E_ID, P_NO, HOURS}

Application of steps 1,2 and 3 results in the matrix in table 6.15(a).

Table 6.15(a): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 b32 a3 b34 b35 a6

Now, for the functional dependency E_ID → E_NAME, the E_ID

attribute in R1 and R3 have the same symbol. So, the symbol for

the E_NAME attribute in R3 will be updated to a2 as R1 has a2 for

E_NAME. This results in the matrix in table 6.15(b).

Table 6.15(b): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 a2 a3 b34 b35 a6

Similarly, for the functional dependency P_NO → {P_NAME,

P_LOC}, in the values for attributes, P_NAME and P_LOC are up-

dated to a4 and a5 respectively as R2 and R3 have the same symbol

for P_NO. Thus the updated matrix will be as shown in table 6.15(c).

122 | P a g e

Space for learners: Table 6.15(c): Example for testing loss-less join property

 E_ID E_NAME P_NO P_NAME P_LOC HOURS

R1 a1 a2 b13 b14 b15 b16

R2 b21 b22 a3 a4 a5 b26

R3 a1 a2 a3 a4 a5 a6

We can see observe from the above matrix that the row R3 has all

‘a’ symbols. Thus, the decomposition D has lossless join property.

6.8.3 Testing Lossless Join Property in Binary Decom-

position (Property LJ1)

Breaking down a relation into two relations is called binary decom-

position. The following property helps to test for lossless join prop-

erty in binary decomposition-

• Property LJ1: The binary decomposition D = {R1, R2} of a rela-

tion R has the lossless join property with respect to a set of func-

tional dependencies F on R if and only if either

• ((R1 ∩ R2) → (R1- R2)) is in F+, or

• ((R1 ∩ R2) → (R2 - R1)) is in F+.

6.8.4 Successive Lossless Join Decomposition (PROP-

ERTY LJ2)

Let a decomposition D={R1, R2…. Rm} of a relation R, concerning

a set of functional dependency F, has lossless join property. Now,

let’s divide a relation Ri in D to smaller relations Q={Q1, Q2…Qp}

in such a way that Q also has lossless join property for F. If we now

replace Ri by Q in D, then property LJ2 states that a set of decom-

position D1={R1, R2,…Ri-1,Q1,Q2,…Qp, …, Rm}) will also have

lossless join property.

123 | P a g e

Space for learners: 6.8.5 Non-additive Join Decomposition into BCNF

Schemas

Algorithm 6.4: Relational decomposition into BCNF relations with

lossless join property

Input: A universal relation R with F as set of specified functional

dependencies .

Step1: Set D={R}

Step2: For each relation Q in D, which is not in BCNF:

 Identify the functional dependency A→B, that vio-

lates the BCNF.

 Replace Q in D by two relations (Q − B) and (A ∪

B)

Step3: Stop

Explanation: Since (Q − B) ∩ (A ∪ B) → (A ∪ B) − (Q − B) is

equivalent to A → B ∈ F +. By virtue of property LJ1, the decompo-

sition is lossless.

Example: R = {X, Y, Z} F = {XY → Z, Z → Y}

Let D= {{X, Y, Z}};

{X, Y, Z} in D is not in BCNF due to the functional dependency Z

→ Y.

Thus, decompose {X, Y, Z} to ({X, Y, Z} − Y) and (X ∪ Y), I.e.

to {X, Z} and {X,Y}.

Replace {X, Y, Z} in D by {X, Z} and {X,Y}.

D={{X, Z},{X,Y}}

{X, Z} and {X,Y} both are now in BCNF.

6.8.6 Relational synthesis algorithm into 3NF with de-

pendency preservation and lossless join property

Algorithm 6.5: Relational synthesis algorithm into 3NF with de-

pendency preservation and lossless join property

Input: A universal relation R and a set of FDs F

Step 1: Compute a minimal cover G for F

124 | P a g e

Space for learners: Step 2: Construct a relational schema in D with attributes

{X∪A1∪A2….∪Ak} with X as key, for each left-hand side of X of

a functional dependency in G. The functional dependencies:

X→A1, X→A2… X→Ak, should be the only dependencies in G

with X on the left-hand side.

Step 3: If there is no relation in D that contains a key of R, then

create one with the attributes of a key in R.

Example: R = {A, B, C, D, E, H} is a relation with functional de-

pendencies F = {AE → BC, B → AD, CD → E, E → CD, A →

E}.

Step 1: The minimal cover of F is G = {A → B, A → E, B → A,

CD → E, E → CD} [Derived using the algorithm 6.1]

Step 2: Based on the functional dependencies in G the R will be

decomposed into D={R1, R2, R3, R4, R5}, with the set of func-

tional dependencies F1, F2, F3, F4 and F5 respectively, where

• R1 = {A, B, E} with F1 = {A → B, A → E}

• R2 = {B, A} with F2 = {B → A}

• R3 = {C, D, E} with F3 = {CD → E}

• R4 = {E, C, D} with F4 = {E → CD}

Combine R3 and R4 into one relation schema R5 = {C, D, E} and

F5 = {CD → E, E → CD}. So, D={R1, R2, R5}

Step 3: In R, AH, and BH are candidate keys. As we can see that

neither of these appears as key in any of the relations in D. So, we

create another relational schema R6 = {A, H} and F = {}

Now, all the relations in D = {R1, R2, R5, R6} are in 3NF.

6.8.7 Finding a key K for relation schema R based on a

set F of functional dependencies

Algorithm 6.6: Finding a Key for a rational schema based on a set

of functional dependencies.

Input: A relational schema R(A1, A2,…, Am)

Step 1: Set the key K={A1, A2,…, Am}

Step 2: For each attribute Ai in K:

 Determine (K-Ai)+ with respect to F. If (K-Ai)+ contains all

the attributes in R, then set K=K-{Ai}

125 | P a g e

Space for learners: Example: Lets consider the relation R={A, B, C, D} with F={A →

BCD, C → A}

• A+=ABCD

• B+=B

• C+=ABCD

• D+=D

So, the candidate keys are A and C as the closure of A and C con-

tains all the attributes of R.

6.7.8 Relational decomposition into 4NF relations with

lossless join property

Whenever a relational schema R is decomposed into D={R1, R2}

based on multivalued dependency A→→B that holds in R, then

property LJ1’ presents the necessary and sufficient condition to

check whether the decomposition is lossless or not.

• PROPERTY LJ1’

■ The decomposition D={R1, R2} of R, is a lossless (non-

additive) join decomposition with respect to a set F of

functional and multivalued dependencies if and only if

■ (R
1

∩ R
2

) →→ (R
1

 - R
2

)

■ or by symmetry, if and only if

■ (R
1

 ∩ R
2

) →→ (R
2

 - R
1

)).

Algorithm 6.7: Decomposition of a relation into 4NF relations with

lossless join property

Input: A universal relation R and a set of functional and multi-

valued dependencies F.

Step 1: Set D := { R };

Step 2: While there exists a relation Ri in D that is not in 4NF do {

 choose a relation schema Ri in D that is not in 4NF;

 find a nontrivial MVD A →→ B in Ri that violates 4NF;

 replace Ri in D by two relation schemas (Ri - B) and (A υ

B);

 };

126 | P a g e

Space for learners: 6.9 SUMMING UP

 A relational schema can be defined as a set of relational ta-

bles and associated items related to each other.

 Following are the four informal design guidelines-

o The semantics of the Relation

o Minimizing redundancy

o Reduction of the null values in tuples.

o Discarding the possibility of generating spurious tu-

ples.

 Redundancy is the repetition of the same fact again and again

across multiples places in the same database.

 Apart from wastage of storage space, redundancy leads to

another serious issue of update anomalies. Insertion, dele-

tion, and modification anomalies are the three categories of

update anomalies.

 Spurious tuples represent wrong or invalid information and

thus leads to the inconsistency of the database.

 In Database Management System (DBMS), functional de-

pendency (FD) refers to the relationship between two attrib-

utes in a table or relation.

 A functional dependency X→Y is said to be trivial if Y is a

subset of X.

 If X→Y, and Y is not a subset of X, then the functional de-

pendency is said to be non-trivial.

 If there exists a functional dependency of the form X→ {Y,

Z} such that there is no dependency between Y and Z, then

the FD is said to be a multivalued functional dependency.

 In a relation, if the functional dependencies X→Y and Y→

Z exist, then the functional dependency X→Z also exists.

 A functional dependency X→Y is said to be a full functional

dependency if removal of any attribute from X means the

functional dependency doesn't exist any longer.

 The set of inference rules were first introduced by William

W. Armstrong in 1974. These rules are thus also called Arm-

strong’s axioms. These axioms define a set of rules which, if

127 | P a g e

Space for learners: applied repeatedly, generate all the other functional depend-

encies that can be inferred from a set of functional depend-

encies originally specified by the designer.

 For any relational schema R, if the set of functional depend-

encies is specified as F, then the set of all the functional de-

pendencies that can be inferred from F, is called the closure

of F. The closure of F is denoted as F+.

 Let F and G be two sets of functional dependencies for a re-

lational schema R. G is said to be covered by F if all the de-

pendencies in G can be inferred from F.

 Normalization helps in breaking down big relations into

smaller relations and ensures that data is stored logically with

minimal redundancy.

 The first normal states that each attribute in a relation must

have atomic values.

 A relation is in second normal form it is already in 1NF and

all the non-prime attributes in the relation are fully function-

ally dependent on the prime key.

 To be in 3NF, a relation must also be in 2NF, and no non-

prime attribute should be transitively dependent on the pri-

mary key.

 For a relation to be in 4NF, it must be in BCNF and should

not have any multivalued dependency.

6.10 ANSWERS TO CHECK YOUR PROGRESS

1. Insertion, deletion and modification

2. Spurious

3.

3.a.False

3.b.True

4. Trivial

5. Transitivity

6. A→BC

7.

7.a. False

7.b.True

128 | P a g e

Space for learners: 7.c.True

8. Equivalent

9. G+

10. {A, B, C, D}

11.

11.a.True

11.b.False

12. 1NF

13. Partially

14. Superkey

15. Transitively

16.

16.a. True

16.b.False

17. 3

18. Spurious

19. Multivalued

20. Attribute preservation property

6.11 POSSIBLE QUESTIONS

1. Define closure of a set of functional dependencies.

2. Write down the properties LJ1 and LJ2.

3. State when two sets of functional dependencies are considered to

be equivalent.

4. What are spurious tuples? Why are they considered as bad?

5. What are the problems with null values in a relation?

6. State the condition a relation must satisfy to be in 2NF.

7. List the conditions a binary decomposition must satisfy to be

loss-less.

8. Write the condition for a relation to be in BCNF.

9. Discuss the four informal guidelines for designing a good rela-

tion.

10. Discuss the problem of update anomalies in a relation with ap-

propriate examples.

129 | P a g e

Space for learners: 11. What is normalization? Why is it important? Discuss, with an

example, how a relation which is not in 1NF can be converted to

1NF.

12. Define functional dependency. Briefly discuss the types of func-

tional dependencies. Give one example each.

13. Write down the Armstrong’s axioms for functional dependency.

Why are these rules important?

14. Discuss the 1st, 2nd and 3rd normal forms with suitable exam-

ples.

15. What is multivalued functional dependency? Discuss the fourth

normal forms with an example.

16. Discuss the attribute preservation and dependency preservation

properties of a relational decomposition. Write the algorithm to

decompose a relation to smaller relations where each smaller re-

lation is in 3NF and dependency is also preserved.

17. What is loss-less join property of a relation? Write an algorithm

to test the loss-less join property of a decomposition.

6.12 REFERENCES AND SUGGESTED READINGS

• Ramez, Elmasri. Fundamentals of Database Systems.

Pearson Education India, 2020.

• Silberschatz, Abraham, Henry F. Korth, and Shashank

Sudarshan. Database system concepts. McGraw-Hill,

1997.

BLOCK II:

DATABASE QUERY, TRANSACTION

PROCESSING AND SECURITY

CONCEPTS

130 | P a g e

Space for learners:
UNIT 1: QUERY PROCESSING AND OPTIMIZATION

Unit Structure:

1.1 Introduction

1.2 Objectives

1.3 Query Processing

 1.3.1 Block Diagram to show the steps of conversion

 1.3.2 Equivalence Rules

1.4 Query Optimization

 1.4.1 Query Cost Measurement

 1.4.2 Generation of Equivalence Expression

 1.4.3 Transformation Examples

 1.4.4 Choosing the Evaluation Plans

 1.4.5 Estimation for the Statistics of Costs

 1.4.6 Maintaining the materialized View

1.5 Summing Up

1.6 Answers to Check Your Progress

1.7. Possible Questions

1.8 References and Suggested Readings

131 | P a g e

Space for learners: 1.1 INTRODUCTION

In this unit, you will get to learn in detail about query processing and

query optimization and how their implementations are done in Database

Management System (DBMS). You already know that databases are

created to organize and store all the related data and information at a

particular place so that the users can access and manipulate it as per

requirement. It may so happen that different users may use their

languages to access those data, which at times becomes difficult for the

DBMS system to return the actual information, and also the data may not

be accurate. So there comes the need for a common operation or you can

say a language that can communicate between the system and the user.

1.2 UNIT OBJECTIVES

Studying this unit, you will be able to:

 Understand the concept of query processing

 Understand the concept of parsing, translation

 Understand the concept of optimization

 Know how to choose the evaluation plan

 learn about different execution plans which are cost-effective and

generate a code optimizer

1.3 QUERY PROCESSING

To bridge the gap between the DBMS and the Users, a standard language,

which is understandable by the DBMS is used between the two, so that

correct data are retrieved on processing. This standard language is known

as the Structured Query Language (SQL) which is a High-Level

Language (HLL). DBMS automatically converts this HLL to Low-Level

language (LLL) which is a machine-understandable language using

Relational Algebra whenever a query is encountered by the system [1].

A query is submitted to the database to retrieve relevant information from

it. Whenever any Query is encountered by the system, verification of the

query is done by the DBMS and that query is converted to some Low-

Level Language after which path of the execution is selected and the

queried data gets retrieved from the storage memory. It is done internally

132 | P a g e

Space for learners: by the DBMS. This whole technique is performed by the Query

Processor which is a feature present in the DBMS and the functions that

are performed are termed as the Query Processing.

As discussed, DBMS consists of a Query Processor that checks and

verifies the queries given by the Users which are in the form of SQL

commands (HLL). It then translates these commands into Low-Level

Language that is understandable to the DBMS system so that the system

can work on it. It converts the HLL Step-by-Step into LLL and returns

the value which the users want. In query processing, sorting is a very

important step. For performing the operations like ORDER-BY, JOIN,

PROJECT, SELECT, UNION, INTERSECTION, etc. sorting, or merge-

sort algorithm is a very important phase. A term called 'external sorting'

is applied when the memory is small and records of large files need to be

stored. It consists of two phases – the sorting phase and the merging

phase.

In the case of sorting phase, the files are sorted very precisely so that it

easily fits into the available memory. The number of executions is

specified to its initial and dedicated file blocks and also on the amount of

buffer space.

In the case of the merging phase, the sorted executed query is merged at

different passes. The amount of merge that can be occurred together is

termed the degree of a merge. For each pass at least one buffer block is

required for holding the executed query.

The processing of a query is performed in the following given steps.

a) Parsing and Translation of the Query.

b) Optimization of the parsed query.

c) Compilation or Interpretation in the Query Code Generator.

d) Execution into the Evaluation engine.

133 | P a g e

Space for learners: 1.3.1 The Block Diagram to Show the Steps of Conversion

in Query Processing

Figure 1: Block Diagram for Query Processing

STEP 1. PARSING –

An SQL query is communicated to the DBMS system through an

application program. The high-level language is translated into its low-

level language. That is, the SQL query is converted into its relational

algebra.

Query blocks are formed after the division of the original SQL query,

and hence it becomes ready for its optimization. Query blocks can

contain a single expression of SELECT, WHERE, FROM, HAVING,

GROUP BY. When the nested queries are encountered having aggregate

134 | P a g e

Space for learners: operators like COUNT, SUM, MIN, MAX, then a separate query block

is formed.

For example, the following query is encountered by the system where the

teacher wants to fetch the name of all the students where age must be less

than 20 years.

select stud_name from Student where age<20;

This query is converted into its relational algebra as given below.

πage (σage<20 (Student))

On converting the query into its relational algebra internally, other steps

of parsing are done. When this query is encountered with the system,

scanning of the same is done to check whether any syntax error is present

in the query or not.

 After proper validation, this relational algebra is then converted into

tokenized form (from the example above ‘select’, ‘stud_name’, ‘from’,

‘student’, ‘where’, ‘age<20’ are different tokens) represented as a Parse

tree.

 After that, the Parser performs some checks such as Syntax,

Semantic, and Shared Pool checks as shown in the diagram. In the Syntax

checking the parser checks whether the syntax of the query is correct or

not. An example is shown below.

select stud_name form Student through age<20;

It can be seen that ‘form’ and ‘through’ are the words respectively

spelled incorrectly and wrongly written. These are the syntax errors.

 The semantic check helps in checking whether the table, keywords,

columns present in the query are also present in the Database or not. If it

is present, then it proceeds to the next step and if it is not present then it

returns an error to the User.

 During its execution, every query is given a hash code by the parser

and if this code is present then no extra performances are done in the rest

of the steps. This hash code is checked by the Shared Pool [2].

135 | P a g e

Space for learners: STEP 2. OPTIMIZATION –

After the query goes through different processes in the Parsing phase, the

parsed query is then shifted to the Optimization phase so that a minimal

cost of execution is selected. Minimal evaluation cost is the time when a

query is encountered in the system till it returns the result. For selecting

the best minimal plan for executing the query, a Catalog Manager,

present in the Optimizer helps in the selection of the minimal cost. A hard

parsing must be performed for at least a single DML statement and after

that, the process of optimization is carried on. Access routines help in the

implementation of query operations such as SELECT, JOIN, PROJECT,

etc.

Typically, optimization takes any one of the following forms: The

heuristic form of optimization or Cost based form of optimization.

(a) Heuristic optimization – With the help of heuristic rules,

refinement of query execution is done so that individual operations

are reordered.

(b) Cost-based optimization – with the help of cost-based rules,

estimation of the cost of plans is done by the reduction of the overall

cost of the query.

STEP 3. QUERY CODE GENERATION –

Executions plans are none other than the systematic way of ordering the

access routines. Once the execution plans are selected and determined by

the optimization process, it is the work of the code generator to determine

the actual access routines needed to be executed. The query code is then

compiled or interpreted and it is then transferred to the database. The

database processor then helps the query for its execution. The execution

plans are stored in the database.

STEP 4. EXECUTION –

After the query has gone through the processes of Parsing, Optimization,

and Query Code Generation, it is passed into the execution phase. The

results of the query are executed and then it is returned to the Users along

with its runtime errors.

136 | P a g e

Space for learners: 1.3.2 Equivalence Rules

Following are the equivalence rules used during the time of processing

and optimizations.

1) SIGMA-CASCADE - Intersection of �1 and �2 makes the system

very much expensive therefore inner selection of �2 and outer selection

of �1 is done to make the system effective.

��1 ˄ �2 (E) = ��1(��2(E))

2) COMMUTATIVE SELECTION – Since � is commutative

therefore the practical implementation of it is necessary.

��1(��2(E)) = ��2(��1(E))

3) PI- CASCADE – Combining all the projections into a single

projection is a very good option.

πL1(πL2(...(πLn(E)).) = πL1(E)

4) CARTESIAN PRODUCTS AS THETA-JOINS –

(a) EQUIVALENCE 1 – Only using the cross product makes the

system very expensive, so a theta join is also used to make it effective.

�� (E1 x E2) = E1 � E2

(b) EQUIVALENCE 2 – If both the thetas are joined, then it will

require little execution support.

 ��1 (E1 �2 E2) = E1 �1 ˄ �2 E2

5) THETA JOINS ARE COMMUTATIVE – Since theta joins are

commutative, therefore the query processing depends upon the inner and

outer joins.

137 | P a g e

Space for learners: E1 � E2 = E2 � E1

6) NATURAL JOIN – Since joins are both commutative and

associative, therefore the tables having lesser entries must be joined.

(E1 E2) E3 = E1 (E2 E3)

7) DISTRIBUTION OF SELECTION OPERATION –

(a) EQUIVALENCE 1 – Theta join is performed, after selection is

applied. Then E1 is joined with E2.

��1 ˄ �2 (E1 � E2) = (��1(E1)) (��2(E2))

(b) EQUIVALENCE 2 – Here �1 and �2 contains the attribute of E1

and E2 respectively.

��0 (E1 � E2) = (��0 (E1) � E2

8) THETA-JOIN PROJECTION –

(a) EQUIVALENCE 1 – Here L1 is projected over E1 and L2 is

projected over E2. It is compulsory for doing projections before joining.

π L1 ∪ L2 (E1 � E2) = (π L1(E1)) � (π L1(E2))

(b) EQUIVALENCE 2 - Here L1 is projected over E1 and L2 is

projected over E2. It is compulsory for doing projections before joining.

E3 is an equivalence relation that joins both the relation using L3.

π L1 ∪ L2 (E1 � E2) = π L1 ∪ L2 ((π L1 ∪ L3)) � (π L2 ∪ L4

(E2))

138 | P a g e

Space for learners: 9) UNION AND INTERSECTION ARE COMMUTATIVE

E1 ∪ E2 = E2 ∪ E1

E1 ⋂ E2 = E2 ⋂ E1

10) UNION AND INTERSECTION ARE ASSOCIATIVE

 (E1 ∪ E2) ∪ E3 = E1 ∪ (E2 ∪ E3)

(E1 ⋂ E2) ⋂ E3 = E1 ⋂ (E2 ⋂ E3)

11) SELECTION OPERATION OVER DIFFERENCE

�P (E1 – E2) = �P (E1) - �P (E2)

12) PROJECTION OVER UNION

π L (E1 ∪ E2) = (π L (E1)) ∪ (π L (E2))

1.4 QUERY OPTIMIZATION

As discussed in the previous section, query optimization is performed by

the DBMS for selecting the minimal cost of query execution, that is the

time when a query is encountered in the system till it returns the result.

It is an automated process. The optimizer selects for the query an efficient

plan for its execution. This selection of the plan is performed by the

catalog manager. Most of the structures of the query optimizers can be

seen as the Left-deep Join orders. For pushing the selections and the

projections through the query tree, a heuristic approach is used. This

heuristic approach chose the best relation for joining the next relations.

This left deep Join tree also helps in reducing the complexities caused by

optimizations. Every input made on the right-hand side of the tree is a

relation and not a join. In the figure given below, R1, R2, R3, R4 are the

relations.

139 | P a g e

Space for learners:

 R4

 R3

 R1 R2

 Figure 2: LEFT - DEEP JOIN ORDER

1.4.1 Query Cost Measurement

Different DBMS structures balance the query plan and the choice of

execution quality in many different possible ways. For these query plans

and the choice of execution quality, the evaluation of the best Cost-based

optimization is performed by the optimizer by choosing a minimal cost.

There may be different types of cost efficiencies depending upon the

need and situations, which may include

a) Minimization of the processing time

b) Minimization of the response time

c) Minimization of the input or output time

d) Minimization of the network time

e) Combination of the above situations etc.

Internally it can be seen that retrieving the desired data by the query, both

from the primary and the secondary memories relatively takes an ample

amount of time. This stipulated time is taken by different factors such as

CPU time, disk I/O time, network access time, etc. It is seen that Disk

I/O (finding the records by the processor from the secondary memory

and returning the result) is the most efficient of all but it takes a much

larger amount of time than the others. Mainly two factors are considered

for the calculation of the Disk I/O access time. They are the Seek Time

and the Transfer time. Let us understand this with the help of an example.

140 | P a g e

Space for learners: Suppose you need to find the AGE of the student whose name is ‘Peter’

from the STUDENT table. So, the Disk I/O would work on the factors

Seek and Transfer time as follows;

a) SEEK TIME – The amount of time required in finding a single

record by the Processor in the disk memory is termed as the seek time.

Seek time is usually represented by tS. For the example given above, the

time, from accessing the disk block in the memory till the search of the

AGE of the student Peter is the Seek time of the Disk [1].

b) TRANSFER TIME – The amount of time required by the disk in

returning the query result to the user or the processor is termed the

transfer time. Transfer time is usually represented as tT. For the example

given above, the time of returning the value of the age of Peter to the

User or the processor is known as the Transfer time of the Disk [1].

1.4.2 Generation of Equivalence Expression

You are already familiar with the fact that relational algebras have

equivalent expressions if they generate tuples of the same form, no matter

what is the order of their tuples. In SQL statements, input expression and

output expression have tuples having multiset values and replace each

other’s form.

1.4.3 Transformation Examples

 PUSHING SELECTIONS [3]

Pushing selection helps in the reduction of the Relation’s size if it is

performed in an early stage. An example of a query is given as “Fetch

the Names of all the Employees in an IT department, along with the job

profile of the Posts in which they work”.

∏name, post (�dept_name = “IT” (employees (works

 ∏job_profile, post (profile))))

By transforming the above expression with the help of rule 7 (a) of the

Equivalence Rule you will get the following expression

141 | P a g e

Space for learners: ∏name, post ((�dept_name = “IT” (employees)) (works

 ∏job_profile, post (profile)))

 MULTIPLE TRANSFORMATION [3]

An example of a query is given as “Fetch the Names of all the Employees

in an IT department for the year 2020, along with the job profile of the

Posts in which they worked”.

∏name, post (�dept_name = “IT” ˄ year = 2020 (employees

 (works ∏job_profile, post
(profile))))

By transforming the above expression with the help of rule 6 (a) of the

Equivalence Rule you will get the following expression

∏name, post (�dept_name = “IT” ˄ year = 2020 ((employees works)

 ∏job_profile, post (profile)))

 PUSHING PROJECTIONS [3]

An example of a query is given as “Fetch the Names of all the Employees

in an IT department, along with the job profile of the Posts in which they

work”.

∏name, post (�dept_name = “IT” (employees) works)

 ∏job_profile, post (profile))))

By transforming the above expression with the help of rules 8 (a) and 8

(b) of the Equivalence Rule you will get the following expression

∏name, post (∏name, job_profile (�dept_name = “IT” (employees) works))

 ∏job_profile, post
(profile))))

142 | P a g e

Space for learners:  ORDERING OF JOIN [3]

Join ordering minimizes the storage cost of the relation. For example,

there are two conditions of joining attributes – one of them is large and

the other is small. Suppose there are three relations R1, R2, R3.

R1 and R2 – Large join (R1 R2),

R1 and R3 – Smaller join (R1 R3)

If reordering of the Joins are done, you will get

(R1 R3) R2

1.4.4 Choosing the Evaluations Plans

You should remember that only choosing the evaluation plan with its

cheapest form will not always produce a good result. For solving that

problem optimizers have in their systems implemented features such as

Heuristic optimization and Cost - based optimizations.

Heuristic Optimization

This type of optimization is very cost-effective and also choices of

execution get reduced in this type of system. By using some rules as

given below, query tree transformation is done by the heuristic optimizer

for improving the performance of its execution.

 Selections must be performed early so that tuples get

reduced.

 Projections must be performed early so that attributes get

reduced.

 Join operations and restrictive selections are performed.

 Partial cost-based and only heuristic optimizations are

used by different users.

Cost-Based Optimization

This type of optimization is best for a bigger dataset but is very

expensive. The process of conversion of a logical query into its physical

query is performed by some rules known as the Equivalence rules. These

143 | P a g e

Space for learners: rules determine what type of algorithms should be applied to the

operations for determining the minimal cost of the operations.

Depending upon the equivalence rules, the cost-based optimizer is

dependent on the following criteria.

 There must be some efficient techniques for deriving duplicate

expressions.

 To avoid the formation of the copies of multiple sub-

expressions, the representation of the expressions must be space-

efficient.

 At the time of its first optimization, dynamic programming

helps in storing the sub-expression based on Memorization and can

reuse the sub-expression again and again.

 For avoiding all the plans to get generated, pruning techniques

based on cost-based are applied.

1.4.5 Estimation for the Statistics of Costs

The cost is estimated as shown below.

1.4.5.1 Cost Estimation

Given below are some of the considerations for cost estimation.

 nr – for a given relation ‘r’, ‘nr’ is the number of tuples.

 br – for a given relation ‘r’, ‘br’ is the number of blocks.

 lr - for a given relation ‘r’, ‘lr’ is the size of the tuple.

 fr - for a given relation ‘r’, ‘fr’ is the tuples fitting into one

block.

 V (A, r) - for a given relation 'r', V (A, r) is the distinct values

for an attribute in relation r.

 If the above tuples are put inside a file, then you will have, br

= ┌ nr / fr┐

1.4.5.2 Size Estimation

 σA=v (r): For estimated size = 1, nr / V (A, r) is the number of

conditions that would satisfy the equality conditions.

144 | P a g e

Space for learners:  σA≤V (r): For the information having statistical values, it

is assumed that the value of c = nr /2, where ‘c’ estimates the

number of tuples. It satisfies the following minimum and

maximum conditions.

- If v < min (A, r), then c = 0;

- C = nr. (v−min (A, r)) / (max (A, r) −min (A, r))

1.4.6 Maintaining the Materialized View

Computing the contents of the costs and storing it is usually referred to

as the materialized view and keeping them up-to-date is termed as

materialized view maintenance. Maintenance can also be done by re-

computing it. Incremental view maintenance helps in maintaining the

relational database changes and updating it. Maintenance of the

materialized view can be performed in the following ways:

 For each relation, insert, delete and update triggers are

defined manually.

 For updating the database relations, views are updated by

code which is manually written.

 Directly linked with the database.

1.4.6.1 Operations Over the Materialized View

1) JOIN OPERATION

Let there be a relation ‘r’ where two states are present, ro and rn . Let

another relation ‘s’ be also present simultaneously. When we insert any

value to the relation ‘r’ (ir), we get the following

(rn s) and can be rewritten as (ro
∪ ir s) or (ro s) ∪ (ir

s).

2) SELECTION OPERATION

Let there be a relation ‘r’ where two views are present, vo and vn against

a single view v = σθ(r). Then the selection of the view on relation r is

depicted as (vn
 = vo

∪ σθ (i
r)).

145 | P a g e

Space for learners: 3) PROJECTION OPERATION

This operation is complicated than the other two operations. It has a

single projected tuple termed ∏A(r).

4) COUNT

Counting the number of tuples is helped by this example (v =

Agcount(B)(r)). If tuples are already present in the view (v), only the

count value is incremented, and if a new tuple needs to be added or

subtracted, then the count value is given to be 1.

5) SUM

The Sum of the tuples is found out with this example (v = Agsum(B)(r)).

The concept of the sum is almost the same as that of the COUNT

operation but instead of updating the count value for addition or

subtraction of the tuples, it is needed to update the B value but the order

of the count is maintained for each transaction.

CHECK YOUR PROGRESS

Fill in the following blanks:

1. _________helps in identifying the tokens.

2. In query processing, __________ is a very important step.

3. The amount of merge that can be occurred together is termed as

the _____________.

4. Query___________ are formed after the division of the original

SQL query.

5. The _____________ check helps in checking whether the table,

keywords, columns present in the query are also present in the

Database or not.

6. With the help of heuristic rules, refinement of query execution is

done so that individual operations are ____________.

7. A ______________ must be performed for at least a single DML

statement and after that, the process of optimization is carried on.

146 | P a g e

Space for learners:

1.5 SUMMING UP

 Databases are created to organize and store all the related data

and information at a particular place so that the users can access

and manipulate it as per requirement.

 To bridge the gap between the DBMS and the Users, a standard

language known as the SQL, which is understandable by the

DBMS is used between the DBMS and the Users, so that correct

data are retrieved on processing.

 External Sorting is applied when the memory is small and records

of large files need to be stored.

 Query blocks are formed after the division of the original SQL

query, and it becomes ready for its optimization.

 When Nested queries are encountered having aggregate operators

like COUNT, SUM, MIN, MAX, then a separate query block is

formed.

 Executions plans are none other than the systematic way of

ordering the Access Routines.

 The selection of the execution plan is done by the Catalog

Manager.

 Most of the structures of the query optimizers can be seen as the

Left-deep Join orders which help in reducing the complexities

and optimizations.

8. Most of the structures of the query optimizers can be seen as the

____________ orders.

9. Join ordering ____________ the storage cost of the relation.

10. The amount of time required by the disk in returning the query

result to the user or the processor is termed as the

__________________.

147 | P a g e

Space for learners: 1.6 ANSWERS TO CHECK YOUR PROGRESS

1. Scanner,

2. Sorting,

3. Degree of merge,

4. Blocks,

5. Semantic,

6. Reordered,

7. Hard parsing,

8. Left Deep join,

9. Minimizes,

10. Transfer time

1.7 POSSIBLE QUESTIONS

Short Answer type Questions:

1) Define the terms:

 (a) Scanner, (b) Parser, (c) Parse tree

2) What is query processing?

3) What are the steps of query processing?

4) What happens during the execution phase?

5) Define heuristic optimization.

6) Define cost-based optimization.

7) Define seek time.

8) Define transfer time.

9) Define in brief the pushing projection.

148 | P a g e

Space for learners: 10) How are the joins ordered?

11) What are some of the considerations for cost optimization?

12) How size is estimated for costs?

Long Answer type Questions:

1) Explain what is Query Processing.

2) Draw the Block Diagram of Query Processing and explain it.

3) Write the Equivalence rules for Query Processing.

4) Explain how Query Cost is measured.

5) Explain transformation with examples.

6) Explain Heuristic and Cost based optimizations.

7) What is the meaning of a materialized view? Explain the

operations of the materialized view.

1.8 REFERENCES AND SUGGESTED READINGS

[1] https://www.tutorialcup.com/dbms/query-processing.htm

[2] https://www.geeksforgeeks.org/sql-query-processing/

[3] http://www.cbcb.umd.edu/confcour/Spring2014/CMSC424/query

_optimization.pdf

[4] Database Systems Models, Languages, Design, and Application

Programming by Ramez Elmasri and Shamkant B. Navathe, 5th

edition by Pearson

149 | P a g e

Space for learners:
UNIT 2: TRANSACTION PROCESSING

Unit Structure:

2.1 Introduction

2.2 Learning Objectives

2.3 Transaction processing- transaction and system concepts,

2.4 Desirable properties

2.5 Schedules

2.6 Recoverability

2.6.1 Recoverable Schedule

2.6.2 Cascadeless Schedule

2.7 Summing Up

2.8 Answers to Check Your Progress

2,9 Possible Questions

2.10 References and Suggested Readings

2.1 INTRODUCTION

Consider the situation of a database user who is holding two

accounts in a bank and wants to transfer some amount from his first

account to the second account. The situation looks simple to

implement however, it will involve several operations such as

reading the balance amount available in the first account and if the

balance is sufficient subtract the amount that needs to be transferred

followed by updating the final balance in the first account. Then the

balance in the second account is checked and the amount that needs

to be transferred is added to the balance and the final balance is

updated in the account. The operations involved in this example are

reading, subtracting, updating, adding and writing. The set of all

these operations is grouped into a single unit and is called as a

transaction. So, a transaction processing system must ensure that all

150 | P a g e

Space for learners: the operations in the transaction are executed in a proper order and

either all operations are executed or none of them are executed. That

is, in case of any failure, it should not be that the first account is

debited but the second account is not credited with the transferred

amount. Also, the transaction processing system allows multiple

transaction to run concurrently such that the database remains

consistent before and after the transaction. The unit introduces basic

properties of a transaction, the sequence in which operations of

concurrent transactions are executed and the concept of

recoverability that is, acceptable schedules from the point of

transaction failure.

2.2 LEARNING OBJECTIVES

After going through this unit, you will be able to:

 Explain basic concept of a transaction and its different

states during execution.

 Tell the desirable properties of a transaction and why are

these properties significant.

 Explain the concept of a schedule and concurrent

execution of multiple transaction.

 Explain the how recoverability deals with issues that arise

due to transaction failure during concurrent execution of

transaction.

2.3 TRANSACTION CONCEPTS

A transaction is a logical unit of job which accesses and possibly

changes the contents of a database. Transactions includes one or

more database access operations such as insertion, deletion,

modification and retrieval. A transaction can be embedded within an

application program or can be specified using a high-level query

language such as SQL. There can be several transactions in an

application program separated by begin transaction and end

transaction.

151 | P a g e

Space for learners:

Figure 2.1: State Diagram of a transaction.

A transaction during the course of execution may go through several

states as mentioned below. Figure 2.1 show the state diagram of a

transaction during execution.

 Active – It is the initial state of any transaction during the

period of execution.

 Partially Committed – It is the state when the transaction

executes its last operation.

 Failed – It is a state when the transaction can no longer

continue its normal execution.

 Aborted – It is the state when the transaction fails as a

result of which it is rolled back that is the database is

restored to the state earlier to the start of the transaction.

At this point there are two possibilities either to restart

the transaction or to kill the transaction. In case of

software or hardware error, the transaction is restarted

whereas in case of logical error in the code the

transaction is killed.

Active

Failed

Partially

Committed

Aborted

Committed

152 | P a g e

Space for learners:  Committed – It is the state when the transaction has

executed all its operations successfully, that is all the

changes are permanently stored on the database system.

2.4 DESIRABLE PROPERTIES

A database management system ensures the integrity of data before

and after the execution of the transaction by having the following

four properties, which are also called ACID properties.

 Atomicity

 Consistency

 Isolation

 Durability

Atomicity: The term atomicity means that either all the operations in

a transaction are executed completely or none of the operations are

executed. There should not be any partial execution i.e. a situation

where only few operations of the transaction are executed and the

remaining operations are not executed. For example, consider X and

Y are having INR 1200 and INR 1300 respectively in their bank

account. X wants to transfer INR 200 from his account to the

account of Y. So, we can consider it to be a transaction having six

operations as shown below:

Transaction: fund_transfer

Operation 1 Read balance from the account of X

Operation 2 Subtract 200 from the account of X

Operation 3 Write updated balance in the account of X

Operation 4 Read balance from the account of Y

Operation 5 Add 200 from the account of Y

Operation 6 Write updated balance in the account of Y

Suppose a failure occurs during the execution of the transaction,

fund_transfer. The failure can be due to several reasons such as

hardware failure like hard disk crash or software error or power

failure. If the failure occurs between operation 3 and operation 4

then in such a situation the amount 200 will be debited from the

153 | P a g e

Space for learners: account of X whereas the amount 200 will not be credited to the

account of Y. Thus the balance in account of X and Y will

respectively INR 1000 and INR 1300. The amount INR 200 will be

lost due to failure and to avoid such situation atomicity or execution

of all operations must be ensured in the transaction.

Consistency: A transaction is preserves the consistency of the

database if, complete execution of the transaction changes the

database from one consistent state to another consistent state. For

example, consider the same transaction as discussed above in case of

atomicity to transfer INR 200 from account of X to the account of Y.

It must be ensured that all operations in the transaction are executed

completely to maintain the consistency before execution of the

transaction and after the execution of the transaction. So, before the

execution of the transaction sum of balance of account X and

account Y is INR 2500 and after the completion of all the operations

of the transaction the sum of balance of account X and account Y

will still be INR 2500, which maintains the consistency of the

database. However, it must be note that during the execution of the

transaction, the database may be in inconsistent state. So,

consistency of the database is always checked before the start of the

transaction and after the completion of the transaction.

Isolation: The isolation property of a transaction is very important in

context of concurrent execution of several transactions. If this

property is not ensured it will result in inconsistency in database. Let

us understand the property using an example.

Consider two transactions:

T1: Transfer of funds form account of X to account of Y

T2: Display total balance of account X and account Y

154 | P a g e

Space for learners: T1 T2

Operation 1 Read balance of account

of X

Operation 2 Subtract 200 from the

account of X

Operation 3 Write updated balance

in the account of X

Operation 4

Read balance of account

of X

Operation 5

Read balance of account

of Y

Operation 6 Add both the Balance

Operation 7 Display total balance

Operation 8 Read balance of account

of Y

Operation 9 Add 200 from the

account of Y

Operation 10 Write updated balance

in the account of Y

Figure 2.2: Concurrent Transaction

Suppose transaction, T2 reads the balance in the account X and

account Y sums it up and display’s the total balance and all these

operations are executed while transaction, T1 is in execution as

shown in Figure 2.2. Even though both the transaction can complete

their execution but the final result will be inconsistent in the case of

transaction, T2. Considering X and Y are having INR 1200 and INR

1300 respectively in their bank account. Transaction, T2 will display

the result as 1000 + 1300 = 2300 which is inconsistent and should

have been 2500 instead. This inconsistency in result is due to the fact

that T2 was executing before T1 could complete its execution.

One way of avoiding such inconsistency in case of concurrent

execution of transaction is to execute them serially i.e. one after

another. However, there are performance benefits of executing

transaction concurrently. The isolation property of the transaction

ensures that concurrent execution of transaction is equivalent to

serial execution of the transactions in some order i.e. in concurrent

execution of transaction one transaction is unaware that other

155 | P a g e

Space for learners: transaction is executing. It looks as if both or multiple transaction are

executed in isolation.

For a pair of transaction T1 & T2, it appears to T1 that T2 will start

after T1 finishes its execution or T2 finished its execution before T1

started.

Durability: The durability property of a transaction ensures that

after successful completion of a transaction, all the changes done to

the database remains unchanged even if there is any hardware

failure, software failure or power failure. Failure may result in data

loss in main memory but data in disk are never lost. This is ensured

by having the changes to data written to disk first before the

transaction completes and also the information about the changes

done to the database by the transaction that is the log file be written

to disk, so that recovery from failure can be done when the system is

restarts.

2.5 SCHEDULES

Transactions are set of operations performed on the database. So, in

case of concurrent execution of multiple transaction, there is a

requirement of a sequence in which the operations are executed

because at a time only one operation can be performed on the

database. This sequence of operations is known as Schedule. For

example, Figure 2.3 shows a serial schedule where transaction P

completes its execution before transaction Q can start.

To access and process data, a transaction needs to perform read and

write operation. A read operation, read (X) reads the item X from

database and stores it in local buffer. A write operation, write (X),

writes the item X from the local buffer to the database.

For example, consider the two transaction

P: read(X)

read(Y)

X = X + 100

write(X)

156 | P a g e

Space for learners: Y = Y + X

write(Y)

Q: read(X)

temp=X * 0.5

X = X + temp

write(X)

Let us assume that the initial value of X and Y are 100 and 500

respectively. In the schedule 1 shown in Figure 2.3 the two

transaction P & Q are executed serially that is one after another. So,

the final value of X and Y will be 300 and 700 respectively. If,

however the order of execution of the transaction is reversed with Q

executing before P as shown in schedule 2 of Figure 2.4 then the

final value of X and Y will be 250 and 750 respectively.

Transaction: P Transaction: Q

read(X)

read(Y)

X = X + 100

write(X)

Y = Y + X

write(Y)

 read(X)

 temp=X * 0.5

 X = X + temp

 write(X)

Figure 2.3: Schedule 1 - A serial schedule P followed by Q.

When several transactions are executed concurrently, then they need

not be executed in serial order. The operating systems does a context

switch between the transaction. That is the operating system will

execute some operations of one transaction then switches to other

157 | P a g e

Space for learners: transaction and executes some of its operations. The process of

switching between the transactions cannot be decided on the number

of operations that will be executed before switching. Figure 2.5

shows an example of concurrent schedule equivalent to schedule 1

that preserves the consistency of the database. It has to be noted that

schedule 3 is one of the possible ways of executing transactions

concurrently which preserves database consistency. The final value

of X and Y will be 300 and 700 respectively for schedule 3. There

are many ways of executing transaction concurrently, one such way

is shown in Figure 2.6 of schedule 4. However, schedule 4 does not

preserves database consistency as the final value of X and Y will be

150 and 700 respectively.

Transaction: P Transaction: Q

 read(X)

 temp=X * 0.5

 X = X + temp

 write(X)

read(X)

read(Y)

X = X + 100

write(X)

Y = Y + X

write(Y)

Figure 2.4: Schedule 2 - A serial schedule Q followed by P.

158 | P a g e

Space for learners: Transaction: P Transaction: Q

read(X)

read(Y)

X = X + 100

write(X)

 read(X)

 temp=X * 0.5

 X = X + temp

 write(X)

Y = Y + X

write(Y)

Figure 2.5: Schedule 3 - A concurrent schedule equivalent to

schedule 1.

Transaction: P Transaction: Q

read(X)

read(Y)

 read(X)

 temp=X * 0.5

X = X + 100

write(X)

 X = X + temp

 write(X)

Y = Y + X

write(Y)

Figure 2.6: Schedule 4 - A concurrent schedule.

159 | P a g e

Space for learners: 2.6 RECOVERABILITY

The concept of recoverability deals with issues that arise due to

transaction failure during concurrent execution of transaction.

Suppose that two transactions T1 and T2 are executed concurrently.

If there is some kind of dependency exists between the two

transactions like the data produced by T1 using the write operation is

consumed by T2 using read operation. In such case if the transaction

T1 is aborted due to some failure, the dependency of T2 on T1 will

result in aborting T2. In this context there are two types of schedules

that are accepted from the point of recovery from transaction failure.

2.6.1 Recoverable Schedules

Recoverable schedule deals with the pair of transaction T1 and T2

such that if the data item produced by T1 is consumed by T2, then

the commit operation of T1 must be executed before the commit

operation of T2.

For example, in schedule 5 of Figure 2.7, the commit operation of

transaction Q is executed before the transaction P. Now, if the

transaction P fails before the commit operation then the data item X

read by transaction Q is invalid and must be aborted. However, as

the transaction Q has already committed, it cannot be aborted.

Schedule 5 having commit operation by transaction Q before

execution of transaction P makes it non recoverable schedule.

Therefore, it must be ensured that all schedules are be recoverable.

Transaction: P Transaction: Q

read(X)

write(X)

 read(X)

read(Y)

Figure 2.7: Schedule 5.

160 | P a g e

Space for learners: 2.6.2 Cascadeless Schedule

Consider the situation of schedule 6 in Figure 2.8. The data item X

produced by transaction P is consumed by transaction Q. Similarly,

the data item X produced by transaction Q is consumed by

transaction R. Clearly, we could see that for data item X dependency

of transaction R on transaction Q and the dependency of transaction

Q on transaction P. Now, if there is a situation where transaction P

fails then transaction Q and transaction R also required to be rolled

back. This is called cascading rollback and is undesirable due to

significant number of rollbacks required for recovery. So, it is

preferred to avoid such schedules which may have cascading effect.

Such schedules which avoids cascading rollback are called

Cascadeless schedule.

Transaction: P Transaction: Q Transaction: R

read(X)

write(X)

 read(X)

 write(X)

 read(X)

 write(X)

Figure 2.8: Schedule 6.

CHECK YOUR PROGRESS

1. Which of the following represents the ACID properties of a

transaction?

a) Atomicity, Consistency, Integrity, Durability

b) Atomicity, Concurrency, Isolation, Durability

c) Atomicity, Concurrency, Integrity, Durability

d) Atomicity, Consistency, Isolation, Durability

2. Which of the statement is true about transaction?

161 | P a g e

Space for learners: a) A program in execution

b) A logical unit of work

c) A set of operations

d) A set of operations to carry out a work.

3. Execution of a transaction in ________

preserves____________.

a) Atomicity, Consistency

b) Isolation, Atomicity

c) Isolation, Consistency

d) Consistency, Durability

4. Which of the following is not a transaction state?

a) Committed

b) Failed

c) Rollback

d) Aborted

5. What happens to a transaction in abort state when it is rolled

back?

a) Kill or Restart

b) Kill

c) Restart

d) Allow new transaction

6. The ______ property of a transaction preserves the

consistency of the database if complete execution of the

transaction changes the database from one consistent state to

another consistent state.

a) Atomicity

b) Isolation

c) Consistency

d) Durability

162 | P a g e

Space for learners: 7. The _______property of a transaction means either all the

operations in a transaction are executed completely or none

of the operations are executed.

a) Atomicity

b) Isolation

c) Consistency

d) Durability

8. ______________schedule deals with the pair of transaction

such that if the data item produced by first transaction is

consumed by second transaction then the commit operation

of first transaction must be executed before the commit

operation of second transaction.

a) Recoverable

b) Cascadeless

c) Cascading

d) Durable

9. To avoid cascading rollback, it is desirable to have

___________ schedule.

a) Recoverable

b) Cascadeless

c) Cascading

d) Durable

10. The ____________ property of a transaction ensures that

after successful completion of a transaction, all the changes

done to the database remains unchanged even if there is any

failure.

a) Atomicity

b) Isolation

c) Consistency

d) Durability

163 | P a g e

Space for learners: 2.7 SUMMING UP

 A transaction is a logical unit of job which accesses and

possibly changes the contents of a database.

 A transaction during the course of execution may go through

several states such as active, partially committed, Failed,

Aborted and Committed.

 A transaction is said to be in Committed state when the

transaction has executed all its operations successfully, and

all the changes are permanently stored on the database

system.

 A transaction is in Aborted state when the transaction fails as

a result of which it is rolled back that is the database is

restored to the state earlier to the start of the transaction.

 A database management system ensures the integrity of data

before and after the execution of the transaction by having

the following four properties, which are Atomicity,

Consistency, Isolation and Durability.

 The term atomicity means that either all the operations in a

transaction are executed completely or none of the operations

are executed.

 A transaction is preserves the consistency of the database if

complete execution of the transaction changes the database

from one consistent state to another consistent state.

 The durability property of a transaction ensures that after

successful completion of a transaction, all the changes done

to the database remains unchanged even if there is any

failure.

 The sequence of operations in case of concurrent execution

of multiple transaction is known as Schedule.

 Recoverability deals with issues that arise due to transaction

failure during concurrent execution of transaction.

164 | P a g e

Space for learners: 2.8 ANSWERS TO CHECK YOUR PROGRESS

1. d

2. d

3. c

4. c

5. a

6. c

7. a

8. a

9. b

10. d

2.9 POSSIBLE QUESTIONS

1. List the ACID properties of a transaction. What is the

significance of these properties?

2. A transaction goes through several states before it commits or

aborts. Explain all these states and its importance.

3. What is a transaction? Does serial execution of two transaction

equivalent to concurrent execution of the same two transactions.

4. What are the benefits of concurrent execution of transactions?

5. Define a schedule with a proper example.

6. Explain the isolation property of a transaction.

7. Write a schedule that suffers from cascading rollback and a

schedule that do not suffer from cascading rollback.

8. When a transaction enters abort state, what are the actions taken

by the database system.

9. What is a recoverable schedule?

10. What is a Cascadeless schedule? Explain using an example.

11. Consider two transaction T1 and T2. Does the order of

execution affect the final result of the common data items

involved in the execution?

165 | P a g e

Space for learners: 12. Consider the transaction given below with initial values of X

and Y as 100 and 200. What will be the final value of X and Y if

the transactions are executed in the order:

i. T1 followed by T2

ii. T2 followed by T1

T1: read(X) T2: read(X)

X = X * 10 X = X + 20

write(X) write(X)

read(Y)

temp=X+X*0.2

Y = Y + temp

write(Y)

2.10 REFERENCES AND SUGGESTED READINGS

 Database System Concepts 6th Edition by Abraham

Silberschatz, Henry F. Korth, S. Sudarshan, McGraw – Hill

International Edition.

 Fundamentals of Database System Seventh Edition, by Elmasri

Ramez and Navathe Shamkant, Pearson.

 Database Management Systems by Raghu Ramakrishnan,

Johannes Gehrke, Irwin Computer Science.

 Database Systems: The Complete Book by Hector Garcia-

Molina, Jeffrey Ullman, Jennifer Widom.

166 | P a g e

Space for learners: UNIT 3: CONCURRENCY CONTROL AND

RECOVERY TECHNIQUES

Unit Structure:

 3.1 Introduction

 3.2 Objective

 3.3 Concurrency

 3.3.1 Requirement of Concurrency

 3.4 Transaction and Transactional Properties

 3.4.1 States of Transaction

 3.4.2 Transactional Properties

 3.5 Schedule of Transaction

 3.6 Serial, Non-serial, Conflict-Serializable Schedule

 3.7 Concurrency Controls

3.7.1 Lock and Modes of Locking

3.7.2 Lock Compatibility

3.7.3 Two-Phase Locking Techniques for Concurrency

Controls

3.7.4 Deadlock

3.8 Recovery of DBMS

3.9 Transaction Failure

3.10 Recovery System in DBMS for Transaction Failure

3.10.1 Log-based Recovery

3.10.2 Shadow Paging

3.11 Summing Up

3.12 Answers to Check your Progress

3.13 Possible Questions

3.14 Further Reading

167 | P a g e

Space for learners: 3.1 INTRODUCTION

Banking industry, online shopping, stock markets, airline reservation,

IRCTC reservation required transaction processing system which allows

large databases to access and thousands of concurrent users perform

operations on database transactions concurrently. The system that is

employed for such tasks should be of high availability and faster response

time to cope with hundreds and thousands of concurrent users. A

transaction is a logical unit of database processing in which it includes

commands such as retrievals, insertion, update and deletion.

3.2 UNIT OBJECTIVES

The unit is describing the concurrency control and recovery techniques in

database transactions. After completing the unit students′ will able to:

● Understand the requirement of Concurrency Controls,

● Describe the States of Transaction,

● Explanation of Transactional Properties,

● Detailed discussion on Schedules of Transaction,

● Concurrency Controls,

● Learn about Locks and Locking and lastly why Recovery is

necessary.

3.3 CONCURRENCY

A database which is used by many users, access the data concurrently.

However, a single user database management system is limited to

personal computers only; most database management systems are multi-

user. The concept of multiprogramming allows the operating system (OS)

to execute multiple processes at the same time such that multiple users

can access the database simultaneously. A single CPU executes only a

single process at a particular time. While in case a multiprogramming OS,

it executes a process then halt the process and execute the next process,

so on and so forth. A process which is halted earlier is resumed at an

instance where it was suspended whenever CPU processing time is given

to it. This concurrent execution of processes is interleaved which means

when a process is in the CPU and waiting for Input or Output (I/O)

168 | P a g e

Space for learners: operation, the CPU time is shifted to another process that way the CPU is

always kept busy. Suppose, there are two processes P₁ and P₂ executing

concurrently in an interleaved manner. Process P₁ is waiting for I/O

operation, process P₂ will be executed which was waiting for CPU time

such that interleaved method doesn’t allow the CPU to be idle while P₁ is

waiting for I/O time. Benefit of interleave is that it doesn’t allow a long

process to delay other processes.

In DBMS, the primary resources are the stored data in the database that

can be accessed concurrently by many users which allows the users to

retrieve and modify the database concurrently.

STOP TO CONSIDER

A multiprogramming operating system executes multiple processes

concurrently similarly using a multiprogramming operating system

multiple transactions of DBMS are achieved concurrently.

3.3.1 Requirement of Concurrency Control

Concurrency control and recovery mechanisms are deployed on database

as operations related to transactions. Various users may submit

transactions which are executed concurrently to access and update the

database. If uncontrolled concurrent transactions are executed it may lead

to many issues such as an inconsistent database. Let us discuss some of

the problems by taking a Railway Ticket Reservation System.

READ (A): Reads a database named A into a variable in a program.

WRITE (A): Writes the value of variable A into the database item named

A.

T₁

READ (A);

A = A - X;

WRITE (A);

READ (B);

B = B + N;

Figure 3.0 a) Transaction T₁

169 | P a g e

Space for learners:

T₂

READ (A);

 A = A + R;

WRITE (A);

Figure 3.0 b) Transaction T₂

Figure 3.0 (a) Transfer of X reserved seats from one train which is stored

in database item named A to another train whose reserved seats are stored

in database item named B in transaction T₁. Figure 3.0 (b) T₂ transaction

implies to reserved R seats which refers to transaction in T₁ that is A.

The same program can be used for multiple transactions as each of the

transactions will have a different date, number of reserved seats and train

number. In figure 3.0 a) and b) there are T₁ and T₂ transaction have

specific date, seat and train number which are stored in A and B database

that is the purpose of concurrency control. If these two transactions are

executed concurrently, we may encounter different types of problems

which are discussed below

● Temporary Update or Dirty Read Problem. This issue occurs

when a transaction makes changes in the database item, then the

transaction fails due to some error. At the same time, the updated

item from the database is read by another transaction before it

could be changed back to its original value in the database.

T₁ T₂

READ (A);

A = A - X;

WRITE (A);

READ (Y);

READ (A);

 A = A + R;

WRITE (A);

Figure 3.1 Temporary Update

170 | P a g e

Space for learners: For example, in Figure 3.1 shows an item A is updated by T₁

transaction and suppose T₁ fails before the transaction completion.

As the transaction fails to complete the system should change A to

the original value in the database. Transaction T₂ access the value

of A which becomes a temporary value before the system could

update it in the database and the value of A is not recorded

permanently in the database. As this temporary value of A is

accessed by T₂ transaction that is why this problem is called dirty

read.

● Incorrect Summary Problem. When a transaction is processing

a number of database items by calculating an aggregate summary

function and another transaction is updating these items. While the

aggregate function may calculate few values before and after

updation of the database items.

Figure 3.2 Incorrect Summary Problem

For example, T₁ transaction is executing and calculating number

of reserved seats in a train as shown in Figure 3.2. The transactions

are running in an interleaved manner. The resultant value of T₁

will be incorrect by an amount X as T₁ access the value of A once

T₁ T₂

SUM = 0;

READ (X);

SUM = SUM +X;

●

●

●

READ (A);

SUM = SUM + A;

READ (B);

SUM = SUM + B;

READ (A);

 A = A - R;

WRITE (A);

READ (B);

B = B + R;

WRITE (B);

171 | P a g e

Space for learners: X seats are subtracted from A and the value of B is accessed before

the reserved seats X are added to it.

● Loss Update Problem. This kind of issue occurs when two

transactions access the same item of the database while their

operations are interleaved which makes mistakes in values of some

items and hence makes the database inconsistent.

T₁ T₂

READ (A);

A = A - X;

WRITE (A);

WRITE (B);

B = B + X;

WRITE (B);

READ (A);

 A = A + R;

WRITE (A);

Figure 3.3 Loss Update Problem

We presume that the transactions T₁ and T₂ are executed at the

same time and they are processed in a interleaved manner. In

Figure 3.3, the final result of A is incorrect as T₂ reads the value

of X, update it before T₁ changes it in the database. Value of A is

overwritten in T₂ and hence the updated value of T₁ is lost.

● Unrepeatable Read Problem. This problem occurs when two or

more reading variables of the same transaction tries to access

different values of the same variable. As transaction T₁ read some

value twice during a single transaction and the value of the item is

changed by T₂ transaction in between the read commands. That is

why it is called unrepeatable read as it gets different values of the

same item.

172 | P a g e

Space for learners: CHECK YOUR PROGRESS - I

1. What is concurrency in DBMS?

2. What is a multiprogramming operating system?

3. How are processes executed in an interleaved manner?

4. Why are concurrency controls required?

5. What kind of problem occurs when two transactions access the

same item of the database while their operations are interleaved

which makes mistakes in values of some items and hence makes

the database inconsistent?

3.4 TRANSACTION AND TRANSACTIONAL

PROPERTIES

The operations on a database in a form of transaction can be done by a

user interface program or through a query language such as SQL. To form

a transaction, it is to specify transaction boundaries which are BEGIN

TRANSACTION and END TRANSACTION statements in an

application program. The access operation of all databases between these

two boundaries are considered as one transaction. To contain more than

one transaction in a single program, it has to contain several transaction

boundaries.

Read-Only Transaction. The program to retrieve only data and not to

update the database in a transaction.

Read-Write Transaction. The program to retrieve and update the

database in a transaction.

3.4.1 States of Transaction

A transaction is an atomic unit which means if a transaction is executed it

should be completed entirely or not at all. For the purpose of recovery, the

system needs to monitor each transaction starts, terminate and abort. The

recovery system should monitor the following

Begin_Transaction. Keeps the track of execution of the beginning of a

transaction.

173 | P a g e

Space for learners: READ or WRITE. Read and write operation which is executed on a

database as a part transaction.

End_Transaction. This monitors the operation of READ and WRITE

have ended which is the end of transaction.

Commit_Transaction. It means a successful execution of a transaction,

any changes executed by the transaction can be committed to the database

and will not be changed.

RollBack or Abort. It means the transaction is unsuccessfully ended and

the changes made by the transaction to the database must be ROLLBACK

or undone.

The execution states of a transaction as follows:

A transaction starts, it moves from inactive to active state and it executes

READ and WRITE operation. It enters a partially committed state once

the transaction is completed. This activates some recovery protocols at

this time, if the system fails it will not result in loss of data permanently.

After the recovery protocol is executed successfully the transaction enters

the committed state. In the committed state it is concluded that the

execution is completed and the data are permanently recorded in the

database, even if the system encounters a failure.

While a transaction can enter a fail state, if any failure of the checks is

noticed or during the active state the transaction is aborted. Then the

transaction may have to roll back the WRITE operation which is executed

on the database. The transaction is halted due to the error corresponding

to the terminated state.

3.4.2 Transactional Properties

Transactions should have four properties which are popularly known as

ACID properties; these properties should be employed by the concurrency

control and recovery mechanism of the database. The ACID is an

abbreviation of Actomicity, Consistency, Isolation and Durability. These

are as follows:

Atomicity: A transaction should be atomic in nature; it should either be

completely executed or not at all.

174 | P a g e

Space for learners: Consistency: A transaction is completely executed from beginning to end

without any interference of other transactions; it means a transaction is

consistency preserving. A consistent transaction will take the database

from one state of consistency to another.

Isolation: A transaction should look like it is being run in isolation

without interference from other transactions, even if many transactions

are running concurrently.

Durability: The updates or changes executed on the database items by a

committed transaction must be persistent. The changes (update) should

not be lost due to any failure in the system.

3.5 SCHEDULES OF TRANSACTIONS

A schedule of transactions is an order list of transaction such as S schedule

of m transactions will be T₁, T₂, T₃, ……, Tₘ. In a schedule, S operations

of different transactions can be interleaved. The transactions in the

schedule S should be in the same order as they are in Tᵢ. Schedule S

operations are considered to be in total order which means one operation

may execute before another from any two operations in the schedule.

In this topic we are interested in recovery and concurrency controls so our

objectives are READ, WRITE, commit and abort operation. Here we used

a few shorthand notations for begin_transaction is b, READ is r, WRITE

is w, end_transaction is e, commit is c and abort is a such that

S₁: r₁(A); r₂(A); w₁(A); r₁(B); w₂(A); w₁(B);

S₂: r₁(A); w₁(A); r₂(A); w₂(A); r₁(B); a₁;

To be in conflict the two operations in a schedule have to satisfy the three

following conditions

1. Operations belong to different transactions.

2. Operations access the same item A.

3. Minimum one of the operations is WRITE.

In schedule S₁, operations r₁(A) and w₁(A) conflict. Similarly operations

r₂(A) and w₁(A) and operation r₁(A) and r₂(A) do not conflict as they are

read operations. Operations w₂(A) and w₁(B) also do not conflict as w₂ is

on A and w₁ operation is on B. Also, the operations r₁(A) and w₁(A) do

not conflict as both the operations belongs to the same transaction.

175 | P a g e

Space for learners: READ-WRITE Conflict. The order of two operation are changed such

as from r₁(A); w₂(A) to w₂(A); r₁(A), this changes in the transaction T₁ as

it read the value of A as in the second order, the value of A is updated by

w₂(A) before it can be read by r₁(A).

WRITE-WRITE Conflict. If the order of two operation is changed from

w₁(A); w₂(A) to w₂(A); w₁(A). In write-write conflict the final value of A

will differ as in first case it is changed by T₂ and later by T₁. It is to be

noticed that two read operations do not conflict by changing their order

which makes no difference in the final result.

Schedules depend on serializability. The schedules which are always

observed to be correct when executed concurrently are known as

serializable schedules. Suppose a DBMS transaction is submitted with T₁

and T₂ simultaneously. If no interleaved operation is allowed; it will lead

to two possible results.

A. In transaction T₁ all the operation will be executed in sequence

followed by transaction T₂ in sequence.

B. All operations of transaction T₂ will be executed followed

transaction T₁ in sequence such transactions are called serial

schedule.

3.6 SERIAl, NON-SERIAL and CONFLICT-

SERIALIZABLE SCHEDULE

T₁ T₂

READ (A);

A = A - R;

WRITE (A);

READ (B);

B = B + R;

WRITE (B);

READ (A);

A = A + O;

WRITE (A);

Figure 3.5 (a) Schedule 1

176 | P a g e

Space for learners: T₁ T₂

READ (A);

A = A - R;

WRITE (A);

READ (B);

B = B + R;

WRITE (B);

READ (A);

A = A + O;

WRITE (A);

Figure 3.5 (b) Schedule 2

Figure 3.5 (c) Schedule 3

Figure 3.5 (d) Schedule 4

T₁ T₂

READ (A);

A = A - R;

WRITE (A);

READ (B);

B = B + R;

WRITE (B);

READ (A);

A = A + O;

WRITE (A);

T₁ T₂

READ (A);

A = A - R;

WRITE (A);

READ (B);

B = B + R;

WRITE (B);

READ (A);

A = A + O;

WRITE (A);

177 | P a g e

Space for learners: Schedule 1 in Figure 3.5 (a) and Schedule 2 in Figure 3.5 (b) are serial as

the operations of each transaction are executed without interleaved

operation from other transactions. In a serial schedule, transaction are

executed serially such that in the order of T₁ and then T₂ and T₂ and then

T₁.

Schedule 3 in Figure 3.5 (c) and Schedule 4 in Figure 3.5 (d) each from

the two transactions each sequence interleaves operation so they are called

non-serial schedules.

Initializing database items with the value A = 80, B = 80 and R = 3 and O

= 2. After transactions, T₁ and T₂ are executed. We expected the database

values to be A = 79 and B = 83 according to the layout of the transaction.

Schedule 1 or Schedule 2 gives a correct outcome as they are executed in

a serial schedule. Considering non-serial Schedule 3 and Schedule 4 for

execution. Schedule 3 gives outcome A = 82 and B = 83, where the value

of A is wrong and Schedule 4 gives a correct outcome.

The outcome of Schedule 3 is wrong due to the lost update problem. While

some non-serial schedules are calculated correctly such as Schedule 4. We

would like to know which gives the wrong result and which gives the

correct result. This is used to characterize schedules in the fashion of

serializability of a schedule.

By the definition of serializable schedule: A schedule S of m transactions

is serializability when it is equivalent to a few serial schedules of the same

m transaction. By implying a non-serial schedule is serializable it means

the result is correct that is the same as in a serial schedule which is

regarded as correct. Two schedules that produce the same final outcome

of the database are called result equivalent. The schedule to be equivalent

to the execution done on each item in one schedule should also be applied

to database items in both the schedules in similar order.

If the order of any two conflicting operations is the same it is said to be

the conflicting equivalent, if conflict equivalent some schedule S` and it

can be reordered the non-conflicting operation in S till it forms the

equivalent series of schedule S` is said to be conflict serializable.

178 | P a g e

Space for learners: STOP TO CONSIDER

● Transactions should have four properties which are popularly

known as ACID properties; these properties should be employed by

the concurrency control and recovery mechanism of the database.

The ACID is an abbreviation of Actomicity, Consistency, Isolation

and Durability.

● The schedules which are always observed to be correct when

executed concurrently are known as serializable schedules

CHECK YOUR PROGRESS - II

6. What do you mean by transaction in DBMS?

7. Define Read- only transaction?

8. Define Write-only transaction?

9. Why is a transaction required to be atomic?

10. What are the states of a transaction?

3.7 CONCURRENCY CONTROLS

3.7.1 Lock and Modes of Locking

A variable associated with each data that implies whether a read operation

or a write operation is to be implemented to the data items is called lock.

The specialty of lock is that it gives synchronized access to the data items

by concurrent transactions.

The concurrency control technique which allows the locked data items to

be accessed and manipulated is called locking, to maintain the consistency

and integrity of the database. DBMS implements two modes of locking

namely Exclusive and Shared.

Exclusive Lock. It provides exclusive controls on the data item to a

transaction. The transaction must acquire the exclusive lock to read and

to write a data item. Hence, an exclusive lock is also known as update lock

or write lock. For example, a transaction T₁ acquires exclusive lock on

179 | P a g e

Space for learners: data item P. No other transaction is allowed to access P until transaction

T₁ releases its lock on P.

Shared Lock. When a transaction wants to read a data item only, not to

modify it in such instances, shared lock can be implemented on that data

item. It is also known as read lock. For example, a transaction T₁ has

acquired a shared lock on data item P, T₁ can read P but cannot write on

P. Furthermore, multiple transactions can acquire shared locks on P at the

same time. However, any transaction can acquire an exclusive lock on P.

3.7.2 Lock Compatibility

 When a transaction requires to perform some operation on a data item, it

requests for an appropriate lock mode on the data item. The lock manager

grants lock immediately if the requested data item is not locked by any

other transaction. Otherwise, the lock request may or may not grant

depending on the compatibility of locks. Lock compatibility regulates

whether locks can be acquired on a data item by any number of

transactions simultaneously. For example, a transaction T₁ request a lock

of mode m₁ on a data item P on which another T₂ transaction currently

holding a lock of mode m₂. If mode m₁ and m₂ are compatible the request

will be grant immediately; otherwise rejected. The lock compatibility

matrix:

Requested

Mode

Shared Exclusive

Shared YES NO

Exclusive NO NO

Figure 3.6 Compatibility matrix

In figure 3.6 the term ‘YES’ indicates the request can be granted and the

term ‘NO’ indicates request cannot be granted.

The lock request of transaction T₁ is granted immediately if m₁ is shared

and, if and only if m₂ is also shared. Otherwise the lock request is not

granted and transaction T₁ has to wait. Furthermore, if mode m₁is

180 | P a g e

Space for learners: exclusive, then the lock request by transaction T₁ will not be granted and

T₁ has to wait.

3.7.3 Two- Phase Locking Techniques for Concurrency

Control

Two phase locking 2PL is a lock-based concurrency control technique that

divides each transaction into two phases. At the first phase, the transaction

acquires all the locks and during the second phase it releases all the locks.

● Grow Phase. In this phase the number of locks held by a

transaction increases from zero to maximum.

● Shrinking Phase. During this phase the locks are released, due to

which it is called the shrinking phase. The number of locks held

by the transaction decreases from maximum to zero.

Whenever a transaction releases a lock data item it enters the shrinking

phase. Once a data item in the shrinking phase, it is not allowed to acquire

any locks further. Therefore, the release of locks must be delayed until all

the required locks on the data items are acquired. Considering two

transactions T₁ and T₂ along with their lock request.

T₁

LOCK-X (A);

READ (A);

A = A - 200;

WRITE (A);

UNLOCK (A);

LOCK-X (P);

READ (P);

P = P + 200;

WRITE (P);

UNLOCK (A);

T₂

LOCK-X (SUM);

SUM = 0;

LOCK = 0;

181 | P a g e

Space for learners: LOCK -S (P);

READ (P);

SUM = SUM + P;

UNLOCK (P);

LOCK-S (A);

READ (A);

SUM = SUM + A;

WRITE (SUM);

UNLOCK (A);

UNLOCK (SUM);

Figure 3.7 Transaction T₁ and T₂ with their lock request

T₁ T₂

LOCK-X (A);

READ (A);

A = A - 200;

WRITE (A);

UNLOCK (A);

LOCK-X (P);

READ (P);

P = P + 200;

WRITE (P);

UNLOCK (A);

LOCK-X (SUM);

SUM = 0;

LOCK = 0;

LOCK -S (P);

READ (P);

SUM = SUM + P;

UNLOCK (P);

LOCK-S (A);

READ (A);

SUM = SUM + A;

WRITE (SUM);

Figure 3.8 Transaction T₁ and T₂ in two-phase locking

In figure 3.8 the statement for releasing the lock is written at the end of

the transaction. But, such statement do not needs to appear at the end of

the transaction to retain two-phase locking properties such as the

UNLOCK (A) statement of T₁ may appear just after the LOCK- X(P)

statement and still maintain the two phase locking property.

3.7.4 Deadlock

Deadlock occurs when all transactions in a set of two or more transactions

are waiting for some data item that is locked by some other transaction.

Hence, each transaction in the set is waiting for the other waiting

182 | P a g e

Space for learners: transaction in the set. None of the transactions can proceed until and

unless one of the waiting transactions releases lock on the data item.

Deadlock can be prevented by applying deadlock prevention protocols.

3.8 RECOVERY OF DBMS

When a transaction of DBMS is executed, it is the responsibility of the

system to make sure all the operations in a transaction are completed

successfully and their outcomes are recorded in the database permanently

or the transaction has no effect on the database. If the transaction fails

while executing it shouldn’t have any effect on the database.

Types of failure may encounter which executing DBMS in the middle of

a transaction are:

1. A System Crash. During the execution of the transaction there

could be a hardware, software or network error. Hardware crash

mainly consists of main memory failure.

2. System error. The transaction may cause failure due to the

programming error which may be caused by various reasons such

as division by zero or integer overflow. Furthermore, the user may

also interrupt the execution of the transaction in between.

3. Concurrency Control Enforcement. A transaction can be

aborted by concurrency control method due to the violation of

serializability or it may also abort transaction or more transactions

to avoid deadlock among several transactions. Transactions

aborted due to these kinds of reasons are started automatically

later.

4. Exception Conditions or local detected by the transaction.

During the execution of the transaction, many necessary

conditions need to be fulfilled such as data for a transaction may

not be found.

5. Disk Failure. There can be a disk head crash during read or write

operation or some disk block may lose their data due to a read or

write malfunction. Such events can happen during a read or write

operation of a transaction.

6. Physical Damage and Catastrophes. This is a never ending list

of problems which includes power failure, fire, theft, over writing

disk by mistake, damaging the hardware by physical means etc.

183 | P a g e

Space for learners: 3.9 TRANSACTION FAILURE

A transaction aborts when it is failed to execute or the transaction reaches

an instance where it can’t go any further. The atomicity property of

transaction, which suggested that all operations in a transaction have to

execute completely or not at all. There cannot be a case where only half

of the operation will be executed or else this will lead to a transaction

failure. Reason for transactions failure:

Logical error: This kind of error occurs when a transaction cannot

complete due to some code errors or any internal condition error.

System error: In this kind of error, when the database system terminates

an active execution of a transaction as the system is not able to execute it.

This kind of error occurs due to deadlock or unavailability of resources,

the system aborts an active transaction.

3.10 RECOVERY SYSTEM IN DBMS FOR

TRANSACTION FAILURE

There are two techniques to recover if the system encounters a transaction

failure. They are

1. Log-based recovery

2. Shadow paging

3.10.1 Log-based recovery

A log is a sequence of records that maintains the history of all the updates

which are implemented on the database. It used to hold the records of

modification done on the database and it is also known as system log. In

an ongoing transaction, if the system crashes, by using log files it can be

returned back to its previous state as if nothing has happened to the

database.

Suppose,

< T₁, X₁, D₁, D₂ > : Updates log records where, T₁ is the transaction, X₁ is

the data, D₁ is the previous data and D₂ is the new data.

< T₁, starts > : Transaction T₁ start executing

< T₁, Commit > : Transaction T₁ to commit

184 | P a g e

Space for learners: < T₁, Abort > : Transaction T₁ is aborted

Deferred Database Modification

In deferred database modification the updation is delayed or deferred in

the database until the last operation of a transaction is executed and

reaches to completion.

Recovery system:

Redo (T₁) : All data items updated by the transaction T₁ are set to

a new value.

Immediate Database Modification

In this type of modification, the database is modified after a WRITE

operation, it immediately modifies the database whenever a transaction

performs a WRITE or update operation. Update log records contain both

previous and new values of data items.

Recovery system:

Undo (T₁) : All the data items changed by T₁ transaction are set to

the previous values.

Redo (T₁) : All the data items changed by T₁ transaction are set to

new values.

3.10.2 Shadow Paging

Shadow paging is an alternative to log-based recovery. In shadow paging

it maintains two tables during the execution period of a transaction; a

current table and a shadow table. The shadow page table is stored in non-

volatile memory, such that the state of the database prior to transaction

execution can be removed and the shadow page table is never modified

during execution.

Both the page tables are identical where the current page table is accessing

used data items during the execution of the transactions. Wherever any

page is written for the first time, a copy of this page is made on an inside

page. The current page table is then made to point to the copy and the

updation is performed on the copy

185 | P a g e

Space for learners:

Figure 3.9 :Shadow and current page table

To commit a transaction

1. Put all modified pages in main memory to disk

2. Put all output current page table to disk.

3. Make the current page, the new shadow page. Keeps a pointer to

the shadow page table at a fixed known location on disk.

Once the pointer to the shadow page table has been written, a transaction

is committed. If there is a crash encountered no recovery is required. After

a crash a new transaction can start immediately using the shadow page

table.

CHECK YOUR PROGRESS - II

Multiple Choice Questions

11. When multiple transactions are processed in a controlled manner

using some protocols is known as

(a) Data Control

(b) Entity Control

(c) Concurrency Control

(d) DBMS Control

12. The concurrent execution of processing is interleaved transaction

will be executed in

(a) T₁ then T₂ and T₂ then T₁

186 | P a g e

Space for learners: (b) T₁ then T₄ and T₂ then T₁

(c) T₉ then T₅ and T₂ then T₁

(d) None of these

13. When two transactions access the same item of the database

while their operations are interleaved which makes mistakes in

values of some items and hence makes the database inconsistent

this kind of problem is known as

(a) Loss Update Problem

(b) Dirty Read Problem

(c) Unrepeatable Read Problem

(d) Incorrect Summary

14. During the process of transaction, the recovery system should

monitor

(a) Begin Transaction

(b) Read Write

(c) Commit Transaction

(d) All of these above

15. When a transaction is unsuccessfully ended the changes made by

the transaction to the database must be

(a) Read

(b) Write

(c) Rollback or undone

(d) All of the above

16. As transaction T₁ read some value twice during a single

transaction and the value of the item is changed by T₂ transaction

in between the read commands. That is called

(a) Temporary Update Problem

(b) Unrepeatable Read Problem

(c) Loss Update Problem

(d) Incorrect Summary Problem

17. Transactional properties should have four properties popularly

known as

(a) Read - write property

(b) Write - read property

(c) ACID property

(d) BASE property

187 | P a g e

Space for learners: 18. The concurrency control technique allows to lock data items to

be

(a) Accessed and manipulate

(b) Extract information

(c) Enter and Access

(d) Process Information

19. How many locking modes are there

(a) One

(b) Two

(c) Three

(d) Four

20. Which incident may cause physical damage to the system

(a) Earthquake

(b) Hacking

(c) Virus

(d) None of these

3.11 SUMMING UP

 In DBMS, the primary resources are the stored data in the

database that can be accessed concurrently by multiuser which

allows the user to retrieve and modify the database concurrently.

 Concurrency control and recovery mechanisms are deployed on

database operations in a transaction.

 The operations on a database in a form of transaction can be

done by a user interface program or through a query language

such as SQL.

 A transaction is an atomic unit, i.e., if a transaction is executed it

should be completed entirely or not at all.

 For recovery, the system needs to monitor each transaction starts,

terminate and abort.

 The ACID (properties of a Transaction) is an abbreviation of

Atomicity, Consistency, Isolation and Durability.

 A schedule of transactions is an order list of transaction such as S

schedule of m transactions will be T₁, T₂, T₃, ……, Tₘ.

 To be in conflict the two operations in a schedule have to satisfy

the three following conditions

 Operations belong to different transactions.

188 | P a g e

Space for learners:  Operations access the same item A.

 Minimum one of the operations is WRITE.

 Lock is a variable associated with each data that implies whether

a read operation or a write operation is to be implemented to the

data items.

 DBMS implements two modes of locking namely Exclusive and

Shared.

 Deadlock occurs when all transactions in a set of two or more

transactions are waiting for some data item that is locked by some

other transaction.

 There are two techniques to recover if the system encounters a

transaction failure. They are

 Log-based recovery

 Shadow paging

3.12 ANSWERS TO CHECK YOUR PROGRESS

1. Concurrency in DBMS is the process of storing data in the

database that can be accessed concurrently by multiuser which

allows the user to retrieve and modify the database concurrently.

2. OS executes a process then halt the process and execute the next

process, so on and so forth. A process which is halted earlier is

resumed at an instance where it was suspended whenever CPU

processing time is given to it; this is called Multiprogramming OS.

3. The concurrent execution of processes is interleaved which means

when a process is in the CPU and waiting for Input or Output (I/O)

operation, the CPU time is shifted to another process that way the

CPU is always kept busy.

4. Concurrency control and recovery mechanisms are deployed on

database operations in a transaction. Various users may submit

transactions which are executed concurrently to access and update

the database items. If uncontrolled concurrent transactions are

executed it may lead to many issues such as an inconsistent

database.

5. Loss Update is the kind of problem that occurs when two

transactions access the same item of the database while their

189 | P a g e

Space for learners: operations are interleaved which makes mistakes in values of

some items and hence makes the database inconsistent.

6. A transaction is a logical unit of database processing in which it

includes commands such as retrievals, insertion, update and

deletion.

7. Read-Only Transaction is a program to retrieve only data and not

to update the database in a transaction.

8. Read-Write Transaction is a program to retrieve and update the

database in a transaction.

9. A transaction needs to be an atomic unit which means if a

transaction is executed it should be completed entirely or not at all

to make the database consistent

10. The states of transactions are Begin Transaction, READ or

WRITE. End Transaction, Commit Transaction and RollBack or

Abort.

11. (c)

12. (a)

13. (a)

14.(d)

15.(a)

16. (b)

17.(c)

18.(a)

19.(b)

20.(a)

3.13 POSSIBLE QUESTIONS

Short answers type questions

1. Why are concurrency controls required?

2. Explains the phases of transactional states and its execution

process.

3. Discuss the desirable properties of transactions.

4. What are the necessary conditions to be fulfilled by a transaction

to be in conflict?

190 | P a g e

Space for learners: 5. What will be the possible outcome for two transactions submitted

simultaneously for execution and if no interleaved operation is

allowed?

6. What is serial schedule?

7. What is non-serial schedule?

8. What is conflict schedule?

9. What is locking?

10. Short note on Deadlock.

Long answers type questions

1. List a few database applications where transaction processing is

used. List a few different transaction types for each application.

2. How concurrency is achieved using multiprocessing OS? What is

the advantage of interleaved processing?

3. What are the problems occur when two transactions are executed

in an uncontrolled manner? Give examples and explain.

4. Discuss the actions taken by READ and WRITE operations on a

database.

5. Discuss the typical state that a transaction goes through during

execution.

6. Discuss the atomicity, durability, isolation and consistency

prevention.

7. What is serializable schedule? Why is a serial schedule considered

correct? Why is a serializable schedule considered correct?

8. What is lock? Explained the modes of locking.

9. What do you understand by lock compatibility? Discuss the details

with examples.

10. Discuss the different types of failures. What is meant by

catastrophic failure?

3.14 REFERECES AND SUGGESTED READINGS

1. Elmasri, Ramez, Navathe, Shamkant B., Fundamentals of

Database Systems, Pearson Education.

2. Gehrke, Johannes, Ramakrishnan, Raghu, Database Management

Systems, McGraw-Hill Education.

191 | P a g e

Space for learners:

UNIT 4: DATABASE SECURITY

Unit Structure:

4.1. Introduction

4.2. Unit Objectives

4.3. Security issues

4.4. Principles of database security:

4.5. Security models

4.6. Some common threats in database security

4.7. Challenges of database security in DBMS

4.8. Control methods of database security

4.9. Multilevel security

4.10. Types of access control

4.10.1. Mandatory access control (MAC)

4.10.2. Discretionary access control (DAC)

4.10.3. Role-Based access control (RBAC)

4.11. Authentication and Authorization

4.12. Encryption

4.12.1. Data Encryption

4.12.2. Algorithms for Encryption Process

4.12.3. Disadvantages of encryption

4.13. Digital signature

4.14. Summing up

4.15. Answers to Check Your Progress

4.16. Possible Questions

4.17. References & Suggested Readings

192 | P a g e

Space for learners: 4.1 INTRODUCTION

The use of various tools to protect huge virtual data storage units is

known as database security. The field consists of several

components, but it is primarily concerned with how to protect user

databases from external attacks. Protecting the data itself (data level

security), the applications used to process and store data, the

physical servers, and even the network connections that allow users

to access databases are all areas of database security (system level

security). Database security procedures protect the data within the

database and the database management system, and all applications

that access it from intrusion, data misuse, and damage. It's a large

term that refers to various processes, tools, and methodologies used

to ensure database security.

Here in this unit, we will discuss the various aspect of database

security. You'll be able to understand the fundamental problems that

compromise database security. As you'll see, database-driven

systems can have problems at any stage, including during database

creation, deployment, and even later. This unit aims to provide a

brief overview of database security threats and various challenges.

When developing a security system, security models are the most

fundamental theoretical tool to use. Security policies, which are

governing regulations adopted by any organization, are enforced by

these models. Access control models are security models that restrict

the activities of authorized users. Discretionary, mandatory, and

role-based access controls are the three main types of access control.

Every technique has its own set of advantages and disadvantages.

The choice of an appropriate access control model is based on the

requirements as well as the types of attacks that the system is

vulnerable. A strong authentication and authorization strategy helps

protect the users and their data from attackers. You will get a brief

overview of the data encryption process. Different types of

encryption algorithms will discuss at the last of this unit.

4.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 understand the needs of Implicit parallelism techniques.

 understand the database security issues

 know the principle of database security

193 | P a g e

Space for learners:  describe the security model

 describe the various control method of database security

 know different threats and challenges in database security

 know the idea of Multilevel security

 describe different types of access control mechanisms

 distinguish between authentication and authorization

 understand the encryption process and its various types of

algorithm

 know what a digital signature is

4.3 SECURITY ISSUES

The technique which helps to give protection and security to the

database against some threats (like accidental or intentional threats)

is known as database security. Security problems will extend beyond

the data in an organization's database: a breach of security may

impact other system components, affecting the database structure in

the end. Consequently, database security includes software parts,

hardware parts, human resources, and data.

Database security refers to the set of tools, procedures, and

mechanisms used to ensure the confidentiality, integrity, and

availability of a database.

Appropriate controls, which are distinct in a particular mission and

purpose for the system, are required to use security efficiently.

Database security can be considered regarding the following

situations:

 Loss of data privacy.

 Loss of data integrity.

 Loss of availability of data.

 Loss of confidentiality or secrecy.

 Theft and fraudulent.

The organization should focus on reducing the threat which can be

incurring loss or damage to data inside a database from the listed

circumstances above. Because all of the data inside an organization

are interrelated, an activity that results in a loss in one area can often

result in a loss in another. These scenarios primarily represent areas

194 | P a g e

Space for learners: where the company should concentrate on lowering the risk of data

loss or destruction in a database.

4.4 PRINCIPLES OF DATABASE SECURITY

We need a security model to organize our ideas on security, which

may take many different shapes depending on responsibilities, level

of detail, and goal. The most important categories are areas of

interest (threats, impact, and loss) as well as the actions involved in

dealing with them.

The loss of assets is one example of a security risk. Among these

are:

 Hardware

 Software

 Data quality

 Data Credibility

 Data

 Availability

 Business benefit

4.5 SECURITY MODELS

The formal description of security policies is called a security

model. A security model offers the environment for database

considerations, such as implementation and operation, by

establishing external criteria for analyzing security issues in general.

Security models for specific DBMSs are significantly essential in

system design and operation. Security models describe the elements

of a database management system (DBMS) that must be deployed to

set up and run actual security solutions. Concepts are embodied,

regulations are implemented, and servers are provided for such

functions. Any deficiencies in the security model will translate either

into insecure operations or inefficient systems. For evaluating and

comparing security policies, security models are useful tools. We

can use security models to check for completeness and consistency

in security policies.

The following elements are used to describe security models:

 Subjects: Entities that request access to objects.

195 | P a g e

Space for learners:  Objects: Entities for which subjects are making the access

request.

 Access Modes: various operations performed by the subject

on the object (read, write, create, etc.).

 Policies: Enterprise-wide accepted security rules.

 Authorizations: Specification of access modes for each

subject on each object.

 Administrative Rights: Who has rights in system

administration, and what responsibilities do administrators

have.

 Axioms: Basic working assumptions.

4.6 SOME COMMON THREATS IN DATABASE

SECURITY

a. Privilege Elevation: There are some software flaws that attackers

can exploit to elevate their access privileges from a regular user to

that of an administrator, resulting in misunderstandings of typical

analytical data and funds transfers to fake accounts for specific

analytical data.

b. SQL or nonSQL Injection: The insertion of arbitrary SQL or

nonSQL attack strings into database queries served by web

applications or HTTP headers is a database-specific threat. These

attacks are vulnerable to organizations that do not follow secure web

application coding practices or conduct regular vulnerability testing.

c. Excessive Privilege Abuse: When database users are given

various privileges and allowances that go beyond what is required of

them, they may be abused for nefarious purposes. For example, if a

company user has the ability to change employee residence

information, that user could abuse their database update privileges

and change someone's salary information.

d. Legitimate Privilege Abuse: This occurs when a legitimate

database user abuses their rights to access the database for illegal

purposes. This is triggered when a system manager or database

administrator abuses their authority and engages in any illegal or

unethical behavior.

196 | P a g e

Space for learners: e. Platform Vulnerabilities: Platform information describes the

operating system in use. Vulnerabilities in operating systems such as

Windows 2007, Linux, and Windows XP, as well as the additional

services installed on a database server, can result in data corruption,

illegal access, or a denial of service. A database system's security

measures and protection can be overridden by an operating system's

flaws.

f. Database Communication Protocol Vulnerabilities: Almost all

database retailers' database communication protocols have a

significant amount of security flaws. False activities directed at such

vulnerabilities can range from unauthorized data access to denial of

service and data exploitation, among other things.

g. Denial of service (DoS/DDoS) attacks: In a denial of service

(DoS) attack, the attacker floods the target server—in this case, the

database server—with so many requests that it can no longer fulfill

legitimate requests from real users, and the server becomes unstable

or crashes in many cases. The deluge comes from multiple servers in

a distributed denial of service (DDoS) attack, making it more

difficult to stop the attack.

h. Malware Malware: Malware Malware is software written

specifically to exploit vulnerabilities or otherwise cause damage to

the database. Malware may arrive via any endpoint device

connecting to the database's network.

4.7 CHALLENGES OF DATABASE SECURITY IN

DBMS

Given the huge growing number and speed of threats to databases

and many other types of information assets, research efforts should

focus on data quality, intellectual property rights, and database

survival.

1. Data quality –

 To analyze and confirm the quality of data, the database

community needs approaches and certain organizational

solutions. Straightforward mechanisms such as quality stamps

that are displayed on various websites are examples of these

approaches. We also require approaches that will enable us to

develop more effective integrity semantics verification tools for

197 | P a g e

Space for learners: data quality evaluation, based on a variety of approaches such as

record linkage.

 Application-level recovery methods are also required to rectify

the erroneous data automatically.

 These challenges are now being addressed by ETL (extract,

transform, and load) technologies, which are extensively used

for putting data into data warehouses.

2. Intellectual property rights –

As Internet and intranet usage grows, legal and informational issues

over data are becoming important problems for many organizations.

To address these issues, watermarking is employed, which helps to

secure content against unlawful copying and dissemination by

granting the owner of the verifiable content power.

They are traditionally reliant on the availability of a broad domain

within which the objects can be changed while maintaining their

fundamental or vital features.

However, further research is desirable to assess the robustness of

many of these strategies, as well as to analyze and explore a wide

range of approaches or methodologies targeted at preventing

intellectual property rights violations.

3. Database Survivability –

Despite disruptive events such as information warfare assaults,

database systems must continue to operate and perform their tasks

despite decreased capabilities.

A database management system should be able to accomplish the

following in addition to making every attempt to avoid and detect

attacks:

 Confident: We must act quickly to remove the attacker's access

to the system and isolate or confine the problem to prevent it

from spreading further.

 Damage assessment: Determine the scope of the issue,

including any failed functions or data corruption.

 Recover: To re-establish a normal level of functioning, recover

corrupted or loss of data and repair, as well as reinstall, failed

functions.

 Reconfiguration: Reconfigure the operation to allow it to

continue in a degraded condition while recovery occurs.

198 | P a g e

Space for learners:  Fault treatment: Determine the weakness exploited in the

attack to the degree feasible and take actions to avoid a

recurrence.

4.8 CONTROL METHODS OF DATABASE

SECURITY

Database security refers to the protection of sensitive data and the

prevention of data loss. The Database Administrator is responsible

for the database's security (DBA). The following are the primary

control mechanisms used to ensure database data security:

1. Authentication

2. Access control

3. Inference control

4. Flow control

5. Database Security applying Statistical Method

6. Encryption

7. RAID Tools

8. Backup and Recovery

These are explained as following below.

1. Authentication : Authentication is the practice of determining

if a user logs in solely with the permissions granted to him to

execute database transactions. A user can only login to the

extent of his power, but he cannot access any additional

sensitive data. Authentication limits the privilege of accessing

sensitive information. These biometric authentication

technologies, such as retina and figure prints, can protect the

database from unauthorized or fraudulent users.

2. Access Control : Unauthorized users' access to the database

must be limited by the security mechanism of the database

management system. The DBMS manages access control by

generating user accounts and controlling the login procedure.

As a result, database access to sensitive data is limited to those

people (database users) who are permitted to do so, and

unauthorized access is prohibited. During the whole login time,

the database system must also maintain track of all actions

conducted by a certain user.

3. Inference Control : This approach is referred to as the

statistical database security countermeasures. Its purpose is to

199 | P a g e

Space for learners: prohibit the user from finishing any inference channel. This

approach prevents sensitive information from being disclosed

inadvertently. There are two sorts of inferences: identity

disclosure and attribute disclosure.

4. Flow Control : This prohibits information from reaching

unauthorized users. Covert channels are paths for information

to pass implicitly in ways that violate a company's privacy

policy.

5. Database Security applying Statistical Method : The

Statistical database security is concerned with protecting

personal individual values kept in and utilized for statistical

reasons, as well as retrieving value summaries based on

categories. They do not allow for the retrieval of personal

information.

This permits access to the database in order to obtain statistical

information on the number of employees employed by the

company but not to obtain detailed confidential/personal data

on a particular individual employee.

6. Encryption : This technique is mostly used to secure sensitive

information (such as credit card numbers and OTP numbers)

and other numbers. Some encoding algorithms are used to

encode the data. Unauthorized users will have a pretty hard

time decoding this encoded data, whereas authorized users are

given decoding keys to decrypt data.

7. RAID Tools: RAID (Redundant Array of Independent Disks) is a

huge disk array that consists of numerous independent disks that

are structured to promote reliability while also increasing

performance. Data striping (the data is divided into equal-size

partitions) boosts performance by distributing it across many

disks in a transparent manner. Using a parity scheme or an

error-correcting technique, reliability is improved by storing

redundant information across disks.

8. Backup and Recovery: Backup is the process of copying the

database and log files to offline storage media on a regular

basis. A database management system should provide backup

capabilities to aid in the recovery of a database in the event of a

breakdown. It's usually a good idea to make backup copies of

the database and log files on a regular basis and keep them in a

200 | P a g e

Space for learners: secure location. The backup copy and the details saved in the

log file are used to restore the database to the most recent

feasible, consistent state in the event of a failure that renders it

useless.

Journaling is the process of storing and maintaining a log file (or

journal) of all changes made to the database in order to successfully

recover in the case of a failure. A database management system

should include logging capabilities, also known as journaling, that

keep track of the current state of transactions and database

modifications to aid recovery procedures. The benefit of journaling

is that in the event of a failure, a backup copy of the database plus

the information in the log file can be used to restore the database to

its last known consistent state. If no journaling is configured on a

failed system, the only way to recover the database is to restore it

from the most up-to-date backup version.

4.9 MULTILEVEL SECURITY

The security policy that allows you to classify objects and users

using hierarchical security system levels and a non-hierarchical

security system is known as Multilevel security.

STOP TO CONSIDER

A covert channel is any communication channel that can be used by

a process to transfer data in a way that goes against the security

policy of the system. In a summary, covert channels transmit data

using non-standard methods that are incompatible with the system's

design.

Check Your Progress - I

1. Why is database security essential?

2. What is a database threat?

3. What are the control measures for database security?

4. What is RAID in DBMS?

5.What role does backup perform in database security?

201 | P a g e

Space for learners: Multilevel security prevents unauthorized users from accessing

information that is classified higher than their authorization level

and users from declassifying information.

The following are the various benefits of multilevel security:

1. Multilevel security enforcement is mandatory and

automatic.

2. Methods that are difficult to express through traditional

SQL views or queries can be used by multilevel security.

3. To provide row-level security control, multilevel security

does not rely on special views or database variables.

4. Multilevel security controls are consistent and integrated

throughout the system, allowing you to avoid defining users

and authorizations multiple times.

5. Users are unable to declassify information due to

multilevel security.

Using multilevel security, you can describe security for Db2 objects

and perform other checks, such as row-level security checks. Row-

level security checks let you control which users have permission to

view, modify, or perform other actions on specific rows of data.

Row access control and multilevel security are mutually exclusive.

You can enable column access control on a table with a security

label column and enforce it on that column, but you can't do the

same with row access control. You can't use row access control to

enable a security label column in a table. Vice versa is proper; if a

table is activated through row access control, you won't be able to

add a security label column to it.

4.10 TYPES OF ACCESS CONTROL

Organizations must decide which access control model to use based

on the nature and sensitivity of the data they're processing. Older

access approaches include discretionary access control (DAC) and

mandatory access control (MAC), but today's most used model is

role-based access control (RBAC). Access Control is a permission

that allows a user to create or access (that is, read, write, or update) a

database object (such as a relation, view, or index), as well as run

some DBMS utilities. Offering too many unneeded privileges can

202 | P a g e

Space for learners: compromise security. A privilege should only be granted to a user if

that user would be unable to perform his or her activities without it.

Following that, the DBMS keeps track of how these privileges are

provided to other users and possibly withdrawn, ensuring that only

users with the proper privileges have access to an object at all times.

4.10.1 Mandatory access control (MAC)

It is based on system-wide policies that individual users cannot

modify. In this technique, each database object is designated a

security class, and each user is given clearance for a security class,

and users are subjected to restrictions about database object reading

and writing. The DBMS decides whether a user may read or write an

object based on a set of rules that include the object's security level

and the user's clearance. These rules aim to ensure that sensitive

information is never passed on to another user without permission.

Support for MAC is not included in the SQL standard.

It's worth noting that most commercial DBMSs only provide

mechanisms for discretionary access control at the moment.

However, government, military, and intelligence applications, as

well as numerous industrial and corporate applications, all require

multilevel security. Some DBMS providers, such as Oracle, have

issued customized versions of their RDBMSs for government usage

that include required access control.

Top secret (TS), secret (S), confidential (C), and unclassified (U) are

the most common security levels, with TS being the highest and U

being the lowest. Other, more sophisticated security classification

methods exist, such as those that organize security classes into a

lattice. To keep it simple, we will use the system with four security

classification levels, where TS ≥ S ≥ C ≥ U, to illustrate our

discussion. The Bell-La Padula model, which is widely used for

multilevel security, divides each subject (user, account, program)

and object (relation, tuple, column, view, operation) into one of four

security classifications: TS, S, C, or U. The clearing (classification)

of a subject S will be referred to as class(S), and the classification of

an object O will be referred to as class(O) .

Based on the subject/object categories, there are two restrictions on

data access that has been enforced:

203 | P a g e

Space for learners: 1. Simple security property:A subject S is not allowed read access

to an object O unless class(S) ≥ class(O). This restriction is self-

explanatory, and it enforces the obvious rule that no subject can read

an object with a higher security classification than the subject's

security clearance.

2. Star property (or *-property): A subject S is not allowed to write

an object O unless class(S) ≤ class(O). This restriction is less

intuitive in this instance. It prevents a subject from writing an object

with a lower security classification than their own. If this rule is

broken, information can flow from higher to lower classifications,

which is against multilevel security's basic tenet.

A user (subject) with TS clearance can make a copy of a TS-

classified object and then write it back as a new U-classified object,

making it visible throughout the system.

4.10.2 Discretionary access control (DAC)

The granting and revoking privileges is a common method of

enforcing discretionary access control in a database system.

Consider privileges in the context of a relational database

management system. In particular, we'll discuss a privileges

system similar to the one created for the SQL language. Many

current relational DBMSs use this technique in some form or

another. The main concept is to include statements in the query

language that allow the DBA and certain users to grant and revoke

privileges.

STOP TO CONSIDER

The major security method for relational database systems has

typically been the discretionary access control approach of giving

and revoking privileges on relations. This is an all-or-

nothing approach: A privilege is either granted or denied to a user.

Many applications require an extra security policy that categorizes

data and users according to security classes. This method is referred

to as mandatory access control (MAC).

204 | P a g e

Space for learners: Types of Discretionary Privileges

The concept of an authorization identifier is used in SQL2 and

later versions to refer to, roughly speaking, a user account (or

group of user accounts). In place of an authorization identifier,

we'll use the terms user and account interchangeably. The database

management system (DBMS) must allow selective access to each

database relation based on specific accounts. Because operations

can be controlled, having an account does not necessarily entitle

the account holder to all of the DBMS's functionality. Informally,

there are two levels for assigning database system privileges:

 a. The account level. The DBA specifies the specific

privileges that each account has at this level, which are

independent of the database relations.

 b. The relation (or table) level. The DBA can manage the

privileges to access any particular relation or view in the database

at this level.

On R, you have access to references. When establishing integrity

constraints, the account now has the ability to reference (or refer

to) a relation R. This permission can also be restricted to R's

specific attributes.

Note that in order to specify the query that corresponds to the

view, the account must have the SELECT permission on all

relations included in the view definition.

Specifying Privileges through the Use of Views

The views mechanism is a significant discretionary authorization

method in its own. If the owner A of a relation R wants another

account B to be able to retrieve only particular fields from R, A

can construct a view V of R that only includes those

characteristics and then grant SELECT on V to B. The same can

be said for limiting B to just retrieving particular tuples from R; a

view V can be defined by a query that picks only those tuples from

R that A wishes B to have access to.

 Revoking of Privileges

It may be necessary to temporarily grant a user a privilege in some

instances. For instance, the owner of a relation could want to give

a user the SELECT privilege for a specific task and then withdraw

it once the work is accomplished. As a result, revocation of

205 | P a g e

Space for learners: privileges requires a mechanism. REVOKE is a SQL command

that can be used to revoke privileges.

Propagation of Privileges Using the GRANT OPTION

When the owner A of a relation R gives another account B a

privilege on R, the privilege might be given to B with or without

the GRANT OPTION. If the GRANT OPTION is specified, B has

the ability to grant that privilege to other accounts on R. Assume

A grants the GRANT OPTION to B, and B subsequently grants

the privilege on R to a third account C, which has the GRANT

OPTION as well. Privileges on R can be propagated to other

accounts in this manner without the knowledge of R's owner. If

the owner account A now revokes the privilege assigned to B, the

system should automatically revoke all privileges that B spread

based on that privilege.

A user's privileges can come from two or more places. For

instance, both A2 and A3 may grant A4 a specific UPDATE R

privilege. In this situation, even if A2 revokes A4's privilege, A4

will retain it because it was granted by A3. If A3 later revokes

A4's privilege, A4's privilege is completely lost. As a result, a

database management system that permits permission propagation

must keep note of how each privilege was provided so that

privilege revocation may be done accurately and completely.

An Example to Illustrate Granting and Revoking of

Privileges:

Assume the DBA creates four accounts: A1, A2, A3, and A4, but

only A1 is allowed to create base relations. The DBA must use the

GRANT command in SQL to accomplish this:

GRANT CREATETAB TO A1;

The CREATETAB privilege is an account privilege that allows

account A1 to create new database tables (base relations).

To achieved this DBA issue a CREATE SCHEMA command, as

follows:

CREATE SCHEMA EXAMPLE AUTHORIZATION A1;

The user account A1 can now create tables in the EXAMPLE

schema. Assume that A1 builds the two base relations EMPLOYEE

206 | P a g e

Space for learners: and DEPARTMENT; A1 becomes the owner of these two relations

and has all relation privileges on each of them.

Assume that account A1 wants account A2 to have the privilege to

insert and delete tuples in both of these relations. A1, on the other

hand, does not want A2 to be able to extend these rights to other

accounts. A1 can issue the following command:

GRANT INSERT, DELETE ON EMPLOYEE, DEPARTMENT

TO A2;

The owner account A1 of a relation has the GRANT OPTION

enabled by default, allowing it to grant privileges on the relation to

other accounts. However, because account A2 was not provided the

GRANT OPTION in the preceding command, it cannot grant

INSERT and DELETE privileges on the EMPLOYEE and

DEPARTMENT tables.

Let's say A1 wants account A3 to obtain data from either of the two

tables and distribute the SELECT privilege to other accounts. A1

can issue the subsequent command:

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3

WITH GRANT OPTION;

The section WITH GRANT OPTION indicates that A3 can now use

GRANT to extend the privilege to other accounts. By performing the

following command, A3 can provide A4 the SELECT privilege on

the EMPLOYEE relation:

GRANT SELECT ON EMPLOYEE TO A4;

Assume A1 decides to revoke A3's SELECT privilege on the

EMPLOYEE relation; A1 can then run the following command:

REVOKE SELECT ON EMPLOYEE FROM A3;

 The SELECT privilege on EMPLOYEE from A3 and the SELECT

privilege on EMPLOYEE from A4 must now be automatically

revoked by the DBMS.This is due to the fact that A3 granted that

privilege to A4, yet A3 no longer has it.

CHECK YOUR PROGRESS - II

6.What are the main differences between DAC and MAC?

7.What are the drawbacks of discretionary access control?

207 | P a g e

Space for learners: 4.10.3 Role-Based access control (RBAC)

RBAC (role-based access control) became popular in the 1990s as a

tested method of administering and enforcing security in large-scale

enterprise-wide systems. Privileges and other permits are associated

with organizational roles rather than individual users, according to

the core premise. After that, users are assigned roles that are

appropriate for them.

The CREATE ROLE and DESTROY ROLE commands can be used

to create and destroy roles. When needed, the GRANT and

REVOKE commands can be used to assign and revoke rights from

roles as well as individual users. Roles such as sales account

manager, purchasing agent, mailroom clerk, department manager,

and so on may exist in a company. A number of people can be

assigned to each role. The role name receives security privileges that

are common to all roles, and anyone assigned to this role acquires

those privileges automatically.

RBAC can be used in conjunction with standard discretionary and

mandatory access controls to ensure that only approved users who

are assigned to specific roles have access to specific data or

resources. Users can create sessions during which they can activate a

portion of their roles. Each session can have several roles assigned

to it, but it only maps to one user or one subject. Many database

management systems provide the concept of roles, which can be

assigned roles.

Fig 4.1: MAC vs. DAC vs... RBAC (Adapted from:[2])

208 | P a g e

Space for learners: 4.11 AUTHENTICATION AND AUTHORIZATION

As users, we are all aware of most systems' login requirements. In

most cases, gaining access to IT resources necessitates a secure login

process. This subject is about database management system access,

and it provides an overview of the procedure from the standpoint of

a DBA. The majority of what follows is on Relational Client-Server

Systems.

Other system models change to different extents, but the simple

principles remain the same.

Authentication

The client must establish the server's identification, and the server

must establish the client's identity. To achieve this, shared secrets

(i.e., a password/user-id pair or shared biographic and/or biometrics)

are often utilized. It can also be accomplished through the use of a

system of higher authority that has already established

authentication earlier.

Authentication from a peer system may be appropriate in client-

server systems when data (not necessarily the database) is

disseminated. It's interesting to note that authentication can be

passed from one system to the next. As far as the DBMS is

concerned, the result is an authorization identifier. Authentication

does not grant any special permissions for certain operations. It only

proves that the DBMS believes the user is who he or she claims to

be and that the user believes the DBMS is indeed the intended

system.

Authentication is a prerequisite for authorization. Authentication is

required before authorization may be granted.

Authorization

Authorization refers to a user's ability to carry out specific

transactions, such as changing the database's state (write-item

transactions) and/or receiving data from the database (read-item

transactions).Authorization, which must be done on a transactional

basis, is a vector: Authorization (item, auth-id, operation). A vector

is a set of data values that are stored at a certain location in the

system.

209 | P a g e

Space for learners: The DBMS functionality determines how this is implemented. On a

logical level, the system structure necessitates the use of an

authorization server that works in tandem with an auditing server.

As the authorization is transmitted from system to system, there is a

problem with amplification and server-to-server security.

Amplification here refers to the fact that as the number of DBMS

servers involved in the transaction grows, so do the security

concerns.

Generally, Audit requirements are routinely applied in an ineffective

manner. You must log all accesses and all authorization details with

transaction identifiers to be safe. There is a requirement to audit on a

regular basis and keep an audit trail, which is typically for a long

period.

4.12 ENCRYPTION

In certain situations where the DBMS's normal security mechanisms

are insufficient, a DBMS can use encryption to protect data. For

example, An intruder could steal data tapes or tap a communication

line. The DBMS ensures that stolen data is not intelligible to the

intruder by storing and transmitting it in encrypted form. As a result,

encryption is a technique to provide privacy of data.

4.12.1 Data Encryption

Encryption is the process of transforming plaintext to ciphertext, and

decryption is the reverse procedure. The plaintext is the unencrypted

message in cryptography. A function with a key parameter

transforms the plaintext. The ciphertext is the final result of the

encryption procedure. The network is then used to send the

ciphertext.

The transmitting end performs encryption, while the receiving end

performs decryption. The encryption key is required for the

encryption process, and the decryption key is required for the

decryption process, as indicated in the diagram. Intruders who do

not know the decryption key are unable to convert ciphertext to

plaintext. Cryptography is another name for this technique.

The primary idea behind encryption is to utilize a user-specified or

DBA-specified encryption key and an encryption algorithm that may

210 | P a g e

Space for learners: be accessible to the intruder to encrypt the original data. The

encrypted form of the data is the algorithm's output. A decryption

algorithm is also available, which takes the encrypted data and the

decryption key as input and returns the original data. The decryption

algorithm creates garbage without the proper decryption key. The

encryption and decryption keys may or may not be the same., but

they must have a secret relationship.

There are the following techniques used for the encryption process:

• Substitution Ciphers: To mask each letter or group of letters, a

substitution cipher replaces them with another letter or group of

letters. For instance, A is replaced by D, B by E, C by F, and Z by

C. As a result, the attack becomes. Because an intruder can readily

predict the substitution characters, substitution ciphers are not very

safe.

Fig 4.2: Example of Substitution Ciphers

• Transposition Ciphers: Substitution ciphers keep the plaintext

symbols' order but hide them. The transposition cipher, on the other

hand, rearranges the characters without masking them. A key is used

in this process. For instance, A may be coded as B. When compared

to substitution ciphers, transposition ciphers are more secure.

211 | P a g e

Space for learners:

Fig 4.3:Example of Transposition Ciphers

4.12.2 Algorithms for Encryption Process

For the encryption process, there are several widely used algorithms.

The following are examples of these

a. Data Encryption Standard (DES): On the basis of an encryption

key, it performs both character substitution and order rearrangement.

The main flaw in this approach is that the encryption key must be

communicated to authorized users, and the mechanism for doing so

is vulnerable to clever intruders.

b. Public Key Encryption:

In recent years, a method of encryption known as public-key

encryption has grown in popularity. Rivest, Shamir, and Adheman

proposed the RSA encryption scheme, which is a well-known

example of public-key encryption. Every authorized user has a

public encryption key that is known to everyone, as well as a private

decryption key (which is used by the decryption algorithm) that is

chosen by the user and is only known to him or her. The encryption

and decryption algorithms are assumed to be known to the general

public

212 | P a g e

Space for learners:

Fig 4.4: Public Key Encryption process

The following are the most important characteristics of a public key

encryption scheme: −

 For encryption and decryption, different keys are used. This

is a feature that distinguishes this scheme from symmetric

encryption schemes.

 Each receiver has his own decryption key, which is

commonly referred to as his private key.

 The receiver must publish his public key, which is an

encryption key.

 To avoid spoofing by an adversary as the receiver, some

assurance of the authenticity of a public key is required in

this scheme. This type of cryptosystem typically involves a

trusted third party that certifies that a specific public key

belongs to a single person or entity.

 The encryption algorithm is complicated enough that an

attacker will be unable to deduce the plaintext from the

ciphertext and the encryption (public) key.

 Despite the fact that private and public keys are

mathematically related, calculating the private key from the

public key is not possible. In fact, designing a relationship

between two keys is an intelligent part of any public-key

cryptosystem.

213 | P a g e

Space for learners: 4.12.3 Disadvantages of encryption

There are the following challenges of Encryption:

1. The management of keys (i.e., keeping them hidden) is a

problem. The decryption key must be kept secret even in public-

key encryption.

2. Even in an encrypted system, data must be processed in

plaintext regularly. As a result, transaction programs may still

have access to sensitive data.

3. At the level of physical storage organization, encrypting data

causes severe technical issues. Indexing data that is stored in

encrypted form, for example, can be extremely difficult.

4.13 DIGITAL SIGNATURE

In e-commerce applications, a Digital Signature (DS) is an

authentication technique based on public-key cryptography. It

assigns an individual a distinct mark within the body of his

message. This allows others to authenticate that message senders

are genuine.

To protect against fraud and theft, a user's digital signature is

typically different from message to message. The method is as

follows −

STOP TO CONSIDER

The sender and receiver of a message in a symmetric

cryptography system share a single, common key that is used to

encrypt and decrypt the message. This is a simple system to set up,

and both the sender and the receiver can encrypt and decrypt

messages.

Asymmetric cryptography, also known as public-key

cryptography, is a system in which the sender and receiver of a

message use a pair of cryptographic keys to encrypt and decrypt

the message – a public key and a private key. This is a complicated

system in which the sender can encrypt the message with his key

but cannot decrypt it. The receiver, on the other hand, can decrypt

but not encrypt the message using his key.

214 | P a g e

Space for learners: 1. The sender takes a message and calculates the message

digest before signing it with a private key.

2. After that, the sender appends the signed digest to the

plaintext message.

3. The communication channel is used to send the message.

4. The receiver eliminates the appended signed digest and

verifies it with the public key associated with it.

5. The receiver then applies the same message digest algorithm

to the plaintext message.

6. If the results of steps 4 and 5 matches, the receiver can be

confident that the message is genuine.

CHECK YOUR PROGRESS - III

8. Is authentication required for authorization?

9.What is plaintext and ciphertext?

10. What do you mean by public key encryption?

Multiple Choice Questions:

11. What is true about data security?

a. Data security is the protection of programs and data in

computers and communication systems against

unauthorized access

b. It refers to the right of individuals or organizations to

deny or restrict the collection and use of information

c. Data security requires system managers to reduce

unauthorized access to the systems by building physical

arrangements and software checks.

d. All of the above

12. which statement is used to revoke an authorization,

a. Alter

b. Modify

c. Revoke

d. All of these

215 | P a g e

Space for learners: 4.14 SUMMING UP

 The technique which helps to give protection and security to

the database against some threats (like accidental or

intentional threats) is known as database security. Database

security refers to the set of tools, procedures, and

mechanisms used to ensure the confidentiality, integrity, and

availability of a database.

 The process of ascertaining whether someone or something

is who or what it claims to be is known as authentication.

 The practice of granting someone permission to do or have

something is known as authorization.

 Encryption is the process of encoding data with a special

algorithm that makes it unreadable by any program that

doesn't have the decryption key.

 In a computing environment, access control is a security

technique that regulates who or what can view or use

resources. It is a basic security concept that reduces the risk

to the company or organization.

 Discretionary access control (DAC) is a type of security

access control that enables or restricts object access based on

an access policy set by the owner group and/or subjects of

the object.

 Mandatory access control (MAC) is a system-enforced

access control method that enforces security policy through

clearances and labels.

 A digital signature could be used to confirm that the data

was sent by the intended recipient. It is made up of two

pieces of data: a string of bits computed from the data being

signed using signature algorithms and the private key or

password of the person wishing to sign the document.

 Ciphertext is plaintext that has been encrypted using an

encryption algorithm. Ciphertext cannot be read until it has

been decrypted (converted to plaintext).

216 | P a g e

Space for learners: 4.15 ANSWERS TO CHECK YOUR PROGRESS

1. It's important to protect the data that any company collects and

manages. Database security can protect your database from being

hacked, which can result in financial loss, reputational damage,

consumer distrust, brand erosion, and non-compliance with

government and industry regulations.

2. A database threat is an object, person, or other entity that poses a

risk of sensitive data loss or corruption to an asset.

3. These various security controls aid in the management of security

protocol circumvention.

i. System hardening and monitoring.

ii. DBMS configuration

iii. Access

iv. Database auditing

v. Authentication

vi. Encryption

vii. Backups

4. Redundant Array of Independent Disks (RAID) is a technology

that combines multiple small, low-cost disc drives into an array of

disk drives that outperforms a single large, expensive drive (SLED).

Redundant Array of Inexpensive Disks is another name for RAID.

5. In data management, making backups of collected data is critical.

Human error, hardware failure, virus attacks, power outages, and

natural disasters are all protected by backups. If these failures occur,

backups can help save time and money.

6. The main difference between DAC and MAC is that DAC is an

access control method in which the resource owner determines

access, whereas MAC is an access control method in which access is

granted based on the user's clearance level.

7. DAC is simple to use and understand, but it does have some

drawbacks, such as:

 Inherent vulnerabilities (Trojan horse)

 Grant and revoke permissions maintenance.

 ACL maintenance or capability.

 Limited negative authorization power.

8. Authentication is a prerequisite to authorization because it allows

for the secure validation of the subject's identity. After the

authentication process is completed, authorization policies begin.

217 | P a g e

Space for learners: What data you can access is determined by the authorization

process.

9. The input to an encryption algorithm is plaintext. The unreadable

output of an encryption algorithm is known as ciphertext.

10. The term "public-key encryption" refers to a type of encryption

that implements two keys. There are two types of keys: a public key

that everyone knows and a private key that only you know.

11. a

12. c

4.16 POSSIBLE QUESTIONS

Short answer type questions:

1. What do you mean by database security?

2. What is the need for database security?

3. What is the principle of database security?

4. Mention the threat of database security in DBMS.

5. What are various control methods used to secure DBMS?

6. Define RAID technology.

7. Define flow control.

8. What is SQL injection?

9. What is the access control method?

10. Describe Authentication and Authorization.

11. Define ciphertext and plaintext.

12. Why is backup essential in DBMS?

13. What is the Mandatory access control method?

14. Differentiate between MAC and DAC.

15. Write a short note on Role-Based Access Control?

16. What is Data Encryption Standard(DES)?

17. What is a digital signature?

18. What do Database Encryption and Decryption mean?

218 | P a g e

Space for learners: Long answer type questions:

1. Explain the needs of database security

2. Describe the different threats to database security.

3. Discuss various challenges in database security.

4. Describe the access control method.

5. Explain multilevel security in DBMS.

6. Explain various types of access control methods.

7. Describe the Mandatory access control methods in DBMS.

8. Describe the Discretionary access control method with an

example.

9. Explain the Role-Based Access Control (RBAC) method.

10. Describe the data encryption process.

11. Explain how digital signature works.

4.17 REFERENCES AND SUGGESTED

READINGS

[1] Chapter 12. Database Security.

ttps://www.cs.uct.ac.za/mit_notes/database/pdfs/chp12.pdf

[2] Cloud Audit Controls: MAC vs. DAC vs. RBAC.

 http://www.cloudauditcontrols.com/2014/09/mac-vs-dac-vs-

rbac.html.

[3] Discretionary Access Control Based on Granting and

 https://www.brainkart.com/article/Discretionary-Access-

Control-Based-on-Granting-and-Revoking-Privileges_11580/

[4] Elamasri R . and Navathe, S., Fundamentals of Database

Systems (3 rd Edition), Pearson Education, 2000.

[5] Database Management Systems, Raghurama Krishnan, Johannes

Gehrke, TATA McGraw Hill 3rd Edition.

219 | P a g e

Space for learners:

BLOCK III:

INTRODUCTION TO OBJECT

ORIENTED, DISTRIBUTED,

MULTIMEDIA AND SPATIAL

DATABASES

220 | P a g e

Space for

learners:

UNIT 1: OBJECT ORIENTED DATABASE

SYSTEM

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Concepts of Object-Oriented Databases

 1.3.1 Key Features of Object Databases

1.3.2 Drawbacks of Object Databases

1.3.3 Popular Object Databases

1.4 Standards, Languages and Design

 1.4.1 Standards, Languages

1.4.2 Object Database and Relational Database Design

1.5 Object Relational Database Systems

1.5.1 Relational Database Management System (RDBMS)

1.5.2 History of Object Relational Database System

1.5.3 Object-Oriented Relational Database Management

System (OORDBMS)

 1.5.4 Comparative Analysis of RDBMS and OORDBMS

1.6 Summing Up

1.7 Answers to Check Your Progress

1.8 Possible Questions

1.9 References and Suggested Readings

1.1 INTRODUCTION

In the earlier chapters, learners have been acquainted with some

advanced form of traditional database concepts. In this chapter, the

learners are going to be acquainted with a new dimension or extension

area of the existing traditional database theory. All the data are

imagined or visualized as some objects in this new area of discussion in

221 | P a g e

Space for

learners:

addition to the relational form of existing database management system.

The data here are stored, manipulated and accessed as objects, which is

done in object oriented programming paradigms. The concept of object

can be realized by defining one class with underlying characteristics

like data abstraction, information hiding, encapsulation and imposing on

it other object oriented features like inheritance, polymorphism, early

binding and late binding. The idea of object oriented database approach

comes into existence because of the acceptance of object oriented

programming approach among wide range of users worldwide. Some

object databases, accepted widely and appreciated by the database

community are mentioned in this unit. The required standards in the

design of the object oriented database systems and the associating query

languages needs to be discussed in order to have a detailed insight into

it. The relational database system is the basis on which the OORDBMS

approach is evolving. The history of object relational database system is

covered, which is followed up by its detailed description. The object

oriented relational database management approach is compared with the

classic relational database management approach as the conclusive

topic.

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Learn the object-oriented database system.

 Lean the need of object-oriented approach in databases.

 Learn the advantages and disadvantages of object-oriented

databases.

 Accustom with some popular object databases.

 Learn the standards, languages and design issues of object

based databases.

 Understand the history of object-oriented relational database

system.

 Understand how object-oriented relational database system

works.

 Compare RDBMS and OORDBMS.

222 | P a g e

Space for

learners:

1.3 CONCEPTS OF OBJECT-ORIENTED DATABASES

A database is generally considered as data storage. This storage is

further used for the purpose of searching, editing or updating,

generating reports etc. Data storages can further be classified in four

widely spelled categories viz., Traditional File System, Relational

DBMS, Object Oriented DBMS and Object-Oriented Relational DBMS.

These categories are classified on looking into the pattern of data.

The object-oriented paradigm is the basis upon which the object-

oriented database is designed. The data or the information in the object-

oriented database is represented and stored in the form of certain

objects. The object-oriented database is also known as object database

and is handled though object-oriented database management systems

(OODBMS).

Fig-1.1: Conceptual bock diagram for OODBMS

The OODBMS encompasses the conventional DBMS features as well

as the object-oriented features together. The conventional DBMS

features are like data integrity, persistence, concurrency, security,

backup, recovery query processing etc., while the object-oriented

features are encapsulation, class, object, overloading, overriding,

inheritance, early binding, late binding etc. Some of the popularly

known object-oriented programming (OOP) languages are C++, Java,

Perl, Ruby, Python and Java-script. Object-oriented databases are

administered through the object database management systems

223 | P a g e

Space for

learners:

(ODBMS). The preparatory idea of object oriented databases immerged

in the late nineties of the nineteenth century and currently it has become

common for various OOP based languages, such as C++, Java,

Smalltalk and LISP. For example, Smalltalk is used in GemStone, LISP

is used in Gbase, and COP is used in Vbase and so on.

Objects are composed of some data members and member functions or

methods, which are encapsulated within a single unit with individual

values and certain properties. Objects come into existence by

instantiation of certain user defined classes. Objects generally go

through a cycle that includes the creation or allocation of objects, use of

the objects and the deletion or de-allocation of objects. Object databases

are common among many modern high performances applications with

high speed data access and manipulative facilities. Some of the

significant areas where object databases are taking a pivotal role are the

real-time systems, architectural engineering for 3-D modeling,

telecommunications, robotics, molecular science, astronomy and many

more.

Fig-1.2: Object Oriented Model in OODBMS

224 | P a g e

Space for

learners:

1.3.1 Key Features of Object Databases

 Object oriented databases or Object-oriented DBMS systems

provide persistent storage to objects.

 It is capable of storing and reading data and converting the same

into program objects for further storing of reading data & loading

object based data in memory.

 Object databases bring permanent persistence to objects.

 The reading and mapping of the data of an object database to the

objects is direct without any API like tool.

Object databases facilitate quick access of data or information and

better performance inevitably. There are some object based databases

with multi-lingual supports too. For example, Gemstone is such an

object database that supports C++, Smalltalk and Java programming

languages.

1.3.2 Drawbacks of Object Databases

 Object databases are still not popular among vast community of

database users as compared to RDBMS.

 Developers are less in numbers in handling of object databases.

 Not many programming language support object databases.

 RDBMS have SQL as a standard query language. Object

databases do not have such a standard.

 Object databases are difficult to learn for non-programmers

1.3.3 Popular Object Databases

Following are some of the popular object databases. These databases are

accepted by most database users because of the highly flexible features

that conform to the needs of current users. The descriptions of few such

databases are mentioned below.

225 | P a g e

Space for

learners:

Cache

Cache is developed by InterSystems and it is a high-performing object

database. This object based database facilitates a set of services that

include data storage, concurrency management and handles diverse

transactions issues and process management activities. Cache engine

can be treated as full-fledged powerful database toolkit with extensive

relational database features. This database can be used for diverse

queries and modification purposes using standard SQL via ODBC,

JDBC or object based methods. The computational efficiency of Cache

is enormous and it is a most reliable relational database with high

scalability parameters. Some of the important features of Cache

database are mentioned below.

 Able to model data as objects, while eliminating mismatch

between databases and object-oriented applications.

 Supports user-defined data types.

 The ability to take the advantage of methods and inheritance like

functions.

 Object-extensions for SQL to handle object identity and

relationships.

 The ability to avail SQL and object-based access through a

single application.

 Clustering is used to store data ensuring maximum

performance.

ConceptBase

ConceptBase is another database system with multi-user and object-

oriented support which is deductive in nature. It is a powerful tool for

meta-modeling and is very useful for customizing modeling languages.

ConceptBase comes with an associating graphical user interface (GUI)

facilitating the users with some common routines. ConceptBase is

developed by the ConceptBase Team at University of Skövde (HIS) and

the University of Aachen (RWTH). Commonly available operating

systems like Linux, Windows and Mac support ConceptBase. There is

also a pre-configured virtual application within ConcepBase, which

contains associating executable files and source files along with the

226 | P a g e

Space for

learners:

tools for compiling. The system is distributed under a FreeBSD-style

license.

ObjectDB

ObjectDB is a powerful object-oriented database management system

(ODBMS) based on Java language. It is a compact but reliable system,

which is easy to use and extremely fast in terms of object database

access. It supports both the client-server mode and the embedded mode.

ObjectDB provides all the standard database management services. This

is the reason, why the development process gets easier and the

applications behave faster. It is capable of handling advanced level

queries and providing enhanced indexing facilities. It is very much

effective in multi-user environments, where there is always a rush of

users. ObjectDB can easily be embedded in any applications

irrespective of its sizes and types. This is such a database, which has

been tested with Tomcat, Jetty, GlassFish, JBoss and Spring.

Several other popular object based databases are ObjectDatabase++,

GemStone/S, Perst, ZODB, Wakanda, ODABA, Objectivity/DB. The

discussions on these object databases is beyond the scope of this

syllabus. The learners can use various internet sources to gather a

detailed knowledge on these object based databases.

1.4 STANDARDS, LANGUAGES AND DESIGN

There should always be a standard agreed upon by all vendors of a

particular type of database system. A standard can be resembled with an

agreed roadmap maintaining uniformity among all stakeholders to

proceed through a common model.

1.4.1 Standards and Languages

Some of the sound reasons for the need of standards are as follows.

 Standard provides support in maintaining the portability of

database applications. Portability is defined as the capability to

execute particular software or application on different platforms

with minimal modifications.

227 | P a g e

Space for

learners:

 Standards help in achieving interoperability. Interoperability

refers to the ability of an application to access multiple systems.

Here, the same application program may access some data stored

under one ODBMS package, and another data stored under another

source or package.

 Standard allows customers to compare commercial products of

various vendors more easily by determining which parts of the

standards are applied in their purchased product.

ODMG (Object Data Management Group) is an association for

monitoring the object oriented database management activities. This

association proposed a standard for ODBMS in the year 1993 and it was

named as ODMG 1.0 followed by ODMG 2.0 in 1995 and ODMG 3.0

in 2000.

The ODMG 3.0 standard has the following major specifications:

 Object Model

 Object Definition Language (ODL)

 Object Query Language (OQL)

 C++ Language Binding

 Smalltalk Language Binding

 Java Language Binding

1.4.1.1 Object Model

The object model specifies the ODMS based constructs. The basic

building blocks of the object model are – objects and literals.

 An object is referred to as the instance of its class type. The state of an

object is composed of the values that the object carries for a certain set

of properties. On the other hand, the behavior of an object is defined by

the set of operations executed by the objects.

228 | P a g e

Space for

learners:

Fig-1.3: Hierarchy of classes/objects in OODBMS

An object is described with some associating parameters i.e. identifier,

name, lifetime and structure. The details of these parameters are

mentioned below.

Object Identifier: An object can be differentiated from all other nearby

objects within its storage domain by using the object identifier. The

objects always preserve the same object identifier in its lifetime during

execution of a computer program. Thus, the value of an object’s

identifier never changes. The object remains the same, even if its

attributes or the relationship values change. Object identifiers are

generated by the OODBMS, but not by the other applications.

Object Name: In addition to the object identifier, the OODBMS may

assign one or more names to the objects that are meaningful for the

programmers or the end users. The system can refer to an object by its

object name. It applies certain mapping functions to determine the

object identifiers and locate the desired object.

Object Lifetime: The lifetime of an object is another crucial issue to be

addressed. Object lifetime determines the extant of memory or the

storage time allowed to the object. Two variants of lifetime for the

object are supported in the object based models. They are transient and

persistent. An object, whose lifetime is transient, is allocated a memory

space to be managed by the program’s runtime system. When the

229 | P a g e

Space for

learners:

process terminates, the memory is de-allocated. On the other extreme,

an object, whose lifetime is persistent, is allocated memory space to be

managed by the OODBMS runtime system. This kind of objects exists

in memory after the termination of the process initiated by the

application program. So, it has a long lifetime as compared to transient

form.

Object Structure: The structure of an object can be either atomic or

non-atomic (if the object is composed of other objects). The atomic

object referred here is user-defined in nature. There is no built-in atomic

object type included in OODBMS object models.

Some other important definitions useful for the demonstration of an

object model are stated in the following section. The terms used here are

class, interface, struct, literals and various literal types.

 A class defines both the abstract state and the abstract behaviour of

the object.

 The interface defines only the abstract behavior of some objects.

 The struct defines the abstract state of some literals.

 A literal has no identifier and cannot act alone. The literals are

embedded in objects and cannot be individually referenced. Objects

and literals can be classified by their types. Although, all the

elements of a given type have a common range of states and

behaviors, a literal defines only the abstract state of a literal type.

The value of literals does not change. Few examples of literal values

are 67, 17.161576, ‘P’, ‘Q’, “GUIDOL” and “August-15, 2021”.

These examples are some constant numbers, characters and strings.

 In addition to the struct definition and the primitive literal datatypes

(boolean, char, short, long, float, double, string), object definition

languages define declarations for user-defined collection, union and

enumeration literal types.

 Three literal types are supported by the object models. They are

atomic, collection and structured literals.

o Atomic literals correspond to the values of basic data types.

Various numeric numbers, characters, Boolean values etc. are

the examples of atomic literal types.

o Collection literals are typically found in the ODMG object

models that support literals of the following types: set<t>,

230 | P a g e

Space for

learners:

bag<t>, list<t>, array<t>, dictionary<t, v> where t is a type of

objects or values in the collection.

o Structured literals correspond to the values constructed by

tuple constructor. They include the date, time, interval and

timestamp as built-in structures and any other user defined

structures.

1.4.1.2 Object Definition Language (ODL)

ODL is a specific kind of a language that specifies the structure of

databases in object-oriented terms. ODL is an extension of Interface

Description Language (IDL), which is again a component of CORBA

(Common Object Request Broker Architecture). CORBA is a standard

for distributed, object-oriented computing which will be discussed in

the later chapters. The ODL is basically a specification language or a

design language, which is used to define the specifications of object

types that obey the rules of ODMG object model. This can be used like

the E/R diagram used in the case of RDBMS platform. ODL is

independent of any programming language and it is not used for

database manipulation activities.

1.4.1.3 Object Query Language (OQL)

OQL is a query language preferred by object data management group

(ODMG) for object oriented database management purpose. OQL

works closely with programming languages like C++. The embedded

OQL statements within a host language return compatible objects useful

for further processing. OQL’s syntax is similar to SQL with additional

features for object handling. This query language is designed to operate

on databases described through ODL. Unlike SQL, which produces

collection, OQL produces collections (sets, bags, lists) of objects. OQL

fits naturally in object oriented host languages. Returned objects are

assigned in the variables present in the host program and these variables

are then used for further programming based manipulative works.

1.4.1.4 C++ Language Binding

Binding of ODMG implementations to C++ intends at the writing of

portable C++ codes that manipulates persistent objects. This object

manipulative language of C++ is abbreviated as OML. The C++

language binding includes a version of the ODL that uses C++ syntax,

231 | P a g e

Space for

learners:

OQL invoking interface and some procedures for operations on

OODBMS prescribed transactions.

1.4.1.5 Smalltalk Language Binding

Binding of ODMG implementations to Smalltalk focuses on the binding

in terms of the mapping between ODL and Smalltalk. The Smalltalk

bindings also include a mechanism to invoke OQL and required

procedures for operations on databases and other transactions.

1.4.1.6 Java Language Binding

The binding between the ODMG Object Model (ODLs and OMLs) and

the Java programming language is defined here. The Java language

binding includes some mechanism allowing the invoking of the desired

OQL and procedures for operations on ODMSs and transactions.

1.4.2 Object Database and Relational Database Design

Whenever we discuss the differences between object database designs

(ODB) and relational database designs (RDB), the handling of the

relationships issue takes a major role.

In relational database designs, the relationships among the tuples or

records are specified by the attributes with matching values. These can

be termed as value references and is specified through the foreign key

concept. Foreign keys are the values of primary key attributes in tuples

of the referencing relation or table. The primary keys are limited to

being atomic in nature in each record.

In object database design, the relationship issue is handled by reference

attributes that include object identifiers (OIDs) of the related objects. In

object database design, both single references as well as collection of

references are allowed. Another notable and influencing difference

between ODB and RDB design is how the inheritance is handled. These

mentioned structures are built into the model, so that the mapping is

achieved by using the inheritance constructs. Inheritance can be

achieved through derived (:) and extends constructs. In relational

design, there are several options to choose, because there is no built-in

constructs for inheritance in the classic version of relational design. It is

necessary to specify the operations early on in the design since they are

232 | P a g e

Space for

learners:

part of the class specifications. It is an important matter to specify the

operations needed during the design phase for all types of databases.

But it may be delayed in RDB design, because it is not mandatory until

the implementation phase comes in force. One can easily observe one

realistic difference between the relational model and the object model of

data in terms of behavioral specifications. Although relational data

models do not compel or encourage the database designers to set some

valid behaviors or operations, this is an implicit requirement in the case

of object models.

1.4.2.1 Mapping of an Enhanced Entity Relationship

(EER) Schema into an Object Database (ODB)

Schema

The correlation of EER schemas and ODB schemas is simple, because

the ODB schemas provide support for inheritance. Once the mapping

has been completed, the operations need to be added to ODB schemas.

It is because the EER schemas do not include any operations like ODB.

The mapping of EER into ODB schemas can be exhibited using the

following steps.

Step -1

 Creation of an ODL class for each EER type.

 Multi-valued attributes are declared by sets, bags or lists.

 Composite attributes are mapped into tuple constructors.

Step – 2

 Add reference attributes for each binary relationship into the

ODL classes that participate in the relationship.

 Relationship cardinality is set as single-valued for 1:1 and N:1

types and set- valued for 1:N and M:N types.

 Relationship attributes are created through the use of tuple

constructors.

Step - 3

 Include the operations corresponding to each class.

233 | P a g e

Space for

learners:

 EER schema does not provide these operations and it must be

added to the database design by choosing it from the original

requirements.

 The associating constructor and destructor operations must also

be included.

Step - 4

 Inheritance relationships can be specified via extends clause.

 An ODL class that corresponds to a sub-class in the EER

schemas inherits the types and methods of its baser-class in the ODL

schemas.

 Its non-inherited attributes, relationship references and

operations are specified as mentioned in the earlier steps.

Step - 5

 Weak entities can also be mapped in the same way as the regular

entity types.

 Non-participating weak entities in any relationships may

alternatively be presented as composite multi-valued attribute of the

owner entity.

 The attributes of the weak entity are included in the struct <... >

construct.

Step - 6

 Map categories (union types) to object definition language.

 May follow the same mapping used for EER-to-relational

mapping.

 Declare a class to represent the category.

 Define the 1:1 relationship between the category and each of its

base-classes.

Step – 7

 Map multi-dimensional cardinality relationships whose degree is

greater than 2.

234 | P a g e

Space for

learners:

 Each relationship is mapped into a separate class with

appropriate reference to each participating class.

1.5 OBJECT RELATIONAL DATABASE SYSTEMS

Object–relational database systems are commonly termed as Object–

relational database management systems (OORDBMS). OORDBMS is

an object oriented version of the traditional relational database

management systems (RDBMS). This is a kind of a hybrid approach

capable of handling the object oriented as well as relational aspects of

DBMS, which well fits with the current industry requirements.

1.5.1 Relational Database Management System (RDBMS)

RDBMS is a simply the relational version of traditional DBMS, which

incorporates the terms relations, tables, attribute, columns, integrity,

security etc. into its operational procedures. RDBMS deals with a

number of tables together to store, edit, update and delete data

considering the normalization aspects like 1NF, 2NF, 3NF and BCNF

forms. Standard SQL statements are used to operate on RDBMS.

Various commonly used RDBMSs are Oracle, Microsoft’s SQL server,

MySQL etc. Although, most of the needs of a common database user

are addressed by these softwares, the object-oriented aspects could not

be incorporated here. This is the reason why the object-oriented

relational database management system is becoming the need of the

hour. The later section is going to elaborate these aspects followed up

by sating the differences between OODBMS and RDBMS.

1.5.2 History of Object Relational Database System

The Object–relational database system or OORDBMS came into light in

the early 1990s. This trend comes into existence by extending the

relational database concepts with the addition of the concept of object.

The industry experts aimed to get hold on a declarative query-language

based upon predicate calculus as a vital component of OORDBMS.

Two most notable research projects viz., Illustra and PostgreSQL was

235 | P a g e

Space for

learners:

brought into reality by Postgres (UC Berkeley) during this time. In the

mid of 1990s, early commercially available products were released.

These releases include various products like Illustra

(IBM), Omniscience (Oracle) and UniSQL (KCOMS). The Ukrainian

developer Ruslan Zasukhin, who is the founder of Paradigma Software,

Inc. developed and released the first version of Valentina database in

the mid of 1990s, which was used as C++ SDK. After less than a decade

of time, PostgreSQL had become a commercially available database and

has become the basis for several currently available products

incorporating OORDBMS features. The experts in the domain started

referring these products as object oriented relational database

management systems or OORDBMS. Many of the ideas of early object

relational database efforts have largely been incorporated into SQL:

1999 via specific structured types. For example, IBM's DB2, Oracle

database, and Microsoft’s SQL Server are claiming to support most

OORDBMS requirements and do so with a varying degree of success.

SQL statements are written in RDBMS like this-

 CREATE TABLE Customers (

 Id CHAR(10) NOT NULL PRIMARY KEY,

 Surname VARCHAR(30) NOT NULL,

 FirstName VARCHAR(30) NOT NULL,

 DOB DATE NOT NULL [# DOB :

Date of Birth]

);

 SELECT InitCap(Surname) || ', ' || InitCap(FirstName)

 FROM Customers

 WHERE Month(DOB) = Month(getdate())

 AND Day(DOB) = Day(getdate());

Standard SQL databases allow customized functions also, which allow

the following type of query-

SELECT Formal (Id)

FROM Customers

236 | P a g e

Space for

learners:

WHERE Birthday (DOB) = Today();

In OORDBMS, queries containing user-defined data-types and

expressions like BirthDay() are seen as mentioned below-

 CREATE TABLE Customers(

 Id Cust_Id NOT NULL PRIMARY KEY,

 Name PersonName NOT NULL,

 DOB DATE NOT NULL

);

SELECT Formal(C.Id)

FROM Customers C

WHERE BirthDay (C.DOB) = TODAY;

The object relational models can offer another interesting capability.

Here, the database can make use of the relationships between the data to

easily fetch the related records. For example, in an address

book software application, an additional table is added to the existing

ones to hold the addresses of customers. Using a traditional RDBMS,

collecting information for both the user and their address requires a

"join" as mentioned below-

SELECT InitCap(C.Surname) || ', ' || InitCap(C.FirstName), A.city

FROM Customers C join Addresses A ON A.Cust_Id=C.Id

WHERE A.city = "New York";

The above query when applied in an object–relational database appears

in a simpler way as mentioned below-

SELECT Formal (C.Name)

FROM Customers C

WHERE C.address.city = "New York";

237 | P a g e

Space for

learners:

1.5.3 Object-Oriented Relational Database Management

System (OORDBMS)

An object-relational database is maintained by a relational database

management system with an associating object-oriented database

model, where all data and data models are created treating them as

objects. Data abstraction, data hiding, early binding, late binding,

polymorphism and inheritance like properties are directly supported in

the database schemas and the associating query languages support the

object based data access. Oracle is one of the popular RDBMSs, which

meets the industry standards. The object-relational database systems are

an attempt to merge the two dissimilar trends together. It can be

visualized as an object database expansion of a relational model

resulting in a hybrid design. One of the most visible aspects that we

might observe is in the addition of object database features in the SQL

revision. But, the tough part of a relational model immerges when

someone tries to describe complex objects.

The object-oriented relational database mechanism gains its importance

with the introduction of the type constructors describing row types,

array type being replaced by collections, sets and lists. The creation of

derived mechanisms for specifying object identity, encapsulation and

inheritance is also helping OORDBMS to gain its importance. It is to be

noted that the core technology used in OORDBMS is based on

relational models. The commercial products (e.g. Microsoft SQL

Server) have simply added a layer of some object-oriented principles on

top of the relational database management system. The translation of

object-oriented mechanism into relational mechanism is one of the

challenging tasks for typical OORDBMS. This problem is typically

addressed by an object-oriented application that does the

communication between the object-oriented applications with the

underlying relational databases.

Both relational and object-oriented mechanisms are having a lot of

differences in terms of their underlying principles. This is the reason

why this model tries to negotiate among these two techniques to adopt

some intermediate measures for the sake of developer's convenience.

One of the very important reasons is to permit the storage and retrieval

of objects in a way how RDBMS functions. This act provides an

238 | P a g e

Space for

learners:

extensive liberty to query languages to work on the object-oriented

principle. Some of the common implementations in this regard are the

Oracle Database, PostgreSQL, and Microsoft’s SQL Server. IBM DB2

also supports objects and can be considered as OORDBMS.

In OORDBMS, the approach is essentially that of relational databases,

where the data resides in the database and is manipulated collectively

with queries through a query language. But, in OODBMS, where the

database is essentially a persistent object store for software written in

an object-oriented programming language, a programming API is solely

responsible for storing and retrieving of objects. In this case, a very

little or no specific support presents for query languages.

The basic need of object–relational database arises from the fact that

both relational and object databases have their individual advantages

and drawbacks. Although, the object oriented databases allow sets, lists,

arbitrary user-defined data types and nested objects, they do not provide

any mathematical base for in-depth analysis. The basic goal for the

object–relational database is to bridge the gap between relational

databases and the object-oriented modeling techniques. The commonly

used programming languages such as C++, C#, Java and Visual

Basic.NET are seen implementing these extensive features of object-

relational databases. Further, the object–relational DBMS or

OORDBMS allows software developers to integrate user-defined data

types and methods that apply to them into the DBMS. Some of the

leading features or characteristics of OORDBMS are Complex data,

Type inheritance and Object behavior.

Complex data creation is based on basic schema definition through

the user-defined types. Structured complex data are when stored in a

hierarchy; it offers an additional property termed as type inheritance.

That is, a structured type can have subtypes that reuse all of its

attributes and contain additional attributes specific to the subtype.

Finally, the object behavior is related with the access to the program

objects. Such program objects must be storable and transportable for

database processing. This is the reason why they are usually named

as persistent objects. Inside a database, all the relations with a persistent

program object are relations with its object identifiers. The mentioned

points above can be addressed in a proper relational system, although

the SQL standard and its implementations enforce arbitrary restrictions

239 | P a g e

Space for

learners:

and some amount of additional intricacy. Extension of the data

model with custom data types and methods is possible in a properly

arranged relational system.

1.5.4 Comparative Analysis of RDBMS and OORDBMS

The comparative analysis of a typical RDBMS with the OORDBMS

helps understanding the changes made in the OORDBMS.

Table 1.1: Comparative Analysis of RDBMS and OORDBMS

RDBMS OORDBMS

Ensures only the data

independence part

Ensures data independence as

well as data encapsulation and

abstraction of data

Data can only be recognized

without affecting the mode

of using it

Data as well as class/object can

be recognized without affecting

the mode of using it

Stores only the data

Stores not only the data but also

the methods imposed on that

data

Data can be partitioned

depending upon the user’s

requirements and specific

user’s applications

The data can be used in direct

access mode and also through

the class/object methods and

sometimes the entire data can be

made public using specific

access controls

Users can perceive data as

columns, rows or tuples

(records) and tables

Apart from handling complex

structure of data this system can

handle relational data

Thus, after all these discussions, an OORDBMS can be understood as a

DBMS, but with the extended relational and object-oriented

capabilities. It is because of the functional differences among these two

extending approaches, they are to proceed in a hand-in-hand strategic

and somewhat compromising approach.

240 | P a g e

Space for

learners:

CHECK YOUR PROGRESS

Multiple choice questions:

1. Object databases are based on

i) Relational approach

ii) Object based approach

iii) Both (i) and (ii)

iv) None of these

2. The term attribute refers to a

i) Record

ii) Row

iii) Column

iv) Key

3. Which of the following can be defined using ODL?

i) Structure

ii) Attribute

iii) Operation

iv) All of above

4. Which of the following belongs to an atomic literal?

i) String

ii) Boolean

iii) Long

iv) All of above

5. Which among the following is/are not Object Based Database(s)?

i) Cache

ii) Foxpro

iii) Wakanda

iv) Both (i) and (iii)

State whether True or False:

6. A single programming paradigm acts behind a single programming

language.

7. A class is an instance of an object in OOP.

8. ODMG looks after the object models in an OODBMS.

9. MS SQL Server does not support OOP principles in any of its

versions.

10. OORDBMS works in the principles of OOPs as well as the

relational models.

241 | P a g e

Space for

learners:

1.6 SUMMING UP

 DBMS is a software platform, where data are stored, managed

and retrieved as per user’s requirement through some standard

language queries like SQL.

 RDBMS is a similar system like DBMS which also store,

manage and retrieve data when needed by the users, but is has

the additional capability of maintaining relational tables or data.

 ODMG stands for Object Data Management Group. It is a

consortium responsible for the monitoring of object oriented

database management activities.

 OODBMS is a DBMS system, where the data are stored,

managed and retrieved considering most of the data as objects is

called the OODBMS. Object oriented features like inheritance,

polymorphism are applicable here.

 OORDBMS is a RDBMS system with the object oriented

extension which is capable of implementing object oriented

features like class and object, inheritance, polymorphism etc. in

addition to the classic RDBMS features.

 ODL is a specific kind of a language that specifies the structure

of databases in object-oriented terms.

 OQL is a query language preferred by object data management

group (ODMG) for object oriented database management

purpose.

1.7 ANSWERS TO CHECK YOUR PROGRESS

Multiple choice questions:

1. (ii) 2. (iii) 3. (iv) 4. (iv) 5.

(ii)

State whether True or False:

6. False 7. False 8. True 9. False 10. True

242 | P a g e

Space for

learners:

1.8 POSSIBLE QUESTIONS

 Short answer type questions:

1) What is the difference between an object and a literal in the object

oriented data model (OODM)?

2) What is an object? What is an object model with reference to

ODMG standards?

3) What are the main difference between designing a relational

database and an object database?

4) Differentiate between:

i) Interface and Class

ii) Atomic object and Collection object

iii) Object identifier and Object lifetime

iv) Persistent object and Transient object

5) What is the significance of ODL in OODBMS?

Long answer type questions:

1) Explain the major specifications mentioned in ODMG 3.0 standard.

2) Describe the differences and similarities between objects and

literals in the ODMG object model?

3) Describe the steps involved in mapping the EER schema into ODB

schema.

4) Explain in detail the OORDBMS concept with the introduction to

all its organizing components.

5) Describe in detail the differences between RDBMS and

OORDBMS.

1.9 REFERENCES AND SUGGESTED READINGS

 M. Stonebraker, “Inclusion of New Types in Relational

Database Systems”, In Proc. of the International Conf. on Data

Engineering (1986), pages 262–269.

 M. Stonebraker and L. Rowe, “The Design of POSTGRES”, In

Proc. of the ACM SIGMOD Conf. on Management of Data

(1986), pages 340–355.

 M. Atkinson, et.al., “The Object-Oriented Database System

Manifesto”,

243 | P a g e

Space for

learners:

In Proceedings of the “First International Conference on

Deductive and Object-Oriented Databases”, pages 223-40,

Kyoto, Japan, December 1989.

 W.Kim And Lochovsky (Eds), Object-Oriented Concepts,

Databases, and Applications, Addison-Wesley (Reading MA),

1989

 https://en.wikipedia.org/wiki/Comparison_of_object_database_

management systems

 https://en.wikipedia.org/wiki/Object_database

 http://www.odmg.org

244 | P a g e

Space for learners: UNIT 2: DISTRIBUTED DATABASE

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Distributed Database

2.4 Data Fragmentation

2.5 Data Replication and Allocation Technique.

2.6 Types of Distributed Database System

2.7. Query Processing in Distributed Database

2.8 Concurrency and Recovery Distributed Database

2.9 Summing Up

2.10 Answers to Check Your Progress

2.11Possible Questions

2.12 References and Suggested Readings

2.1 INTRODUCTION

The database is a collection of structured information. Among
other database systems, a distributed database is one where files
are stored in different sites or systems. This unit will give an
overview of the distributed database Management System
(DDBMS). The unit shows the uses of distributed databases. Data
fragmentation, replication, and allocation are very much important
in a database. These are also explained in detail in this unit by
considering the example of distributed database. Types of the
distributed database are also explained in this unit by considering
the examples. Query processing and data recovery of the
distributed database are shown by taking the database example.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to know
i) About the distributed database

245 | P a g e

Space for learners: ii) About the types of the distributed database
iii) About the data fragmentation, replication, and allocation in

a distributed system.
iv) About the query processing database distributed system.
v) About the concurrency and recovery in a distributed

database.

2.3 DISTRIBUTED DATABASE

The database is a collection of structured information. Among all
database systems, a distributed database is one where files are
stored in different computer systems or sites. These sites are
connected through a communication network. The application
service layer of the distributed system provides services to the
user. The users are unknown about the distributed storage
structure of the system. They think that one single database is
present in the system to provide services to the user. Data is
distributed among the system through the communication network
and it is controlled by the Distributed Database Management
System (DDBMS).

Fig. 2.1. Architecture of DDBMS

In Fig. 2.1, four different systems are interconnected through the
communication network. This type of system is known as a
distributed system which is also known as a loosely coupled

246 | P a g e

Space for learners: system. In this type of system, the data is distributed among the
system. That is the reason the database of this type of system is
known as a distributed database. Every DDBMS has some
features.

I. Databases of the DDBMS are interlinked logically and they
are connected through a communication network. Often, the
DDBMS act as a single database for the user.

II. Data is physically stored in multiple sites and the data is
managed by a local DBMS in the site which is independent
of the other sites.

III. A distributed database is not a loosely connected system.

IV. A distributed database integrates transaction processing.

V. DDBMS synchronizes the distributed database periodically
for which it is transparent to the users.

Every distributed database has to build with some goals and these
are as follows.

i) Reliability: In DDBMS, if one of the systems fails, then
other systems will provide the service to the user. The
other system can complete the task of the failure system.

ii) Availability: In DDBMS, sites or systems are available to
provide reliability to the system. If one distributed system
fails, other sites can give service, and it maintains the
availability of the systems.

iii) Performance: Performance of the DDBMS can be
achieved by distributing data or information over
different sites which are located in different locations. So,
the databases are available to every location which is
maintained through the communication channel.

2.4 DATA FRAGMENTATION IN DDB

Fragmentation is a normal process of diving the database into
different tables in DBMS. In a distributed database, the entire

CHECK YOUR PROGRESS - I

1. What do you mean by distributed database?

2. What is reliability in DDB?

3. What are the goals of a distributed system?

247 | P a g e

Space for learners: database is divided into different subtables or sub relations so that
each subtable or sub relation can be saved in different sites of the
distributed system. These subtables or sub relations are the logical
units of the DDBMS. The fragmentation is done in such a way that
the subunits give the actual distributed database after combining it.
Let’s, you have a table T in your distributed system and it is
fragmented into different sub tables t1, t2, t3, ----, tn. These
fragments should have sufficient information, so that it will restore
the original table after combining the t1, t2, t3, ---, tn using the
UNION or JOIN operation. These subtables are known as the
fragments and the process is known as data fragmentation in
DDBMS. The fragments are independent of each other’s and user
are concerned about the data fragmentation. This is known as
fragmentation transparency.

The distributed data fragmentation process has some advantages:

I. As the data is fragmented and can be stored locally, the
performance of the DDBMS will increase.

II. Due to the local data store in the local sites, local query
optimization is possible in DDBMS.

III. Fragmentation helps to main the security and privacy of the
local system which will help to main the overall security of
the DDBMS.

You have 3 methods for data fragmenting of a table and they are.

i) Horizontal Fragmentation.

ii) Vertical Fragmentation.

iii) Hybrid Fragmentation.

2.4.1 Horizontal Fragmentation

Horizontal fragmentation allows dividing a table horizontally into
subsets of tables. It means that it will divide the table row-
wise(tuple). Let's you have a table IDOL as follows.

S_Roll_No S_Name Branch
2020001 A MSc. IT
2019001 D BSc. IT
2020002 B MSc. IT

248 | P a g e

Space for learners: 2020003 C MSc. IT
2019002 E BSc. IT

Now, you can divide this table into different fragments based on
different conditions such as branches. For example,

i) you may Fragment 1 where Branch is BSc. IT.
ii) you may Fragment 2 where Branch is MSc. IT.

Now, the fragment outputs are presented below.

Fragment 1 =
S_Roll_No S_Name Branch
2019001 D BSc. IT
2019002 E BSc. IT

Fragment 2 =

S_Roll_No S_Name Branch
2020001 A MSc. IT
2020002 B MSc. IT
2020003 C MSc. IT

Now if you combine these two fragments (fragment 1 and
fragment 2), you will get the original table after performing the
union operation between fragment 1 and fragment 2 as follows.

IDOL = fragment 1 U fragment 2.

In DDBMS, the fragments are saved in different sites as follows.
In Fig. 2.2, fragment 1 is saved in site A where fragment 2 is
saved in site B.

 Fig. 2.2: Horizontal Fragmentation in DDBMS.

249 | P a g e

Space for learners: 2.4.2 Vertical Fragmentation

Vertical fragmentation divides the table column-wise (attribute). It
is more complex than horizontal fragmentation. For the
reconstruction of the original table from the fragment, the primary
key should be available in all the fragments. The reconstruction is
doing using join. For the above table IDOL database, you can
create the follows vertical fragmentation.

Vertical Fragmentation 1 =

S_Roll_No S_Name
2020001 A
2019001 D
2020002 B
2020003 C
2019002 E

Vertical Fragmentation 2 =

S_Roll_No Branch
2020001 MSc. IT
2019001 BSc. IT
2020002 MSc. IT
2020003 MSc. IT
2019002 BSc. IT

In vertical fragmentation 1 and vertical fragmentation 2, one filed
is common i.e the primary key of the IDOL table. It is required to
perform the join operation between the fragments. You can join
the two fragments to get back the original table IDOL as follows.

ΠIDOL (T1 ⋈T2).

In DDBMS, the vertical fragments are saved in different sites as
follows. In Fig. 2.3, fragment 1 is saved in site A where fragment
2 is saved in site B.

250 | P a g e

Space for learners:

Fig. 2.2: Vertical Fragmentation in DDBMS.

2.4.3 Hybrid Fragmentation

It is a combination of horizontal and vertical fragmentation. This
fragmentation can be done in two ways.

I. The first method is to first create horizontal fragments and
then create vertical fragments.

II. The second method is to first create vertical fragments and
then create horizontal fragments

For the above IDOL table, the hybrid fragmentation can be found
as follows.

S_Name Branch
A MSc. IT
B MSc. IT
C MSc. IT

In this fragmentation, the first horizontal fragmentation followed
by the vertical fragmentation has been done.

251 | P a g e

Space for learners:

2.5 DATA REPLICATION AND ALLOCATION

The process of storing data or information in more than one site or
system in a distributed system is known as data replication. It is
useful in improving the availability of data. Data replication
copying the data from the database of one system to another
system. Due to this process, users can send the same data without
any inconsistency. The main goal of data replication is to increase
the availability of the data and also to increase the query
processing technique. Two types of data replication are present.

i) Synchronous Data Replication: In this type of replication,
once the changes are made in a table of the database, the
data replication is done immediately.

ii) Asynchronous Data Replication: In asynchronous
replication, the data replication is done after the commit
operation of the database.

CHECK YOUR PROGRESS - II

4. True or False
i) Vertical fragmentation divides the table column-wise

(attribute).
ii) Horizontal fragmentation allows dividing a table

horizontally into subsets of tables
5. Let's you have a table COURSE as follows.

S_Roll_No S_Name Course
2020001 A MSc. IT
2019001 D BSc. IT
2020002 B MSc. IT
2020003 C MSc. IT
2019002 E BSc. IT

i) Create one horizontal fragmentation based on MSc. IT
Course

ii) Create one vertical fragmentation based on Roll No
and Course = Bsc. IT

252 | P a g e

Space for learners: Apart from the above data replication, there are another few data
replications in a distributed database.

i) Transactional Replication: Transactional replication is
generally used in server-to-server communication. In this
replication, a full copy of the database is present with one
system and that system gets the update notification from
the other system once the data changes. Data replication
is done in real-time, so it gives a consistency guarantee.
For example, Azure SQL.

ii) Snapshot Replication: In this replication, a snapshot of
the database is sent to one database from another
database. Data is not updated continuously. Data is
updated infrequently at a specific time. It is more
complex than transactional replication. For example, SQL
Server replication.

iii) Merge Replication: In this replication, data of one
database is combined with another database. In this type
of replication, the data is updated from both databases, so
hard to main consistency and concurrency. For example,
Server and Client Communication (SQL server).

Data replication in DDBMS happens in different modes. They are
as follows.

i) Full Replication: In this mode, a full copy of the database
is present at every site of the distributed system. This mode
increases the availability of the data in the system, and the
user gets the highest experience from it. It is hard to main
the concurrency.

ii) No Replication: Here, the data is divided into different
fragments and each fragment is present at only one site
which is located in different locations. Data availability is
less than the full replication but concurrency can be
controlled.

iii) Partial Replication: Here some of the data fragments of
the database are replicated but some are not. Data
replication is depending on the demands of the respective
data fragments.

Data allocation is a process to decide where exactly you want to
store the data. It involves at per which data has to be stored at
what location. The data allocation technique allocates data
fragments to a site in a distributed database. Each data fragment or

253 | P a g e

Space for learners: its replication can be stored in the particular site of a system. The
process of storing data in a site is known as data allocation. The
sites and numbers of data replication depend on the demand of the
data fragments. The choice of sites and the degree of replication
depend on the system performance and availability and also
depend on the number of transactions submitted on the site. If the
user demands high availability of data, then full replication is a
good choice for this allocation. Otherwise, if a fragment of data is
required then partial replication can be used to allocate the data.

Three main data allocation methods are there and they are as
follows.

i) Centralized: Here entire database is stored in a single site.
No such data distribution or replication occurs in this
process.

ii) Partitioned: In this technique, data is divided into different
fragments and those fragments are stored in different sites
of the distributed systems.

iii) Replicated: In this technique, a copy of the database is
present in a different location and it is accessed from those
locations.

2.6 TYPES OF DDB SYSTEM

There are two types of distributed databases are found and they are
homogenous database and heterogeneous database.

i) Homogeneous Database

In a homogeneous database, the physical and logical structures of
the database are identical for all the systems. It means that OS,
DBMS, and software are the same for that system. Hence, it is
easy to manage the homogenous distributed database. For
example, Oracle Database server.

ii) Heterogeneous Database

In a heterogeneous distributed database, the physical and logical
structures of the database are not the same. The sites use different
schema and software. It is hard to manage concurrency and
transactions in a distributed system. Here, one site of the
distributed system may be completely unaware of the other sites of
the systems. For example, Oracle8.

254 | P a g e

Space for learners: 2.7 QUERY PROCESSING IN DDB

In a distributed database system, query processing is done at the
end of the user site and server site. A query comes from the user
site, so it is checked and optimized at the user site i.e. it is at the
local level. The query comes to the server, so it is processed and
optimized at the server site i.e., it is at the global level.

In a homogeneous distributed database, when a query comes from
a user site, it will be able to manage the query easily as the sites
have the same physical and logical structure. But in heterogeneous
systems, it will not able to manage the work easily. So, there
should be some techniques to handle queries in heterogeneous
system databases. There are two types of mechanisms in the
heterogeneous system to manage such situations.

i) Multi-Database

In this method, a dynamic schema is created for the
respective databases. If a user site uses a database, then a
dynamic schema is created to connect the database D. Due
to this schema, the user query is flexible with the database.

ii) Federated mechanism

In this method, a global schema is used to access the
database. It means that a centralized schema is used to
access all the databases of the distributed system. This
global schema will work properly even though the data is
fragmented and distributed over different sites.

When a federated mechanism is used, a few of the things have to
manage during the database access. They are presented below.

i) Data Models

During the time global schema, the schema should take care
of the data model. Because distributed database means
different databases with their physical and logical structure.
So, the federated schema should be compatible with all these
types of systems and also should handle the query.

ii) Constraints

Each database of the distributed system has its process of
defining the data constraints and has its method of accessing

255 | P a g e

Space for learners: the data. So, the federal schema should handle these
constraints.

iii) Query Language

In a distributed database, the databases are varying from site
to site. So, the query languages are also varied from site to
site. Hence federated schema should develop a common
language that is compatible with all the query languages.

iv) Data Transfer Cost:

In a distributed database, databases are distributed. So, the
table of the databases is also distributed. Even some tables are
fragmented. So, during the time of query processing; it may
need to access the tables at the different databases or different
locations. This demands a request and transfer cost for the
data which needs to optimize.

To explain data transfer cost, let’s you have two distributed
database tables namely IDOL_EMP and IDOL_DEPT. The
IDOL_EMP has a table ÉMP which is present in one location
(location 1) of the distributed system, and IDOL_DEPT has
another table DEPT in another location (location 2) of the
distributed system. The EMP contains the basic information of the
employee where the DEPT table contains the name of the
department where the employee works. Let’s you have 500 data of
size 50 bytes in your EMP table where DEPT table has 10 data of
size 10 bytes. Consider you have processed a query to find the
name of the employee and department from another location
(location 3). The result of this query will include 500 records,
assuming that every employee is related to a department. Suppose
that each record in the query result is 40 bytes long. In this
situation, you can execute your query based on the three costs, and
accordingly, you can choose the optimized cost.

CASE I. You are executing your query from location 3. For this
case, the cost is as bellow.

i) Cost of transferring EMP data: 500 records * 50 bytes =
25,000 bytes.

ii) Cost of transferring DEPT data: 10 records * 10 bytes =
100 bytes.

256 | P a g e

Space for learners: iii) Therefore, total cost = 25,000 bytes + 100 bytes
= 25,100 bytes

CASE II: You can shift the data of the EMP table from location 1
to location 2 and then you process it and transfer the data to
location 3. For this case, the cost is as bellow.

i) Cost of transferring EMP data: 500 records * 50 bytes =
25,000 bytes

ii) Cost of transferring the result: 500 records * 40 bytes =
20,000 bytes.

iii) Therefore, total cost = 25,000 bytes + 20,000 bytes
= 45,000 bytes

CASE III: You can shift the DEPT data of the EMP table from
location 2 to location 1 and then you process it and transfer the
data to location 3. For this case, the cost is as bellow.

i) Cost of transferring DEPT data: 10 records * 10 bytes =
100 bytes

ii) Cost of transferring the result: 500 records * 40 bytes =
20,000 bytes.

Therefore, total cost = 100 bytes + 20,000 bytes = 20,100 bytes

Now, if you compare the cost of CASE I, CASE II, and CASE II,
the cost of CASE III is the minimal one and it is optimized. Using
this method, you can perform your query in the distributed
database at a minimal cost.

2.8 CONCURRENCY AND RECOVERY IN DDB

During the time of concurrency control and recovery distributed
databases face lots of issues. They are presented below.

i) Multiple copies of data:

A distributed system may have a copy of the database in
each site to increase the availability of the system. To make
a copy consistent and to maintain consistency among the
copies of the database, concurrency and recovery are
important, but it is not easy to maintain consistency.

ii) Failure of a site:

257 | P a g e

Space for learners: In a distributed system, the database of one site may fail.
But the DDBMS should work with the other sites and it
will try to recover the sites and make its date up to date.

iii) Failure of Communication Network:

The DDBMS must deal with the communication failure
and will try to maintain the concurrency and recover the
sites as soon as possible. If network portioning occurs due
to network failure, then it is hard to recover the sites and
maintain consistency.

iv) Distributed Commit:

The problems occur when a commit transaction is done in
DDBMS where the database is present in a failed system.
The two-phase commit protocol is often used to deal with
this problem.

v) Distributed Deadlock:

Sometimes deadlock may occur in a distributed system. So,
it is necessary to main consistency and recovery in the
deadlock system.

The techniques which deal with concurrency control in DDBMS
are explained below.

I. Lock based protocol:

When two transactions are present in the database, a read-
write lock can apply in one transaction to avoid the
concurrency issue where others can access the data. This
lock

II. Shared lock system (Read lock):

The shared lock system is a read lock. The lock is shared
between the transaction. Any one of the transactions can
activate the shared lock for reading purposes.

III. Exclusive lock:

In this technique, an exclusive lock is activated for a
transaction for the read and write operation. In this
technique, no other lock can apply for the read and write
operation on the same data.

258 | P a g e

Space for learners: Lock-based concurrency protocol locks the data. A lock is a
variable that controls the read-write operation on data. It is two
types.

i) One phase Locking Protocol:

In this technique, a lock is applied by a transaction on data
before it uses and releases after the transaction is
complete.

ii) Two-phase locking protocol:

In the two-phase locking protocol, a transaction adopts all
the locks in the first phase and does not release any locks
until finish all read and write operations. In the second
phase, the transaction releases all the locks and never
requests any locks.

Recovery is the most important process in a DDBMS. It is
required to recover the information from a site. The recovery is
required due to the following reasons.

i) The receiver site may down

ii) The location of the receiver site may crash.

iii) The communication link between the sender and receiver
site may break.

A two-phase commit protocol is used to overcome the issue of the
data recovery on DDBMS. This atomic protocol coordinates the
process of DDBMS which decides to commit or terminate a
transaction. It provides the automatic recovery option in case of a
site failure. The original place of transaction is known as
coordinator and other places of the transaction are known as a
cohort. The protocol executes in two phases.

i) Commit request: In the commit phase, the coordinator
prepares the list of cohorts and asks to commit the
transaction.

ii) Commit phase: Based on the responses from the cohorts,
the coordinator can decide to commit or terminate a
transaction.

259 | P a g e

Space for learners:

2.9. SUMMING UP

 The distributed database is a collection of structured
information. Among all database systems, a distributed
database is one where files are stored in different computer
systems or sites. These sites are connected through a
communication network.

 Data in DDB is physically stored in multiple sites and the
data is managed by a local DBMS in the site which is
independent of the other sites.

 A distributed database integrates transaction processing.

 In DDBMS, if one of the systems fails, then other systems
will provide the service to the user. The other system can
complete the task of the failure system.

 Fragmentation is a normal process of diving the database into
different tables in DBMS. In a distributed database, the entire
database is divided into different subtables or sub relations so
that each subtable or sub relation can be saved in different
sites of the distributed system.

CHECK YOUR PROGRESS - III

6. All sites in a distributed database commit at exactly the
same instant. TRUE/FALSE

7. Fill in the blanks.

i) The real use of the Two-phase commit protocol is
______________.

ii) Read one, write all available protocol is used to
increase ___________ in a distributed database

system.

iii) Commit and rollback in DDB are related to

iv) If a distributed transactions are well-formed and 2-
phasedlocked, then is the correct locking
mechanism in distributed transaction as well as in
centralized database.

v) A distributed transaction can be if queries
are issued at one or more nodes.

260 | P a g e

Space for learners:  You have 3 methods for data fragmenting of a table and they
are.

o Horizontal Fragmentation.

o Vertical Fragmentation.

o Hybrid Fragmentation

 The process of storing data or information in more than one
site or system in a distributed system is known as data
replication. It is useful in improving the availability of data.

 Two types of data replication are present.

o Synchronous Data Replication: In this type of
replication, once the changes are made in a table of the
database, the data replication is done immediately.

o Asynchronous Data Replication: In asynchronous
replication, the data replication is done after the commit
operation of the database.

 Data allocation is a process to decide where exactly you want
to store the data. It involves at per which data has to be stored
at what location.

 There are two types of distributed databases are found and
they are homogenous database and heterogeneous database. a)
Homogeneous Database b) Heterogeneous Database

 In a distributed database system, query processing is done at
the end of the user site and server site. A query comes from
the user site, so it is checked and optimized at the user site i.e.
it is at the local level. The query comes to the server, so it is
processed and optimized at the server site i.e. it is at the
global level.

 During the time of concurrency control and recovery
distributed databases face lots of issues. They are presented
below.

o Multiple copies of data,

o Failure of a site,

o Failure of Communication Network,

o Distributed Commit,

o Distributed Deadlock.

261 | P a g e

Space for learners:  A lock is a variable that controls the read-write operation on
data. It is two types.

o One phase Locking Protocol: In this technique, a lock is
applied by a transaction on data before it uses and releases
after the transaction is complete.

o Two-phase locking protocol: In the two-phase locking
protocol, a transaction adopts all the locks in the first
phase and does not release any locks until finish all read
and write operations. In the second phase, the transaction
releases all the locks and never requests any locks.

2.10 ANSWERS TO CHECK YOUR PROGRESS

1) The distributed database is a collection of structured
information. Among all database systems, a distributed
database is one where files are stored in different computer
systems or sites. These sites are connected through a
communication network.

2) In DDBMS, reliability means if one of the systems fails,
then other systems will provide the service to the user. The
other system can complete the task of the failure system.

3) The goals of DDB are as follows.

I. Reliability

II. Availability

III. Performance

4) i) TRUE ii) TRUE

5) i)
S_Roll_No S_Name Branch
2020001 A MSc. IT
2020002 B MSc. IT
2020003 C MSc. IT

ii)

S_Roll_No Branch
2019001 BSc. IT
2019002 BSc. IT

6) FALSE

262 | P a g e

Space for learners:

7)

i) Atomicity, i.e, all-or-nothing commits at all sites

ii) Both Availability and Robustness

iii) Data Consistency

iv) A two-phase locking.

v) partially read-only

2.11 POSSIBLE QUESTIONS

Short answer type questions:

1. What is a distributed system?

2. What is distributed database?

3. What are the goals of the distributed database?

4. What is the reliability and availability of distributed
database?

5. Difference between one phase and two-phase locking
protocol.

6. What are the types of distributed database systems
available?

7. What are the different modes of data replication in a
distributed system?

8. Difference between lock-based and shared lock systems.

9. What is data replication in DDBMS? What are the types?

Long answer type questions:

1. Explain the distributed database system with an example.

2. Explain with examples the fragmentation of tables in the
distributed system.

3. How are concurrency and recovery achieved in the
distributed database?

4. Explain data replication and allocation in DDBMS.

5. Explain the query processing in DDBMS.

263 | P a g e

Space for learners: 2.12 REFERENCES AND SUGGESTED

 READINGS

 i) Principles of Distributed Database Systems. Author: M. Tamer
Özsu.

ii) Distributed System: Concepts, Design, and Applications
Publisher: O, Reilly, Author: S.K.Singh

264 | P a g e

Space for learners: UNIT 3: IMAGE AND MULTIMEDIA

DATABASE

Unit Structure:

3.1 Introduction

3.2 Unit objectives

3.3 Concept of Image

3.4 Image Database and Multimedia database

3.5 Requirement of Multimedia database

3.6. Challenges of multimedia database

3.7 Contents of multimedia database

3.8 Application of multimedia database

3.9 Summing Up

 3.10 Answers to Check Your Progress

3.11 Possible Questions

 3.12 References and Suggested Readings

3.1 INTRODUCTION

This unit gives an overview of the multimedia database, especially

about the image database. Image means the collection of pixels.

Pixels have information about the images. The process of storing

images in a database is discussed in this unit. The unit also

discusses the contents of the multimedia database. Challenges of

the multimedia database are also discussed in this unit. The

contents of the multimedia database are also pointed in this chapter.

Finally, the different applications of the multimedia database are

reported in the unit.

3.2 UNIT OBJECTIVES

After learning this unit, you will be able to learn

i) About the definition of multimedia database

265 | P a g e

Space for learners: ii) About types of multimedia database including an

image.

iii) About image and multimedia database.

iv) About the challenges and contents of the multimedia

database.

v) About the challenges of the multimedia database.

vi) About the applications of the multimedia database.

3.3 CONCEPT OF IMAGE

An image is multimedia data. It consists of the pixel. The pixel of

an image contains all the necessary information about the image.

An image may be color, grayscale, or black and white. You can

extract the information of color from the pixel of an image. Apart

from color, other features such as texture and shape are also possible

to extract from an image. These features can be stored in a database.

Images are used in different fields, so it is necessary to store the

images in the database. The database where images are stored is

known as a multimedia database.

3.4 IMAGE AND MULTIMEDIA DATABASE

An image can not directly store in a database using a standard SQL

insert command. The embedded SQL is used to insert the images

into a database. A database should support an image to insert an

image in the database. The images are stored in binary form in the

cell of a table of a database and the data type of the cell is Binary

Large Object (BLOB). It is a MySQL data type that is not only used

to store the image data but also used to store the other data type. For

tightly coupled database such as employee database, student

database needs to upload the image in the database, so this type of

databases are known as multimedia database and storing of an

image one of the part of this database.

Let's explain the BLOB in MySQL using python. Her, you will

learn about the process of insertion and deletion of multimedia files

such as images, video, or songs in a multimedia MySQL database

using python. To Store and retrieve multimedia data, i.e BLOB data

in a MySQL table, you should have a table containing binary data

or you can update your table by inserting one extra column in the

266 | P a g e

Space for learners: database for the BLOB data. You can execute the following queries

for the BLOB data.

i) Table Creation Query: CREATE TABLE `idol_emp` (

`emp_id` INT NOT NULL , `emp_name` TEXT NOT NULL ,

`emp_photo` BLOB NOT NULL , `emp_biodata` BLOB NOT

NULL , PRIMARY KEY (`id`))

In query (i), the emp_photo and emp_biodata, these two fields

require the BLOB data. So their data types are BLOB.

ii) Data Insertion Query: As BLOB is MySQL datatype and it

has the following four BLOB data type depending on the length

of the data that they can hold.

a) TINY BLOB

b) BLOB

c) MEDIUMBLOB

d) LONG BOB

To insert the data into ‘idol_emp’ using BLOB and python, you

need to perform the following steps.

a) You need to install MySQL-Python connector using pip and

then need to establish the connection.

b) You need a python function that converts images and other

multimedia data into binary data.

c) Then define your insert query and execute the query using

the cursor.execute() function.

d) After the query execution, you need to commit your

database changes.

e) Then you need to close your cursor and database

connection.

f) Finally, verify your result.

The code of insertion into the database using the BLOB is given

below.

267 | P a g e

Space for learners: import mysql.connector

def multimediaToBinary(filename):

 with open(filename, 'rb') as file:

 binaryData = file.read()

 return binaryData

def insertBLOB(emp_id, emp_name, emp_photo, emp_biodata):

 print("Inserting multimedia data into idol_emp")

 try:

 connection = mysql.connector.connect(host='localhost',

 database='idol_db',

 user='idol',

 password='idolidol')

 cursor = connection.cursor()

 sql_insert_blob = """ INSERT INTO idol_emp

 (emp_id, emp_name, emp_photo, emp_biodata)

VALUES (%s,%s,%s,%s)"""

 emp_photo = convertToBinaryData(emp_photo)

 emp_biodata = convertToBinaryData(emp_biodata)

 insert_blob = (emp_id, emp_name, emp_photo,

emp_biodata)

 result = cursor.execute(sql_insert_blob, insert_blob)

 connection.commit()

 print("Image and biodata has inserted successfully ", result)

 except mysql.connector.Error as error:

 print("Failed inserting multimedia data {}".format(error))

 finally:

 if connection.is_connected():

 cursor.close()

268 | P a g e

Space for learners: connection.close()

 print("MySQL connection is closed")

insertBLOB(1, "idol_emp1", "path of the image",

 "path of the text")

After data insertion in a database using the BLOB in MySQL, you

can retrieve the data from the database as given below. For the

same, MySQL and python connector is required as stated above.

But to execute the select query cursor.execute() function is required.

Then you can use cursor.fetchall() to retrieve the data from the

database as below.

import mysql.connector

def write_file(data, filename):

Disk

 with open(filename, 'wb') as file:

 file.write(data)

def readBLOB(emp_id, emp_photo, emp_bioData):

 print("Reading data from idol_emp table")

 try:

 connection = mysql.connector.connect(host='localhost',

 database='idol_db',

 user='idol',

 password='idolidol')

 cursor = connection.cursor()

 sql_fetch = """SELECT * from idol_emp where id = %s"""

 cursor.execute(sql_fetch, (emp_id,))

 record = cursor.fetchall()

 for row in record:

 print("Employee Id = ", row[0],)

 print("Employee Name = ", row[1])

 Employee image = row[2]

 Employee biodata = row[3]

269 | P a g e

Space for learners: print("Storing employee’s photyo and biodata in the

local PC")

 write_file(Employee image, emp_photo)

 write_file(Employee biodata, emp_biodata)

 except mysql.connector.Error as error:

 print("Failed to read data from idol_emp {}".format(error))

 finally:

 if connection.is_connected():

 cursor.close()

 connection.close()

 print("MySQL connection is closed")

readBLOB(1, "path of the image",

3.5 REQUIREMENT OF MULTIMEDIA

DATABASE

Like other DBMS, the multimedia database should address the

requirement issues.

i) Integration: It indicates that data of a multimedia

database should not be duplicate.

CHECK YOUR PROGRESS - I

1. What do you mean by multimedia database?

2. What are the BLOB data types?

3. State truth or false

i. TINY BLOB is Blob data type

ii. MEDIUMBLOB is not a blob data type.

iii. Images consist of pixel

4. What is cursor.execute() function?

5. What is the role of cursor.fetchall() ?

270 | P a g e

Space for learners: ii) Concurrency control: Like other DBMS, a multimedia

database should control the concurrency of the

transaction. Otherwise, consistency issues will be arises.

iii) Data Independency: In the multimedia database, data of

the different multimedia should be independent. It

should be managed from the user side.

iv) Persistence: Data of a multimedia database should be

saved and reused by the other transactions.

v) Recovery: Data should be recovered at the time of

failure. A system may fail due to different reasons, but

the recovery option of a multimedia database should

recover the data at the time of need.

3.6 CHALLENGES OF MULTIMEDIA DATABASE

Like other DBMS, multimedia databases also have some

challenges. They are presented below.

i) The designing of the multimedia database is not so easy as

the different format of data is present in the multimedia

database.

ii) As the multimedia database consists of images, text, video,

mp3, etc. So conversion of one file format to another format

is not so easy.

iii) Storing multimedia data requires more amounts of space.

Designing a large dataset is not so easy.

iv) Processing is another issue of multimedia databases because

the processing of data requires more amount of time.

v) Multimedia query processing and execution is another issue

of the multimedia database.

271 | P a g e

Space for learners:

3.7 CONTENTS OF MULTIMEDIA DATABASE

The multimedia database store the multimedia information. It

contains the following information.

i) The multimedia database contains the multimedia data like

audio, video, text, animations, and images.

ii) The media of the multimedia information contains the

sampling rate, the frame rate of the data signal.

iii) The keyword data is used to represent the data of a

multimedia database such as image keyword means its

date, time, and description of the image.

iv) The media feature data contains the features of a data. For

example, an image means its color, texture, and shape.

3.8 APPLICATION OF MULTIMEDIA DATABASE

The multimedia database can be applied in the following areas.

i) The Multimedia databases can be applied in the area of

document and record management systems such as

insurance claim records.

ii) Multimedia databases can be applied in digital libraries.

For example IR@ inflibnet.

CHECK YOUR PROGRESS - II

6. What is concurrency in multimedia database?

7. State truth or false

i. Integration is a requirement of multimedia database.

ii. Data independecy should be a part of multimedia

database.

iii. All multimedia shoud not be recovered.

8. State two challenges of multimedia database.

272 | P a g e

Space for learners: iii) The Multimedia databases are used in the video on

demand. For example. Netflix

iv) A Multimedia database is used in music. For example.

Ganna.

v) The multimedia database is used in GIS. For example.

Landsat 8.

3.9 SUMMING UP

 A Multimedia database is a collection of multimedia data

such as texts, images, videos, audios, etc.

 An image is multimedia data. It consists of the pixel. The

pixel of an image contains all the necessary information

about the image.

 An image may be color, grayscale, or black and white.

 The embedded SQL is used to insert the images into a

database. A database should support an image to insert an

image in the database.

 The images are stored in binary form in the cell of a table of

a database and the data type of the cell is Binary Large

Object (BLOB). It is a MySQL data type that is not only

used to store the image data but also used to store the other

data type.

CHECK YOUR PROGRESS - III

9. State truth or false

i. Audio is not a part of multimedia database.

ii. Ganna.com is an example of multimedia database.

10. State two applications multimedia database.

11. What is a netflex?

12. What is inflibnet?

273 | P a g e

Space for learners:  Table Creation Query: CREATE TABLE `idol_emp` (

`emp_id` INT NOT NULL , `emp_name` TEXT NOT

NULL , `emp_photo` BLOB NOT NULL , `emp_biodata`

BLOB NOT NULL , PRIMARY KEY (`id`))

 Data Insertion Query: As BLOB is MySQL datatype and

it has the following four BLOB data type depending on the

length of the data that they can hold.

a) TINY BLOB

b) BLOB

c) MEDIUMBLOB

d) LONG BOB

 Like other DBMS, the multimedia database should address

the requirement issues.

1. Integration:

2. Concurrency control

3. Data Independency

4. Persistence

5. Recovery

 Like other DBMS, multimedia databases also have some

challenges. They are.

1. Designing of Multimed a database.

2. One File Format for multimedia data.

3. Processing is another issue of multimedia databases

because the

4. Multimedia query processing and execution.

 The multimedia database store the multimedia information.

It contains the following information.

1. Audio, video, text, animations, and images.

2. The sampling rate, the frame rate of the data signal.

3. Image keyword means its date, time, and description of

the image.

4. Features of data.

274 | P a g e

Space for learners:  The multimedia database can be applied in the following

areas.

1. Insurance claim records.

2. Inflibnet.

3. Netflix

4. Ganna.

5. Landsat 8

3.10 ANSWERS TO CHECK YOUR PROGRESS

1. A Multimedia database is a collection of multimedia data

such as texts, images, videos, audios, etc.

2. The four BLOB data types are

i. TINY BLOB

ii. BLOB

iii. MEDIUMBLOB

iv. LONG BOB

3. i) True ii) False iii) True

4. To insert data in the multimedia database, the insert queries

are executed using the cursor.execute() function.

5. Using the cursor.fetchall(), one can retrieve the data from

the multimedia database.

6. In a database management system (DBMS), concurrency

control manages simultaneous access to a database. Like

other DBMS, a multimedia database should control the

concurrency of the transaction. Otherwise, consistency

issues will be arises.

7. i) True ii) True iii) False

8. Like other DBMS, multimedia databases also have some

challenges. They are presented below.

i. The designing of the multimedia database is not so easy

as the different format of data is present in the

multimedia database.

275 | P a g e

Space for learners: ii. As the multimedia database consists of images, text,

video, mp3, etc. So conversion of one file format to

another format is not so easy

9. i) False ii) True

10. The multimedia database can be applied in the following

areas.

i. Multimedia databases can be applied in digital libraries.

For example IR@ inflibnet.

ii. The Multimedia databases are used in the video on

demand. For example. Netflix

11. Netflix is an example of a multimedia database. It is a

streaming service that offers a wide variety of award-

winning TV shows, movies, anime, documentaries, etc.

12. Information and Library Network (INFLIBNET) is an

example of a multimedia database and is an autonomous

Inter-University Centre of the University Grants

Commission (UGC) that provides access to e-resources to

colleges, universities, and centrally funded technical

institutions

3.11 POSSIBLE QUESTIONS

Short answer type questions:

1. What is a multimedia database?

2. Define the terms image, video, and audio.

3. What is BLOB?

4. Why do you need BLOB?

5. What are the data types of BLOB?

6. What is an embedded query?

7. How do create a multimedia table?

8. How do you insert queries in a multimedia table?

9. State two issues of a multimedia database?

10. State two design issues of the multimedia database.

11. State two challenges of the multimedia database.

12. State two applications of a multimedia database.

Long answer type questions:

276 | P a g e

Space for learners: 1. Explain the data insertion and retrieve in a multimedia

database using python.

2. Explain the different challenges of a multimedia database.

3. Explain the requirements of a multimedia database.

3.12 REFERENCES AND SUGGESTED

READINGS

1. Multimedia Database Management Systems, Author:

Prabhakaran, Publisher: Springer

2. Multimedia Database Management Systems, Author:

Guojun Li.

277 | P a g e

Space for learners: UNIT 4: SPATIAL DATABASE

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Spatial Database Concept

4.4 Spatial DBMS Data Models

4.5 Content-based Indexing and Retrieval

4.6 Different Indexing Techniques

4.7 Summing Up

 4.8 Answers to Check Your Progress

4.9 Possible Questions

 4.10 References and Suggested Readings

4.1 INTRODUCTION

This unit gives an overview of the spatial database. A spatial

database is one in which the geographic location information is

saved. The concept of a spatial database is explained here along

with its indexing techniques. Content-based indexing is also

discussed in this unit and along with the retrieval techniques.

Content-based image indexing means the properties of an image

are saved in the database and it is retrieved based on its

properties. Finally, the different indexing techniques such as R

trees, R+ Tress, and KD tree is discussed in the unit.

4.2 UNIT OBJECTIVES

After learning this unit, you will be able to learn

i) About the concept spatial database

ii) About the process of saving location in database

iii) About the Content-Based Indexing (CBI) and its

retrieving.

278 | P a g e

Space for learners: iv) About the indexing technique such as R tree, R+ tree,

and KD tree.

4.3 SPATIAL DATABASE CONCEPT

The spatial data is one where the geographic location such as a

village, town. Cities or locations are associated. The spatial

database is where you can be saved this type of information in

terms of some location object data. Technically, a spatial database

is optimized for storing and querying object data in a geometric

space. The Spatial database stores geometric objects like points,

lines, and polygons but some databases are also saved 2d objects,

linear networks, etc. It is a part of the GIS database (Fig.3.1)

Let's understand the concept of a spatial database with the help

of the following example. Let's have a satellite image of a road.

Though it is an image it has geographic information such as

points, lines, and polygons which represent the building, rod, etc.

So, this image, the spatial data is represented by vector data and

raster data. You can say that spatial data are two types.

i) Vector data: The data is represented using lines, points, and

polygons.

ii) Raster data: The data is presented using the matrix. For

example, data for building.

The database system which manages the spatial data is known as

Spatial Data Base Management System (SDBMS). The SDBMS

plays a prominent role in the management of queries of spatial

data. Spatial data is used in many disciplines such as

geography, remote sensing, urban planning, and natural resource

management. As mentioned above, the spatial database established

a specification to represent the above two types of spatial data.

Using this specification, spatial queries are processed using the

SQL (For example PostgreSQL. PostGIS, QGIS).

279 | P a g e

Space for learners:

Fig.3.1. Spatial Database Types

Other database uses indexing technique to access the data faster

and search the data most efficiently. But these direct indexing

techniques may not work properly in the case of spatial databases.

So, it needs a special type of indexing known as content indexing.

The spatial indexes such as R tree, R+tree, etc. are designed for

spatial indexing. It is required to retrieve spatial data from a large

database. Apart from indexing, spatial databases offer spatial data

types in their data model and query language. This special data

type is required to model the spatial database.

A spatial database can be applied in many areas. A few of the

applications are presented below.

i) Image and Multimedia databases: In the multimedia

database, the spatial database is applied such as content-

based image retrieval, content-based video retrieval, medical

database, etc.

ii) Time-series databases: In the management of time

intervals, the spatial database is used.

iii) Traditional DBMS: In the case of data warehouses, the

SDBMS is used.

iv) Socio-Economic applications: In Urban planning, the

Route optimization problem, and the market analysis of the

SDBMS are used.

280 | P a g e

Space for learners: v) Environmental applications: In the case of Fire or

Pollution Monitoring, the SDBMS is used

vi) Administrative applications: In Public networks

administration and vehicle navigation, the SBMS is used.

The SDBMS are necessary for the following requirements before

its designs.

i) For the manipulation of very large amounts of data, e.g.,

terabytes of data per day from satellite images, the SDBMS is

required.

ii) For data distinction, e.g., spatial and non-spatial

(alphanumeric) data, the DBMS is necessary.

iii) For Complex spatial relationships and operations, e.g.,

topological, directional, metric relationships, the SDBMS

is necessary.

iv) Complex spatial relationships, e.g., find all cities adjacent

to a river, find all dark shapes left to the heart, and find the

5 closest hospitals concerning a given location.

v) Spatial join: An expensive operation, e.g., Find the 5

closest hospitals concerning any highway.

4.4 SPATIAL DBMS DATA MODELS

In section 4.3, the two types of the data model of SDBMS are

already mentioned. They are

i) Raster Model: In the raster model, SDBMS spaces are

subdivided into cells of regular size and shape such as square,

CHECK YOUR PROGRESS - I

1. What do you mean by spatial data and spatial database?

2. State few applications of spatial database.

3. Which classes does spatial data types in MySQL

correspond to?

4. Stet true or false

i) SPATIAL indexes cannot be created on NOT NULL

spatial columns.

ii) By ‘spatial data’ we mean data that has position value.

281 | P a g e

Space for learners: triangle, hexagon, etc. Each cell of the raster is assigned the

value of the attribute it represents and only one value is

assigned for the same. Different attributes are stored in

separate files (layers).

ii) Vector Model: In the vector model, the subdivision of the

space is done based on the position of the geographic feature,

i.e., irregular. The features are represented by (2-D space),

such as Points (x,y), Lines (x1,y1, x2,y2, ..., xn,yn), Regions

(x1,y1, ..., xn,yn, x1,y1).

4.5 CONTENT-BASED INDEXING AND RETRIEVAL

Like another database system, SDBMS also needs indexing of

spatial data for faster query processing and searching spatial data

most efficiently. Content-based indexing is one where data is

saved based on the properties of the data and it is retrieved based

on these properties. "Content-based" means that the search

analyses the contents of the data rather than the metadata such as

keywords, tags, or descriptions associated with the data. It results

in faster query processing and searching. For example, the

Content-Based Image Indexing and Retrieval (CBIR) system are

where images are saved in the database based on the properties of

the image data. The properties of the image mean its color,

texture, and shape. So based on these, you can index the images

and retrieve also.

The content indexing and retrieving are applicable in many areas

but image, video, text, music are very popular ones. Let's explain

the CBIR with a help of an example. Let's you have many images

in your database. In CBIR, query images will be there with you.

Initially, the feature of the image such as color, texture, position,

shape, etc can extract from the query image. The features are

saved as a vector for the query image and the same process can be

applied to the database also. When you have both the feature

vector, just compare the feature vector of the query image with the

feature vector of the database image.

282 | P a g e

Space for learners:

Fig. 3.2: CBIR system

4.6 DIFFERENT INDEXING TECHNIQUES

For the indexing of spatial data, different indexing techniques are

used.

i) R Tree

ii) R+ Tree

iii) KD Tree

Let's explain these techniques with the help of examples.

I. R tree: R-tree is a tree data structure to store the spatial data

efficiently. It is used for storing spatial data indexes. It is

useful for spatial data queries, storage, and indexing. are

highly useful for spatial data queries and storage. Indexing

multi-dimensional information. For example, handling of game

CHECK YOUR PROGRESS - II

5. What are the spatial data models?

6. Can we use image and video for CBIR system?

7. Give two examples of CBIR search engine.

8. What features of an image are considered for CBIR?

283 | P a g e

Space for learners: data, virtual maps implementation, and handling geospatial

coordinates, etc. The properties R tree are given below.

i. Consists of a single root with internal and leaf nodes.

ii. The root node contains a pointer to the largest region.

iii. The parent nodes contain pointers to their child nodes

where the region of child nodes completely overlaps with

the regions of parent nodes.

iv. Leaf nodes contain the actual data within the Minimum

Bounding region (MBR) to the current objects where the

MBR is the sub-regions within the entire space that group

data as efficiently.

(a)

284 | P a g e

Space for learners: (b)

Fig. 3.3 R tree in SDBMS

To locate an object, the search algorithm descends the tree from

the root. The algorithm recursively traverses down the subtrees of

bounding rectangles that intersect the query rectangle. When a

leaf node is reached, bounding rectangles are tested against the

query rectangle and their objects are fetched for testing if they

intersect the query rectangle.

II. R +Tree: R+tree is a variant of R trees where data is

indexed using (x,y) coordinates. It is a conciliation between

the R tree and the KD tree. In the R+ tree, the nodes may

not be half-filled and the internal nodes of the tree avoid

overlapping by inserting an object into multiple leaves. In

the R+ tree, the tree has minimal coverage and minimal

overlap and it overcomes the overlapping issue of the R

tree. The advantages and disadvantages of the R+ tree are

presented below.

 Advantages:

i) Due to no overlapped between the nodes, the point

query performance benefits are covered by at most

one node.

ii) A single path is identified to visit the nodes.

Disadvantages:

i) Since rectangles are duplicated, an R+ tree can be

larger than an R tree built on the same data set.

ii) Construction and maintenance of R+ trees are more

complex than the R trees and other variants of the R

tree.

The duplication of objects or nodes in R+tree leads to the non-

overlapping of entries. If the corresponding covering rectangles

intersect the query region, then only the searching is possible in

R+tree. The disjoint covering rectangles avoid the multiple

search paths of the R-tree for point queries.

To insert an object, multiple paths may be traversed. At a node,

the subtrees with covering rectangles that intersect with the

object bounding rectangle must be traversed. On reaching the

leaf nodes, the object identifier will be stored in the leaf nodes.

285 | P a g e

Space for learners: Multiple noes of R+tree may store the same object. Three cases

should take care of the insertion.

i) Insert an object into a node where the covering

rectangles of all entries do not intersect with the object-

bounding rectangle.

ii) The second one is when the bounding rectangle of the

new object only partially intersects with the bounding

rectangles of entries.

iii) The third case is more serious in that the covering

rectangles of some entries can prevent each other from

expanding to include the new object.

III. KD Tree: KD tree is a binary search tree that is also known

as K dimensional tree. In the KD tree, the data in each node

of the tree represents the K dimensional point in space. So it

is also known as space partitioning data structure. It

represents the points or data in K dimensional space. The

non-leaf node of the KD tree effectively divides the tree into

two spaces, known as half-space. The data that is left of the

root will go into a left sub-tree, data right of a root will go in

a right subtree. Construction of the KD tree is as follows:

i) The axis used to generate splitting trees is cycled

repeatedly.

ii) The nodes are selected by taking the median of the

data being placed in the subtree.

Let's understand the basic concept of the KD tree by considering a

2D tree. In the KD tree, the left subtree contains those points

whose coordinates are smaller than the root node, and the right

subtree contains those points whose coordinates are grater-equal

to the root node.

Let’s build a k-d tree with the points: (30,40), (5,25), (70,70),

(50,30), (35,45). Let the root node is x aligned.

i) Take the first coordinates (30,40). As the tree is empty, so

make it the root node of the tree.

ii) Now the 2nd coordinate is (5,25). As the first x value of the

2nd coordinates is 5 and 5<30. So it will go to the left

subtree.

286 | P a g e

Space for learners: iii) The 3rd coordinate is (70,70). Now 70>30, so it will go right

subtree.

iv) The 4th coordinate is (50,30). First, compare with root

50>30. But already (70,70) is in the right subtree. Now

Compare 50 with the y value of 70. 50<70. So, it will be in

the left subtree of (70,70).

v) The final coordinate is (35,45). Comparing with root

(35>30). It will go right subtree. In the right subtree,

comparing with y coordinates of (70,70), you find 35<70.

So, it will go left subtree of (70,70). But in the left subtree

of (70,70), the (50,30) coordinate is present. Now compare

35 of (35,45) with x of (50,30). So, 35<45. So, it will be on

the left of (50,30).

Fig. 3.4 KD tree in SDBMS

CHECK YOUR PROGRESS - III

9. What is r tree and r+ tree?

10. In what time can a 2-d tree be constructed?

11. In a k-d tree, what is K meant?

12. Each level in a k-d tree is made of cutting and dimension

(True or False)

287 | P a g e

Space for learners: 4.7 SUMMING UP

 The spatial data is one where the geographic location such

as a village, town. Cities or locations are associated. The

spatial database is where you can be saved this type of

information in terms of some location object data.

 The spatial data are two types.

o Vector data: The data is represented using lines,

points, and polygons.

o Raster data: The data is presented using the matrix.

For example, data for building.

 The spatial queries are processed using the SQL (For

example PostgreSQL. PostGIS, QGIS).

 The SDBMS are necessary for the following requirements

before its designs.

o For the manipulation of very large amounts of data.

o For data distinction.

o For Complex spatial relationships and operations.

o Complex spatial relationships.

o Spatial join.

 Content-Based Image Indexing and Retrieval (CBIR)

system are where images are saved in the database based

on the properties of the image data.

 R-tree is a tree data structure to store the spatial data

efficiently. It is used for storing spatial data indexes. It is

useful for spatial data queries, storage, and indexing. are

highly useful for spatial data queries and storage. Indexing

multi-dimensional information.

 R+tree is a variant of R trees where data is indexed using

(x,y) coordinates. It is a conciliation between the R tree

and the KD tree.

 KD tree is a binary search tree that is also known as K

dimensional tree. In the KD tree, the data in each node of

the tree represents the K dimensional point in space.

 Construction of the KD tree is as follows:

288 | P a g e

Space for learners: o The axis used to generate splitting trees is cycled

repeatedly.

o The nodes are selected by taking the median of the

data being placed in the subtree.

4.8 ANSWER TO CHECK YOUR PROGRESS

1. The spatial data is one where the geographic location such as

a village, town. Cities or locations are associated. The

spatial database is where you can be saved this type of

information in terms of some location object data.

2. The few applications of spatial DBMS are

i) Image and Multimedia databases

ii) Time-series databases

iii) Traditional DBMS

3. OpenGIS

4. i) FALSE

ii) TRUE

5. Two types of spatial data models are raster and vector

model.

6. For CBIR, we can use only image.

7. eBay image Search and Google Image Search.

8. Color, shape, and texture.

9. R and R+ tree are spatial indexing techniques in spatial

DBMS.

10. O(nlogn)

11. Number of dimensions.

12. True

4.9 POSSIBLE QUESTIONS

Short answer type questions:

1) What do you mean by spatial data and spatial database

system?

289 | P a g e

Space for learners: 2) Explain raster and vector model in spatial DBMS.

3) What is CBIR? Give examples.

4) What are the applications of spatial DBMS?

5) What are the requirements of Spatial SBMS?

6) State the difference between R and R+ tree.

7) Give some examples of spatial query language.

8) What are advantages of R+ tree over R tree?

9) Why do need KD tree if you have R and R+ tree?

10) What are the requirements of spatial DBMS?

Long answer type questions:

1) Explain the CBIR system with an example and diagrams.

2) Explain the KD tree with an example.

3) What are the indexing techniques of Spatial DBMS?

Explain.

4.10 REFERENCES AND SUGGESTED

READINGS

1) Spatial Databases: With Application to GIS, by Michel O.

Scholl

2) Spatial Data Management by Nikos Mamoulis

