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A student shall do a total number of sixteen papers in the four Semesters. -
Each paper will carry 100 marks - 20 marks for internal evaluation during
the semester and 80 marks for external evaluation through end semester-

~ examination. Ali the papers in the First, Second and Third Semesters wilt

" be compulsory. The paper X111 and XIV of the Fourth Semester will also

" becompulsory. ThemmmmnatwopapersformeFounhSemesterswﬂlbe
chosen by a student from the optional papers. The names and numbers

. 'assxgned to the papers are as foliows.

- First Semester
1 Mcmecmormcs'lheory
T  Macroeconomics Theory-1 '
Riil Ma&mmucalMethodsforEcmzAnalys:s-l '
_ IV Statistical Methods for Economic Analysns
Second Semester
V  Advanced Mcroecohomics -
Vi Macroecouomc'i‘hemy
VI Mathematical Methods for Econoxruc Anaiysxs-ll
VvII E.lammtmyEconomemcs
‘Third Semester :
IX Development Econonms—l o
X °  International Ecenomics
~ XI IssuesinIndian Economy
- XI  Public Finance-1
Fourth Semester '
XM Development Economics-II - -
, . XIV -Public Finanee-Il
Papers XV and XV] are 0p=tional -
* Astudent has to choose any two of the followmg courses.
- ()  Population and Human Resource Development
(b) - Econometric Methods -
- () . Environmental Economics
(d) Financial System
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ELEMENTS OF ECONOMETRICS

- Untt-—l SamplingandEslnmﬁnn : g 2
ConceptofSamphng Distribution and Standard ErrorofaS:msnc P
Methods of Estimation — Prmcnpk-s of Moments, Least Square and -
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' _Unit—z' Statistical Infemnce R ' _
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tailed Tests — — Test based on Standard Normal, t and Chi-Square ;
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Unit-4: lnference from Linear Regression Estimaﬁon : ;
Test of Hypothesis about Regresslon Coefficients and their Conﬁdem-
Interval PredwﬂonwﬂhmemerRegmssmnModel

Unit-5: FurtherTopiesianearRegmssionModel o .
Multicollinearity: Effects, Detection and Remadu:s Spec:ﬁcauun Em:ns .
and their Consequences — Quahtauvc Factom and Dummy Vmablcs )
iutmducnons to He:erosmdastmty and Autocmelauon of Dlstm'bames 5
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SAMPLING AND ESTIMATION
_ STRUCTURE:.
" 10 Introduction
12 Concept of Sampling Distribution and Standard Error of a -~
13 Methodsof Estimation
" 1.3.1 Principle of Moments -
1.3.2 Principle of Least Square

me I3.3MethodofMaxnnum14kehhood(Concept0nly)
.14 .--Chamstwsofagmdﬂsnmam
15 Summary

T 16 AMnma!Ra:hngs
1.7 SeifAssess meat Test o
'I.OIntrodncﬁon

Economtncsmeans eaononncmasurement” Econmmaybe
.defined as the socxal science in which the tools of economic theory,
mmdmmwdmfmmapphedwtbemmesmofmmc 7
phenomenon, In this unit, we shall understand the conccpt of Sampling
- Distribution and standard error of a statistic. Again, a brief introduction of the e
_ - ‘Methods of Estimation i.e. principle of moments, Least. Square' and L
'_Mumummuhoodwmmm@dusﬂymechﬂmsucsofa good
'mmatouha}lbeanalysed. |

1.1 Objecmes'

Afferreadmgthlsumt,youwdlbeablcw— _

e UndcrstandthzconceptofSamphng DzsmbunonandStandard
Error of a Statistic. P :
'Leamthcd:ﬁcmntmcﬂmdsofesﬂmaﬁonsmhaspnmpleaf %
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rxwme:nts, Least Square and maximum hkehhood _
L] Analysc the various chm'actenstws ofa good estimator.

1.zcumptofsmpﬁngnmuﬁmandsm&arazmufasmic

- Before understanding sampling distributior. we should understand the |
meaning of the following terms— C

(a) Population or Universe : In any stausncal mvesngauon the group -
 of items or individuals under study is known as population or universe.
(b) Sample : A finite éubsetofmeboptuaﬁon,seieaedﬁ'omit\viﬂiﬂ;e '
; -objecnve of investigating its properties is called a sample '
(c)Samplesize Thenumberofmnts mthcsampienskmwnassample -
i gl > Sanpieg s 100l A S conclusions
.tbout the. charactensncs of the population after smdymg only those objects
or items that are included i in the sample.

(e) Parameter The statistical consists of the populatmn hke mean.
(i), variance ( } Skewness (B,). Kurtosis (B,) etc are known as
parameters. Parameters are frmcnons of popuianon values. -

(9] Statistic The statistical consants of the mmple like meat (%)
vanance ( ) skewness [b ). kurtasis (bz) etc are known as stallsnc
They are functions of the sample observations.

‘Sampling Distribution : .
If we draw a sample of size *n’ from a given ﬁmtepopulanﬂnofs:ze W
then the total number of possible samples is:

Ne, T min- n)'_-k(. o)

We can compute some stanstlc. say, ‘U for each of these k samples llke

mean (X), variance (S"} etc. _
| The set of values of the statistic 50 pbtained,' one for ;ach sample, is
called the sampling distribution of the statistic. For example, statistic ' may
be regarded as a random variable which can take the values ll- U cremn by

and wecancomputevamusstansucal conszamshkemn,vanmeeetc fm- '




its distribution.

Foreg, Mean = t = —-—(t + Lt }- Zt

tsl

Variance = Var(t) & -——E -E(t)f:—-Z(t —t)

: Standard Error :.
The standard devnanon of the samplmg chsmbunon of a staustxc is .
-known as its standard error (S E.). ' '
"Thus, the standard error of the statistic tis given by -

SE() = ,} ar(®) =

Agmn,ﬁlemhablhtyorefﬁcmyofamlphngp!masdemmmdby‘ﬁw
'mofmmdmmrofﬂwammandlscaﬂedmepmcmnof
. the’ estnnate ‘Thus, if t is astatastlc. then

Pret:lssmnoft- R
: " S.E.(@)
1.3. Methods of Esumauon
, Estimation of population parameters iike mean, ‘variance étc. 1s one of .
the :mportaut problcms of statistical inference. |
~ Some of the commonly used metlmds of esnmanon are enumcrated ;
bellow-—~ o

1341 Principle of Momems : :

This consists in equating the moments of the population to the sample |
‘moments and then ; '

 solving the equations so obtained to get the rcqmrcd estimates of the popula-

 tion parafnctcls For example, if we want 10 estimate the parameter ‘p’ of the -
' bummxal distribution, when ‘0’ is known, then we equate the mean of bmenual_

dxstnbunon which is np, to the sample mean (x} which gives

np =X =p =

=R




. Ifbothn and p are unknown, then we take the firs two moments. Thus -
) Meaﬁ'snp*ian&

: ; Var-npq-—np(l p)=s S "

) forpandn.wegeuhecotrmpondmgestmtesofthepopdm? -'
e Thsmhmqwmuwdlfwehawtocshmthewﬁeqlmm‘:"
ofgivendmibunonbyMganappmpnmpmbaMMydmbammtom

IAZPﬂmmhnfmsqm

Pnnmple of least squares is the most exsenswely nsed melhods of '
Lctmoonmdcratwn—vanabiefuncnonas

. Y =B, +B,X, e @ Al W ,

But(n)xsnotdmctiyobservable Sowcestxma:eltﬁnmt!wsample

Yi"ﬁl"’ﬁzx "'l"i
) 2 '“Yi-!-p.,_. (11)
whereY tsthcestxmatedvalueoni

~

Agam (u) =, =Y, ~Y,

- =Y-B,-BX, __
thchshowsthatpl (ﬂlemsldlmls)amsamply&ndﬂmmcesmeen. Y.
‘ " the actual and estimated Y values. Now principle of least squares consistsin __
nnmmmngthcmofsqumesofﬂlemdmlsmdevumsbamﬂngxm

Iobservadvaluesofﬂ:evarmblcandﬂwucmrespomhng&sﬁmmdvam

_L-om_z_ 5
| - 9B
’ Solvmgtheabove wgetﬂ:efoﬂowmgcquauons




}ZY anB:ZX
ZYX = ﬁ,zx +|322x

These are known as the nqrmal equations. Soiving them we getthe -

estimates of ﬁf and 32_ o B ¥

" 1.3.3 Method of Maximum Likelihood (concept only) :
Thm:sﬂmmostmmmbn!ymedm&odférmngmepcpmwm -
parameners It consists in maximizing the likelihood of probabmty of .
: randomly obtaining a set of sample values. '
Mazhemaucaﬂy, let X, X, ..., X, be a randomt samplc.of 's'ize"n froma -.
population with probabthty funcuon or pd f. p{x,ﬂ) where g is the

tmknownparameter Then, anesnma:eofe xsobtamedonmamnnmgzhe i

ldwhhxxiﬁmcm

L= D%, Ky .XJ Hp(xuﬁ)

=
Usmgtlmpmc:pleofmammaandnnnmnmmhkeﬁhoodesnmm
is fomd out by solving the fol!omng equatlons

AL e

—=0 —<0

a0 a6’ ;
Smcelogl.xs anon-decreasing function of L, L andiogLattam !heu'

" extreme values at the same values of 0. The equation can be written as

%%—%~0 :a—(logi.) 0

which is known a's_me'likel-ihooa cquation for estimating . -
g 14 Charactemhcs of a good estimator :

- A parucular value of a statistic which is used to’ esnmatc a gwen
parameter is known as a point estimate or estimator of the parameter. A .

9




good estimate is one whose value is close to lhe true value of lhe paramctcr
Following are the characteristics of a good estimator:
(1) Unbiasedness (2) Consistency _ L
(3)Efficency (&) Sufficiency .«

(1) Unbiasedness : i i
A statistic t=t (i 1o X1 oeens x,,)‘ a function of sample observaﬁons Xy
Xa, ....,xnxssaldmbemunbaased estimate ofﬁwcmespmdmgpopulanon
parameter g, if E(t)= 0. .
i.¢. if the mean value ofmesamphng’dzsmbuum ofﬁlestanshcwequal :
" to the parameter. For example, the sample mean (X) is an unbiased estimate
of the population mean ! ; the sample proporuon Pls an unb:ased csnmale
of the popu]anon propnmcm P,ic -
E®)=u, EP@=P, ‘
If E(t)= 6, then the statistic t is said to be a biased estimate of @. Let
E(t)=b+0 then ‘b’ is called the ‘amount of bias’ in the estimate. If b>0,
ie E{t) >0, then t is said to be posmvely biased and if b<0 ie E{tkﬂ it
is said to be negatively biased.

- (2) Consistency : _ |
A statistic t=1,= (X, X3, ... x;) based on a szin:ple of size n is said i
-t be a consxstem estimator of the pmetcr o ifit converges in probahmty
to 6, ie,if ty — 0 as n —e<, o
Symbolically, lim P(t, —6) <1
- For example, sample mean % is aconsistent estimator of thepupuﬁuon
mean, mmp]e variance 53 is a conmstent estimator of the population
© varidnee g? _ _
'NOTE : A Statistic t=t, =t (X;, X, ..., X,) is & consistent estimator
of the parameter @ if '

E(.l‘.)—eﬂ .

. rasn—»oo,
and  Var (c,,)—m}
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(3) Efficiency : :
For more than one consxstent estimators of a pa.rameter 0, the
efficiency criterion helps us to. choose between them by considering the
_ variance of the sampling distributions of the estimators, If t; and t, are
consistent estimators of a parameter @ such that ' e
"Var (t,) < Var (1,) for all n, then t, is said to be more efficiency than
 t,. Hence, an estimator with lesser variability is said to be more efficient and -
consequently more reliable than the other. . : _
If t is the most efficient estimator of a parameter § with variarice V and

tI is any other estimator with variance V), then the efficiency E of t1 is
defined as: il 5

E=—
i

: Also-'_efficiericy'of any estimator cannot exceed unity.

(4) Sufficiency : ] _
A statistic t =t (X;, X5, ..., X,) is 5aid to be a sufficient estimator of .
‘parameter 9 if it contains all the information in the sample regarding the
pammcte; Inoﬂxerwords,zsufﬁcmntstaushc utilities all the information that _
" a given sample can furnish about the parameter
Thus, these are the charac_:tcnsncs of a good estimater.

1.5 Summary :

The set of values of a statistic, is called a sampling dlsmbunon of the
statistic. Again, the standard error is the standard deviation of the sampling -
distribution of a statistic. The various methods of estzmatzon conmsts of the
pmc;ple of moments, least square and the maximum hkehhood method. Also,

there are four basic charactensncs ofa good estimator i.e. Unb:asedness

cons;stency efficiency and sufﬁcaency

-1.6 Add:tmnal Readings : -
d - Johnston,! “Economemc Methods” Mc Graw Hxil
W ) Gujac:hl. D., “Basic’ Econometncs Mc Graw Hill.
-. 3. Salvatore, Dominick and Reacie Darvick, “Stmlstxcs and
Ecqnomemcs.“. Tata McGraw Hill.
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1.7, Self Assessment Test .
s sl Whatdoyoumanby poptﬂauoncrumvcrsc.sampie. samplesuc, .
. sampling, parameter and statistic. :
“2. Explain the oonceptofsampbng dlsmhunonandstandardermrofa
3 What are the dxﬂ'crent methods of estimation. Bneﬂy expiam the
| p:mctpl; of moments.

4 Bneﬂy describe the concepts of leas& squa.re and the method of o

maximum liknlitmd.
5 State and explain the basxc charactensucs of a good estimator. -
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STATISTICAL INFERENCE

2.1 Introduction
22 Objectives
23 Testing of Hypothesis |
24. Type I and Type Il errors. -
25. One Taxled and two tailed tests
26. Steps for testing hypothesis. -
2.‘_1. Test based on standard normal d:smbutmn.
2.8. Testsof mgmﬁcance based on t—dxsmbuuon.
© 29. Tests based on chi-square distribution _
© 2.10. AddmonalReadmgs. '

21 Imrodtlctitm _ :
“The inductive inference method is the bglcofdrawmgstahsucaﬂyvahd __
~ conclusions about the population charactznsucs on the basis of a sample
drawn from it in a scientific manner. But the generalisations of results on the
- basis of samples involve an element of risk. The nsk of taking wrong
- decisions. So, modern theory of probability plays an important role in
decision making, The branch of statistics which helps i in arriving at the
criterion for such' declsxmsm knownasmngofhypoﬂms The thcm'y' '
of tesnng of hypothes:s was initiated by J. Neyman and P.S. peamon and '
~ employs statistical wcmques to arrive at decisions where there is an e!.ement
: ofumettamtyomhebmtsofasanmlewbosesxmxsﬁmdmadvmoe.lnthts ;
'cmmmmmndammlmpmcfmungomypoﬁms anddeffemm'
tests are discussed.

2.2 Objectives :

This unit is designed to help you understand thc concept of satistical
= mfm‘enccamius relatedeeas After readmgtlusumt youwxi!beableto




3 Cbnst_mcé and test hypothesis.

e Know whether a statistical test is significant or not.
 Distinguish the large sample tests from small sampie tests.
® Know or choose a particular test for testing hypothesis.

¢ Know about critical region and confidence interval.

- 2.3 Testmg of Hypothwls -

The inductive inference is based on d&CISIOIl about the charactersncs of
the popu!anon on the basis of sample study Such decision involve an attempt
-~ of risk, the risk of taking wrong decisions. The moden theory of probability
plays avita' roie in decision makmg and the branch of statistics which helps
- us in ariving at the criterion for dcc:smn is known as testing of hypothesis.

" A proceedure 1o assess the’ significance of a statistic or-difference
between two mdependent Stansncs is known as the test of sxgmficance To
test the s:gmﬁcance we will use two types of hypothesis.

Null Hypothesis ot

For any test of swmﬁcaﬁce first stéfa is to set upa hypothésis-—'# a
deﬁmte statement about the populatzon pafarm:ter Such a stansucal
hypothesis which is under test is usually a hypothaas of no dxfference and
hence is called null hypothesxs Itis useral]y denoted by Ho. Accordmg to
R.A. Fisher,” Null hypothesis is that hypotheses which is tested for possibie'_ |
rejection under the assumption that it 13 true.” '

Usually, the nuil hypothesis is expressed as an equahty eg. H,, q? ' %

 Alternative Hypothesis :

Any hypothesis which is complementary to rhe- null hypothesis is called
an alternative hypothesis. It is usually dendte'd by H,. It is very importent to
- explicitly state the altemative hypothesis in respect of any null hypothesis H,,
because the acceptance or rejection of. Ho is.meaninful only if it is bc;ng
tested against a rival hypothesis. '

- The alternative hypothesis against the null hypoﬂ\csm Hy:a=q, wﬂl be,

-Hq%

14




24 Type I and Type 11 Eriors :

It is mentioned that the inductive inference consists in ariving at a. .

~ decision to accept or re_]ect a nuli hypothems (H,) after inspecting only a B

'-sample from it. As such an element of risk-— the risk of taking wrong |
docmons is involved. In any test pwcedure the four possible mutually dlS}Glnt.

- and mclusxve decnsums are—

. () RejectH, when actually it is not. true. ie when H, is false

(i) Aecept H, when it is true.

(iii) Reject H, when is tmc

(iv) Accept H, when it is false.

The decisions in (i) and (ii) are correct decmtons whﬁe the decns:ons in
| (m) and (iv) are wrong decisions.

Decision from Sample

- Reject Ho Accept H, |

| True State ' HoTrue - | Wrong (Type I-Errt;r) Correct

Ho False (H, True) | Correct Wrong (Type I Error) |

Type 1 Error : The error of ;ejectihg'Ha when H, is true.
Type Il Error : The érror of acceptizig H, when Ho is false (ie Hi is
ome) | )
|  We make type L error by rcjectmg a true new hypochesm and type {1
error by acceptmg a wrong new hypothesxs Symbohca]ly
P[Reject H, when it is true] = P [Rejectmcr HJHO} '
' =P [Type I error}) =
and P{Accepi Ho when it is wrong} =P [acceptmg HB/H ]
= P [Type II error] =
“oand B are'si_ies of I and Type 11 error respectively.
*In the terminology of industrial quality control while inspecting the quaity
_ of a manufacmred lot, the type I error amounts of rejectmg a good lot and
type H error amounts to acccptmtr abad lot '

15




Accordingly,

@ =P [Rejecting a good lot]

B = P[Accepting a bad lot]

Thesmeoftypelandtype[[errorsareknownaSpmducer snskand
‘consumer’s risk respecuve]y _ ; ;

‘An ideal test procedurc would be one which is to planned as to
safcguard against both these errors. But practically, in any given problem, it
is not possible to minimize both these errors simultaneously. An attempt to
decrease ¢ results in-an increase in B and vice:~ Versa. Consequences of -

typellcrroramhkelytobemre senousmanﬂueoonsequemesoftypel_L_ '

‘error. Since the errors cannothcreducedmmultanemmly,aoompronuse is
' madebynummzzngmmsemexmmaﬂerﬁxmgupﬂ)elcsssmousm '
. Thus, we fix o, thesxzeoftypelemrand&cntrytoobmnacmmm"
- which minimizes f, Lbcsmoftype!lerror.Wehave, _
Ly B = P[Type H érror} - S B
...P[AcoeptmgHowhenzsfalsconstme]
.Now,
: P[Accept H, when is wrong] + P[Accept Hp when it is tme] =1
= P[Accept H, when H“ 1s true = I—P[Acoept Hp when Hy is wrong]
| o =1-p
mmmY,wmmmmnmwgmwbcacwpwiﬂeme,mmmnng
B . Amounts to maximizing (1- ), which is called the ‘power of the test’.
Henoetheusuaipmcﬁcemtcsungofhypoﬂmmmﬁxa thcsm:oftype_
K 'lmandtheuuytoobtmnacntenonwhlchnnmnumﬁ thes:zeoftype'
'I[crrorormaxamzzes(l B),!lmpowemfthetest ' '

I.cvq.lofSignEﬂcance :
: mgwumnsxzeoftypelmwmmweampwpmdwnskasmwn
- asthelevel of significance. Iti is denoted by,
' P{Rejecnng H, when H, is true] = o
Commcmly used levels of significance in practice are 5% (0.05) and 1%
(0.01). If we adopt 5% level of significance it implies t_hat in5 samples outof
100, we-are likéiy to reject a correct H,. In other words, this impliés that we*

16




ane 95% confident that our decision toreject H, iscorree. Level of significance
' is always fixed in advance before collecting the sample information. |
_ Whan we rcjf:ct anull hypothcs;s H,, we have certain confidence inour -
- demuon which depends on the level of sxgmﬁcance em;;loyed Thus, at ¢t

Level of significance, the degree of confidence in our decision is (1-0v), which
iscalled the ‘confidence cpefﬁc;cm . However-when we accept H, wedo mt_' _
' _haveany'conﬁden;a in our decision. E '

Criucal Region

Thesmnsucswhmh ieadtothe re;ecuonaftlml-logwesusaregmncallad
'Crmcai Region (C) or Rejection Region (R) while those which lead to thc
accepta.nce of H, a,nfe:s us a region called Acceptance chlon (A).

25. One Taﬂed and Two 'l’kuled Tests

In any test, the crmc:.ﬂ region is represented by a pomon of the area '_
under the probablhty curve of the samplmo distribution of the test statistic.

A test of any to statistical hypothesis where the alternative hypothesis is

- one tailed (right tailed or left tailed) is cailed aone tailed test. For cxample a

tebt for tesl:mg the mean of a population
Hyp= Ho
Agamst the aitemaﬂve hypo&xesm, ) : :
Hi:p>uy, (Righttailed) or H,: K<, (lefttaﬂed)lsasmaietaﬂedtcst.
: Inﬁmenghttmledtest(ﬂi p)pojthecnucalwglonhesenumlymﬁmnglmaﬂ '

'ofmesampnnomsmmmnof X, while for the left tailed test ( H,: <p,,)thc s 5

critical region is entlrely inthe lefttail of the distnbuuon of .




Lefi Talled Test-

*\ test of smnsttcal hypoﬂwsls where the alternative hypcmeszs is twota;ied-
bl.it.bdh '

; i Hll u p’o G
agamstmealtcmuve hypothesis . =
Hep#p, (p>u, andu<po)
is known as two tailed test and in such acase the critical region is given by
the portion of the area lying in both the !azis of the prob.ablhty curve ofthe test

at.l[lsuc
Two Tailed Test
(Level of Significance ' ')
Upper critical value
, Lowercnu\c;] value :
' Rejection Region
Rejecuon Region (af2)
(ax/ % ) é :

In a particular problem; whether one tailed or fWo tailed test is to be applied

* depends entirely on the nature of the alternative hypothesis. If the alternative

hypothesis is two taﬂed, we apply two tailed test and if the alternative hypothesls
isone zalied. we apply one nailed test.

* Let us understand, _
h:ﬁleiangmgeofsxgmﬁcmmemastaﬂsmss&dmbeﬂmsmaﬂy&gmﬁcam y
if the value of the test stausmc lies in the critical region. !n this case the null
hypothesis is rejected. A test is said to be staumcally xzmgmﬁcam‘ifme valuc
ofthe test statistic lies in the acceptance region. '

18




- Critical Values of Z
Critical values (Zot) level of significance
| | 1% 5% 10%

| Two-taitedtest | [Zoj=2.58 | [Zo|=196 | |Za]=1645 -

Right-tailedtest | Za =233 | Za=1645 | Za= 128

Lefefailedtest | Zo=-233 | Za=-1645| Za=-128

2.6 Steps{oi' testing hypothesis :
The steps which are followed for "testing hypothesis are. the
Stepl. _
* Setup null hypbthcsis H,.
Step 2. ° |
Set up alternative hypoches:s H,. kwill detenmne whether the tcst is -
single tailed or two-tatlad ) ‘
Step 3
Choose the applecapiccxatc lev el of b;gmﬁcanee
'Step 4
' Compute the test staumc
= E(1) |
" S.E. (e
Under thc null hypothesns Hy :
Thaconnmnlyusedtwtsambasedonstandardnonnal t, Fzmdchx—
Square distributions. -
Step 5 : X
Compare me computed value of Z in step 4 wuh the labulatcd value
of Z at the given level of 51gmﬁcance . - ;
- Ifthe oompmedvalueon:siessman Zn,ltrsnotmgmﬁcammdt}w :
null hypothesis is accepted: On the other hand, if the computed value of
Z is greater than the critical value of Z, it is significant and the null
hypothesis rejected at level of significance .
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l?'I‘ostbasedonStandardmrmaldistrlbuﬂon r
The sampling distribution of the statistic t-t(x,.xz, ..... x, ). a fiinction
of the sample observauons is asympmucaﬂy nornal, i.e, the smndard vanatc
" corresponding to the statistic t,
L t—E(1)-
T S.E(1)
is asympmucaliy normally chstnbuted N@O.Dasnsa. -
~ In case of large samples that is when the sample size is greater than 30
* {n>30), the normal test is applied which is based on the following
'fﬂndmncnta!pmpertyofﬂxmaldistﬁbuﬁon. | -
X- E(X) X-p
6, ©

If'. X~N(u,az}. then z= N(O l)

- Sampling of variab!es : .

" In case of sampling of variables, the quanumuve mcasure ments are’
tukén on the samplmg units like height, weight, age, diameter, income,
expenditure etc. Each member of the population provides a value of the -
“variable and the aggregate of these values constitutes the frequency'-

distribution of the populanon w:th say mean = j.l standard dcvlatton c ‘

" and s0 on. : _
~ Test of sugmﬂcance for a smgle mean :
If Xp:Kypeono Xy are the observanons on the n  sample units dtawn at

 random from a normal popu]auonwnthmean m and variance &.,:henthe..
- sample mean X"N(u.a/ )

X-N (p’. _fn) . asymptotically asn—a

Thus -_E('i) =p ™ (x)=%%
" - S.E(X)= %_ |

The standard normal variate’ cor:espondma to (x) bemmes e

X~ E(x)

L -N(0,1
SE(X) le— ( )fonargcsamples

In dcvelopmg the test of s;gmﬁcancc for a single. mcan, we are: ‘
'mtereslcd—- '
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(i) To test if the mean of the population has 2 specified value 1, (say)
e u=p, '
(D To mufmesamplemcandxfferssxguﬁcanﬂyﬁomﬂwhypo:heucal
~ value of population mean i.e. to test the 51gmficance of the daffereme
o bctween % and M. - : _
' (i) To test if the given random sample. has been drawn from 2 '
population with specified mean 1, and variance g2. |
- Ttis important to notchemthaufthepopulamn standarddemmon c
~ is unknown. :hen we use its estimate pmwdedbythe sample variance given
by :

. .;-51 = G =s (for lar_:’ze_ s:_xmples)

conﬁdence limits for o : _
95% and 9% confsdence hnms for the populauon mean i are -men a

QS%conﬁdencehmts
X+1.96S.E. ;
a ~x119604JE*1+196siu“
99%conﬁdeme Imnts B
X12.58 c'd'_-x:i:’z.SSsJ_ e
It is in case of random samplmg drawn_from a ime (infinite) -
population.

In sampling from a finite popuiauon wuh c.ize N. the correspondmg _
 limits are the following—

:x:tl%al-\f_\[—and -xt“’.‘isalwf_\(_’

Example

A random sample of 100 students gave amean wexgh[ of 53 Kilograms
with standard deviation of 4 kg. Test the hypothcsm that the mean welght in
the populatlon is 60 kg. -

. Solution : A : B

Given. - p= '100 e SSkg's s 8 =-4kgs

Null hypoth“.ms . . "

H p = 60kgs i.e., the mean weight in the populauon is 60kg: &
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Altem.nive hypothesis: - :
Hi:u véGOkgs (two-tallcd)

Under
| the test statistic. , o’[v’_
gt =3t =6=s for large sampies
ch— [ ' _ I
_J8-60 -2

~20 -

~fvioo /0'T= Pasd Wt

Since the calculated value of iZy=-3 =5 is greater than.the critical -
value of Z i.e. 2.58 1% level of 31gmficancc, 80, nall hypothesis Ho is
rcjccttd at 1% level of significance. g ;
Again, since |Z] =5 is queater than the critical value of Z at 5% level

of mgmﬂcancell ¢ 1.96, so it is significant anc_i nuil _hypotlmm.zs rejectecL
Hence. we conclude that the mean weight of the population is, nu..

60kgs.
Example

. An educator claims that the average LQ. of college students is at most
110, and that in.a study made 10 test this claim 150 college students,

selected at random, had an average 1.Q.of 112.2 witha standard deviation
of 7.2. Use the level of swmﬁcance 0.01 to test the claim of the educator.

Solution : '

Given n=150, X=111.2, s=7.2

Nuil hypothesis: .

H,:x =110 ie. the merage 1.Q. of collcge mxdents is 110

Altemative hypothesis:

Hi:u>110

‘Under H,,

| test statistic, _- O-IJ‘
_X-p 1112-110 “ _12x1235 o
s[f 721150 225 qE T

Since the ealculated value of Z = 2.04 i less then the critical value of




 Z it 1% level of significance for right tailed test i.e. 2.33, it is.not significant
and null hypolh@sis -H“ is acce_pled.' S_o, the educator’s claim is valid.

Test of sngniﬁcance for dnﬂ'erence of means :
" Let us suppose that there are two independent random samples ofsues

oy and n, from the two populauom with mcans~ }4, and U, and variances

g 13 and 0’2 respectxveiy Let x, and X, be the correspondmg sample

. % 0'3. d _. ' O’" Y '
Then ’h"N[#l- / } and (3"“ /n Jasymptonca!ly

i.e. n, —>q and n, > for large samples.

So (x, - x,) bemg the difference of two mdependent normal variables

s o | _ s a,
isalsoan_ormai variables with mean (u, -_—;12] and variance _nL -
i - _ P w ok -

~ So,the sga:idardised variable Z corresponding 10 the statistic X, =X, is given’
by e ' ' |

Z= (itl._il]' E(":fj “‘iz)-i: )

under the nulf hypothesis, H,: g1, = g1, ie. ;hé popalation means are
equal, the test statistic becomes -

If g2 and G‘_Ez' are unknown, then their estimates provided by the
* corresponding sample variances s, and's,’? respectively are used, i.e..

2

&l=s’ 5 &,0=s,> (Since samples are large) =

If the two .indepenﬁent samples are drawa from the same po;iuiation,
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- _ then [hc test statistic wxll be

Z=-

~

If the common variance & is not known, then we use its esnma:e (for
Iartre samples) based on both the samplcs and gzvcn by

2 M +ngsy’
n; +I‘I-.

E:mmple _ - _
Given the following mtormanon relatmg to two places A and B, test
. whether thrue is any significant. difference between their mean v_vage:,. o g

_ Meaﬂ Wages (Rs.) - R - S
- Srindard deviadings (Re ° 28 0
_N(S. of workers 1000 1500
_ Sohmon. : : .
_LetXandYbethe wages {in Rs)mmo pLueaAandBrespecnver -
_‘n,zl,DOO - X=47 L5, =28 -
n,=1500 = y=49 5, =40

"\Tull:hypﬁthesis-'ﬂ : ,u‘ #, 1.e. there is no significant dlfferencc‘_.
between the mean wageq in places AandB.
Alternative hypothesxs Hiyu #u,
_ (two-taﬁed)
‘Under H,, the test statistic is
X~y 47-49 T
J_;:,_ {28y (40) 784 1600
n, a, 1,000 1500 1000 1500

e

L RN s
- J1.784+1067 V1851 1361

~ 1.469= — 1.47
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Since |2} < 2.58, itis not sxgmﬁcam at 1% level of significance. Hence

"~ we may accept H, and conclude that there is no significant difference in the '_
mean wages at places A and B. ’

Again, |Z}< 196 , it is not significant at S% level of S@uﬁc.mce So, the

null hypotbems H, is accepted and there is no sagmﬁcant difference in the
mean wages at places A and B. '

Example : :
" If 60 M.A. Economics students are found to have a mean heig ght of
" 63.60 inches and 50 M.Com. students a mear height of 69.51 inches would
~ you conclude that the commerce students are taller than Econcmlcs '
'studerits" Assume thc $.D. of heught of posx gmduate students to be 2 A0
Solution s
Let X denote the helght (in mn.hes) of MA. Econenncx studcnts and Y
the height (in inches) of M Com students.
; G:vm )
n = 60 _ X= 63 60 ,
_ n,=50 7 =6951
{t is also given that the standard dev:anon of height of post-gradua!e
.stu&nts is 2.48 inches, i.e.

= 2.48
| | G =0 y g= |
~ Null hypothesis H,: 41, = ,uy i.e. the mean helghts of MLA. Economics
and \iCom. students are equal ' -

A!tcmanve h)q)othesm H;: ,u,‘ < M, (lcft—mﬂed}
Under H,, tbe test statistic is

X-§ . 6360 6951-7. _ =591

tn-l

PR ol ol
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-591 co
1 110 =501 . . 491 :
il = = - [2.47
3_‘43"“/( 3000)_ 2480191 “0a7aT " 1247
Since Z =~ 12.47<-2.33 i.e.12.4752.33. it is highly significant at 1% |
level of significance. So, nuil hypothes:s is re;ected and we can conclude that
the comerce students are taller than economics students.

Sampling of attributes : L _ _
In this case the given population is divided into.two inutually'disjainl
- and exhaustive classes, one possessing a parucular aturibute under smdy andl
the other not possessmtr the attribute. '

Test for single proportion : -

Cons:der a populauon consisting of N units and let, the number of exists gy

* possessing the attribute under study be ¢r. Hence. the number of ‘units which

do not possess the gzvcn atmbute is (N-a).

p= Pmportion of units in the population 'possessixig the g.iven attribute = %
Q= Proportion of units m the popularion which dﬂ not possess- r.he given
attribute = ol = 1—9- =Q=1-P

N N.

In sampling theory, the possess;on of an attribute by a samphn‘, unit ie
termed as a success and P represents the probability of success in the
- population. Aﬂam, when a samp!mv unit does not possess the attribute, it 1:. ' %,
called failure and represented by Q. ' '

If X is the number of units possessing the given attnbute ina sample of
size n drown from an infinite (large) population, then

p = Proportion of sampled units possessmg';he given attribute.

=p=—
n

q = Proportion of sampled units Wl‘llCh do not posscss th: given at-
_ tribute =$q=1-p

It is important to note here that E(p) =P, i.e., sample pmpomon pis
an unbiased estimate of the population propomon B
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¢ and SE[p) l:

.md (P) VN |
Therefore, for large aampies the standard normal variate correspond~

ing 1o statistic °p’ is

B p—E(p) | '“I(O l]

SE. {p} JPQ

Note : If the sample is drawn from a finite population of size N, then

S.E(p)= (:‘;J%

Example :
Ina bl“ cu} 325 men nut of 600 men were found to be smokers. Does
. ihis iaformation support the conclusion that the- majonty of men in the city -

o are smokers ¥

‘Given, n = 600 _
No. of smokers = 325

" P = sample proportion of smokers = % =0.5417

| Null hypothesis H, : The number of smokers and non~smc=kers are' |
- _equai so that . ' :
P= pc:pulauon propomon of smokers i in the city.

=05

|-J|*—~

£Q=1-P= |- 0.5= 0.5
Alternative hypothesis H,:P > 0.5 (Right-tailed)
* Under H,, the test statistic is '
-P

. _p- E(p) -N(O,) By
S.E. (p) T _ (Since the sample is large}

_0.5417-0.5

0508 =T
1/ o0 0.0204
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Since the calculated value of Z = 2.04 s greater than the critical value
of Z for right-tailed test at 5% level of signiﬁcanoe ie. 1.645,itis signiﬁcant
and the null hypothesis is re;ected So, we conclude that majonty of men in |
the city are smokers.

Again, the calculated value of Z = 2.04 is less than the crmcai value of

Zie.2.33 for right tailed test at 1% level of significance, it is not sngmﬂcaut

_and the nuil hypothesm is accepted at l% ievel of significance.

Test of s;gmf icance for difference of pmporﬁons

' Suppose we want to compare two large- populanons & and B with -

rcspect to the prev alence of a certain altnbute among their numbers Let's’
take (wo mdependent lm'oe sampies of sizes n, and'n, fram the popuianons '

A and B respectively. Let X, and X, be the observed number of successes

~* ie. the number of units possessing the given attribute in these samples re-
:»pecmneiy Then. x

p] Observcd propomon of successes m the sample from pc)pulaucn-_ ]

A —
ror Ty
£ p» = Observed proportion of successes in the sample from population
.. e E._
Here, E{p;)= B, E(Pi)"-‘ Py
-. P f . ’ i P, E
Ve 00 P2 var ()=

o e e T wp

Also, S.E. (p,— P, )'=

ul n

X

il {pi—p2)—E(p, - Pz}_
_S'E'['P{ -pa) -

_(Bi=ps)-(pi-p2)
_JEQ_:;,&_Q_;

. Under the null hypothesis H_:P, =P, i.. the pobulati,c_:rn are the same,
the test statistic for the difference of propottions becomes : :
_ _ —_—




: N({J.l)_
\[PQ n n, 'I

Smce P[| P,=Pand Q;=Q,=Q
If P, the common population proportion (under Ho) is not known,
'use_lmunbmsedcsnmmepmvmdbybommesamplesmkentoge&m given
p =X +x., _Mptmp,
0, +0, n,+n,

,  Again, under the null hypothesis Ha p, =D, i€ the sample propor-’ '
-'tiqns are equal which implies that the difference in population propoitions -
will not be revealed by the samples from these populations, the test statisti¢ -

' In a certain district A, 450 persons were considered regular consumers
of teaoutof a samp}é of 1000 pcxjsans"ln anoiher district B, 400 were
~ regular consumers of tea outofa sample of 800 persons. Do these facts

_ | reveal a significant di_ffemnce between the two districts as for tea drinking
habit is concerned? Use 5% level. -
Solution : . i
Given, n’, =1000, n, = 800 |

450

p, = Sample pmpomon of tea dnnkcrs in district A = % = 045

' ' i ot e e W00
B= Samplg proporuon of tea drmkers in-district B.= 200 0.5

Null hypothesis H_:P, = P, i.e. there is no significant difference be-
tween the two districts as far as tea drinking habit is concemed

Altcmauve hypothesis H,:P, = P, (two—taﬂcd)

Under H the test statistic is -
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Pt P2
L=——"-"=
S‘E-(Pl P:)

_. PP -N{O.}

VIPQ( n-’}

Now, Pa BB TP 450+400 _ 850 _ G
- nj+n, 1000+800 1800 . °

© Q =1-P=I- 0.472= 0.528

L - 0.45+0.5
L = — 1 1 005 -
| JO"‘L?MO‘SZS(I@@F'S_ } Jo 75x2_75><10’”’ '
—0(}5 o |
0.02_37

Since the calculated value of Z = 2.11 is greater than the critical value

COof Z at5% level of significance for two-tailed test i.e. 1.96. it is significant

 ats% level of significance. Hence, the null hypothesis is rejected and we

conclude that there is significant chffemnce between the two dxstnnts asfar

.as tea- drmkmv hab:t is conccmed

Example
In two large popu lauons there are 30% and 25% racspecuve!y of faJr
‘haired people. IS this difference hkely to be lndden in samples of 1.200 and

900 respectively from the two populations?
Solution :

Given, n, =1200, n, =900
P =30% =030 =Q,=070
p» = 25% = 0.25 = Q,=0.75

‘Under H,; that the difference in populanon ptopomons is llkely tobe

_ hidden in samples the test statistic is

P P,
'Z*"P HONLE

Bl ﬂ-;

~N(0.1).
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0.30— 025

J030x070 0.25%0.75 = el —
V1200 500~ V0.000175+0.000208 -
0.05 0.05

= J0.000383 ~ 0.0196 3
. Since |Z] > 196, it significant at 5% level of sxgmﬁcance Hence null hy-.
pothesns is rejected and we conclude that the dlﬂ'erence in populauon propor- -
tions is not likely to be hidden in these samples, i.e., these samples would

= = Jusm v

' reveal the difference in population proportions.

Check your progress :
Wha: are the assumpuons of large sample tests? ?
-~ What do you mean by sampting for-attributes? Develop the large
' sample test for testing the 51gmﬁcancc of an observed sample '

proportion.
Be Explam the large sample tc%t of significance for mean.
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Dnstmgulsh bctween 1arge sample and small sample tests of sig
5. Are small sample tests valid for large samples?

2.8 Tests of significance based on “t' distribution :
The samplmg distribution of any statistic in the standardized form is
asymptotically nomlaliy distributed. For example | '
i X-E(x) _X- #-N(O Jasn—oa
"SE(x) ofn
But if sample sizé n is small, then the distributions of standardized
resuit, we can riot apply normal test. So, to deal with small samples now

~ techniques and tests of significance known as it is very dlfﬁcult to distinguish
between small samples and large samples Generally, a sample is termed as

small if p < o It is important to note here that ‘Exact Sample Test’ can be -

used even for large samples but large sample tests can not be used for small
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samples. : o B
The basic fundamental assumptions-of all the exact sample tests are—
(1) The parent populalmn from wthh the sample i is drawn is nomiaﬂy

du.mbuted

" (2) The sample is rzmdom and mdcpendent of each other

Student’ ‘¢ d:stn‘buuon .
If Xj2Xpene Xy xsarandﬂmsample ofsaenfromanonna} populanon :

mth mean M, and \»anancec,- then student s °t’ statistic is defined asa-——-—'
o X=-u. ' o '
SP/-
- X=-—-, isthe sample mean.

n =

S$* = ml Z(x- i)z is an unbiased estimate ot‘-_tﬁé_ population variance
@ 't statistic defined above follows student’s t-disiribution with V=(n-1)
demes of freedom and wlth prohabzlitw denslz} funcnon (p d.f)

P({) Const.- —a<t<

' I+‘I-:_\] (¥ H)

; : 9
% vz =

We can -writ_c.

s{f
compa.nson between normal curve and correspondmg 1" curve.
A Rl)

Critical values of ‘€
" The Critical values of t at the level of: swmﬁcance o and rcquu‘ed '
degrees of freedom V for two- laﬂed test are given by i
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-=>_'P[§'t-‘$t,;_(d)]'= l-a

rgion(a/2)” = - . region(@/2)

_ Smcet-dxsmbnnoumsymnnmabaut—o ﬁr:sxgmﬁcantvaluesatﬂxe ,
. levelofs:gmﬁcamca forasxngketaued(nghmrleft)mcanbeobtamed :
' 'ﬁomﬂ:etabieoftwo-miedtestby!oohngﬂlevalwatlevclofsxgnﬁcancc '
2a,ie. t,(0.05) for smgle-taﬂed test= t,(0.10) for two-tailed testand =
< (0 _01.) for smgle-ta:lcd test = t‘.(O 02) fOI‘_tWO-—tal_lﬁd test.

" Application of t-diﬂrihuﬁml o
_ () t-test for s:gmf’ icance of smgle mean, populanon vmance bemg _'
(2). t-test for the si'gniﬁcanc_e of the difference be_tween two sa:_np!e
means, the population ' variances being equal but unknown.

(3) i-test for significance of an observed sample correlation coefficient.

"Test for single mean :
In this case, we are interested 10 test : _
(1, If the given normal populanon has a specmad value of the
- population mean, say .
; {2) If the samplae mean % chffers mgmﬂcamly from spccnﬁed value of
" population mean. -
3) Ifa, glven random sample Xj,X,,.....X, ofsize n has drawu frdm
a normal population with specified mean, 41, N
. The test statistic is . -
Rl
sivn

-(.

Compuung the test stanst:c we compare it with the tabulated value of

t for (_n-l) d.f. at ommn_level of significance. Ifcalcul@ed |t| 1s_ g!m!e_rtban :

tabulated ‘t’, we say that it is significant and H,, is rejected. Again, if
" ' 3 -




- calculated It| is less than tabulated t. H, is accepted at the given level of
: &gm.&m :
Assumptions for student’s t-test

Student s t-test is based on the follnwmg assumpnons—

N 1) The parent populauan from which the sarnple is drawn is tlonnal
. €2) The sample observations are mdependem. ie. the gwen sample is
.'li.nd‘)m. 2 . i : . 5 '

(3) The population standard deviati_on o is unknqwn.

Example 5

A random sample of size 20 from a nmml popmat:on gives a sample
mean of 42 and sample standard deviation of 6. Test the hy'pmhesns that the
populancm mean is 44 :

Solution :

Given, p=20., X=42. s=6
. - Null hypothesis H, H= 44 ie. the sample mean X=42 does not

differ significantly from the populauon mean y = =44, <F

~ Altemative hypotbesxs Hpp#44 (two-tailed)
Under H,, the test statistic is

15— = ==, =y
S
n n-1
12-44 ~2 N g,
R el iyl
V20-1 Vo 1.89 137

Since the calculated vatue of |tj< the critical value of tyos for 19
- degrees of freedom = 2.09. it is not significant and H, is accepted. We can. _
conchidé that the sample mean does. not différ_ significantly fmm- the '
populauan mean. | -

Again, it|< the tabulated tm),-—- 2 86 for 19 d.f,, it is also not
significant at 1% level of significance. So, H, is accepted and we may |
conclude that sample mean does not chﬂer mgmﬁcantly from the pOptﬂAtxon
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Example : , ; _

Prices of shams of a company on the different days in a month were found
_— £} PR |
66, 65, 69, 70, 69, 71, 70. 63, 64and 68.

Discuss whether the mean price of the shows in the month is 65.
\Iullhypothesm, H:u= 65 L&, the mean price of the shows in the month
.ts 65. :
Alternative hypothesis H,:jt # 65 (two-talled)

x 66 6 6 M. 6 7. W G 6 68 Toul | 2
d=x69 -3 — 0 1. 0 2 | o g T

. K=A+-Z—d-=69+£:}-i)-69-m§= 69—} 5-— 675
n i0 .10 -

oYL PPN o R T P9ES ) e 93—33-5--
BT S AT RO T EY R T

—[93 225] -_—[705] &.8_3

. Under HU, the test statistic is
: X-u _615-65 ° 35 |
) st J(_?-??*)_ﬂ 6131 = 613 —-2-— 1608
n 10
Since t =1.008< tabulated tm,j-”>26 for 9 d.f., it is not szgmﬁcaut at 5% |
level of mgmﬁcance and the null hypothesls is accepted. We canccmcl‘ﬁdethatthe _
" mean price of the shows in the month is 65. - '

Example:
Asampleofs:ze';fremammipopulauongwcsx.,.;s,gands =103.

. Find 95% and 99% interval for population mean.
e | - 35




Solution :

Given, x=158, 5,7 =10.3, n=9 .
_%%conﬁdemehuutsforpopulatmmnﬂmgwenby

Tt xs '
E 0.05.7:_
~Now,
10 10
:r‘-’ o = 1135
'xit X
0.0 :7;{- o |
= 1581231x1135 [« tmforsd_f =2.31]_
=l5812622 (13.178, i8¢22) |
Le. 13 l?8<p<18422 B ®
- 99% confidence limits are given by
R 6= o PP 4 '
. ol 7;

Is. 8:1:3.36)(1.135 [ ;om for8d.f = 34361 g
IS 8:[:3.8136 (1:9364 196136)
ie. H9864<;z<196136

il'

t-tst for dlfference of means : , %

Suppose XjsXgperen Xy and y,,yz, ..... y“2 are two mdependent ._
rm&domsamphsdmwnﬁnmtwommzalpopulaﬂmshavmgthesamm- ;
the pcpnﬂauon variances being equal. We set up the null hypothcsxs
CHgp,=p, e, thesampieshavebeench‘awnﬁnmthenomnaipopulaum ,
with the same means. In other words, the sample means g and § ¥y donot .
differ significantly. Under the assumption that 0" =0, =07 Populanon '

__ Ivanance are equal but unknown, the test stansuc under H,is - -

L X- W .
e t,d-l-n-,-z

ey
n m

'i'.=~l—_2x.-. . 1
.

‘<l
:l
L

M




7]
__ld

x-%X) +Z(y— .
n,+n,-2[2{ ) Z(y Y)] anunhmsedesumateo

* thcoomumpopulanonvananceg basedonbomthesamples
Butcompanngthecalculamdvalueoftw:thmecnucalvalucofttor
omp+n,—2 d.ﬂatﬂxegvenlcveiofsngnﬁcmmﬂxemﬂlhypmt&mmmﬁner
: ]ectedoraccepted R

L Parenz popnlations- from which samples have_-:been_l drawn arc
_(2)Thezwo samplesm random and mdependem of each mher W

i _' '(3) 0, =0, ‘*0 Le. po;m!ataon*vmmsareequalandunknown
‘_ w:
; NosalemAazﬂBmengmamnd:smnﬁomasample_
' wrveyconductedbyttwhcadofﬁce ﬂ:efolwwmgmuitsareobwned '

A ‘B
No. of sales . - o B A
Aw:ragesalcs(mks) - 170 .'205. :

Swndarddevmnon(mks) " 20 25 g
Test whether there is any significant dxfference in lhc average s&ies

between the two salesmen . ]
Saiuuon Gwen, n=20 - - ni=18
©ox=170  §=205
" g =20 g, =25 T
Null'hypoﬁmisH M, = =Hyie. merelsnotanys:gnﬂicancednffereme-' D

- in the averagc sales between the two districts A and B.
' Al&:mauve hypothes;s Hy: Hy # py under Hu the test statistic is

Sl 0y~ 27t

g2 M5 0s,T 20x400+18x625 _ 8000+11250
oagdmp-2 - . 36 S 36

i |




_19250 19,250

s 36 = 534.7_'.:
170205 } '
a I T = 3
| ‘534 7’(55 1) J334‘?"’x0106 = 5668
- =35
Since {t|'=

4.65is greﬁtcr than t,,, and 1, for 36 d.f., it is significan:
at 1% and 5% level of significance. So. H,, is rejected and we can conclude
that there is bzgmﬁcant différence in average sales between two districts.

Example

Samples of two types ofelectm: ilglu bulbs were tested tﬂr lcmzth of hfc
and following data were obtamed

Typel "Typeﬂ_
- Sample No. - n; .=8 n, ='T
Sample Means %, =1234 hrs. - | %, = 10364 hrs
 Sample SD. s, =36 hrs. Sy =0 hrs

Is:hedzﬁerenocmtlwmanssufﬁclemtowarrannhmwpel lssupenor
 totypeil regardmg length of life?
Solution :

Given that there are two types of bulbs.

- Type I _. Type IT -
SampleNo, . n <8 gy
‘Sample Means X, =1,234 hrs. X, = 1,036 hrs.
. Sample S.D. s, =36 hs. s, =40 hrs.

- Null hypothesm H,:it, = =H, ie. there is uotauyd:ffemncemﬂmtwo

types of bulbs regarding the tength of life or, the avarage mean hfe of the two'
_lypes of bulbs, are equal.

Alternative hypomeszs Hy: >H, {ngh!—tmied)
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Under H,, the test statistic is

gt Bx(36) +Tx(H0) L 10.368+11.200

n+n,-2 g+7-2- 13
-—'21568 165908
13 -
: 1234-1036 _
1 S,
Jmsg(w{ J444396 2108~ °

. Since t=9. 39> the tabulated value tos =2 16 and Ly, = 3.4,
13 d. f.,soitis s1g:uficam at both 5% and 1% level of significance. Null
. hypothesis is rejected and we may conclude that type I bulbs are supen w
_totype I bulbe '

~ Paired t-test : _
Inthe I-test -for;i_ifference of means, the two samples were independent
of each other. In a particular case where—
(i) The sample sizes are equal i.e.n, =n, =0 (say_)' and _
- (ii) - observations  (X;.Xy....X,) 20d (¥1,¥2---Ya ) are not
completeiy independent but they are dependent in pairs i.e. the pairs of
- observations  (X,,¥).(%2,¥3 }seinens (x,,,y,,) comespor_ld_ to the lst,
© 2nd,...... n-th unit respecuvely ; N '
Let x,.X,,.....x, be the sales of the pmduct in"'n’ depan.tmatal stores
fora certain period before advertisement campaign and ¥ Yo ¥e DE
the corresponding sales of the same product for same period in the same
departrnental stores respectively. Suppose (X;,¥;): i=1.2....n is the pair ¢ of '
sales in the ith departmental store before and after advertisement. _
Let d, = x; = y;, i=1,2,..n denote the difference in the observations
- for the ith-ur;it. Under the null hypothesis that the mcremems are just by
chaice and not due to advertisement campaign, H,:4, = H,, the test
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Memory capacity of 10 students was tested before and after training.
Statewhethermetrauungwaseffemveornmﬁ'ommefol}owmm :
Roll No. : 1 2

'i_acforemmig; 8 T TR T T S S
| 13]

'Afmuainsng : o 15 0 7 3 2 10

1
* el
e

Sollmon : Memory capacnty of smdents before tralmng (x) and afaer
training (y}are pan'edtogether _ :
Null hypothesis H,: 4, = u, ie. manmcsbeforettammgandafm
_ ﬁmmngamsameorﬁ:em:snos:gmﬁcamehmgemmmcapmuyaﬁcr
the trammgprogannm :
' Almaﬁve hypothes:s H,: 4, ;eﬂ, .'

U_@e_r H‘,,__th_e test statistic is © Td’"
Roll No..-l S T d==(x-y} [
SR - A | B B2
> Wk e T
3 110 SEET o
4 8 7. I
5 wi. 4§ 2 4
6 10 i -2 o
7 3 0 "7 4
. B 0 2 2 4
9 5 3 2 a
10 6 8 2 __'4
* }:d_-iz . Td* =84
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g2 =-1—[2d3 _(Zd)l] ” [ ( 12) ]
_ n-1 " n 1071 10 J

[, 144] 1e, a1 S
=— a——f=— - 4 =— L= 7
_9_[ 10] 9[84 144] 9x696_ 7.73
2,
== "7 - iz 0 12 s

= = 1.365
/o V10 Jom T 0879

" Since |f|=1.365 < the tabulated too5 = 2.26 for 9 d.f, it is not
_ mgmﬁcantatS%levelofswmﬁcance So,nuﬂh}fpﬂtheﬂsxsmpMandwe '

conclude that there is no significant change in memory capacity after the

- training program:ne or, training programme is not cffecuve in enhancmg_

memory capacity of the students.

t-test for__signiﬁcance of an observed sample -correiatinn‘-“ Y
coefficient :- ,
Sum)osethaxarandornsampie (xyi 1 i=1, 5. ,nofszzenhasbeen-
drawn from a bevariate normal distribution. Let, r be the observed sample
correlation coefficient. Prof. R.A. Fisher proved that under the null
E hypothes:s H,:P=0, ie, mcvanablesareuncomlatedmﬂxpopﬂaum_
the stausnc

JT—T

" 95% confidence limits fort:

xJ—'

r+ toos{n-2)xS.E.(r) = £+ 1g05(n-2)X e

99% confidence limits for t :

rttgp(n-2)xS.E(r) =r£tgq(n-2)x =




Examp!e

& random 5amples of 27 pairs of observanom. from a nonnaj popui.u:on -
gives a correlation coefficient ot‘ 0. 6 Es it hkely that the »anables in the
population are uncone!azed ;
Solution : .
Givenn=27 and r=06 |
Null hypotheszs H, P 0 le the vanablea are uncorrelated in the

population. Alternative hypothesis H, P:;r:{), i.e. (two-tailed) under H,, the
teststatistic is

I'J

=las

Tr:—)(

\ =x~+27- 0.6 e OF
i ek L x5

;}1 (06 J1-036 Joes

Since t = 3.75 is greater than the.tabulated ty o for 25 d.f =2.06, itis
. significant at 5% level of exgmﬂcance we reject the null hypothesis and
conclude that the variables are not uncoireldted in the population. _

Again t =3.75> 1,5,= 2.79 for 25 d.f, 1t is significant at 1% level of
significance. So, null h)'potheﬂs is rejected and we comludc that thc variables
- are comeiatecl in the populanon ' '
_ Note 3

. 95% confidence limits for ¢ :

- 1-(0.6)° 064 :
0.61£2.06x — =(0.6+206x—— _n¢- 1
; s 5 =06£206x0.128

' =0.6+0264 = (0.336.0.864)

99% confidence limits fort :

: 1-(0.6) ' :
0.6+279 % —te _ ) Ty
s | 06 +£2.79x 0.?2_8 0.6+0:357

= (0.243,0.957)
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Cheek your progress

1. What do you mean by Exact Sa}npie Tests?

2. How the Exact Sample Tests different from harge Sdmple Tests?
~ Can these tests be used for !arge samples also?

. Define student’s t-statistic.

]

. State the properties of the t-distribution.’

h

- Explain the t-test for testing the significance of the difference
between two sample means.. o
6. What do you uriderstand by the paired i-test? Under what
conditions this test be applied? ' ' .
7. Explain the t-test for testing the mamﬁcance of an cbsewed :,ample

correlation.

2.9 Tests based on Chi-square distribution :

If the sample size n is small, the sampling distribution of the statistic in
.:ts standardised form is not normal and so the normal test can not be
’ applxed Hence. for small samples, we appiy the exact sample tests like r.

-' z. F and Ch: square tests.

Chl-square distnbutmn £
The square of a standard norma.l variables is called a Ch; -square

vanate with 1 degree of freedom. If X is a random variable foliowing normal
: : £

distribution with mean 4 and standard deviation ¢ then is a

standard normal ;valtiale. Therefore, [ ﬂ] is a Chi-square (denoted by
the Greek Letter »?) variate with 1 d.f. ' .
Ifx), X5, x, are V indepe:ndent random variables following normal

~ distribution wi.th means iy, [y, Uy, fly and . standard - deviations -

. 0120 3.035..:0, respecnveiy, menthevanaze

QRN N S
: U] 0‘_} . 0-'\.
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__2'?\ aua

=t \ F

" follows Chi-square distribution with V degrees of freedor:,

2 Apphcation of the y? d;stnbutiou :
Chi-square d:smbunon has a number of appl:catiom some of them are

. as foﬂows

(i) Chxaaqudre test of vaodnesa of fit. _

(ii) X” test for independence of attnbute's.,

(i To test if the population has a specified value of the variance 2.

Conditions for the validity of Chi-square test : _

i .\ . the -total Erequen;cy‘ .sﬁou!d be masouabl}y lérge.'say greater than
50. ; |

(2) The sampie ohscr»auons should be mdﬂpendent. That is. 1o’
individual item should be included twice or more in the samp!e

(3) The constraints on the cell frequencies, if any, should be finear.

(4) No theoretical 'frequency should be small. Preferﬁbly each .
tﬁeorctiﬁal frequency should be larger than 10 but in zﬁxy case not less than
5.1In case if it is less than 5, we use the technique of ‘pooling” which consists
~ in.adding the frequencies which are less than 5 with the precedino' or
. succeedmo frequencnea s0 that their sum is trreater than S and adjust {he_ '
degrees of freedom &ccordmcly '

Degrees of freedom :

-The degree of freedom denotes the extent of mdependcnce eu_;oyed by |

a given set of observed frequcncnes Suppose we are gwen a set of n

.observed frequenc:es which are subjected to k independent oonsuamts then -
d.f. = (Number of frequencies)}— =
(Numb_er of mdependent constraints on them)

= .V =n—-K '

Hence if we are given n ffequez;c_i_es- (0,,0,......0 ) subject to the
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linear constraint XO = £E = N, then for the application of ‘y* test. V =n-
If the given frequency distribution is used to compute the parameters
of a theorefical distribution and if these parameters are used to obtain the
. theoretical (eipccted) frequencies of the distribution, then we subtract 1 .-
degrees of freedom for each parameter estimated and poisson distribution
1o the given set of data, we lose 1 d.f. for applying y* test because for
binomial distribution we have to estimate only one parameter P, n being
~ given in the data. For poisson distribution, we have to estimate only one
paramcter m. But for normal distribution, we have to estimate. two
parameters p and o~ and consequently we lose two degrees of freedom
for applying X test. Moreover, if in case bmormal_ distribution, the
hypothetical value of P is given, we do not lose any degrees of freedom.
Again, if any of the theoretical cell-frequencies is less than 5, we pool
it with proceeding or succeeding cell ﬁ-eqmy is greater than 5. In general,
the degrees of freedom for the x° testof goodness of fit are given by
_ V=n-1-K,-K, where
{!} 1 d.f. is lost.due to the linear constraint zo SE = N _
{2} K, isthe number of pammetcr computed and used in estsmanng
the theoretical frequencies of the distribution.
o MK, is the number of d f. Jost in poohng of cell frequencies which'
 are less than 5. #

- Chi-square test of goodness of fit :
_ Suppose we have 10 test whether the results obtained from some .
~ experiment Support a particular hypothesis or theory. This is called X test
of goodness of fit. g
Under the null hypothesis that there is no mgmﬁcam difference between
the obser =i texperimental) and the theoretical or hypoﬂieucal vaiues the
test SHAUSTC proved by Karl Pearson: _
d On." IEn ’
%"

e-glofoa) o0

Follows X° tilstnbunon wnh v = n -1 degrees of freedom where
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0,,0,......0, are the observed frequencies and E,.E,......E, are the
(':Orréspanding expected or Iheoreuc‘ﬁ frequencms _ ' :

If the computcd value of ¥~ is less than the corresponding tdblildled
value of x* for (n-1) d.f. at the given level of significance then it is not
. significant and null hypothesis will be accepted This means that the
discrepancy between observed values and the expected values may be
* attributed to chance ie. fluctuations of ~sampling and there is good
correspo.ndence between theory and experimeat. If the c:'alcuia:ed"value of
A *is greater than the tabulated value, it is said to be sngmﬁcant Then we .
can conclude that the experiment does not support the theory.

- The observed and expected frequencies have a very important n;lation.

n ' n - 2
20, =3XE=N o zo;zﬁzx

=] isl

- f
~ For numerical problems. it is usefui 10 use ff zt

Proof £ —.E{EEELJ s

_[0..15;_9@] ;[9—-4-5-30 L

=59 n_aNazQ oy
E E

It should be noted that the 7 test depends only on the set of observed
and expected frequenc:es and on degrees of freedom V. It does not make
any assumption regarding the parent population from which the observations
are taken. Since y* does not involve any population ['J'a:ameters it is termed.
as.a statistic and the test is known as Non-Parametric test. . _

Examplé r .
In a set random numbert; the digits (} l......9 were found to have the

following frequencxea
Digit : 0 _I 2 3 4 .5 6 7 8. 9
CF . : 8 mMB ¥ ¥ R % MM W
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Test whether Lhey are s:gmﬁcantly different those cxpectcd on the
B hypothesis of vniform dlstnbuuon
Solution :
. Null hypothes;s set up the null hypothesm that the digits 0.1 2, 3 .9
are uniformly distributed, i.e. all the digits occur-equally frequently. .
p 'I'hen under the nuil hypottwsxs, the expected frequency for each of the

digits 0,1,2,3,..
' 43+32+38+2T+38+52+36+31+39+24 360 _
10 o e,
Digits | Oservied Expecied . . (O-E) - (O-E) (O'EE)‘
Wncy (O) t‘requcm_:y {.0} |
o . % 7T % i
TR e e 04
2 38 % 4. _uu.
3 -3y e -9 o ; s 235
i Wt s ke JSa ol
'3 52 36 R O T
le - 0 36 o 0 0
g - = 3l 36 - oent
8 - o % 30 9 0325
e o 36 ST S g
360 360 o _ 1635

X{(O E)] 16.325

Smce we are given 10 frequencses aubjected o only one lmedr
_ constraint $O=3$E =360, Degrees of freedom 101 =9
Tabulated value of ¥~ for9 d.f. at 5% level of significance is 16.92. ¥
Since calculated value of »? = 16.325 is less than the tabulated value
16.92, it is not significance and null hypothesis is acéepted at 5% level of
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. significance. So, we conclude that the digits 0,1,2,....9 are- uniformly
- distributed i.e. all the digits occur equally frequently..

Example -
Thc figu:es below are (a) the frequencnes of a distribution and (b) the
- trequencies of the normal distribution havmg the same mean, standard
- deviation and total fmquency as m (a) . _
@l 12 66 20 45 M 9 ™ 45 20 & - |
®2°15 66 210 a3 799 o4 79 434'2;0 & 15 2
Apply z° testof goodncss of fit. |
Solatmn We set up the null hypothesis that normal dlsmhutwn isa
good fit to the given frequency distribution, i.e. the observed frequencies (O) -
. and the theoritical normal frequencies (E) do not differ significantly.

@ E. (0-B) ' (0-Ey @
1 -}1'3' 217 4 16 094
124 s __ ‘

6 6 0 0 0.00
220 210 0 . 100 . 048
495 484 . 11 121 025
792 799 -1 49 006
924 944 - 20 400 042
L7192 799 0 -1 49 . 006
495 484 11 121 0.25
20 200 10 . 100 048

o 0 0.00
12}13 '_15};7. 4 6 094
388

[(O E)} 388 -
E

Here we are given 13 frequencies, d.f. = 3-1-2= 2=0 .
id.f. being lost because of the linear constraint }_",0: $E = 4096, 2d.f.
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. are lost because the parameters m and g are estimated from the given
 distribution and used in computing the expected (theoritical) frcquencnes of
.ﬂwumnaldimbuuon, 2d.f. are lost mpoohng because the first and the last
frequcncxcs arc less thzm 5.and they are pooled with succeedmg and.
'pmcxdmg &equency respecuvel) 50 that the msultmz ﬁ:equenms are gma:er -
~than 5. | |
- Tabulated value of x° for8d.f. at 5% levcl of mgmﬁcance is 15. 507
Since calculated value of ¥® =3.88is much less than the tabulated value .
- ie. 15.507, it is highly non-significant. Hence we may-acceot the null -
' ,hypothes:s at 5% level of 51gmﬁcance and conclude thd[ the normdi :
distribution is a good fit to the ngen chstnbuuon

Chl-square test for mdependence of attributes _
- Letss mpposethat the given populanon oonsxsnng of N items is dmded :
-ul 4 mumailyexclusweandcxhausuve classes A,.Az, ..... A, wi
. to the attribute A so that random selected i item belongs to one and only one -.
- of the attributes A, A, A, Agam,suppose tbatthe same population is
- devided i into S mutually disjoint and exhaustive Classes B;.B,,..... B, with
"respect to another attribute B so that an item selected at random possesses
one and only one of the attnbutms B,, 131 ...... ..B,. The frequency distribution _
" of the items belonging to the classes A;.A,......A, and By,B,,.....B, can

be mpresentcd in the following rx s manifold contingency table.
IXs manirold contlngency table

% By B ) B = S B L Tem |
lapy jasp | o@agy | @Byl o By @y
Taz: | By | aBy | .. |eazsp |... (AzBg  (AD

A [@Bp | @B | . AB |- L (ABY (A

A JaBp | aBy | |AB) .. ABY - AD

Toal (@) | @) |..[® |- @B
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(A,) is the frequency of the ith attribute A, i.e: it is the number of
persons possessing the attribute (A;), i = 1,2,...1(B;) is the number of
persons possessing the attribute By, j = 1,2,.....s and (A;B;) is the number .
of persons possessing both the attributes A; and B;.
~ Under the null hypothesis’ that the two attributes A and B are

uﬁcpendent the expected froquency for (A} is given by
'E[A B]=N. P[A,BJ]
= N.-P[Ai 'ﬂBi]- ‘
~=Nefa;}¢{B)]

_(a)B) )(B)

: Izunphesﬁmdaeexpectedfrequencyforanyof&wceﬂﬁeqmmcm
be obtained on multiplying the row totals and column totals in which the
ﬁ'equency occurs and dividing the product by the total frequency N.
.Hi:rc, the test statistic y2 follows x distribution with (r—1)x(s—1)
degrees of freedom. Cbmpaﬁng the calculated value of y»* with the
tabulated value for (r—1)x (s~ 1) d.f. at certain given level of significance
we reject or retain the null hypotthis of independence attributes. '

=Nx

Degrees of freedom for rxs contmgency table : }

For rxs cmungmcytable,ﬁ]e tab!cnumbcroffreqwmm isn=rxs
=Trs, These n frequencies are subjected to the following linear corzstramt

(1) 1 row totals (A;).(A,) ,....(A) are fixed. ' '

(1} s column totals (B,),(Bz) ,.....(_Br) are fi ixed.

agin X (4)= I (B)=N

So, thclnumber or{ mdependen: constraints is K =r +s = -1.

For rXs contingency table, d.f. are _
V=n-~K=n~<(r+s-D=rs-(@F+s-)=rs—r—s<+1
| | ) =-DHG-1)
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For 2 x2 contingency table.
degrees of freedom =(2-1)x(2-1)= 1.~
For 4x 5 contingency table, _ -
degrees of freedom =(4- i]x (5-1) = 3x4= 12 and 50 Of1.....
1000 students at college level were graded according 1o their 1.Q. and
the économic conditions of their homes. Use y? test to find out whether
‘ther is any association between economic conditions at home and LQ.

, . 1Q. .
Economic Conditions - =~ High  n Low Total
Poor: © 240 160 400

Toa - = - - 700 - 300 - 1000
We set up the nuli hypothcsns that the two attributes economic:
condxtwus and 1.Q. of the - students are mdependem. The expecmd-

frequencies are—. ; _
E{460)—M-420 | E(lw)ﬂm_lso
5(240)-700"400 =120, 5(160)_3000’;;‘”_120
_Thc value of Chx-squamnsobtanwd below : |
' : - = 0-EY¥
o & (0B ( (“‘E,')"
460 = 420 40 1600 . 38l
140 180 - 40 1600 -  BS80
240 280 40 ~ 1600 = 571
160 120 - 40 = 1600 13.33
0 31.74

1000 1000

Since the calculated value of y? = 31.74 is much greater than the
tabulated value of y2? = 384 for V=1, it is highly significant. So, the null -
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_ mpomesns that the two azmbute are mdependent 15 rejec:ed dnu G - _
‘conclude that Ibey are hlghly associated. ' '

Out of a sample of 120 pcrson.ﬁ in a4 viliage: 76 pm;onx were
.....'mmateret. a new dru:-z for preventing influenza, and out ot them, 24

pensons were attacked by influenza. - Out of those who were not -

"administered the new drug, 12 persons were nox affected by influenza. Use :
Chi-square test for finding out whether the new drug is effective or not.

i Solution : Theabovedatacanbearmngedmthefoﬂowmg 2% .
: conunqemytabie

. New during ' _Eﬁ'éct of infli.l'enza. '

| | Antacked - Not-amacked |  Fol
© Administered | 24 7624s52° | 76
| Not administered|  44-12=32 12 - |120-76=44
Toml [ 24432056 saeizees | 120

. Wemupﬂnenuﬂhypoﬂn&sﬂmﬁnambum anackbymﬁumzaand'
‘the adnumsuanonofthencwdmg’ammdependem,mﬂmnewm:sm
) -'efﬁcuvemco:mmngmﬂuezm
" Underthe nuil hypothesis of mdcpcndcncc ﬂwcxpocted frequencxcs'

56>< 76 56x44

=3547, E(32)=-

5(24)'- =2053
. 120
44x76 4464 _
2 =40.53 12) = '--2347
E(s) 0 40. i 120 o Ba%
0 B (OB (0-By I__E_)_
u BAT - -114T 1315609 . 3709
2 08 1147 135609 6408 |
2 08 uer ses 326 |
2 B4 T 147 - 1315609 . 5605
P R - e A i ) 18968

, Jo-Ep]. .

=8} m— =i & ¥

= 05 feus
"L R




' d.f=12-—l)(2-l)- 1 . =
Smcethecalculaledvalmot i lS%Slsmmhgreaterrhanthe

' whulated value y7gs for 1 d.f. =3.84, msh:g}ﬂysagmfman:audmenul'?

' hypoﬂmesns:sre;ccmdatﬁ% level of significance. So we conclude that the -

~new¢.xrg|sd|ﬁmmlyeﬂ'ecnmmoonmﬂmgmﬂmm 5

J( t&l‘orthepopulaﬁonvamnce‘
* Supnoce we are mtem&ed to test if the given normul populatlon has 4
 specified variance o’ =0 {sav) : Y _
‘We setup the nulk hvpotheszs H .67 "*G lf XK Ruinia N, U
the obcewamns froma random s.m‘rple of sizen tron' the g‘wn FU‘.-:.. &, P
then urnder t‘ye nul! hvpnthesm H Ihe ‘\'.'lllblh.
- x‘! j=1 = > .
s s B - Cn ac,"" ;
follows' »* distribution with (5= df wees

S'-———Z{A nx R

Now, companng the calculated valuc uf x° with the mbulaxeu Vil
. for (n-1) d.f. at certain level of sxgmﬁcapce. the null hypothess is rejected -

or retained.

Exmnple’ 5
A sample of !5 values shows the smndard deumcn o be 6.4. Does
_ thzs agree with hypothesis that the pcpulanon standard devzauon is 5, the
s populancn being norrmi
~ Solution : |
We set up the null h}“pothcsm Ihat populauon aldnddfd devlatmn i<

ons _Given.n: 15, s=64

‘xz'f_:_ns'2 le(64) isx4096 6144

= 24.576
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* Since the calcuolated value of 77 =24.576 is greater than the tabulated
value of y%gs for 14 d.f. =23.635, it is significant. So, the null hypothesis
is rejected and we con;lude that population standard deviation is not 5.

_ . Check your progress :.° o
. Whatis % test of goodness of fit? |
. State the conditions for validity of Z” test.
What do you mean by degrees of freedom?
“What is poolmg" |
. Describe the X test for independence of atmbutcs
. What is a contmgency table?
. Explain how x° test can be uscd for testmg a hypothesm that
populanon has a specxfied variance ‘-"o :

qmm;&’pm_.

2.10 Additional Readings : | N
1. S.C. Gupta, Fundamentals of Statistics, Himalaya Publishing House.
2. S.P. Gupta, Statistical Methods, Sultan Chand & Sons. |

3. AL Nagar and R.K Das, Basic statistic, OUP. e

4, _Padmalochan Hazarika, Essential Statistics for Econon.fxics and
Commerce, Akansha Publishing House

5. D. Salvatore, Mathematics and Statistics, Schaum's Series, Tata Mc
Graw Hill
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UNIT-3 o :

| Linear Regression Model and its Estimation
Contents: | - ' |
~ 3.1 Introduction

3.2 Objectives

3.3 The Two Variable Regrcss:onModel

3.4 TheLinear Specification ' '

35 Inﬁ‘oductmnofdukandom&sturbance

36 mzemetauonofmeParametem

37 RauonahsauonaftheDism:bmweTenn

3.8 Exerise

3.9 mLeastSqua:ePnnmpleofEsumanancgrmonParamem_
3.10 Thestandard OLS Assumptions :
~ 3.11 Properties of the OLS Estimators

- 3.12 BLUE Property |
“3.13 General Linear Regression Model

3.14 Assumptions of Generalized Least Square

3.15 TheCnefﬁczentofDetenmnanon
3.16 Maximum Likelihood Methods

357 Pmperthsofhv[ammulekchhoodEsﬁmors

3.18 Exercise.

34 lntmdnctmn ;
" The term regressnon was introduced by Franc:s Galwn The modem
interpretation of regression is Regression analysis is concerned with'the study _
of the dependence of one variable, the dependent variable, on one or more .
other vanables the explanatory variables, with a view to estunatmg and for
predicting the (Populauon) mean or average value of the fonncr in terms of the -
known or fixed (in repeated samphng) va}ues of the letter.
In a regression model, to examme the dependence of the dcpcndcat
-variable on the <=.x1:)1::1:'4:3:0»@-r variables, t‘u'st the coefficients (parameters of the
regressxon model) of the explanatory vanables should be eslmlated. There is
a possibility-of gemr_ig numerous estimates of each coefﬁcxe_nt. But out of all
* these only that estimate will be selected which is best as well as significant. The
_significant coefficients of the explanatory variable has some effect on the.
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' dcpendem variable and ctherwise not.

- However, the tahdzty of the estimates of the parameters ckzpenda upon SOme

tandard assumptions. Violation of these classical Linear Recresslon Model
: (CLRM} assumpuom will result in some probien‘ns like amo-conelanon ty:tcm
~ scadasticity and multi collinearity etc.
o In the htemlure the dependem and mdependent mmble h.n» dlffemm zum _
Such as,
Deperident Vanable
Explained- vanable, predmand Re gmss.md, Response, Endogenoux
Outcomc, controlled variable = ;
Independent variable. . _ %
: Exphmamry wnable predxc:or Reomsmr Stimulus. Exocenm,o \.ﬂ\rm
_ controi variable. '

3.2 Objectives: _
 This unitis designed 1 heip you i et concept of lincairn regression
mod_cl and its estimation and its related ideas. After reading this unit you will be
able to, : | : ot
_ . Construct linear regression model.
e Uhdérstand‘diffemnt -éxssumptioi;s and properties of OLS and GLS.
® Describe bow far one independent vanable is ableto explainthe

depcndent varuble o
- ® Estimaze maxlmum likelihood mcthcxh

33 The Two Variable Regression Model ;' : ;

Typically a detailed econometric model contains anumber of equations and
each equation contains a nurmber of variables. Given this complexity ofthe madel.
some complicated pmbiems arise when we estimate the parameters of- the model.
Hence, for simplicity the simplest posslbie case of econometric model wluch '
 consists of just one equation in two variable will be discussed first. .~

Dem ttie variable by YandX the wo vanabk hnear regressmn equanon

willbe,

56




f ;. BUEE SRICR
Wherc Yisthe dependent variable and X is the expianatory or mdependem
% .mabie Here, Variations in Yare explmned in terms of the variations in X. Herz.

Y is sald mbe revressed to X

- 3.4 The Linear Specification :
Equation (3.L.1) merely ummﬁesﬁaévamblcx,wmch:sﬂmgtmomﬂm
the other variable Y
The sunplcst relationship between two vanabiea isalinear one, namely.
Y=o+ px (32D
- where o and B are - unknown parmmers indicating themten::pt and slope

* ofthe function. The value of o and B will specify the reldnonz,hxp between X

Cand Yo

The imear specification is useﬁr! noi on!y becau.sc itis s;mple but aiso for
" the fact ‘that many non linear tuncnoml forms can be imeanscd by
_ mathematical manipulations. This means that linear specification is.not
_necessaniy asevere restriction. For instance, let a non linear relation—
; CY = oxf -
Takmcr logarithms on both the side of the rc!anon we will get,
’ log Y= looa+,81cw
\\ hich i is a linear function in both log Y and i»uur X. Denotmu inT and ia
X by and V mpcctweiy. we have, - _ ;
W= ﬁw which is lineur.
‘Even when such linearisation is not possible, the linear speciﬁcation'o'f @
- non linear function over a small range. Thus the linear specification has a much
- wider area of applicability than what appears at the firstsight. '

' 3.5 Introduction of the Ramdom Disturbance : _
Conventional economlc theory usually postulets exact functionai

reiauonship between variables like the equation (3.2.1). Such an-exact relanon
will give a spec:ﬁc value of Y for any given value of X. But emperical
~ _experience are in general not quite exact. To allow for the inexact relationship. -
 between economic variables, the cconomeuecnan modifies the detcrrmmsuc
~ relationship as, _
B Y=a+ B+t '(3.3.1)
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Here, withthcdeterrrxinistiépattqfﬂn model’amnddm_pmormchasﬁc
random disturbance term usually denoted by U. The deterministic part of the
. model can be represented by a straight live like RL in figure L.1.

X

- A
Figure-1.1 |
~ Suchaline gives the expected value of Y for any given value of X. Here,
- X takes the védues OA, Y is expected to take the value AB (=-c + fX).
.Butmreahty,Ymaytakeavahze different from AB because of the influence. -
; ofthed:stmbanceteth Smaller the valuesofU hzghensthepossxbxhtyof '

Y taking values closer to a + BX and vice-versa. Generally U is assumed
' to take smaller values with higher probab;hty.

3.6 Interpretatmn of the Parameters :

Let, the two variable linear regressmn model is,

Y= a + Bx +u.

The parameter B is the slope of the regression line is B= X or the
rate of change in Y to per unit change in X. Thus, capmfe the effect of the
- explanatory vanahle X on the dependent vanablc Kecpmg other factors

constant. _ _

_ The parameter ¢ is the intercept of the regression line. Intetcept is thc
‘value of the dependent variable when the value of the independent variable is
zero. In econometrics the meaning of ¢ is quite different. Here or Implies the

‘mean effect of those factors which are not explicitly involved in the model.
That is in econometrics the parameter ¢ Is to be interpreted as the mean

- effect of the factors other than _v}hich constitute the value of Y.
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3.7 Rationalisation of the Dlsturbance Term

The stochastic nature of the regression model implies that forevuy value
of X there is a whole probability distribution of Y. In othet words the value
~ of Y can-never be predicted exactly. This uncertamty regarding the value of -
Y arises because of the presence of the stochastic term U.in the model.

The insertion of the random disturbance term U in the regression model
can be }ustxfiﬂd on the basis of the following arguments.

o There may be several factors, which influence the dependem variable
besides explanatory variables. It is practically impossible to. introduce
explicitly all the factors influencing the dependent variable. It may be difficult
~ to quantify some of the factors. Even when factors are quantifiable, obtaining

' statistical data on them may be so small that ope would gain very little by
- introducing them explicitly in the model. Generaliy, the mean effect of the
- factors not explicitly included in the model can be captured lhmugh the

disturbance term U. :

2. Though economic theory assumes human behavior to be rational, in
 practice the same may not be perfectly rational. This randomness of the
human behawor can be capmred ttuuugh the dlswrbance term.

LA part of the disturbance U may be the errors of observation or
measurement present in the observation of the dependent variable Y.
4. The disturbance term may represent such an error which may be due
- to the imperfect spcc:lficanon of the form of the model. i
| 5 U may represent the error which may be due to the aggregauon of
6. T]:se disrurbance term may reprcsenz wrong functional form :

' 3.8 Exercise :
g = InahnearmgressmnmodclY = o+ ﬁxt + [ explamthcnature' ‘
- of the random variable g, And give justification for its presencemﬂ}emodel

[M.A. Previous, 2003 GU]

2. Itis hypothesxzed that household expenditure on energy depends not -
only on income but also on whether the household is located in a rural or
- urban area. Formulate a suitable regression tmdel to list the hypothesis of the-

pammctcrs in the regression equation.

~ [M.A Previous, 2006 G.U]
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T 1 9 The Least Squam Principle of Estimating Regression '
Parameters i
In order to estimate !hf: parameters a and B of the rcgn:ssmn model
one requires observations on the dependem as well as esplanatory variable.
Gwen the observations, the estimation can be done by a medzod of Ordmm'y
_ Least Square (OLS} o
 Let (X,, Y,) [X,, Y ), o ver (X Y ) benpalrsofohservanons
on X and . (For example for aregress:on on income, these could be income -
- and consumption expenditures data collected from N sample househoii .
Now using the. regression model the t-th observation can be represented as,
_ RAK R Nl (. t= 12,....n
The value of parameters o and B are not given, soweammeeum.m
~ the values of o and . The estimated value of Y denoted as Y is given by,

Y a+ﬁx
Where a and [3 arethcc:stxmatcdvalucsofpammetcrs Thevaluesof

& and |3 shou]d be selected in such a \my 5O that it gives the best powtb
o '
e R N mamﬁcal et beierved:
\.x!ue of Yt due to. the random disturbaance term. Dcnouna the resuiue in Y,
(in excess of Y, over Y, ) but {7 . we have
U,=Y,-¥, =Y,-& - Bx,
For n observations we get n residuals @i, 8,......., Uy
_ “That is residual is:the difference between thc esnmazed value and
- observed value, Residual can be posmve or negalne '
Let us understand .
- IfUis pOSlthE-— then Y, » \2'.
If{}tssnegauve then Y, < ¥, _
e It‘ the remduals are large it ma.ns that the chmatc is not good but i
: reméuais are srriall then it means that the estimate is good. Better the
) estimation of o and B, nearer will be the estimated value to the obsened
'value and hence smaller would be the magnitude of the residuals than together.

Thus choosing the esumators G and §, one may lock to rmmrmse the overall

magmmdc of the residuals. But in doing so the first problem is to get a .’
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measure of overall magnimde of the rasiduéls. A simple sum of the residuals

-will not setve the purpose as negative residuals will cancel positive ones and. .
we can geta verysmall sum even when actual residuals are quite large A sum
“of their absolute values is sum of the residuals afier ignoring sings, will not have

'\'ﬂus problem. But i ignonng of signs makes this sum unsuitable for further . :

J!aebnc manipulation. Morcovcr, in case of minimisation Gf absolute deviation,
we can't distinguish the deviations within deviations. 'Ihenefore the reduction
of one unit of deviation from large or small deviation are ‘'squared out, the
.. greater deviations get further nwgmﬁad. Hence while minimising the sum of
squares of deviation, more importance will be given to reduce deviation which
_are alrcady further oft. Therefore the sum of squares of ms;duals is taken as
‘the measure of overall magnitude of the residuals. : :
Thus in OLS method the regression parameters are so esnmazcd that

the sum of squares of residuals becomes minimum. Mthepresentcaseﬂaem
of squares of residuals {S) bccomcs.

Qlll,zi(y ‘&?ﬁxl) |

o i
; tal N 1=l ¢ ® 55
Gwcn the observations (X, Y,)(X,_. Yoo ) comeshinsiing (X Yn) the

- sum of squarcs of remduals isa funcuon of ¢ and B. ie for dlffe:ent pazrsof

‘G and thevalucofSwﬂlbedlffemnt.'iheOLSestzmatoresafa and B
" aye those values of ¢ and § for which S takes the sma!lest possible value.
Mathematically, the first order conditions for _mxmnnsaqon of S with -

respect 10 & and f are

as R
'w.-——-o and —==0

s as Y
Now 35=0 = gg 2{%-& - br) =0

: :22(‘{ & fx)E=0
=>E(Yt_"°‘_-" th)=0} e GAD)

=3 0,=0 | _ |
(Deviding both sides by-2)
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Similaly,
§—~S~-—0 cii?—:{}
da 9B

Naw §~§-0
d
”ZY a Bx) , (3421
'=>2Ux =0 . : _

The equations (3. 1) and (3 2) and calied OLS normal equatlons From -
(3:1) we have, : '

ZY -nd - BZx =0=>na=3 Y, ﬁZx

Bx ....4........(3_.4.3}
- From (3.2) we havc,

s & Zszr ‘_&le - BEX-f:O '
- Next substituting for & from (3.3), we have.
IY,X, - YEX, +BXEX, —fEX .} = |
. TY.X -YIX

. =R(ax2-xex )= ax X - vux, = B= z:sé 3 K}:X:
This can be varified as, -
B(Y, - (X, - X) = ZY.X, - YEX,
and X(X, - X)} =X, ~XEX,
Thus, |§ can be written as, . ”
B= =¥, %)% -Y) B’ . (344

X

-where xmx ~X andy, =Y, -Y

Equation (3.4. 3 j and (3.4.4) represent OLS estimators of o and .
Here conditions for minimisation of S are satisfied automatically.

3 10 The Standard OLS Assumptwns
The OLS estimators possess cerntain desirable properties prowdcd

some standard ‘assumptions are stisfied. These assumptions are briefly.
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d:scussec! below.’
(i) The random disturbance termhasazemmcanforobscwamn mth;
Y, =a+BX, +u,, XU, =0Vt

_ For any given value of the explanatory variable say X, the dismrbance
term u, ean take many alternative values, u, being a random variable, there are -
specific probabilities of it taking various different possible values of u, are so -
distributed that the expected value become equal to zero. For example,
supposeweareablewtak;emanyrepeatedobscrvaﬁoninwhichlbéXvalué-
mmamspeclﬁc atx, Though X vaiuemmnsuuchangedm&mobsewauon
. the random disturbance can vary across these repeated observations. In some
cases the disturbance will be positive and in some other cases it will take
. negative values. But the frequency of the different values will be such that the
. positive values tend to be balanced by the negative valués ie for each positive

vameofUthcrewﬂlbeacorespondmgmgaﬁvevaimofsommagmmdeso ¢

that average value tends to be zero.

_ (n)Thedmmrbmoewnnhasacmtentvmceforaﬂobscrvsnons As
-explained in the above assumption for any specific value of X, say X,, the

disturbance term has a distribution, ie a whole range of possible values with

~ associated probabilities. It is assumed that varience of the different '
distributions of the disturbances correspondmg to the different X values are

same. Thus, :

VY, =E{Ui--EU.')’ =o'Vt
=EU2=0t [EU, =0 by assumption (1)]
(iii) The disturbance in different observations are independently

distributed. This means that the value taken by U, in the observation t isnot
- related to value taken by U, in another observation S ie,

Cov U,U, =E[U.~EU,JU,-EU,]=0 V 1 s
or BU.tUs- =0 [EU. =0 = EUs'by assunipt_i_on (l)] _

(w) Each dlsmrbance term is nonnaliy dlstr;buted
e, = N(G, a-)
.'(v)_'I'he explanalory variable (S) is (are) nonstochastic. This means that
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each X, value is fixed and there is no question of X, having a distribution of
different possm}e values with asstgned probabilities (as we have in case of
Uy '
The asaumpuon» (D). (i) and @ m} are somcum jomtly stazed as Us.
are independent and xdentxcaly dxstnbutcd with zero mean and variance g-

or in ‘short "U,s are iid (0 o"'

{vi) The negressxon model s lmear in the paranmters -
_ {vii) The number ot obﬁenaucn\ n must be greatcr than the number of
. 2Xplanatory variables.

(viii) The regression modei should be correctly specnﬁed i.e. there
should not be spe(:lﬁcatm bias or error in the model used in emperical *
analysx& :
' (ix) There must not be perfect linear re!anonslup among :he explanaton
variables. ie there should be no perfect multicollenearity,

x) The X values in a given sample must not all be the same.
'I'echmcaliy var (X ) must be a ﬁmtc posmve number i

3.1 Pmpertl&s of the OLS Esumators
From the two vannble hn«ear regression model

Y, = o+ BX, +uy
~ The estimator of § is,

i ERY
B =t
x

where, x, =X, -X andy, =Y,-Y .
Now let us examine the pmpemes of 5 under tht standard OLS :
assmnpuons '
Pumng y‘ ...Y Y in B wehave .
Z;!(Y‘ —Y) .... leYt i szi — Ex‘y‘
_E:-'—__,zﬁ Uk 'Ext?‘ |

1 i t Tt

0
Il

Tx =z(x- _x)- 0,

1

bemg Lhe sum of deviations from mean vaiue
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B o —1, = zwy where w :-3-‘-;
zx VR

t _ | ) [
This shows § asa lineai- éombinaﬁon of sample Y vaiueé. Hence f is

said to be a linear estimator. For deriving further propemcs of [j letus first

~ notea few results about W

IWX Ewtx | R (352
EW s e '(3.53)
b
: '_2 can be varified
rx
t
‘Main of § : -
ﬁmEW Y, and _'Y1L-_-:a+ﬁx:.+ U, -
_ we have, i
B= ZW(cz + Bx, + ut) =oZW, + BIW,X, +Iw,u,
-orB B+ZWX Crverreirennn (3.5.4)

Eﬂ -Ef + EXW, U, B+ IW, EU,
(Eﬁ B, since B is aconsmm)

| W isa funcnon of X s. X, being non- stochastic, W can be treated as a fixed
constant for the purpose of taking the expectation of Wu, ie EW,u, =WEuy,

Since EU, =0 by assumption 1 _
' v EREE b (3.5:5)
In other words, ﬁis an unbiased estimator of .
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Variance of ﬁ :

By dlﬁmt:m, _

Vitiaios 6f Biso’B=E(f - Efif Substituting (3:5.4) and (3.5.5)
we gel. . ' !

cB=EEW, - L)

= (W)U, +uoece AW, U, ) (WU, et W,U, )]

-+ Expectations of sum is equal to the sum of expectations.

= E[E-Wfo +Y WWUU ]
k- _ h

=Y W0 +3, EWW,UU, =Y We,.
1 B Yy [} X

** W,s are non S{OChastic

EU = 6" by assumption (ii) and . -I
L EUU,=0V1=# s by assumption Qu)_l
4 'oraB 0'22“" :
G’ " _
oroP= —— i 335.6)
B_ w3 . (
; 4 1 ’ i = ‘
=5 Ewt" —_ = ; % i
- Ex" - s ¥ J

3.12 BLUE Pmperty :

Under the classical assumptions of the classical linear regression model,
the least square estimates prossess some ideal or optimum properties. The
best linear unbiased properties. The best linear unbzased properties of an
estimator (BLUE) are. ; :

-~ (1) Itis linear i ie a linear funcnon ofa random vanabie Such as the
dependent variable in the regression model. _

(i) It is unbiased ie the average or expected valuc of the esnmanon is

equal to the true value (EB B)

- iin) It has minimum variance in the class 0t all such linéar unbiasd .
estimators. An unbzased estimater with the leaht varience-1s known as effecint
estimaton. : ?
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In regression context it can be proved that tﬁ_e OLS estimators are best
- . linear unbiased estimator (BLUE). ' '

.BLUE Property of B - . _

Under the standard OLS assumption, ﬁ the OLS csnmanon of ﬁ is
best linear unbxased estimator. It is best in the sense that among aif linear
- unbiased estimator of B,f3 has the smallest variance and hence ﬁ is the most
effecient. ' Ty [ |

To prove this let us begin with an arbuary hm:ar estam.nor b of B such
b ‘):C N v il (3.5.‘7)
: Weknewthat f = =IW.Y,

Denmmg the differei.ce between C, and W by d, , we h.n..

C=w,+d, .. (3.5.8)
: Now expanding b we have C

b=XC,(0+BX, +U,)
= b=03C, +BEC,X, +EC,U, ........ (3.5.9)
Eb=0C, +BEC,X, + EC,EV, :
= Eb=0XC, +BEC,X, ... (3.5.10) =
| SE(U,)=0 by assumption 1.
For b to be unbiased ie for Eb tobe B, we reqmre
ZC, =0 and XC,X, =1
nezw +2Zd, =0 and ¥4, X, =0
[+ IW, =0 and IW,X, =1 by relations (3.5. Dand (352 ]
Now variance of b is given by 5
6’b=E(b - Eb)"
Substlxulmg equations (3.59) and {3 5. IO) we havc
*b=E(3C, - U,)’

:E[(c,u‘-a- ........ +C U )(c u+ ...-;....+CRU,,]] )

= E[ 2.C7U + 2. CC Uy, ] =0°2C, as in‘case of o%B.

67




ot o*B=0’E(w, +d,) = o%Ew ? +6°5d,2 +26°Ew d,

1 : X,

. '-N'OW E‘\’b’;dt =:‘:;:2—EX.‘dl _.'. Wt =_£x+:2
(x x)d (zx d,-Xzd )=0

{Unhmsedn_css of b impkm thatZX‘dt =0=2d,) °
' a’b'—czzwz+azm2:625—6234-'622@12 |
| g’ Is always posmve and 2d, 2 bezng sum of squa:ed terms. 1s always %
non negative ie -
6’220 .-.c.-zbzo”ﬁ : y
Equality will hold when 6?54, = 0, ie when %42 = 0. This wil be the
_case when d, are all individually eciuél 1o zero or _wﬁgn C, =W, or b=f
Thus, it is proved ihat f} is the linear unbiased estimator of B. -

Propertles of ¢ :
From the two vanable lmear regression model Y=o+ Bxl + ut
we have the estimator of o, as

=Y-BX .
Substituting IW, Y, for ﬁ we have -

a=-i-EZY‘—§§:Wth uz(;-xwt)y,
n ' ' :

Denonng (l-—_*XW!] by Z, we have,
n : :
This shows that like [§, ¢ is also linear in Y,
Here £Z, =1 and 3Z, X, =0 e
Now substituting Y, = & + Px, + u, in G we have

&:Hl(a_ + th + ) :@Z;q—bﬁz‘xt +£Zlequ+£zKUE
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Using the OLS standard assumptions and above results, it can be proved
-~ : - . q A | E 2 . 2 = _I. .+._.§'2—.

" EG=a and 6'G = E(EZIU‘) = &ZZ“. N Zx’

~ Denoting o = XY, Y as an arbltrary estimator of ¢, a proof can be

deve!oped in sumlar line as in the case of [3 to show that ¢ also happens to

be the BLUE of o. . '
The fact that under the standard assumption OLS estimators are the best _
" linear unbiased estimators is known in eoonometnc hterauvc as the Gauss
Markov Theorem :

“Fmauy, another result whxch m.ay be of use in the covariance between § &

Es

“and f. By definition covariance

| (mﬂ)=caﬂ=ﬁ{ta—ﬁa>(s—ﬂﬁ)}'. |
*E{(&-E'&)(B-Eé)} “Ef=B ... G511
&-'-.:?-ﬁi SEA=Y-BX | B o

. Now, 4-Ea=Y-fX -Y+pX=-X(8-B)
. Substituting the above result in (3.5.11) we have

E[-X(3-B)-8)} = Xe (3-p) =K Varp=-X 5

Estimation of 0——

" The expressions for vana.nces of & and ﬂ and the covanance mvolve '

thae unknown prameter g2 - ) |

| Therefore to estimate variance and covariance, we have to g2 before
‘hand. 2 is the variance of the distribution of the random term u,.As different
valﬁcs of Uss are not observable we can not get a sample of values of u, which
could have been used to estimate the population variance of u,. But we can
consider the OLS residuals @i, as proxy observations on us. Then we can .
attempt to obtain an esnmatar of g2 onthe _ba_éis of these proxy observations

uis
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To start with, reall that
U,= Y,—_?::ﬁ, =a -!-._.ﬂx, + u, -(ti + thJ

ney g wg ~'(a-—_a)—-(B-B)xl'
The actual derivation process is a little tedious; but starting from the
above expression and using various result already derived it cun ke W= 1
- EXRS =(n-2)0”

b3 IR
In other words, E ——'L; =g?
! A2

Thus, G Lnbiused estunution vt - may pe JeME G ay

%2 z(Y,_,-&—Bx,f
n-2" !11-?2

6 =

3.13 General Linear Regress:on \lodel
OLS assigns equal wights or importunce to each observanon I-Iem.e
OLS esumator may not be the best estimator though 1t is unbused GLS .
. Generahsed Least Squares) takes such information into account cxphculy and
is therefore capable of producing estimators that are BLUE. In short, GSL is
OLS on the transformed vandblea that bdilbfy the standard least squares
© assumptions. : .
© Let, there are k explanznory variables in the model. Then the mode] will.
be— | B
Y =B, +B.X,, +B, X Py 48X Uyl
where t = 1, 2, ..... . and n>k. '
There are K parameters to be estimated (K k+1). Systcm of nonnal _
equations will consists of K equations, in which the unknowns are the
parameters B,,8,.8,..........5, and the known terms will be the sums of
squares and the sums of products of all the variables i in the stiuctural equation.

, For t =l, o | : o _
Y, =B, +B.X, +By +ByX B +Bi X +u,
Fort =2, | »

| Y, =B, +B.X, BB, By 4B 2,
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Fort=n,

Y, B,+£3X +B;+[312\ Fosgianat By +B X tuy
 In matrix-form, _ S C
|_Y,_l [B;*‘ﬁ 2 X, ""ﬁs‘*’ﬁxx,l‘*' +gk+ﬁkx i
yz i Bi-u-ﬁ X , +Bs +E,1X p T _....-lri?;k +ka +u, |
| s 4 o o
l'l,,j Bq '*'B:X:,_n +B; ‘-‘B:X:,_ Fo By "'_"ka_kn e
Ty, (B, +B,X, +B3 +B:X, +.o ity +B X ]-; [u,]
o Y. | [Bi+B.X, +B,+BX s B B X, ‘ iuzi
S = : -; .
Lyn._! _Bi_+_|3iX:n+[33+B3X3n+ .......... +Bk+[3k_xl'mJ 'i'“é.l K
Y, ] X X e X ] By u 1
; 1%, X S X R 5
N Y:: = TN 4 B:w ¥ u;
| w S Bl e i
.,\"‘-{\ﬁ.i Ll+:\3f km . ‘an_l Bkj M

~ Thus. in matrix forn: we can write equaticr -
Y=XB+u ... _—

3.14 Assumptions of Generalised Least Square :

| E(u)| [o]
()or E(U)=0; E(U)= E(uz) = O
[(s,)] Lo

The expectation of a vectorimamx is the expecuon of each element of

the vector/matrix.

(i) E(UU") = oL
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E(QU’) U:z [u;uz- u“] u,i, u_z T u,u,
s ﬁnul ung,},,- _______ un:
g _0' ....... 0 |
% 40 gzz_ O (< E(u? =0") and E(un,),, =0)
0 0 ..... c”

This is a double assumption, 'namely__
"Each u disturbance has the same variance.
. Al disturbances are pair wise uncorrelated.

B D oj[L O 0
E(UU')= A0 O O[10 L. o s
[ sllo 0. 1

(i) U~ N(o, ol o) —the disturbances (U's) are normally distributed
' wath. each and every meau is equal to zero and variance is (), 521
(:v) X is a non stochasnc matrix and has full column rank P ) =k-

- mnk of inatrix X must be equal to K. This assumption states that the :
explanatory variables donot form a linearly mdependent set. '

-Letus Undcrstand, ) ' : ' -
: Rankofamamx:sﬂ:enumbemfbmaﬂy mdependem elemem in rows
or columns of thc matrix.

3.15'The Coeffecient of Determenation : _

~ The coeffecient of determination tells how well the sample regression .

* line fits the data. The coefferiant of determinatien or goodness of fit is the

square of the comelation of coeffecient or R2. ThlS shows the percentage of

the total variation in the depéndent vanable which can be cxplamed by the
mdependent variable.

" Let us consider the simple linear regressmn of YonX.

S = T




Yo=a+px +U ... e (-
Total variation in Y,; Zy* = Z(Y,-¥)"
= ) Explamedvananon =%y’ = (Y, Y)

Unexplamed vauauon 9} = Z(Y‘wY)

~ From the residual on the error term we havc

U =YY oY =¥ 6, i 362
Summing over t we have '

.ZYL=.Z‘?;-+Z'?I‘ orTY, =¥,

Zu = 0 by the first normal equation

'Devndmg both sides by n, we have |
; Y= Y ............. 3.6.3

Substracuag (3.6.3) from (3.6.2) we have,

(Y Y)= (Y Y)+U oY, =¥, +0 ... 364

Squanng {3.6.4) on both szdesandsummmg overthesampic we have, |
Ty2= 5 +Ed} + 2550, ; -
Now X3,0,= x(Y +¥)a, =29,5,-V, 36, =¥,

(e Zh = Obyt.he first normal equamn)
Subsuumng Y, a+ﬂX '

= E(a-l-.BXt)u, = &4, +ﬂZX{ii‘ =0
> I, =0= Zyl +Eu by I and II normal equauon
Ty’ represent the total variation of the actual Y values about ther
 sample mean. T!mtennxscalledthetotalsumofsquares (TSS). z“ 2 which _
s called the explmned sum of squares (ESS} is the variation of estimated Y
values about their mean Zy, tells how much variation in Y has been
E .explaitwdbythe filted negres&on line 5, 2 or residual sum of squares (RSS)
is the variation in Y which remains um:xplmned. _ |
| _ Devndmg both s;des by the total sum of. squares Zy we have
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pETRD i T 0 L,
=+ % or =l = s
zy'.. Z}'-l }:'} t }"Y t :
The above expression represems the proportion of total variationin Y -
which is exnlained by the model. The ratio is-called the coeffecient

determunation and is denoted by R>.

{=

" Thus, R® = ——»Ey‘: =1!- '____Eu[: '
zyl‘ ZY|-
CopREw ESS _,  RSS,
TSS . TSS

‘The coeffecient of determination usually lies in the range of zero 1o |
unity. Higher the value of R2in the range, greater is the extent of variation
‘explained by the fitted regression model: On the other hand, smaller value of "
R2implies weak explanatory power of the model. | '

It may be noted that R? happens to be equal to the square of r.lmpic
correlation coefficient between observed and éstimated Y values. -

ie R’ =0, s

| Agﬁin for the two variable linear regression model R2 is also equai to

the square of the simple correlation co~cffec1ent between the two vanahles
| e R¥=0. ’

3.16 Max:mum Likelihood Methods :
. This method is based on the 1dea that different populdtro"' et
 different samiples and that any given sample is more hkely to havc come from
same: population than others.

Here, main objective to determine the proceedurc by which we can
compute the various unknown parameters of a given population on the basis %
of sample observations. These parameters can be xﬁean, varience, slope and

intercept. To estimate -the parameters, likelihood function should be =

determined for the observation in sample and then maximises it with respect
‘to the unknown parameters. -
The sample in Maximum Likelihood Estimator (MLE) can be genemled v
by various” alternative population having different parameter values.
Likelihood ie probability of different population are different. The parameter
value of that population which has maximum lzkchhood of generating sample
is known asizkehhood estimates. '
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et us consider the two variable linear regression model-—
‘ Y, =o+pX, +u, _ ;
. We assume that the disturbance term or the random variable is

dlsmbuted nermally with zero mean and constant  variance

. ie L*-N(O o ) Since u, is assumed to be normally dlstrlbut\,u R

_ - Here, iirst we obtain the hkehhood function. Thc joint probability
' de-ns:tv function (p.d.f) of Y, is called likelihood function (L).

< R T JB{Ys }oiiii P(Y,)
Now : : = 9
Y=o+ Bx, +u,

a‘_pf‘j: G- B, l E(u,') —'0]

_.-._Va;[Y,] [Y E(Y,)] = [u+ﬁx +u, (oc+BX )]
=E[a+|3_xt+ut-c_z~ﬂx,]"= (U;i)_ |

*

Var (Y,)= 6"
s 0y A
Fi”‘\‘i_lafﬁkd""_l .
i n 1 -I/E(Y'"[_!—‘ﬂx ]
S L=]]PlY,)= : SRS §
g (Y,) !::[ G n L o 'J_

_?rfl.(ﬁ:)"}:(zm'“’:e 333(‘{ “d-ﬁx J:
=(o’ )%("ﬂ%/" z (it 5x)
Taking logarithm -

- Which is the required, l:.kehhoad function. We now maximise é = mL
with respect to gand B and

The justification of using loganthm is that sim-:e logarithm is a positive
monotonic transformation, the parameter values that would maximise the
75




© estimate of 0.

likelihood function would also maximise the log of the likelihood function.

Thus, the maximum likelihood estimator can be derived by maxu'msmg_ '

'hkchhoodesnmate ¢=/¢nl. :
Let us understand,

a_dl.S =Opge- and - Pors =|_3mu:

o .But, 0201,5 #0°MLE

3.17 Pmpertiaz of Micclaiionsi Likekhiood Estinators s |

(i) Maximum likelithood estnmators donot ﬁausfy all thc small samplc
properties of unbiased always.

(ii) The ML esmnalors are consistent.

(iii) The ML estimators are assymptotically normally distributed.

(iv) The ML estimators are asymptotically effecient among all the
consistent estimators having staallest asymptotic variance. i

(v) The ML ‘estimate of a function g(ﬁ) is ( ) where g is : the ML

]

~ Let us understand,
Lakchhoodranmsamtofmnmlﬁ(ehh:ndasumam Thelzkckhood

ratio is the ratio of the restncted lzkehhood function to the unresticeted
" likelihood function.

318 Exercise : _

" 1. State and prove the Gauss Markor theorem for OLS. Decompose
the total variations in the dependent variable of a linear regression mode] and
ob{am the expressmn for the coeffecient of determination. :
- ' (G.U. Previous, '06)

2. What do yo_u understand by BLUE property ‘and regression
parameter? Given the regression model Y, = B, + B,x; + U, show that the °
least square paramcters ane best linear unb;ased estimator- under standard

' assmnpuons

(G.U. MA Previous, ‘03, 04)
3 Denve OLS estimators of the parameters in the general linear

regression cquanon Prove that the csﬂmamrs indeed minimise the sum of
square of the tes:dl.lais .
(G.U. M_A Previous '05)
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4. Why do you have a random variable in a regression model? What is
' the rolé in esnmaung regression parameters of a linear regression model? _
: " (G.U. MA Privious '04)
5. When there is mis specification of explanatory variables of a linear
' regression model, show that the expected value of OLS estimator of the
regression coeffements is a linear combmanon of the true coeffecients. ’
' {G.U. MA Previous '07) _
6. Wme down the gemral linear regression model and derive the OLS
. estimators of the vector of regression cocffecients. Prove that the estxmators
- mdeed maximise the sum of squares of residuals. : : '
(G.U. MA Previous '08)
7. Outline the principle of maximum likelihood method of estimation. Why
is it justified to obtain the estimators by maximising the logarithm of the
likelihood function rathéer than the likelihood function itself? '
| ~ (G.U. MA Previous '078)
. 8. Outline the principle of maximum likelihood estimation obtain the ML
; esumatorsofmepammetersofthe linear regression model. Explain thecomepz
of hkcbhood ratio and glve mle:pretauon of its value.
(G.U. MA Prevxous ‘07)
T How doyou measure the ‘goodness’ of fit of a regression model?
Briefly cxpiam E
' (G.U. MA Previous '04)
_ 10. Justify the presence of the random disturbance term in the regression
model. Trace the role of standard assumptions about the disturbance term in
characterisetion of estimation and setting up of the inference Proceedure.
(G.U. MA Previous '08)
11. What is meant whcn dlsmrhance ina hnear regression model are said
to be identically and independently distributed. What further assumptions would
Yyou require to can'y out mfcrence from the OLS estimator.
(G. U MA Prevxous '05) '
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| UNIT4
INFERENCE FROM LINEAR REGRESSION ESTIMATION
Contents

. 4.1 Introduction . -

4.2 Objectives '
43  Testof Hypothesis about Regressmn Cociﬁcxeuts :
4.4 Teﬂtmg of overall s1gnzﬁcance of a multiple Reg:rcssm Mode}
4.5 Confidence Interval for Parameter Values
4.6 Prediction with the Linear Regression Model
23 7 Diétinction between Point Prediction and Interval Predicﬁon.
4.8  Exercise. '

4.1 Introduction : 2 = _

Simple Calculation of statistical data donot give 2 meaningful result. For
this inference of calculated data should be made first. From inference of the
data a layman is also able to understand the meaning and prediction of the
statistical outcomes. ' ' |

4.2 Objechves _ : :

" This unit is desagm:d 10 help you understand the concept of inference

from linear mgressmn csumanon and its related ideas. Aftcr feadmg thls unit

" you will be able to, '
® _Tcst hypoxhesis about regression coefficients. |

" :Formulate confidence interval. | '

- ® Predict with linear regression model.

® Distinguish between point and interval production.

4.3 Test of Hypothesis about Regression Coefficients :
After obtéining the estimates of parameters, inference about the

unknown parameter values should be made. To carry out the inference

process first of all, the hypothesis about the parameter values should be
formulated. The null hypothesis determines what type of inference should be
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made. After that, a particular st statistic should be find our. For setting up
the test procedure it is necessary 10 ascertuin the nature of the sampling -
distribution of the estimator. | |

Letus cbﬁsider the sampling distribution of ﬁ Here,

B=3WY = B+ ZWtu‘ _
'This shows fi asalinear combination of U, Un'------Un- U,s are

normaily distributed. ﬁ hemﬂ a linear combmauon of U [3 1tsclfls also

_ . ¢
normally distributed. Since mean and variance of fi’ are f and ZX 2

* respectively. We have, _
B=B. . (o)

B=N l B.. z—xig]accordi_n'gly‘ gierlz

i B

O“ yx 2 could have been used as a test statistic for testing
t _ -

bypothesis about the value of the parameter 5. But Z ifivolves unknown |

- parameter ¢ and hence cannot be calculated. Therefore, we have to

- substituted o by its estimate "'5- . Once we substitute o by & , the above
ratio will no longer remain a standard normal variate and conform to student

t- dxa.tnbunon Thus, cr[ ‘Zx . wuh (n — 23 degrees of freedom.

: N g
A U' . Y-.-a- x
We know that, 6~ = z L i B JE{ t ﬁ :)




~

s _ _
' fz"“z is the estimated standard dcvnauon or standard error of p.
t

Thus thc above ratio can bc re-written as,

B-B _ " estimator - parameter

t = =
SE( ﬂ) estimated standard error of esumator

Now for testing ﬂ‘w null hypothesxs He (B=by agamst the a!temanvc

' ﬁ bo
hypotlwsxs[—l (ﬂ # bo) tlmtcststamuccanhcsetupas E SE{ﬂ)

_ A&er calculating the test statistic, we shall compam the calculated value
of the test statistic with its tabulated value. If at a given level of mgmﬁcancc.
" the calculated value exceeds the tabulated value, we shafl wject the null

_ hypothesis. On the other hand, if the calculated value does not exceed the
tabulated vaiue, We shall accept the null hypothesis. :
A hypothesm which is most commonly tested in econmncmcs is- Ho (B

: --_—bﬂ)agamstthealtemanveHA (B = bn) Theneststaust;cforﬂzepurpme

st = ——=

SEB

If H, (ﬁ 0) is rejected the correspondmg explanatory vanable Xis
said to be significant. When X is significant, it implies that the variable X has
some significant impact on the dependent variable Y. On the other hand, if we
accept the null hypothesis, X will be signiﬁcant"'fhi's' means X has no
significant effect on Y. When H, (8 = 0) is rejected at 0.1 level of
significicance, X is said to be highly significant. - -

. A test procedu:c for hypothesis about the value of o can be set up in,
a similar way. For instance, test the null hypomems_ H, (oc = 0) against the -

-

2 oc
alternative Hy, (o # 0), the test statistic would be t = SE& wﬂh (n—-2)

degrees of freedom.

4.4 Testing of overall siéniﬁcmce of a multiple regression model :
Let us conszder the followmg K variable linear regression model :
= By + Baxy + Baxae + s + Bixg + Uy
Let H(, be the null hypothesis that there is no s:gmﬁcant dlfferenoc
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between the slope coeffecientsand they are equal to zero.
~ ‘Assuming H, 1o be true, the test statististic is given by

_ Ess| (k-) L b
RSS|(n-k) * o)

If the calculated value of F exceeds the tabuiated value we reject the null
hypothesis and accept the alternative hypothesis. This means'that there is _
 significant difference between the slope ébef_ﬁciems_and- they are notequalto

Rw. . - _-

Against, F test can be expressed in terms of R2 as follows,

g ESS x.(n—k)
RSS (n-l}-
_ (o k) G _ (n- k) ESS/TSS

(n ]) TSS ESS

" (n- :) TSS - ESS =

(n k) ESS/TSS

(n- l) { ESS
- - TSS
_ (" k) R® R* = ESS/TSS
- (n 1) (]- _.Rz) { }
COR(k-1)

) 1-® ) 7 {n-1) |
' This means that F and R are related to cach other When R?=0then
F is also zero and la.rger the value of R?, la:ger will be the value of E. When
'R2=1, the value of F is infinity. Thus the F test which is a measure of overall

: sxgmﬁcan_cc of the estimated regression is also a test of significance of R2,

4.5 Cénﬁdeﬁce? Interval for Parameter Values : |

Due to sampling fluctuation, a single estimate of a parameter is likely to
differ from its true value. Hence instead of relying on the single estimate we
may construct an interval around that estimator. The confidence interval is
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-t 025 area p 0 t..OQS area -

deﬁned as a range of value which has a specxﬁc probab:hty of including the
true parameter value ‘within its limit. If the sampling distribution of the esmuamr ‘
is known, one can easily fix the confidence interval fora parameter. Let us first
fix a confidence intt:ﬁ‘al forb. |
" In the previous section, we undersmd that _whén o is substituted by
& in standard normal variate it conforms to the student t distribution.
Accordingly we get, =
B-B

L R -
=

SE (B)
We know that the total area under the t-curve is one. Let us define t
be the value of t 10 the right of which .025 of are under the t curve -lies Since

with (n-2) degrees of fredom.

't’ distribution is symmetrieal about zero, — t o5 will be the value of t to left
- of which also .025 of area under ‘t’ curve will lie. _

Thus, the are under the curve between -L.g5 and t.gs Will be 1-.025

~ 025 or .95. This implies, ' o

BB

_P{- g S 23}:.95_ . P B)

o U
© - We have. Y I SRS [025} = .85

o Y Wl Y
~Now, o < SE-B taplies B-B> -1,,SEB

""’B {é‘ +t g SEE’ :

. B2,




and BS_E.g“( t‘[P implies ﬁfB<luwi B
=5 é> B< t,)_5 SEB
- v\.ehave Pr {B O,)SSEB< B < B+t SEB}
Thzs is called the 95% confidence m{erva} of B, becauw.e in 95 out of l(lOl
causes the true parameter value of 8 will lie in mterval_so determined. _
Siniila'rly, intervals for altemnative confidence levels can be set up. 3
Obvmusiy the mten al will be wider for a higher conﬁdcnce level (say 99%)
but narrower for a lower conﬁdence level (say 90%) Moreover, conﬁdenc:e
intervals for other paragnctcr o can also be set up followmg__ a similar
| procedure. | ' '

Someumea one needs to constmct a joint confidence mterval for B, and
B, such that with a confidence coetfimem (1-o), say 95%, that interval

includes B, and B, simultanecusly.
Again, * (chi-square) dz:,tnbuuon is used to establish conﬁdence interval

for o2 ie.

r {xj._"q,ag's.x?s_fm—g} = l-

4.6 Prediction with the Linear Regression Model :
_ Making prediction is one of the objectives of econometric research.
Using the estimate of the dependent variable in an unobserved sitiation. When -
such prediction is made in a future date, it is called a forecast.
While making prediction, it is assumed that the prediction unit and the
sample unit belong to the same popuiauon In case of a forecast, based on
- model estimated from time series data, this assumption means that there is no
 structural change between the sample pericd and the forecast pcnod Tf this
assumption is not satisfied we will get different parameter values (such as o,
B inthe o varable linear regression model) for the sample pcnod as well
 as for the prediction period. In that case, prediction made on the basis of
estimates of parameters froin the sample will no longer be valid.
Let, the two variabie linear regression model for the purpose of making
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prediction is
’ Y = a+ﬁx + U,
This sansﬁes all the standard OLS assumpnoas Lct us assume that the
_estimates & and 5 are baséd on n observations denoted by
(X, Vi) (X0 Ya) s (Ko Yo
_ Now, we have o predict the value of Y for the unit P which lies outside -
the sample of n observations. ' _
_ Suppose the value of X for the umt P, ie X, can be either known. or'
_pm_;ectcd by following some well deﬁned criterion. Given the values of Xp &
- and ﬁ the value of Y for the unit P, ie, the point predzctlon of Y,is mcrcly
its estimated value based on these three values Thus the pomt predlcuon is
ik Y, = a+ px,
- This is called point prédicnon since ¥, is a specific value for the given -
values of &, ﬁ and X, Since Y is only a specific estimated value for
- some gwen vaiucs it is likely to be different from its true value. The actual
vaiuc of Y, w1!l be
Y, = a+ﬁx + U,

The dlﬂ"erence between the actual and predicted value of Yyis sazdtn be

the prediction error. Thus the prcdicuon error (e) is

(=Y, - ¥, = a+BX, +U, -6-fX;
U, (& - o) -X, (3 - B)
+ © Taking expectation of the prediction error, we have
|  E.=EU, ~E(6 - @) -X LE(6 - B)
=EU, —(Eé - ) —XP(EB - B)
=0 —(a -) -X, (B - B)

=0 o [ “EU, =.0by assumpt:on]

Of the modcl and & and 3 are unbiased estimation of o and § under '
the standard assurnpuons Then, if the assumpuons of the model and the
assumption underlying u. prediction exercise are satisfied, the expected value
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of the predicted error is zero and the predwnon is unblasczd.
Now variance of the prcdlction error is '
E[e Ee)’ —E(e ~0)’ =E.¢?

= EU%, +E(é- a} +X*E{f-B)
+2X E(u a)([i B) ZEUp(a a] 12X, EU, (B~ B)
=0 +au+Xpa s-l-‘ZXO +0

~EU, =0 and U, will be: mdependent of & and ﬁ

- Under the standml OLS assumption.

Gle=0C"+ l+-3(:——. X’ o
) n Ex%( Pz’ PZ 7

"=0'3 -2X, XJ

M ks>

,— [ [x-p+x--zx x]}
Hi+—+ s
n ' 25'1 :
2-Hi+(x?+2)
n ¥

L

2

" From the above expression it is clear that the variance of prediction eﬁpr- -
(O'_z_g.l) is smallest when X, =X, ie the value of X for prediction unit is equal
to the mean of Sample But as the ;c;ap between X, and ¥ widens, the
variance starts mcreasmg Rising variance means that the point predzcnon.'
becomes mcreasmgly unreliable for units for which the difference between the
value of mdcpendcnt variable for prediction unit and sample unit gets enlarged.
Therefore it wili be better to have an inerval pfedictibn

“To dcm'e interval prediction, let us first mention that the predlcnon, let us

first mention that lhe_ prediction error €= U — (& - o) -X (ﬁ B)

normally distributed since it is a linear combination of U, & and ;3 of all
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which are also normally distributed.

N(o.)

,e—Ee
S
Lo

N ¥l o g
1.e. I\(Q_,l}

| GJ{H (szi()] |

:Ee =0 aﬁd en -

P P

In the above expression ¢ is an unknown patameter, If we subsumte
o) by ils estimate &, we shall have

. - 7 wi'tﬁ (n-2) degree of freedom
o] l+__l+{Xp--X)7 BB o : i
n Zxﬂ J

where & _ =

Finally, the 95% confidence interval for Y, w11 be,

: . (X, -X)"]
Y £t 6. ([ 1+—+
3 tﬂD‘_GJ[i» sz J

Thus, specifying such an interval for the value of Y for the observed
b situation P we have an intervat prediction.

- 4.7 Distinction between Point Prediction and Interval Prediction :

There are some dlfterence between the point predlctlon and interval

pmdlcuon.

When a particular value of independent variable is uscd to estimate a '
dependem variable, it is known as point predxcuon Here, prediction is made

-. about the value of dependent variable for a particular future value of
independent vanable
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© Onthe other hand, when an atiempt is made to make some reasonable
 probability statement, the unknown dependent variable at a certain level of
significance, then it is called interval prediction. Here, there are two limits
under which prédictors value of dependent variable will lie.
Let us understand, '
(1) Wlu}e makmg predu:ﬁon on the basis of an estimated econmmmc
- model, it is assumed that the unit for which predlcnon is made and the sample
~on which the model is estimated belong 1o the same population.
(ii) In case of forecast based on estimated model estimated from time
~ series data, this mean that there is no change between the forecast penod and
- the penod for which the model has been estimated.

4.8 Exercise : _
"% Lk Distinguish_betweeln the point prediction an'd-iniervai prediction.
Mention the crucial assumption underlying any prediction based on linear
regression estimation. '
: (G.U. MA Previous "06)
2. Show how the estimate df linear regression model can be used to
generate a polnt predlcnon Analyses the qualxty of the predicnon under the
standard assumption. Extend your exercise to deme an interval prediction
with 95% confidence interval.
- " (G.U, MA Previous "07)
3. You are gwen a two variable linear reUressmn model :
Y, =a+pBX, +U, .
Where o and § are parameters and 'U_' is the stochastic variable
with usual assumptions. “hat statistical test would you use in testing H,, :
B =0 against H_:$+0.
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5.1." Objectives

5.2. Multicollinearity
5.2.1 Effectsof Muluoo]llmanty '
5.2.2 Detection of Mulncolhneanty
5.2.3 Remedial measures -

' 53, Specification Errors and their consequences
5.4. Qualitative Factors and Dummy variables
5.5. . Introductions to Hetmscedasmc:ty and Antocom:lanon of
Disturbace (Ideas On}y)

5.6. Summary
5.7. Addmonal Readmos

5.8. Self Assessment Test

50 Intm:lucuon

Muluculhneanty implies a correlation between the some or all expianatory
variables of a tegression model. In this unit we will we able to study the effects,
~ detection and remednes of Mu ittcollmcanty Agam a study of types of
specification errors and their consequences will be made. Also, in this unit a
. brief note on dummy variables will be provided. Lastly, an introduction on'the -
cnncepts of hctroscedasmc;ty and autocorrelanon of dlswrbances will be made.

~ 5.1 Objectives :

After going through this unit, one will be able to—
Understand the concept of Multicollinearity, its effects, dctecuon and
remedies. -
Examine the types uf specnﬁcatxon errors and their consequences.

 Analyse the uses of qualitative factors or dummy variables.

‘Get an idea about Hctrosccdasmcnty and autocormlanon of .
disturbances.
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5.2 Multicollmeanty :

" The term Mulncollmeanty was comed by Rawner Frisch. Ongmally, it
- means the existence of a pe'lfect or exact, linear mlanonshlp among some or
ail explanatory variables of a regression model.

' However, the term Multicollinearity is used in a broader sense to in_élude :
- the case of perfect Multicollinearity, as well as the case where the x variables
are Intercorelated but not petfectly $0. © $ '

For the k—vanable negressxon involving explanatory variable x,, X,, ..
" (where x,= 1 for all observatwns to allow for the mu:mep{ term) an exact

~  relationship is said to exist if—

- Ax +12x2+.....+lkxk'~—~0

where A, ,?g.,,,. oy, e constants such that not all of them are zero.
In case of less than perfccl Multzcollmeamy we have '

where v, is a statistic error term.

5.2.1 Effects of Multicollinearity : ,
Theoretical oonsequenccs of Multicollinearity _
{. In case of near Multlcoﬂmeanty thc ordmary 13&51 square (OLS) .

estimators are unbiased.

1 Co]!meanry does not destroy the property O‘E minimum variance.

, 3. Multicclbeanty is essentially a sample {regm«;s;on) phenomenon inthe -
sense that even if the X variables are not linearly related in the populatmn, they
may be so related in the pamcula: sample at hand.

Practical consequences of Multlcol!meanty
L. Althouvh BLUE (Best Linear Unbiased Esnmators) the OLS
esumators have la:ge variances and covariance, making precise estimation
2. Also, the confidence intervals tend to be much wider, leading to the
“ acceptance of the “Zero null hypothesis™ more readily. |

3. The ‘i’ ratio of one or more coefficients tends to be statistically

significant.
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4. Although the 1 ratio.of one or more coefficients is statistically -
‘nﬂwmﬁcam R?, the overall measure of goodness of fit, can be very high.

5. The OLS esnmalom and thea_r staadard EITors can be sensitive to small
‘change in the data. ' s v '

5.2.2 Detection of Multicollinearity :
; Although there is no unique method of detectin g Mul[icollineaﬁty, we
have some rules of thumb for its detection. Fol iowmg are some of there rules:

‘1. High R, but few significant t Fatios—

It Ris high, the F test in most cases will reject the hypothesis that the
 partial slope coefficients are simultancously equal to zero, but the individual t’
tests will show that none or very few of the partlal slope coefficients are |
* statistically different from zero.

2. High pair-wise correlation among regressions—

If the pair wise .or zero order correlation cqefﬁcient between' two
regressions is high, then Multicollinearity is a serious problem.

3. Examination of Partial correlation-

In the regression of Y on x5, X3, x;,-_in the model

o - Bi +Boxs +Psx; +B,xy "'i-i;-

a finding that R, »,, is very high but 1,4, 32 and 17 are
comparatively low may imply that the variables x,, X3, and X, are highly
intercorrelated. '

4. Auxiliary regressions—

One way of finding out which x variable is related to other x variables
- is to regress each x; on the remaining X variables and éompute the
correspondmg R2, known as R;2. Each one of these regression is caiiecl an
auxiliary regression, auxiliary to the mam regressmn of Y on the x° 5.

We now compute the 'F‘ test. If computed F excludes the critical F,at -
“chosen level of significance. it means that the particular X is collinear with .
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other Xs, and if it does not exceed the critical F,. it is not collinear with the
other X's. Also instead of testing auxiliary R? values. we may use Klien’s ruic
of thumb, which says that multicollinearity may be a problem only if the R2
obtained from an auxéiiary regression is greater than the overall R2, i.e. that
obtained from the regression of Y on all the regressions.

5. Eigenvalues and condition index—

Eigenvalues and the condition index can be used to deteet
" Multicollinearity. From Eigen values. we can derive the condmon number k
 defined as : :

__ Maximum eigen value
. Minimum eigen value

and the condition index (C.I) de'ﬁned as

Cl= lMaxrmum eigen \alue = JB
\/ Minimum eigen value

Now, if 100<k<1000, there is moderate to strong Multicollinearity and
if it exceeds 1000 there is severe Mul:t'icbllineariw Again. if the CI
iejg< J— k < 30;there is moderate to strong ’Viu[ucollmeamy and if it ex;.eeds
30 there is severe Multicollearity. _

Thus above mentiofied are some- of the methods of detecting
Multicollinearity. '

5.2.3 Remedial Measures : .
The solutions whtch may be adopted if Multicollinearity exists in a
-funcnon depends on the severity of the colt;neamy problem Some tules of

thumb- ‘may be adOpted as foilowsr-—

‘1. Apriority. Information :
Suppose, we have the model
=B, +61x" +B%x51 +u

where Y = consumpt:on Xy= mcome anci X 3 = wealth. Hem income and

wealth are highly collinear and suppose B; =0.108, i.e rate of change in
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| consumbtion w.r.t wealth is }/l()th the corresponding rate w.r.t income. We -
can now run the following regression— B ' '
=8, +B,x;, +0.108, x,‘ +u
=[?;i—i-[‘)2+ui wherc X; —x3,+010x3‘ _
'Once-we obtain éz we can estimate [53 from the postulated relationship .
between B, and f, Apriority information would come from previous
empirical work in which the ct)llinear';ty problem happe'nsito be less serious.

p Combming cross sectional and time series data :
; Combmmgcmssecnonalandtxmcsemsdatama}soknownaspoohng
the data, Suppose the demand for automobﬂcs in given by, '

Y, =B, +P,/n P, +B,£n I, +u

where Y = no of cars sold, P = average price, 1= income; t :iirhe

 Tf we use cross sectional data we can t')htain_ a f_airly mliabie estimate of
the income elasticity B, because in such data, which are at a point in time the
prices do not vary much Let the crosssectionally estimated income elasticity

be ﬁ3, then the procegd_irig_time_ series regression may be written as -
Y, =B, +B.nP+u  where Y =ta Y-f,nl

~ and represents that value of Y after removing from it the effect of income.
We can now obtain the estimate of the price elasucxty [32 but the poolmg
techmque may create probiems of i mterpretation

3 Dmppmg a variable and speclﬁcatmn bias :

* When faced with Multicollinearity one of the simplest way is 10 dmp one
of the choice variables. But this may muit in specification bias which arises
from incorrect spemﬁcat;on of the model used in'the analysis. Hence, ‘the
remedy may be worse than the dxseasc
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4. Additional or new data :

~ Since Muluco!hneanty is a sample feature it is posmble that in another
sample involving the same variables eolimezmty may not be as serious as in the
first sample but sometimes simple increasing the size of the sample rnay

: mtenﬂfy the collmeanty pmblem

5. Reducing collinearity in polynomml

It practice, it has been found that if expianatory variables are expresscd
in dekuon form substanually réduces Multicollinearty. :

6. Other statistical technique.s 2

_ ) Statistical techﬁiques such as factor analysis and prin‘c_iple components
such as ridge regression are employed to sdlve_ the problem of collinearity.

5.3. Speciﬁcation Errors and thelr mnsequences

A model] shomﬂd be correctly specified otherwise specification baas may
occur Specification etror arises due to the foiiowmg reasons——

1. Omission of a relevant va_riable :
Let a model be, |

=B, -¢~;32:n<,,E gl 1S T S — (A)
But instead of thls suppose one uses the model,

Y, =a, +a, Xy +V where v =u -{-Bﬁxal ————

Heresmcetheﬁrstmodel(A):smze adopungﬂ1¢mdmodel(s)w;ll
constitute a specification error of omitting a relevant variable (Xa).

2. Inclusion of an unnecessary or irrelevant varlahle
Cons:der a mcdel '

=h +hoXy FAKG FAXGFU s (©)

- If (A) is true, then model (c) constitutes a. specification error of mciudmg
an unn.ecessaxy or irrelevant variable,
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3. Adopting the wrong functional from :
Considgr anofhcr model,

LY, =0+ 0y + O X U e (D)
ol S5 ) .

In relation to (A, model (B} also constitutes a specification bias of usage
of the wrong functional form. : '

4

4. Errors of Measurement :
" Let a model be such that
Y =B B Ry AP R U s . (E)
where y, =y, +€ andx," =x, +w._
. 7 1 ; o 4
-~ "€ and w; being the errors of measurement (E) implies that instead of
~ using the true Y, and X; we use their proxies, Y, which contain errors of

measurement. Thus we commit the errors of measurement bias.
Thus, above mentioned were the different types of specification errors.

Consequences of specification errors :

- 1. Consequence due to omission of a relevant variable

Suppose that the true model is

Y; =B, +B.xy +B3_X.u U e ()
But if fit the following model “
Y, =0 0%y +Y, L. (1)

Now the consequences of omitting X are as follows:

i) If the left out variable X, is correlated with the included variable X,

L., [y 1S non-zero &, and &, are biased as well as incoﬁ.siste_nt: ie

| E(&) # BiandE(G) = By, : |
i) Even if X, and 5(3 are uncorrelated (s =0), &, is still biased,
although fxz is now unbiased. |

). The disturbance variance o incorrectly estimated.
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iv). The variance of @, is a biased estimator of the variance of the true
. estimator B, '

_ v). The conﬁdence interval and hypothesis testing procedures are hkely
to give misleading conciumns about the statistical saamﬁcance of the estimated

parmneters

‘2. Consequence of l;nclnéion of an Irrelevant variable
Let us assume that a true model is ;
Y, =B, +8, Xy U, . ..{ij. & !
Bu( we fit the model
Y O + 05Xy HOXy +V . (i)
Here we commit the spec:t" ication error of :nt.ludmo an unnecessary

variable i in the model :
The consequences of this specxﬁcauon error are—

1. The OLS estimators of the parameters of the incorrect model! (ii) are
all unblased and consistent i. e

E(C('I) = f}:’ E(&z) T B'z and E{E(-_,,) =B;=0

2. The error variance o2 is correctly estimated.

3. The usual confidence interval and hypothesis testing procedures remain
- 4. The estimated ‘o’s will be generally inefficient, i.e, their variances will
be generally larger than those of the é"sl of the true model.

. Thus, these were the two consequences of omifting a relevant variable
and inclusion of a relevant variable under specification error.

- 5.4 Qua!itativé Factors and Dummy variables :

A dummy varialﬁ_ie is a variable which we construct to describe the
development or variation of the variable under construction. They are used as
proxies for other variables which cannot be measured in any particular case
various reasons. '
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1. Dummy variables as proxies to qualitative (categorical) factors.
- Dummy variables are commonly used as proxies for qualitative factors
- such as profession religion, sex, region etc. For example, let us consider the
demand function, . i

D; =b;+ b X + b, X5+

~where X = income and X, = dummy variable for region (b, _:?0)- .
Here b, = 1 for a person living in a town S i
‘and b, = O for a person living in a rural area.

2. Dumr .y, variables are proxies to numerical factors. Dummy variables
" may be used as proxies for quamitétive factors, when no observations on these
factors are avaﬂable or when it is convenient to do so. For example, suppose
. we want to measure the savings function . §=f(Y). We assume that peoplc ;
become more thrifty as they grow old, and so the dummy variable for ‘age’
may be assigned the value of zero, if the person belongs to the first age group
i.e between 20-35 years of age, and the value 1 if the person belongs to the
second age group. The savings function assumes the form

S, =b,+b;x; +b,z; +u
. i

where, X, = Incomé, and Z, = dummy variable ‘age’ (6,50.)

- 3. Use of dummy variables for measuring the shift of a function over time.
- A shift of a function that the constant intercept changes in different
 periods, while the other co-efficient remarn constant. Such shifts may be taken
 into account by the introduction of a dummy variable in the fuaction.”

4. Use of dummy variables for measuring the change of parameters
(slopes) over time P
It is known that over long periods of time or in abnormal (war) years not
only do the function-shift (:helr constant mtcrcept changes) but also their slopes
may be expected to change Here elasncny sand propensities of a function may
be c.{ptured by introducing appropriate dummy variables in the function.
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3. Use dumniy variables as proxies for the dependent variable. -
The dependent variable of a function may be used as a dummy variable.
~ For example, suppose we want to measure the determinants of car-ownership.
Some people will have cars while othe_rs will not. Assuming that the
 deterrhinates of ownership are income and profession, we have— -

C=by+b,Y+ blA +u

where - C = crowners-or non-owners, Y income
A= dummy variable for profession. -
Here the dependen{ variable, C, will be a dummy variable whxch may. be
assigned the value I for a person who owns a car, and O for a person who
-does not. In this case, the dependem variable is dichotomous.

_ '6 Use of dummy variables {dr seasonai adjuatmcnt of time series. One
“of the most common apphcatmns of dummy vanab!es is in removing seasonal
vanatwns in time series. -

5.5. INTRODUCTIONS TO HETROSCEDASITICITY AND AUTOCORRELATION OF

- DISTURBANCES: =
- HEREROSCEDASTICITY |

One of the important a's,sumpt,ionslof the classical linear fegreasion model

: aboui the random variable is that its probability distribution remains the same

over all the observations of X' and in particular the variances of each u; isthe

same for all the values of the explanasory variable. This is the assumptxon of

* homoscedosticity or equal (homo) spread (scadasticity) i.. equal variance.
Symbolically, - :
Var(u,)=E[u, - E(u,)]

2

2 ) +
= E(‘ui'), =0,” =constant

I_f the assumptibn of homoscedosticity is not satisfied in any_panicular
cause we say that the u's are heteroscedastic. Symbolically,

E{u, J=07,  (notconstant)
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whe:re the subscript i s:gmﬂes the fact that the mdzwdual vmamcs may all
# be dlfferent '

AU’I‘OCORRELA’I'ION

Another assumpnon of Ordinary Lcaet Square is that the successwe-

values of the random variable are temporally independent i.e that the values
which u assumes in any one period is mdcpendent of the values which it

' assumed in any previous penod. 'I'hm assumption implies that,

Cov u u E{{u o u —E(uj)}] |
e E[uli‘-.‘j] ' ( E(v;) = E(uj) -0 by a_ssu_mptiﬂn)
=0 . ’ i

_ If this assumption is not satisfied i.e if the value of u in any particular
period is correlated with its own preceding value, we say that there is .
- autocorrelation or serial correlation between the random variable.

Autocorrelation refers to the relanonship between successive: resmluals of the
same variable. -

5 6 Summary

Mult:colimear:zv 1mpiles a correlation between some or all exp!anatory
variables of a regression model. Also there are various theoretical and practical
consequences of Multicollinearity. There are also various rules for the detection
of Muliicollinearity. There are also certain rules of thumb to solve the problem
~of Multicollinearity to solve the problem of Mtﬂtlcolimednty Again spectﬁcauon
errors arise because models are not correctly specified. It occurs due to'a
number of causes. Also the consequence of omission of areley ant variable and

inclusion of an irrelevant variable has been swdied.

Dummy variables are variables which are used as proxies to qualitative
factors, numerical factors, measuring shift of a function over time, measuring
change in parameters, proxies for depcndcm variable and for seasonal
adjustment of time series. Again homoscedosticity and no autocorrelation are
two asshmptions'ot‘ciassical lingar regréssien model, and violation of which
leads to hetroscedasiticity and antocorrelation. v
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5.7 Additional Readings '
- 1. Johnston, J. “Econometric Methods”, M¢ Graw Hill
' 2 Gu;ara:h: D “Basu: Econometric”, Mc Graw Hill.

3. Salvatore, D and Reagle, “Staumc and Fconometrics”, Tata Mc
- Graw Hill. '

4. Gupta, S.C., “Fundament ants of Stanstlcs" =

5.8 Self Assessment Test _ .
1. What do you undcrstand by Mulucollmeamy Whar are its ef{ects‘? :

2. Explam the various methods of dexectmn of Mulncuihneanty Also
expiam the remedies to solve Mulncoﬂmeanty

3. Brief explam the meaning of specification error, the types of
specnﬁcau:m errors, and :hexr consequences.

-4, Write a short note an qualitative factors and dummy vanables

5. Define Hetroscedasiticity and autoconelat;on of disturbances. o | s ’.
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