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UNIT 1
ANALYTIC FUNCTIONS
Introductiop;

In this unit we shall consider the notion of differentiability applicable to the complex
valued functions of a complex variable. Here following Cauchy (1789-1857) , the notion of
Analytic functions will be given in terms of differentiability.

Definition 1.1 If a function f{z) be defined and single-valued function in a neighbourhood of
z= 7y with the possible exception of z = z itself , then we say that the number 1 is the limit
of f(z) as z approaches to z and write lim f(z)=1if for every positive number e(however
b2, ; ;
small) we can find some positive number & (which depends on &) such that
| f(z) - 1] < & whenever 0<| z- 2| <$

Definition 1.2 If f{z) be defined and single valued function in a neighbourhood of z = zy as
well as at z = z,, then this function f(z) is said to be continuous at z = 2o and we write

lim f(z)=f(zq)

41,
A function f(2) is said to be continuous in a region if it is continuous at all points of
the region.

A function f(z) is said to be uniformly continuous in a region if for £>0 we have 5>0
such that

| fizy) - f[z;}i < g whenever 0<| 2, - z2| < 8 where z, and z; are any two points
of the region.

Definition 1.3 If a function f{z) is defined and single valued in some region R of the z-plane,
then the derivative of f(z) at z= 2, is denoted by f "(zo) and is defined as

)= i )]

I=I I—=Zp

(1.1)
provided that the limit exists. If we consider Az =2z -2, then we can write (1.1) as

(1.2)

e o S(za + B2) - f(2,).
| S (@)=1lim =
We often drop the subscript on z and introduce the number Aw = f{z + Az)-f(z). Thus

if we write o

for f'(z) , equation (1.2) becomes

dz




dw Aw
nl_'i]n
dz Az Az

Although differentiability implies continuity , but the converse is not true.

Definition 1.4 If the derivative f /() exists at all points z of a region R, then f{2) is said to be
analytic in R and is referred to as an analytic function in R or a function analytic in R. The
terms regular and holomorphic are sunu_::_times used as synonyms for analytic.

A function f{z) is said to be analytic at a point z; if there exists a neighbourhood
| z-2d <5 at all points of which f(z) exists.

Theorem 1.1. The necessary and sufficient condition that a function w = f(z)=u(x, y)+iv(x,y)
be analytic in a region R is that the Cauchy -Riemann equations %:%,g’?s—% are
satisfied in R where it is supposed that these partial derivatives are continuous in R.

Proof: Necessity. In order for f{z) to be analytic , the limit

f'(z)= ﬁ;h_nﬂ f z+£i_-f[z}

i 0t Ax,y+ay )i v(x+ Ay +ay )~ fuloy)Hivixy )}
Ax—0 Ax+ iAy _ (1.3)
-0 '

must exist independent of the manner in which Az ( or , Ax and Ay) approaches zero. We
consider two possible approaches. :

Case1 Ay=0, Ax—0. .In this case (1.3) becomes

im ¢ u{x+ﬁx.y]—_u(i,y} rig v(x+ax,y)-v(x,y)
Ax~+l) Ax Ax

I}

= —2%—+i —*— provided the partial derivatives exist

Case2 Ax=0, Ay—0. .In this case (1.3) becomes

" u{x,y+ﬁy}-u{n.3"_| v(x,y+4y)-v(x,y)
im { - - }
Ay—0 1Ay : ay




Now , ﬂz}camﬂpmm‘blybemﬂyucmﬂmthﬁemlrmamm ‘I‘husnmry
condition that f{z) be analytic is .

. B B N
ox ax &y dy

Comparing real and imaginary parts we have

N v B N
>y oy ey

b) Sufficiency: Since % and -g— are supposed continuous, we have

Au=u(x+Ax,y+4y)-u(x,y)
= {u(x+ax, y+ Ay) —u(x y+ 8y)} + {u(x y + &y) - u(x y)}

Ou ou ou ou
=(E+ El]ﬁx +(-é;: +J?|]ﬁ}' ="ﬁ—c"ﬁx +g.ﬁ=}"|"ﬁg Ax+ i?l.ﬁ_}’

where g, — 0 and 1;— 0 as Ax—0 and Ay—0.

i .. & v aov
Similarly , since = and >

are supposed continuous, we have
ﬁv:[fg-+zz)ax+[%+m)m=§M+%ﬁy+a,ﬁx+q,ay
where £; —» 0 and n;—> 0 as Ax—0 and Ay—0. Then
ﬁw=..riu + iAv

{% +:ﬂ]m+[%+:%)¢y+m+qay seensenns(1.5).

where &=¢, +ig, — 0 and n=mn, +in, 0 as Ax— 0 and Ay —0

By the Cauchy-Riemann equations (1.5) can be writien as.

du _ov ov .Ov .
. =] —4i— |Ar+| ——+i— Av + sAx+
Aw [ +i ] [ i ]._}r Ay

n[%+ig](m+£ay)+£&r+my




Then on dividing by Az= Ax+ i Ay and taking the limit as Az—0, we see that

so that the derivative exists and is unique , i.e f(z) is analytic in R,

Definition 1.5 If (z) = u(x,y) + iv(x,y) is an analytic function , then the real functions u and
v of the two real variables x and y are called conjugate functions.

Definition 1.6 If the second partial derivatives of u and v with respect to'x and y exist and
are continuous in a region R, then we find from (1.4) that

3*u a%u alv aly
5 il T
It follows that under these conditions the real and imaginary parts of an analytic function
satisfy Laplace’s e_quaﬁun denoted by :

2 3 .
+-§;-21-{1 or V2§ =0, where 2 =~§‘-—2~+-;—2

8%
e

The operator V ? is often called the Laplacian. The functions u(x,y) and v(x,y) which satisfy
Laplace’s equation in a region R are called harmonic functions and are said to be harmonic
in R. '

Definition 1.7 Elemantnry functions of a complex variable.

Consider the series » a,z" or ¥ a,(z-2¢)" , where the coefficients a, and z, z

ne=(} n=0 . ;
may be complex . Since the latter series may be obtained from the former by a simple change
of origin , the former may be regarded as a typical power series.

So far as absolute convergence is concemed , everything that has been proved for
absolutely convergent series of real terms extends at once to complex series ,for the series of
moduli

lagl Hayllzl Haxllz) 2+ —— isa series of positive terms . The most useful convergence
test for power series is Cauchy’s root test , which states that a series of positive terms Fu, is
convergent or divergent according as lim (u , )" is less than or greater than unity. If we

! Im

= IR, then we easily see that the power series ) a,z"is absolutely
; : n=0 )
convergent if [z|<R , divergent if |z|> R , and if |z|=Rwe can give no general
verdict and the behaviour of the series may be of the most diverse nature. The number R is
called the radius of convergence and the circle , center the origin , and radius R, is called the
circle of convergence of the power series. Cléarly there are three cases to consider (i) R=0 .

write lim |u ,




(ii) R is finite , (iii)R infinite . The first case is trivial , since the series is then convergent only
whmpﬂ.hthethirdcasemesuiescmergﬁfmallvalmolenthesmdmthc
radius of the circle of convergence is finite and the power series is absolutely convergent at
all points within the circle, and divergent at all points outside it. :

We now consider briefly the definitions of the so called elementary functions of a
complex variable.

1. Rational functions

A polynomials in z, g+ 82 + ~———+ 8 5z ™, may be regarded as a power serics
which converges for all values of z. Since such functions are analytic in the whole plane ,
rationial functions of the type :

£(z)= Ag+ B Z+ --c--- + Bmz™

bg+ bjz4 <-em-- +bpz™

are analytic at all points of the plane at which the denominator does not vanish. If we choose
a point zq,atwhicht]mdmﬂminamrdumnutvanish.andr:placezhyzq+{z-zu],thn
function f{z) becomes :

Ag+A(z-zg)+-+ As[z-zn]"
Bg +By(z-2zo )+ + Byfz-2o)*

in which 'ﬂ., «0. It readily follows that f{(z) may be expanded in & power series of the

fﬂm icn{z‘zn]"

IL. The exponential function

The exponential function of z can be defined by exp z as the sum-function of the
series of complex terms .

.22 z?

n T

l+z+

Since the series converges for all values of z, it defines a function analytic in the whole z-
plane. Such functions are called integral function.

1.  The trigonometric and hyperbolic functions.

We define sin z and cos z , when z is complex, as the sum-functions of power series

;
. o n Zz.+; i e 5 B z!n -
@Z'.Zu{‘” (za+t) > “Eu{ ' [zfa)! .




and, since each of these power series has an infinite radius of convergence, sin z and cos z are

The other trigonometrical functions are then defined by

. :
y COLZ=—r0 Ty BECZ= » COSECE=

nz= : .
CO5Z sinz COST snz

If we denote exp.iz by ¢”, then we obtain the results
cosz+isinz=¢” cosz-isinz=¢"¥;
leading to Euler’s formulae
I{r e} o, Al _ -k
Oﬂﬁ.z 2&.4‘# ).SI.‘IIZ z‘{b e )

“The hyperbolic functions of a complex variable are also defined as

sa‘hz; ; (#zﬁ"t'z) : mhzz% e’ +e")

There two functions are clearly analytic in any bﬂrundnd domain.
The important relations
sin(iz) = i sinh(z) , cos(iz)=cosh(z)
sinh(iz)=isin(z) , cosh(iz) = cos(z)

are of great usefulness for deducing properties of the hyperbolic functions from the
correspanding properties of the trigonometrical functions. :

IV. The logarithmic function.

If z is complex, however, but no zero, the corresponding equation exp w = z has an
inﬁuitenumbﬂufm!uﬁmmhofwhichism]ledalgﬂu'mm_qﬂz.lfw=u+ivweﬁave

e (cosv+isinv)=z.

Hence we that v is one of the values of arg z and ¢ =|2|. Hence u=log|z|. Every solution of
exp(w)=z is thus of the form

w=log|z|+iargz.

Since arg z has an infinite number of values, there is an infinite of logarithms of complex
number 2, each pair differing by 2ri. We write .




Logz=log|z|+iarg z ,

so that Log Z is an infinitely many valued function of z.

Thie principal value of Log z , which is obtained by giving arg z its principal value,
will be denoted by log z , since it is identical with the ordinary logarithm when z is real and
positive.

V. The general power °.

If z and £ denote any complex numbers we define the principal value of the power § g

with £=0 as the only condition, to be the number uniquely determined by the equation
l;t =e:hg,|: =
where log £ is the principal value of Log &. By chousing other values of Log & we obtain

other values of the power which may be called its subsidiary values. All these are contained
in the formula :

Er -exp.{z[lngcdkwi]}.

Hence £ * has an infinite number of values, in general, but one, and only one, principal value.

The functions considered in I to V above, together with functions derived from them
by a finite number of operations involving addition, subtraction, multiplication, division and
roots are called elementary functions. ’

Definition 1.6. Many valued functions.

To illustrate the idea of many valuedness, let us consider the simple case of the
relation  w’=z. On putting z=re' ® w=Re" we get

R2e2¥ = ppi®

For given r and 0 (<2n),two uhvipus solutions are
P (o) Ky
R ) i

and these are the only continuous solutions for fixed 8, since |Jr_ I and |4T ] are the only

continyous solutions of the real equation x’=r, r>0.

We see that the equation w’=z has no continuous one valued solution defined for the
whole complex plane, but w'=z defines a two-valued function of z. The two functions wi and
w; are called the two branches of the two-valued function w*=z. Each of these branches is a




one-valued ﬁmtimintbcz-plmeifwemnkcamwsﬁt,candhgﬁmudwuﬁginm
infinity along the positive real axis, and distinguish between the values of the functions at
points on the upper and lower edges of the cut. This idea may be easily extended. For
example, the function z'* is a triple-valued function and log z is a many valued function.

Note : Cunsmmﬂunnfanalyﬁcﬁmaﬁonliyh{ﬂm—nmm*smﬂhod:
 We have z = x+iy

So that x = =~ andy = 2%
2 2i -

andw = f{z) = u(x, y) + iv(x, y)

Tt fi ,n:z}=.“{Z;I‘Z;Z}+i{?;zl2;2}

weputx = zandy = Osothatz = Z
and thus £(z) = u(z0) +iv(z0)
now, f(z) = u +iv -, fz) = %+i£

-E{ui—_ byﬂnhy-ﬂemmaquﬁom

&

i

=4
2|

Hmumm%-h_.{x.r}m%-h[m]

- wehave £{z)=d, (x,y)-ib,(x, )

=(z0)-i$,(z,0)

: : 3 _
flz)= I [#1(z0)-i#z2(z0)}+c  wherecisarbitraryconstant.

Thus f{z) is constructed when u is given.

Similarly, if v is given, it can be shown that

£(z) = I [wi(20) + iw,(z0)] + ¢
where ) (x, y) = -g—wl'rz(x. y) = %-




‘Solved problems
Exp 1. Show that the function
f(z) -h" xyl
is not analytic at the origin, although the Cauchy-Riemann equations are satisfied at the point. .
Solution : | '

Letw = f{z) = u(x,y) + iv(x.y) = Jjxo]

Thus u = Jlxy| , v = 0

At the origin,

L] - i u(x,0) — u(0,0) -
&% Pm-;n X ’
ou _ lim u(0, y) - u(0,0) _ 0
dy y-o y

o = i v{x,0) - v(0,0) =0
x x = x

N i VOV - VOO _
oy y—+0 y

Consequently. - =E‘r-, h e
& oy &y &

Hence Cauchy-Riemann equations are satisfied at the origin.
Again, |

f'{ﬂ }: lim M{Q_- lim Hlxri
it 4 z-0 il X +iy
y—+0
Al

= lim ————————  letting z—+ 0 along y=mx
2—0 x+imx

Jm_

x=+0 1+im

This limit depends on m and so it is not unique i.e. f '(0)is not wnique. Hence f{2) is not
analytic at the origin although Cauchy-Riemann equations are satisfied there.




 Exp2 Find the analytic function of which the real part is

sin2x -
cosh2 y +cos2x

= §;(x, y) say

. 2(1 + cos 2x cosh 2y)
(cosh 2y + cos 2x)*
i sin 2x(- 2 sinh 2y)

#o [msh 2y + cos 21}1 = &:(x.y) say

. The analytic function f{z)=u+iv is given by

£(z) = | [0:(z.0) - i42(z.0)Hz + ¢

l+m2:h+=

(1+cos 222 .
dz
=}{I +mlz]+c

= Ifém’ zdz + ¢
= tan z + ¢
Exp.3 Show that an analytic function with a constant real part ( or imaginary part ) i itself a
constant function. : ;
Solution. Let w=f{z)=u(x,y)+iv(x,y) be an analytic function.
Let u(x,y)=constant.
Sue=0,u,=0
By Cauchy Reimann equation we have,
' U =v=0u=-v,=0
Bmf'tz}ﬂn‘+iv, ¥ z € domain of f(z)
=0 ¥ z e domain of f{z)

.. f{z) itself is a constant function.

10




Exp. 4 a) Prove mal_uﬂc"(x sin y - y cos y ) is harmonic.
b) Find v such that f(zy=u+iv is analytic. , ' _ g
Solution. Given

U=e"(xsiny — ycos y)

=e*siny-xe " siny+ye cosy

2|

.-a_z“___. 2:"':“ =X .= =K 1
s i siny + xe “siny - ye " cosy 4}

M%: xe™* cosy +ye “siny—e " cosy

: a*u T e . !
..?snu siny +2e "siny+ye cosy (2)
" ] 9%u - 8%
Adding (1) and (2) we have ———+———=0=>u s harmonic.
¥

(b) From Cauchy-Riemann uqﬁatiuns

%: =e X siny—xe X siny+ye * cosy i3
v & s e i

- =e X cosy-xe * cosy—-ye *siny ......(4
= 3 y y-y y (4)

Integrating (3) with respect o'y, keeping x constant, we have

ve=—e"* cosy+xe~* cosy+e~* ( ysiny+cosy )+ F(x)

=ye ¥ siny+xe " cosy+E(x) oo (%)
where F(x) is an arbitrary real function of x. Substituting (5) in (4),
—ye~*siny-xe " cosy+e ™" cosy +F'(x)=¢ ™" cosy—xe ™" cosy~ye ™ * siny

or F'(x)=0
- F(x)=c, aconstant.

Then from (35) veye *giny+xe” " cosy+c.




Exp 5: Prove that if u=x?-y? va—D3 __ bothuand v satisfy Laplace’s equation,

)
but u+iv is not an analytic function of z.
Solution :

¥

We have I.I.-I'.-zr -'-jfz ,VI—W

du
=2x, ==1x
dy

2 2
and :x: =12, ﬂ:u =-2
dy
2 2
a ., =
:!: + P ;" = (0= u is harmonic
; Y

2

And %z x5 - alv gr(:lxz.—yz}

2
) A~ B C Y.

.-.ﬂ#@zu: v is hermonic

&' o

Hence both u and v satisfy Laplace’s equation .

du v ou v
#

B
“lﬂnﬁr'ﬂy’é‘x

that is, Cauchy-Reimann equation are not satisfied.

Hence u+iv is not an analytic function .




Supplementary Problems:

1. Verify that the real and imaginary pwuufthefolhwmaﬁmm:ﬁﬁe&uchy-
Riemann equations and thus deduce the analyticity of each function :

(@) Rz +5iz+3-i
®) fz)y=ze™
(c) f(z)=sin2z
2 lff'{z}"ﬁ in a region R, prove that f{z) must be a constant in R.

Sl
3. 1K) = 22" oy o) o) =0,
x* +y

mmm -+ Oasz —» Oalongany radius vector, but not as z—0 in any manner.
4. Prove that the function u+iv=f{z), where

J +1 1
£(x)= “Jj:h“} 240),£(0)=0,

nmmmmmewrkdmmmmmmiﬁadnmemyd £(0)
does not exist .

5. Iff(z) is an analytic function of z, prove that

A -.2 of o2
(S et sl

hi

6. If w=flz) is an analytic function of z such that £ (0)0, prove that

at 82 :
(e etee

If |f"{z} I isthupmductufnﬂlm&mxuﬂzmnctiunafy.shuwthﬂ

f'(z)y=exp(az’ + Bz +7Y)
wherc a is a real and P and y are complex constants .

7; Prove that u=y’-3x’y is a harmonic function . Determine its harmonic conjugate and find
the corresponding analytic function f{z) in terms of z.

13




8 Ifdand ¥ mﬁmnhmsuf:nndyun:ﬁ;mglxphmueqnaum,shwthﬂ(mt)w
-analytic, .

o . o¥ - o

WHMI#T-TIHIt -'-—'-—axl-lr By 2

9. Show that the function
. = g coshy +2cosx sinhy Ax2-y +axy
mﬁu Laplacesequahm mddztmnmetheoormspmdmgmlyhcﬂmﬁon
| fl(zutiv . _
10 Determine which of the following functions (u) are harmonic . For each harmonic
:?:uuuﬁndlhemn]whmmmu ﬁlmmnvmdexprmﬁvnsanamlmﬁmﬂnm
@ 3xy+2-y’-2y
() 2xy+3xy’-2y’
() xe"cosy -ye"siny
@ ¢™sinGey?)

. sinl2x

) cosh? y +cos2 x

RRIER®

14




ANALYTIC FUNCTIONS AS MAPPINGS
Introduction : '
'The set of equations

u= u(x.y}} -

sl —}F].Z.I}

Mm;h@meml,aumsfmmaﬁmumnppingwhichmblishuamupmdm
be:tweenpuimhmewmdxypm.mumuﬁon{l.z.l)muﬂdmﬁmﬂﬂ
equations . If to each point of the uv-plane there corresponds one and only point of the xy-
plnt,mdmnvmdy,waspmkofaummmhwfmﬁmurmpping.mawhm:
seiofpoinu‘mtbanr-plam[suchasamormﬁm]ismnppedintoasﬁpfpoimsiuthu-
uvplam[mweormgiun]mdmnmsdy.Th:ommpmdingutnfpointsiﬁthetwplmu ]
are called images of each other. : g T aagt '

Definition 1.2.1 Isogonal and conformal transformation
Suppose the transformation.
~u=u(xy), v=v(x.y)
mapsﬁmtwums(mtumt&tgatﬂmpo‘mta}nfthnzphm;mthatwnmsﬂ:',&'

(intersecting at the point wp) of w-plane.

N : Vin
Ca (ugve)
C, C‘,
(= :
. - ~C,
3 »X 5 >
z-plane : w-plane

Now if the transformation is such that the angle between C; and C; at 2 is equal to
the angle between C; and C; at wo both in magnitude and sense, the transformation or
mapping is said to be conformal at z, = (xo.yo). Again, a mapping which preserves the
magnitudes of angles but not necessarily the sense is called isogonal.

Theorem 1.2.1 The necessary and sufficient condition for the transformation w=f{z) to be
conformal is tl_ut_i{z} is analytic.

Necessary condition : Let w = f{z) be Analytic analytic function in a domain D on the z-
plane and zo be an interior point of D. Also, let C._mﬂ C; bcﬂmcurvm{imersnctingal Wo) in

15




the w-plane corresponding to the curves C, and C; (intersecting at z) of the z-plane. Let w,
and w; be points on C; and C; respectively corresponding to the points z; and z; on C; and
C; respectively near to zy and distance between z, and 2o =r(say) so that we can write

A ., ", =
Z=Z, =, 2,-Z,=r

Let the tangents at zy to the curves C and C; make angles a; and a; with the real axis so that
and 8, — o, 25 10 '

Also let the tangents at wp to the curves C; and C; make angles B; and B; with the real axis
and let

w, —wy=pe’®, Wy=W, =F"1=sh :
where ¢1—f, as py—0 and ¢:—p; as p;—0

M,thedeﬁuliwuftheﬁmcﬁouf{z}md(:ﬁisg&vmby

a iy * i
)= lim Y o i P i Py
W% Z,-Zy, Wh e Tty

Since f'(zo)*0 therefore we can write f '(z0) = Re", then
Re® = lim 2Leh-4)

LR

Equating modulus and arguments we have

h

R= lﬁ:{ﬂ]mﬂ A =lim(9, —8,) = lim¢, —lim®,

”ﬂ'l_'ul Wﬁl=l+u“

16




Similarly, it can be shown that p, =A +a,

.'.ﬁpﬂvz' o=z

i.e. memglebetwmcl'and(}{utwuisequalinmlg-ﬁmdemduwelluin:ignmthe
angle between the curves C; and Gz at 2, :

Therefore the transformation is conformal.
Sufficient condition

 Let w = f{z) = u(x,y)+iv(x,y) and also let u = u(x.y), v=v(x,y) are equations defining
conformal transformation from z-plane to w-plane. 5

Let ds and do be the elements in z-plane mdw-pimmpacﬁm}mmﬂ
ds?=dx + dy ..nn(122) |
dof = du? +dv* .......(1.2.3)

Since u and v are functions of x and y therefore we have

du =%d‘& +Edy,dv = de +§idy '

oy x oy

squaring and adding, : ;
| auY (avY aY (av)
9 “[[‘?i] (%) ]" [[?aﬂ %) ]"’ -
+2[-a-a—y+5;5 dy veen(1.2.4)

sm_mmﬁmismma-mmemmmdmdsuwmof
direction, so that comparing the coefficients of (1.2.2) and (1.2.4) we have

aY () (a) () &
o6 B4 222
Clax ax_ay aytaxayanay
0

a) (ovY () (ov

w33 -3)G) s
Sudu Ovaov _

and EE-‘"EQ\«_G (1.2.6)




From (1.2.6) we can write

5
| —
E

SNCH

o) o

LY ) .
"ax'lay’aﬁ a?,.,..............(lﬁlT}

Substituting (1.2.7) in (1.2.5) we have

o5 f[%ﬂ”

which shows thai
St AXjm0 ie Am 4l
When A = 1, we have from (1.2.7)

T PO A |
T U

when A = -1, we have from (1.2.7)

.'.E=—-a;,a ='5f— ............ {119}

The equations (1.2.7) are Cauchy-Riemann equations and hence w = f{z) is an amalytic
function. '

The equations(1.2.9) can be reduced to (1.2.7) by writing —v in place of v i.e. by taking an
image figure found by reflection in the real axis of w-plane . So equations (1.2.9) correspond
‘to an isogonal but not conformal transformation . '

Definition 1.2.2 Fixed or invariant poiats of a transformation

Suppose that we superimpose the w-plane on the z-plane so that the coordinate axes
coincide and there is essentially only one plane. Then we can think of the transformation w =
f{z) as taking certain points of the plane into other points . Points for which z = f{z) will
however remain fixed, and for this reason we call them the fixed or invariant points of the
transformation. :

Example: The fixed or invariant points of the transformation w = z* are solutions of * = z
ie.z=0,1. ek




Definition 1.2.3 Some general transformations
Inumfnunwhaga,ﬁmgimpmnplexmtamswhﬂna.&mmim
A. Translation w=z+ B . '
_ Byﬁnmmﬁm,ﬁmmmewlmﬁﬁspmdmwmm
direction of vector f3 .
_B. Rotation w =¢™z

By this transformation, figures in the z=plancmruula&thrmghanmgluﬂ¢.lf
6¢>0, the rotation is counterclockwise, while if 85<0, the rotation is clockwise.

C. Streiching. W =2z

By this transformation, figures in the z-plane are stretched (contracted) in the
direction z if a>1 (or 0<a<1). We consider contraction as a special case of stretching.

D. lnwrsiunwml;

Definition 1.2.4 The successive transformation

If w = f,(£) maps region R of the C-plane into the region R, of the w-plane while { =
fy(z) maps region Rz of the z-plane , then w = f,[f(z)] maps R, into R. . The functions fi and
f, define successive transformations from one plane to another which are equivalent to a
single transformation. These ideas are easily generalized.

Definition 1.2.5 The linear transformation
The transformation W=az+J .-.(1.2.9)

where o and [ are given complex constants, is called a linear transformation. Since we
can write (1.2.9) in terms of successive transformations w = { + B, {=¢e™1,t=az where

@ =¢®  we see that a general linear transformation is a combination of the transformation of
translation, rotation and stretching. ; :

Definition 1.2.6 The Bilinear transformation
The transformation

G248, 8- Py 20..c..rienren{12:10)
yz+38

which is linear in z as well as w is called bilinear transformation where a,B,y ,b are called
complex constants. Bilinear transformations are also called Mobius transformation since
the first study of such transformations goes back to A.F. Mobius(1790-1868).

Bilinear transformations are also sometiines called - Fractional or homographie
transformations. :
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The expression o - By is called the determinant of the transformation . The bilinear
transformation can be considered as combinations of the transformations of translation,
rotation, stretching and inversion. '

The transformation inverse to (1.2.11) is also a Mobius transformation

zaB EN-a)-By# O (1.2.12)
w-a
Definition 1.2.7 Geometric Inversion |
Mhminlﬁnamuhﬁmbetwm_ﬂﬂiuﬂrmfomaﬁmmd'mﬂ

inversion.

Let S be a circle of centre k and radius r. Then two points P and P,, collinear with k,
such that kP . kP; = r’, are called inverse points with respect to the circle S, and it is known
from the geometry that any circle passing through P and P, is orthogonal to S. In the case of a
'rulightlin:S,PlndleinwmpoimxwithmpmttuS, if P, is the image of P in S. If PP,
and k are the points z,z;and k we have :

Kz —I‘.]{z-kl_-ri. arg(z;-k) = ﬂ'ﬁ!—k). snsansiif Ll 3)

ﬂumﬂoquﬁunuxprmhgdmmlﬁmﬁtyof&pnhﬁk,?.ﬁ.ﬂemqmﬁm
(1.2.13) are satisfied, if and only if, : :

k:,-tﬁ-ij.uz..,....................:.{1.z.t4}
If S is the circle |

AZ+Bz+BE+C=0.ccccvveerinnnennnn (L215)
which may be written as |

E - B BE-J'U:
[HIIHI].T........,,,,.u.z.lﬁ}

we see that (1.2.15) is a circle with centre 'E- and radius EE;AC

Hence equation (1.2.14) becomes

2z +£ E+-B..]=— BR-AC
A A Al

which on simplification is
Az/Z+Bz; +Bi+C=0 s annsenl I A T)

Wemusmﬂmmhﬁpnbcmmzmditsinmz. from the equation of S by
substititing 2, for z and leaving Z unchanged. On solving (1.2.17). the transformation is

0




=0l - e 118)

I} ==
: AZ+B

mwﬂ,lﬂ}mhwﬁﬂm&nmmhnufmmfmﬁm

w-i,z,;f::: e (1.219)

The ﬁmisareﬂecﬁunin&mrnlaxismdﬁmsmndisaﬁﬂinmmafmﬁm
The first preserves the angles but reverses their signs; the second is conformal. Hence*
inversion is an isogonal but not conformal transformation.
Definition 1.2.8 The critical points

Let us consider the bilinear transformation

w=T(z)= “*E i emesend(1220)

then solving for z, we get the inverse map as
2=T (=B 221
wy—o
The transformation T dssociates a unique point of the w-plane to any point of z-plane
except the point z=—Ewhcreﬂ=ﬂ.ThetrmmatimT' associates a unique point of the
Y
z-plane to any point of the w-plane except the point w a%whm y # 0. These exceptional

points z-—-:- and w-%mmappedinbuﬂmpnintsw=a:andz=ucrespﬂtiwly.

Now from (3.20),
dw _ ad-Py
dz  (yz+8)’
which shows that
Ei:mif’z =-—

=) ifz— o
The points 2=-2, z = o are called critical points where the conformal property does
k Y
not hold good.
ceptional if we extend the definition of

. There two critical points cease to be ex
conformal representation in the following manner. A function w=f{z) is said to transform the
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neighbuurhmdofapohtzumnfmuml]yinmaﬂgighbourboodnf w = oo, if the function
t=}/ﬂz}tmmfonns the neighbourhood of zy conformally into a neighbourhood of t=0. Also
w=f{z) is said to transform the neighbourhood of z = o conformally into a neighbourhood of
& = 0 conformally into a neighbourhood of wy. In this definition wo may have the value .
With these extension of the definition we may now say that every bilinear
transformation gives a one-one conformal representation of the whole closed z-plane on the

whole closed w-plane. In other words, the mapping is biuniform for the complete planes of w
and z.

Definition 1.2.9 Coaxal circles

g

if.theprim:ipatvalneufﬂmargumentb:chmm.LetAﬁnﬂEb:ﬁxedmdP'isa
variable point. + .

; If the two circles in figure are equal and z,2;,2; are the coordinates of the points
Py,P2,P; and ZAPB=#0, we see that '

b
=n-0,arg =—f,arg——=-n+0
z,-a z, -a z,~a

z,-b z,-b z, -~

The locus defined by the equation o+

PRAL i ST SN (12.20)
Z—3a

when 0 is a constant , is the arc APB. By writing -0 , x~8, —n+0 for 6 we obtain the
arcs AP,B ,AP;B, AP;B respectively. The system of equations obtained by varying 0 from -
7 to x represents the system of circles which can be drawyr through the points A,B. It should
be observed: that each circle must be divided into two'parts, to each of which corresponds
different values of 0.

Let T be a point at which the tangent to the circle APB at'P meets AB. Then the
triangles TPA, TBP are similar and : . oA

2




B o at ke eee(1.221)
Hence T2 =k?and so T isa fixed point for all positions of P which satisfy

z-af .
z—b

where k is a constant. Also TP* = TA-TB and so is constant. Hence the locus of P is 8
circle whose centre is T. '

- The system of equaﬁnnsubuinedh}rm}ringkmpmtsamtemofcimlu,m
system gimby{l.!.!.ﬂ}'unsymmufmulcimhs of the commeon point kind, and that
gimby{l.lll}asﬂmnp{ﬂuHmiﬁngpointkhdswi&n#andﬂasthe]imiﬁngpoinuuf
the system. If k= or if k—»0 then the circle becomes a point circle at A or B. All the
cimlﬁufnmsyucmhuumﬂlthﬁcircluufthemhcrsmmonbogmally, :

The above important result is of frequent application in problems iwnhil;

Itmrhmdmmmmmebﬂmurmfmmﬁmmfmﬂnc&clﬁhmdmm
Definition 1.2.10 : Fixed points of a bilinear transformation I

We consider any bilinear transformation

yz+8

and suppose that w and z are mma by points on the same plane.
The invariant points of this transformation are given by

_az+h
e yz + &
. z={a-5}i~,‘{u—ﬁ]"+dﬁx

2y

We have the following four possibilities for fixed point or invariant points of a bilinear
transformation. :

@)  y#0, (a8 +4By=0, two finite fixed points.
) y#0, (a-5) +4By=0, one finite fixed point.
(iii) ‘1.= 0,a- 5 = 0, one finite and the other infinite fixed points.

(iv) y=0.a-5=0,one fixed point ie. =
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Definition 1.2.11 : Cross Ratio
If 2y, 23, 23, 4 are four distinct points then the ratio
(24 =2, )z, ),
(21 -2, )24 - 2,)
is called the cross ratio of the points zi, , z3 , z4 . This ratio is invariant under the bilinear
transformation and this property can be used in obtaining specific bilinear transformation
mapping three points into three other points.

Theorem 1.2.2 : Invariance of the cross ratio

If 2,, 23, 23 , 24 be any four points of the z-plane and let wy, w3, w3 , w4 be the points
which correspond to them by the bilinear transformation. '

w -M,u&—ﬂr =0
yz+8

Hwesuppmthmnltthemlmhﬂsz,,w,mﬁnjte.wehaw

zazr+|3_u.z'+ﬁ

W =W,

Yz, +8  yz,+38
___ ab-Py
“ T, ) )
and hence it follows that

(w, —W‘st *W2}1= (z, —Z‘IZJ ~2,)
(“’: =w, ) w; -w,) (z 'erzz‘h]‘

The right hand side of the above expression is the cross ratio of the four points, 2, z3, 73 , 24
and so we have the result that the cross ratio Is invariant under bilinear transformation
Le.

(Wi, W2, w3, Wa) = (2}, 22, 23, 2)
Definition 1.2.12 : Some special bilinear transformations
Here we consider the general bilinear transformation which map the
(1) real axis on itself.
(2) unit circle on itself
(3) real ax-is on the unit circle

(1) A bilinear transformation which maps the real axis in the z-plané on the real axis i - :
w-plane is such that some three points x;, X, X; on the real axis in the z-plane are n.., -.c*
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on 0, l,mrupwﬁwlylyim'mthsruluismthew-plmc.mwhmmﬁnnﬁm
mapping X, X2, X3 on 0, 1, o is given by

{ﬂ,l.nfv,W)s{Il.xz,-x,.z)
iz—x, H X;-X, }
(z'x;]{x:'xl}

"t (1222
yz+d

iews=

wherea=x3-X3, P=-xi(x2-%3)
S Y=R-X, 1= —X3(X2-X1) |
Here ﬂ-&r-(x:#x:)(xz—n}{x;:-x:}#ﬂfom.x:,xsmdisﬁnﬂ-

The bilinear transformation (1.2.22) for all possible choices of three distinct real numbers
mmmmemmm)'nfhdmmmmfmmn

Every member of this totality is of the form (1.2.22), where o,B,y,6 are any real

so that W-W=M[z—i} -
frz+
Le. I(w}zfﬂz— I(2):
bz +9

Thus the transformation (1.2.22) which maps the real axis o itself will map the region
I{(z)>0 i.e. the upper half plane, onto K(w)>0 or I(w)<0 according as the determinant ab—Ppy of
the transformation is positive or negative. '

(2) Let us suppose that

_az+t
yz+b

=

W

< a transformation mapping |2 = 1onto [w] =1 Now, w =0 and w = 0o ar¢ inverse points for -
[w| = 1and they are the transform of
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L

-—-E u_E. -
z a,z_ Tmspecuvely.

Therefore, K md-imitwmpoinu for |z!£l§u thlifwe';ﬁm nn-%lhm'
a Y f .
ét-ﬁ and so
a :

The point z=1 corresponds to a point |w] = 1and so

Ay @1 |y
Mwmmﬂutﬁﬂw&ybﬂmmfmwﬁﬁmﬁ-lm
™= lmutnmuﬁlybeofmcfmn =% :

w-kz-'

az-1

where a is any complex number and k is unimodular.
Agmn,mmﬂngllmabowtmnsfmﬂonwemshuwthﬂmpmmoﬂhecmle

is the image of somé point of |z = 1.

Now, we have Wuki_-’l

F . 2
i.e. |w|=—1== - Ii:{—l; )

msshnwsmnﬁﬁlhmmxfmmaﬁmwhichm:psﬁnlmm |w] = 1 will map
[ <1ontow| <lor|w]> 1. ?

according as lal<l or la|>1.
G}Lntpuwpnseﬂmuhehilirwmmfmmnﬁun
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w_lu.z+ﬁ
yz+b

mformnlnnrzellaxilllz}wummthcunitcimh |w]=1.

Nuwthepoim:ww'ﬂ,w=mmiuvmmmrmﬂﬁimgésnfﬂm
zzﬂgmdzz-i points respectively. '
a T

Thus the points i and-Emﬂminvﬁsepuintsforﬂ:ereaIuis.Thusifwetnke
a T

' Iﬁ*‘Eﬂlﬂli=-'§
a Y

Now we write

"WskE—-—a_—whcrek:E
z—-a

we consider [w| =1that when z is real therefore

=M=
ie. I-M ;

Hence we see that a bilinear transformation which maps 1(z)=0 onto |w] = 1is necessarily of
the form

w = k22 where k is unimodular.
: Z—a

Conversely also we can show that the above transformation where  is any number and K is
unimodular does map 1(z) = 0 onto |w|=1.

Again,

ﬁ_lﬁtz-z!a-i)
k-

Le. ]wr—l-—w[z 2

This shows that the bilinear transformation which maps
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() = 0 onto |w| =1
will map
1(z)>0 onto |w| > luflwl <]

According as I(a)<0 or I(a)>0
Definition 1.2.13 Branch points and Branch lines

: Qj 78
z-plane
‘We consider the function w = z'%. We allow z to make a complete circuit (counterclockwise)
]
m:'nl.u'miI:I11=t:rrig:ilzleitarl:i.'ngﬁ'lumt.l'.uvne]:n-:rinu!u..I.mt.’;a1;a.la.=z-1!'|=m‘:.n:n:ur-qJ'rthziE .and hence if at A,

1t}
0=y then w=<Jre ?.

NuwnﬂcrawmptﬂecimuitwhenzcumeshackwhthmB-ﬂ;+2:md

if8, +2x) :
w=qre 12

o™
i.c. the same value of w with which we started.

We can describe the above by starting that if 0<0<2r  we are on one branch of
the multiple valued function z'? , while if 2% < 8 < 4x we can on the other branch.of the
function , ' k"

It is clear that each branch of the function is single valued. In order to keep the
function single-valued we set an artificial barrier such as OB where B is at infinity (although
any other line from O can be used) which we agree not to cross. This barrier OB is called a
branch line or branch cut, and the point O is called a branch point. Since a circuit around
any point other then z = 0 does not lead to different values therefore z = 0 is the only finite
branch point. ;
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Definition 1.2.14 Riemann Surface

If w = f(z) is a single valued function, a single value of z and a single value of w can
be affixed to each point of the z-plane. If the function is many-valued, again a single value of
z but several values of w correspond to each point of the z-plane.

S:umcti:msitismnvcnimtmhawasu:fausuchthunainglcmlucofzmdasinglc
value of w correspond to each of its points, even when w is many-valued. - -

It is evident that the value of z will be repeated on it as many times as different values of w
correspond to same value of z. Such a surface is called a Riemann surface.

The simplest example of a Riemann surface is obtained for the function w=z"" (which
is double valued, but whose inverse z = w is single-valued). It can be obtained as follows:

Let us cut the z-plane alc;ng the positive axis. This cut join the branch points O and w.
Now let a second slit plane lie upon the first. We will tie the two plane together along their
cuts, gluing the upper and lower edges of their cuts together as shown in figure.

: Lmkingatumuppﬂphnnfmmnbuve,wecandmwthexmdyuisﬁinlheﬁgure,
and consider it as a slit z-plane to which all the values of z and all the values of

¥
w, =.fre? (0 < 0 < 2n) are affixed.

Now, looking at the lower plane from below, and without changing the x-axis, we
draw a y-axis as the broken line as shown in figure. This plane can be considered as another -
slit z-plane to which another set of values of z and all the values of w; = -w, are affixed.

It is evident that when a point moving on the upper plane reaches the edges of the cut,
it is forced to go onto the lower plane and that starting from zo and attempting a complete tum
around the origin, zo is reached again only after two complete turns have been made, one on
the upper plane and one on the lower plane.(If the first is counter clockwise as seen in figure,
~ the second is counter clockwise too, provided that the lower plane is observed from the right
‘direction , that is from below.). Each one of the planes, which contains a whole branch of w
and nothing else, is a Riemann sheet. The collection of two sheets is called a Riemann surface

corresponding to the function z'2




The concept of Riemann surface has the advantage is that the various values of
multiple-valued function are obtained in a continuous fashion.

- The ideas are easily extended. For example, for the function z'” the Riemann surface
has three sheets, for logz the Riemann surface has infinitely many sheets.
' Solved problems
1. Find the bilinear transformation which maps the points z = oo, i, 0 into points w = 0, i, ®
reapectivcly. _ . _
Solution: The bilinear transformation mapping z = z, , za, 73 into W = w; , W2, Wy respectively,
is ; A

(z-2z,z-z,) . (w—w,)w,—w,)
(z-z,Xz,-2;) (w-—w)Xw,-w,)

(w=-0)i-w;) (z-zXi-0)

whenw,; +wandz; o

z

5 : 1
ie — ie w=—1.,
w i - z

2. Find the image of the rectangle
x-'ﬂ,ynﬂ,x=2,y-iiqthaplmundertﬁemap w=z+(1-2i)
Selution: Givenw =z + (1 - 2i) wherez=x +iy - '
=-1,1+i1ur whenu=x+1,v=y-2
The line x = 0 is mapped intou =1
The line y = 0 is mapped into v = -2
The line x =2 is mapped into u =3

The line y =1 is mapped into v = -1

. R .
yrel
x=0 x=1 ;
"% - . > u

e Rich o | v=-l
“—“ll u=3

i v=.2
z-plane w-plane
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Similarly we can show that each point of the region R in the z-plans is mapped into on and
only one point of the region R’ in the w-plane and conversely. This mapping accomplishes a
translation of any region. ; ; .

3. Show that both the transformation ' .

z—i o iz
w=—andw=—o
Z+i i+z

transform |w] < 1 into the upper balf plane i(z) 2 0.

Solution: If w=>—
Z+1
Then ww—1=2-bL. 2y 172 =172 4 hichis same as if w="—
Z4+1 Z—1 1+#Z —1+2Z : Z+1
={z;i}[i+i)-{z+il(i—i}
(Z+iXZ-i)
=2|'{z'i?,lhedeumninamrbaing positive
Z + '

or, [w|* -l:f&i?furhuththcmfmmaﬁms_.
z+

Hence for both the transformations |w|” — 1< 0 according as 1(2) 2 0.

This means that the circle [w] = 1 corresponds to the real axis and the region interior to
this circle corresponding to the upper half z-plane.
4. Discuss the transformation :

i(ll-z)

W= —

l1+z

and show that it transforms the circle |2| = lirito the real axis of the w-plane and the
interior of the circle | < 1into the upper half of the w-plane. 5

Solution: The given transformation is

i o,

i)
Hz

i .o I=x—i

e u+iv=i -
1+x+iy
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& Iy +i-x)} {( +x) ~iy}
(1+x) +y?

Equutingiulmdinmginwpans,wehaw

oy
(1+x)? +y? sserkl)

_xrayt-1

V=
1+x)* +y?

From (2), we see that when v = 0, we have x*+ y*-1 =0 i.e. xX*+ ¥’ =l i.e. | =1

This shows that the unit circle |2 =1 in the z-plane corresponds to the real axis in the
w-plane. From (1) it is seen that y is positive when u is positive, so upper semi-circle in the z-
plane corresponds to the positive half of the real axis on the w-plane, also it is seen from (1)
that y is negative, when u is negative , so lower half of the semicircle in the z-plane
corresponds to the negative half of the real axis in the w-plane.

~ Again, if x* + y* = lis negative, i.e. if X’ +y* <

ie.ifld <1
Thus interior of the circle |z] = 1in the z-plane corresponds to the half of the w-plane above
the real axis. -

The correspondence between the region is shown below:
y v

i
M

. ==
%

3;

¥

z-plane ; w-plane

5. Discuss the application of the transformation w = Z* to the area in the first quadrant of the
2-plane bounded by the axes and the circles [2] = a,[f = b (a > b> 0). Is the transformation,
conformal? .
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‘Solution: The given transformation is w = 2*
We put w =" and z=re", we have " ReM* = P#¢® _

+R=F  and$=20, icw] =o' and $=20.

Thus the circles || =2,[4=b in the z-plane correspond 1o the circles |wj=|o}" snd
|w| = |b|! respectively in the w-plane.

If b<|d<a,thenb’ ?H{&’.

This shows that the region in 2-plane included between the circles I =8, = b corresponds
‘o the region in w-plane included between |w| = a|’ and |w{=t|".

v y

% (%

w-plane

Since § = 26, therefore the region ﬂs¢sv}ninﬂmz~plammapsmthnregim 0sé¢<xin
the w-plane. _
Thus area in the first quadrant of the z-plane between the two circles and the axes

corresponds to the area in the w-plane between the two corresponding circles and the real
axis. :

The transformation is conformal, because %E- = 2zis not zero at any point within the area.

6. Describe a Riemann surface for the multiple-valued function flz)=(Z - N"?

Solution : Let us describe a Riemann surface for the double-valued function




b )

£(2)= (@ -1)¥ = fine T

where z-l=i‘,e“" and z + | = r,e™ as shown in fig. The point z = +1 are branch points of the
function. -

A Riemann surface for this double-valued function must consists of two sheets Ro and
Ry. Let both sheets be cut along the segment P,P;. The lower edge of the slit in Ry is then
joined in the upper edge of the slit in Ry, and the lower edge in R, is joined to the upper edge
in Ry. . . _ .

On the sheet Ry let the angles 8; and 0 range from 0 to 2x. If a point on the sheet Ry
describes a single closed curve which encloses the segment P,P; once in the counter
clockwise direction, then both 8, and 0; change by the amount 27 upon the return of the point
to its original position. The change in (8,+6,)/2 is also 2n and the value of f is unchanged. If a
point starting on the sheet Ry describes a path which passes twice around just the branch
points z=1, it crosses from the sheet R on the sheet R, and then back onto the sheet Ry before
it returns to its original position. In this case the value of 8, changes by the amount 4n while
the value of 0; does not change at all. Similarly, for a circuit twice around the z = -1, the
value of 6, changes by 4x while the value of 8, remains unchanged. Thus on the sheet R, the
range of the angles 8; and 6, may be extended by .changing both 8, and 6, ‘by the same
 integral multiple of 2 or. by changing just one of the angles by a multiple of 4x. In either
- ‘case the total change in both angles is an even integral multiple of 2x.

~ To obtain the range of values for 0, and 6; on the sheet R, we note that if 2 point
starts on the sheet Ry describes a path around just one of the branch points once, it crosses
onto the sheet R; and does not retum to the sheet Ro. In this case the values of one of the
angles is changed by 2x while the value of the other remain unchanged. Hence, on the sheet
R; one angle can range from 2x to 4n while other angle ranges from 0 to 2x. Their sum then
ranges from 2n to 4=, and the value of (8,+8,)2, the argument of f(z), ranges from x to 2x.
Again the range of the angles is extended by changing the value of just one of the angles by
an integral multiple of 4x or by changing the value of both of the angles by the same integral
multiple of 2. :

'~ The given double-valued function now be considered as a single-valued function of
the points on the Riemann surface just considered. The transformation w = f{z) maps each of
the sheets used in the construction of that surfacé onto the entire w-plane

Supplementary Problems

1. Prove that the mapping given by w = f{z) from the z—p[éme to w-plane is conformal at zg if
f(z) is analytic at zp and £'(zp) # 0. What goes wrong when £{zy) = 07 .

2. Find the fixed or invariants points of the transformation

2z-5

z+4




3. Findﬂh:hilirm:h'nnsfonnntim_whichmapsz=l,-i,lontuw*ﬂ,!,-irupmﬁwly.

4. Find the bilinear transformation which maps z = 1, i, -1 respectively onto w=1, 0, -i.
For this transformation find the images (2) [ <1,(0) [4<p<1. |

5. Findtheimageof‘!hcrecmnglex=ﬂ,y-ﬂ;x=I,y=2inth¢z—plnnhmderﬂ=mp

w=(1+i)z+(2-i).
6. Show that a bilinear transformation leaves a cross-ratio invariant.
7. 1 (w+1)* =, show that the unit circle in the w-plane corresponds to a parabola in the
z

z-plane and the inside of the circle cofresponds to the outside of the parabola.

g Fi.udﬂ'u:bilimarmusfmﬁunwhichmapsk{zjzﬂunlntheunitcimle [w]'sl.

9. Find all the bilinear transformation which map [ < 1onto|w] 21.

10. Show that the relation w=id4:msfnrmsﬂmcirclc|=1=1,imun:imleafndhutmitjr
in the w-plane and find the centre of the circle.

(1. Determine the image in the w-plane of a circle in the z-plane under the transformation
; .

W==—.
z

12. Prove that the equation

z-b

k is a non-negative parameter # |, represents a family of circles for every member of
which a and b are inverse points.

13. Show that the equations

‘—z;:;l:l., argl%‘:uwh:m % and o are variable parameters, represent
z— z-

two orthogonal families of coaxal circles. :

14. Describe briefly the Riemann surface for the function f{z) = logz.

15. Discuss the Riemann surface for the double-valued function w = z'?,
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UNIT 2
COMPLEX INTEGRATION
Introduaction

This unit will deal with the notion of integrability and integral of a complex function
along an oriented curve in the complex plane followed by the fundamental theorem of
function theory which was first discovered by Cauchy (1789-1857) in the year 1814. The
theorems presented here constitute one of the pillar’s of Mathematics and have far ranging
applications. ’

Definition 2. 1 Let f{z) be continuous at all points of a curve C having a finite length i.e. C is
_ arectifiable curve. '

We divide C into n parts by means of points 2o,z ..........  Za, chosen arbitrarily. Also
let 2o= a and z, = b. On each are joining 2., to z , (where k goes from 1 to n) we choosé a
point z; and form the sum :

- Sw=f8) (21 —20) HG N2 -21)*...... ) (Za—21) -
“if(ak le _zk-l}

k=l

Suppose the maximum value of (z:-zy.1) — 0 as n—» . Then the sum S, tends to a
fixed limit which does not depend upon the mode of subdivision and we denote this limit by

i

b
Jt(2)z or[ f(z)dz

which is called the complex line integral or line integral of f{z) along C. an evaluation of
integral by such method is also called ab-initio method. Thus

j f(2)dz =lim Z TAENE, =2 Yo 2N
i [ '




Note 4.1. Properties of integrals
If f{z) and g(z) are integrable along C, then

. [f@+e@)dz= [f2)dz+ [g(z)dz

=

b

[Af(z)az = A[f(z)dz where A is any constant.
¢ ’ © a

bpd

b ']
. [f(z)dz= ~[f(z)dz
. b

o

1] m b
ft@ydz=| f(z)dz + [ f(z)iz where the points &, b, m, are on C.

W

ljf{z)ul < ML where |f(z)] < M i.e. M is an upper bound of |f(z){on C, and L is the
length of C.
Theorem 2.1, Cauchy’s Theorem

[ff{z}isanmlyﬁcﬁmiunofzandiff{z} is continuous at each point within and
on a closed contour C then

[t()z=0

Proof : Let R be the region which consists of all points within and on the contour C. Now if
P(x, y), Qx, y)

%,%% are all continuous functions of x and y in R then by Green’s theorem we have

j[de+Qdy} ”{E'EE “ SO .

Since f{z) = u + iv is continuous on the simple curve C and f '(z) exists and is continuous in,

. therefore u, v, Eu —ai E"- E:'mr: all continuous in R. Thus the conditions of Green's

axox’dy oy
theorem are satisfied and hence jf{z]dz = I{u +iv)(dx +idy)

;!{(udx-vdypi{vdmudyn E-Ii[[% ]4-1];[[—-——-—-] Thus J:f{z}dzr-ﬂ

»




"Note 2.2 It was first shown by Goursat in 1900 that if is unnecessary to assume the
continuity of f'(z) and that Cauchy’s theorem holds if we only assume that £'(z)exists at all
points within and on C. : ;

Theorem 2.2 Cauchy- Goursat Theorem

If a function f(z) is analytic and single valued inside and on a simple closed contour
C, then [f(z)dz=0.
c

Proof : We shall first prove two lemmas :
Lemma 1. If C is a closed contour, Idzzﬂ.fni::ﬂ.Thmfmnltshﬂhfoﬂwﬁnmﬂu
c [ o

definition of the integral, for

In’z = lim i:{z, ~2;,)-1=0asmax |z, -z, | >0......(24)
e l—lﬂ}l-q .

!zdz =£iﬂ§zt(z. ~2,4)= Fﬂglzk—l (xt "zt-l)

=l|.imi{(zt +zx—|]{zt '-zt-:}} =£hﬂ12h: “!i:-:}tn --"*-{1-5]
2eail 2aeiy :

Lemma 2. Goursat lemma: Given £>0, it is possible to divide the region inside C into a
finite number of meshes, either complete squares C, , such that, with each mesh there exists a

point Z; for which f[zz}“:{z“}—f‘(zu4<s ¥ z in the mesh {26}
-2z, :

Proof : Suppose the lemma is false; then however the interior of C is subdivided, there will
he at least one mesh for which (2.6) is untrue. -

We shall show that this necessarily implies the existence of a point within or on C.at.
which f{z) is not differentiable. | ' TR

}nf'h

\f{}V

A 4
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W:mbdiﬁdtﬂumﬁh[fmwhich{l.ﬁ}hfal&e]bymmufﬁnujuﬁngﬂwmiddh
puimsufﬂw.opposimsidm,lfﬂa:missﬁuatleastnnapmwhichdmmtsaﬁsﬁrthn
cmdiﬁun{lﬁ}.agammmdividcthispaﬁmmemmmmmﬁﬁspmmmmwmdaﬂn
aﬁnitcmnnbefot‘steps,orﬂmpmommyguonindefuﬁtely.lutheswondm,wﬁnbmin
a sequence of squares (mhmntainadhﬁ:wewdiﬂgune}whm&]imilpuhtiszgwﬁich
Iiesinsﬁeﬂandatwhichﬂmmndiﬁm{lﬁ}isnntsaﬂsﬁed Since the condition (2.6) is not
satisfied at zy, therefore ’

R

3 being a small number depending on &.
"I'Il.'i.sshowslhak:t"(z}isnntdi[fcmnﬁahlentznmthaif{z}isnotanalyﬁcatm . This
contradicts the hypothesis that f{(z) is analytic. Hence the lemma is true i.e.

£(z) £ : :
{zi—ztzu} ~'(2,) = (z) where | <&

and 1—0 as z—2p.

Thus ﬁzﬁz—m}n{z}*’ﬁz‘uﬁ(&n}f'[zu} LB BES RS 7 7

Proof of the Theorem

We devide the interior of C into squares C;Cay................Co and partial squares D),
D, Dy in each of which (4.6)is satisfied.

We consider the integral 3 _[f{z]&z +3 [tz
r=l Dw

rel C,
where the path of every integral being in anti-clockwise direction.

in the complete sum, integration along each straight side of each square (whether
complete or partial )happens to be taken twice in opposite directions and so all the integrals
along straight sides of squares cancel. The integrals which remain, are taken along curved
boundaries of partial squares because these are described only once. The integrals which are

left behind sum to jf(z)dz.
[

r-lt_

Thus [ )z = S [ra@d+3 [ 1@l D)
¢ r=l oy

In view of (2.7),

J:f(z)ii = ![f{z“}+(z—zu}1+{z-'zn}'(2g ]}.!z




=[ [Raoy2of'@)fdz+£'(z,)[ 22+ (-2, )n(2)z = [(z-2,)ndz
L . u ) g

Thus (2.8)becomes

ffi{z}dz=z_[(z ~zg)ndz+ . [(z-zyInde

r=l g . =l
I.{z =2y ;'Tldz’
D,

{Es‘_ﬂz zoﬂdzl z.s'“z zaﬂdzf PSS 1 iL- [d.if‘qlﬂ:]

i S

Let £, »,A.. be respectively the I:ngﬂ'j of the side and area of square C,. similarly, £,
Ad',denote respectively length and area of square D, .then (2.9)becomes.

j’f{lz]nzic ga z,-ﬁﬂﬁhga t.ﬁ!ld#

[ since [z~ 2,| $¢,+/2 = diagonal of square ¢, <3¢ ¢,42.4¢, + 3 e £,J3(4¢, +8,)
' rel ]

where Sqis that length of the are C which forms curved boundary of D; .

=4ey2 ZA +3a ]ufze

r=l =i

Thus If{z)a.:*cdlaﬁﬁ +e2 €3S, Ll <t

ral

and A is themmhmed area nfsquamuﬁ:ngth ¢ with which the region was originally
covered.

m "
Again, let L=)"8S, be the total length of boundary of C therefore,
r=l

If(Z}dZ{-He-.EA +|-;JEEL *—EWEA-H.JEL]. Since & is arbitrary and so 1%

e—0we get If{z}dz =0
€




Hmm&mﬁmkhmwmifmmﬁphdmdmwhkhﬁnin
Rmheslmktoapuintwiﬂrwtluﬁngn. A region which is not simply-connected is
called multi-connected. -

Theorem 2. 3 : Extension of Cauchy’s Theorem

Tml.uzlfﬁ(z]ismlyﬁcmuhnp!ymmdmgimﬂmmﬂwinmgmlm
any rectifiable curve in R joi 'ngnnymngivmpointsofkisﬂmmei.:. it does not depend

upmthecmejuinhgtwupuints. '
Proef : Let the two points AandBofthnsimplywnnectndreginanjoinedhirmscmm
C, and C; as shown in figure.

By Cauchy’s Theorem, .
[f@)dz=0 or, [f(z)dz+ [f(z)dz=0
ADBEA . ADB BEA

Hence __
[fz)dz=~ [f@)dz= [f(z)ez
ADB BEA AEB

Thus,
[fz)dz = [f2)dz= if[z)dz
f.:-,. C, a

This yields the required result.

Theorem 2. 3.B Let f{z) be analytic ina region bounded by two simple closed curves C and
C)(where C, lies within C) and on these curves then '

j f(z)dz = j f(z)dz
C

Cy»

where C and C, are bothe traversed in the positive sense relative to their interiors.
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Proof : wmmmmmmm&}kmhﬂum&wmw

A
-]
Cam;hy‘sThmtem.
[f@}dz=0 or, [fz)dz+ jf{z)dz+ jf{z}dz+ jf(z}dz:ﬂ
ADEABGFBA ADEA . - AB BGFB BA
o, [fz)Mz=- [f(z)dz= [t@dz  or, [f(a)iz= [te)
ADEA BGFB ..3 BFGB c G

Theorem 2.3.C Let f{z) be analytic in_nregionbmmdndbythanm-omhppiugsi:npic
clmudmrwsC,C.’,Cz,...,Cq(whn-eC,C;,Cz,...,C,minsideC)mdmthmwmlhm

[f(z)dz = [f@z)dz+ [f@)dz+--+ [f(z)dz
c L C2 Ca

where integral along each curve is taken in the anti clockwise direction. .

Theorem 2.4 Cauchy’s integral formula HE
Ifi{z}ismalyﬁcwithinmduntclmedmntmrc:ndifnismypointivilhinc,lhm

f(a) = _ITJ_’_f(z} =

Zmn zZ—-a

Proof : If f{z) is analytic within and on a closed contour C and if a is any interior point of C,




Topm“thuThmrmwedeuﬁbeauircleyabwtthecmu'ez=nofma!lmdimrlying
catirely within C. In the region between C an y the function ¢{z)=ﬁ3;is analytic . Hence
A
by Cauchy's Theorem for multi-connected region we have
j-f(z)dzfs If(z}dz.

< z-8 5 Z-8

[l _ jlaz_ fopz_ ez _ LEED ﬁz

cz-a fqu TZ-I 'I*E ¥ Z—a

How,s:imet'(z}isanaiyﬁcwithln(:andsnitismnthuuusatz=nsotﬁat givene>0,3,5>
0 such that [f(z].-f{ajufu:]z-a!l-:a. ..(2.11)

If we take r < & then (2.11) is satisfied V z on the circle y. For any point z ony

z-a=re”

I!—{'ﬂdz - zj‘@ im“f:iﬁ =2rif(a)
Sz~ " re”
Therefore from (2.10) we have

If{z} : ‘h'i'ﬁajnjf{z}—f(a}l*
cz-n L p —a

Nef@y oiced < fEP @ 2140 —E o=
..]c;—ad_z-—me{a)\ﬁ_[l?al—{d:dclr{ldzl. -2 =21

ie. lj@-dz - z::if(a)‘ <2ne
cz-a : :
Since & is arbitrary so making &—0 we get

(L&) g, _21if@)=0. So f(a) = o [tz
cZ—a : ] 2rigzz-a

Theorem 2.5 If f(z) is analytic in a region R, then its derivative is given by

f'(a) =—1: —f—{ideere C is any simple closed contour in R surrounding the
2xig(z—a)

pointz=a
Proof : Let a + h be a point in the neighbourhood of the point a, then by Cauchy’s integral
hmmh . »
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A f{z]I
)= Zm'!;z—a

1 f(z)
and f(a+h) nﬁimdz

[ - ——~—‘—] f(z)dz

1
f(n+h}-f{a}=:znfj i

c

_ 1 j- hf{z)
2mig (z-a~h)z~a)

i f{a+h}—f{a}__l_“v f(z)dz
o h " 2nil(z-~a-hXz-a)

sl (M TN - T

Eﬁc{z-af 2nig(z-a)*(z-a—h)

Now the result follows on taking the limit as h — 0 H‘w:canshuwtha:ﬂwhnm_of{lu)
approaches to zero. Let us consider a circle I of radius € and a centre a which lies entirely in
R, then

h j' : f(z)dz "LI f(z)dz

2 t(z-a)’(z-a-h) 2ni {(z—a)’(z-a-h)

Now, we choose h so small in absolute value that a + h lies in I" then
|e-a~b[2[z oo
=

Again, since f{z) is analytic in R, we can find a possible number M, such that f{z)<M. Then
since the length of 2ne, we have

|nJ- f)dz | || Mome _ |h

[2niz (z-2)"(z-a-h)| " 27 6" (e~ n]) (e ~[n]e
which approaches to zero as h — 0.
Thus when h — 0, then from (2.12) we have

"ot 1 f'(a+h}-f{a]_%1‘ f(z)
£ 'ltt-Tﬂ h -hil{z—'a}:

Theorem 2.6 If f{z) is analytic within and on a closed contour C and ‘a’ is any point with c
then derivatives of all orders of fiz) are analytic and given by
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(@)= | ——(—z)’—;dz. 8=012,.

Theorem 2.7 Maximum Modulus Theorem

If z) is analytic inside and on a simple closed curve C and is not identically equal to
a constant then the maximum value of |f(z)| occurson C.

!“mﬂ!’:Smf{z}ismlyﬁciusideandonﬂthuﬁfmf{z)i:mﬁnumshﬁidemdonc.

Consequently [f(z)| attains the maximum value M at some poiat inside or on C. We want to
shawm{r(zjmﬁqmcmmuammmmmofcmmmc :

Suppou:fpnﬁ‘ble,thuuhnsnmmmndonﬂubumdaryufﬂbmuammdau
pumtsz-a inside C so that

max{f(z) = If{uﬂ =M

 Let C, be a circle with ‘a’ as centre lying within C. Now (z) is not constant and its
. continuity implies that there exists a point *b’ inside C such that '

@y <M or, |ffb)[=M+_whmasu

Again, by the continuity of |f(z)|at b, we sec that for & > 0 we can find the > 0 such that
lf(zj-lf(bic% whenever|z-b{ < 8

e

ie. [f(z) <M - %h’z such that |z-b <3 for all points interior to a circle C; with centre at b

and radius 5.

Again , we draw a circle Cy with centre at a (and which passes through the point b) and radius
|b-a| =r . Therefore by Cauchy integral formula
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on Cy where |z-a|=r ie.z—a=re"®

f (z]l

iy o 2mi 2 -‘ {z d)

x 8
.'.f{n}=ﬁf% 049 = jf(am )de

B
0
If we measure 0 in counter clockwise direction from OP and if £POQ = « then

f(a)= z—ln[zf{a +re”®)do + ?f{n + re"}dﬁ:|
1 a . " 1 in
.'.lf{&ﬂig!lf{a+m ﬂdﬂ+-i;£|f{a+1:'e“1dﬂ
1% £ 175 o g, M g GE
{_E;![M —E]d9+E!Mdﬂ = M-2)+—(2m-a)=M- -

i.e.}f{a*h{-% ie M= fla) < M*;—-: whir.:h is a contradiction. Thus we can
conclude that |f(z)] cannot attain its maximum at any interior point of C and so must atain its
maximum on C.
Theorem 2.8 Minimum Modulus Theorem .

If f{z) is analytic inside and m a simple closed curve C and f{z) # 0 inside C, then

|£(2)] assumes its minimum on C.

Pmul' Since f{z) is analytic inside and on a closed curve C and ﬂ'z} # 0 inside C therefore

—Lis analytic within C. By maximum modulus Theorem cannot assume its maximum

fiz) f(z)

value inside C so that |f(z)| cannot assume its minimum value inside C. Then since |f(z)| has
a minimum therefore this minimum must attainedon C.

Theorem 2.9 Morera’s Theorem (Converse of Cauchy’s Theorem )

If f(z) is continuous in a simply connected region R and if Jf{z]dz = 0 around E\fﬁ
simple closed curve in R, then f(z) is analytic in R. )
Proof: Let ‘a’ be a fixed point and z be a variable point in the region R, then the value of the
integral jf{u}du is independent of the path joining a and z, so long this path is in R. Let

#(z) = [ f(u)du . We shall show that ¢(z) is analytic function in R.
L]




As zis a point of the region R, there exists a circle I" with the centre at z which entirely lies in
R. Ahn,]ﬂz+'hbcanypointipﬂremighbmuhmdufz.
Therefore we have,

z+h

bz +)~4(2) = [ Fu)du - u)dn

il
z+h

= [ f(u)du +jf(u)dn jf{u}du . el2.13)

mm&mmingindcpmdmﬂth:mjuhingzmz+h\¥emhmmm
straight segment fromztoz +h. _

z+h
M f(z) .._#[ ff(u}dn I f{z]dz]

[f(u)- f{z}]du (214)

ul-qz_

=L

h

Let >0 be any given number. Ast{u}isoonﬁnumnntzthmfmﬂ,&-ﬁmh_th&t
lf(u)~£(z)| <& for [u-7<3.

Now, we suppose that |hI<|5, we see that for every point u on the line segment joining z to
z+h, we have .

[fw)-f@)|<e C(219)

-.when [h}¢8, then from (2.14) and (2.15) we have

. z+h
|¢(z + h; . oz) _ f{q = E ! [f(u] - f‘{Z}}:lu.

which tend to zero as 0.

Pl
ihl”

Thus we have ,
Hﬂjﬂ%ﬂ =f(z) so that §'(z) exists and ¢'(z) = z)

This equality holds for every z €'R.

Now, since the derivative of §(z) exists therefore ¢(z) is analytic in R. But we know
that the derivative of analytic function is analytic therefore $'(z) i.e. f{z) is analytic'in R.
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Definition 2.3 A function ¢(2) is said to be indefinite integral of a function f{z) in a region R,
if for every z € R, ¢'(z) = f{z).

Theorem 2.10 Cau:hf': Inequality
If f{2) is analytic within and on a circle C of radius r and centre at z = a then

|fm{l 5@,:1 =0,12,.
r

where M is a constant such that [f(z) < Mon C.

Proof : By Cauchy’s integral formula,
£im f(z)dz
(ﬂ} I {; l}lﬂ-l

Now, Ifil]{ai-%!%- E%I:TL{I:—B [-_-l;-g|=|-]

_n!M-Z: 5 n!ful‘ Salid.
inr r

* Theorem 2.11 Lionville’s Theorem

Iffnullzinthemﬁ::mplnxptmw,{i}ﬂz}isma!yti»cand{ii}i{z]isb«mdud,i.n. '
If{zﬂ{l\l for some constant M, then f{z) must be a constant.

Proof : Let a and b be two arbitrary distinct points in z-plane. Msultthumcltufmdms
r having centre a which encloses the point b.

y

q‘ C
I %
0 kg
Now by Cauchy’s Theorem ,
_ 1 f(z)dz 1 f(z)dz
s zm£ il
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z-b z-

f(b)-f(a}w-j[———— (2)dz

_b-nj f{z)dz
mi 7 (z—a)z—b)

Nﬁw.wahuw:
_ lzal =r. Again, lzbl=|z-a+a-b|2 |z-al - la-b| =r- la-bl>w2

If we choose r 50 large that [a —b{ < %4

|h -ap f(z)dz I |~a| M22r _Zib—llﬂ
Thus [f(b) - f(a)] = [2m I(z-h}(z—t)| “2x #r r

Taking r—»w we see_that
[fe)~f(@)}=0 - or, fb)=fa)
which shows that f{z) must be constant. .
Theorem 2.12: Fundamental Theorem of Algebra
Every pnlynnmilal of degree n = 1 has at least one zero.
Proof: Let f{z) = a9+ 8z + 8;2° + ... +8 .2 ", 8 # 0 be any polynomial.

Let, if possible f{z) has no zero i.e. f{z) # 0 V z € C, then +1 is analytic in every domain.
Now we have , ' '

1 |
f(z) ag+a,z+a,z' +--+a, 2" +a,2z

-:—1-* ! —+0asz—>x

z" a, +it4ee4t
3

Thus to every & > 0, there corresponds a R}ﬂsuchthatlﬁlﬁl-u for |z|>R.

Also, 7>is continuous in the bounded closed domain [ < Rand as such it is bounded
therein and accordingly there exists a number M such that [ <M for [ <R.

Thus we see that Hﬁl < Max(M, e) for every z.
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Hmby'mmfe.m#ﬁnmmmmuwmammmmm
our assumption is wrong and the polynomial f{z) must have at least one zero.
Corollary 2.1 : Every polynomial equation |

flz) =0+ a1z +8;2" + ... +a ,z"= 0 where n 2 1 and a, # 0 has exactly n roots.
Theorem 2.13: Poission’s Integral Formulse for a circle

If f(z) is analytic within and on a circle.C defined by [/ = R and if a is a point within
C, then . :

g O L

—
27i g (z-a)R? - z) i

AY
‘(@)

y ’x

Proof: Let f(2) be analytic within and on the circle C defined by [z =R . Let A be any point

inside C so that a=re ® » 0 <r < R. Now the inverse point of A w.r.t. the circle C is given by
: :

a'= %—which lies outside the circle C and is denoted by the point A’.
- a

Now by Cauchy inleg.ral'l‘ormnla. we have

ﬂa)mEI—T f f(z)dz 217
T"c Z—a . .
£(z)

Since f(z) is analytic within and on the circle C therefore —i5 also analytic within and
_ z-a
on the circle and hence by Cauchy's Theorem ,

j‘__“z?"‘ -0 218

C

z—a'




. from (2.17) and (2.18),

-1 f{z)dz_ fz)dz | _ 1 a-a'
(@) Zﬂil:£ z-a iz—a'] :dl(z—a)(z-u'}f(ﬂdz

1 j aa-R?

- f(z)dz
25i g (z-8)zd - R?) e

| R?-a®
= f (209
21:i£(z-—a)(R1—zi} e i

) SOLVED PROBLEMS
Example 1. Find the value of the integral

1+
I{x+y+ixl}dz
0
(i) along the straight line fromz=0toz=1+i

(ii) nlnngtherﬂlaxisﬁ'nm'z=ﬂtoz=landmenahng.alimpwhiwhmginawuis
fromz=1toz=1+i. ' '

' Solution: vz=x+1iy

~.dz =dx + idy
._H
Alz=1+i)
— > x
0 B(z=1)
()  OA isa straight line joiningz=0toz=1+1i.
Clearly y = x on OA Ay

sdy =dx

I
and I{x-—y-i—_ixz}dz=]'{x—x+ixlxdx+id1}
OA 0

L4
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]
=i(l + i)jx*dx
]

_ig+i) i1 P
3., 2

(i) The real axis fromz=0toz=1 is the line OB, y=0o0n OB and so z = x, dz = dx.

- i
Thus I{x—y+ix’}dz-=f{x-—0+ix’)dx
o8 ]

-j (x +ix*)dx
0

§ X

e e

23
Again, BA is the line parallel to imaginary axis fromz=1toz=1+i
Now, x = 1 on BA 50 that dx = 0, dz= idy on BA. |
; ; ]
& -y +intyix = [@-y+idy
BA o
=-|+J-;.

‘Thus .. j{x—y+ix2)dz= I{x-y+ix’}dz+ J{x-jr+ix’jdz j
0BA ' om BA

Example 2 Evaluate —I-{fﬂ—ldz ifCis
] chz-E
(i) thecircle |4=3
i) thecircle |z|=1
. . & ; i 1 pf(z)dz i W
Solution : Cauchy’s integral formula is f(a) =Ef—;:-l—when f{z) is analytic within and

c
on & closed contour C and a is any point within C.
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If we consider the contour C asfz] =3 then clearly 2 is a point inside C.

In this case, {z) = ¢* therefore f2) = ¢’
Hence, = f o= = f(2) =¢?
Imcz-—a

If we consider the circle |2 =1, then clearly 2 is a point which is outside the circle lzl=1.1f
] i .

we take f{z}=;—2. then f(z) is analytic inside and on the circle [ =1. Therefore by

Cauchy’s Theorem

z
_l._iﬂ dz Sl
chz—a

Enmpki’tlff(z}-akz"+amz""+,..+an,ak#ﬁ,kc0,bemuhiunﬁpoljm:rﬁnl.

then the equation

; fiz)=0 has a root.

Solution : If f(z) # 0 for any z, then F(z]:-f%ia analytic for all finite z. Now
K4

|F(z) — 0 as |4 - =, so that |F(z)|is bounded and therefore F(z) is constant, by Liouville's
Theorem . -

Hence f{z) is also a constant and we thus arrive at a contradiction.
Example 4. Prove that every polynomial equation

; P{z]-au+a1:+a121+.'..+x.,z“ =0 where the degreen2 l and a,= 0has
exactly n roots.
Solution : By the Fundamental Theorem of Algebra, P(z) has at least one root. Denoting this
root by a we can write P(a) = 0. Hence

Pz)-P(a)=ao+a1Z +222 + ...+ 802" -(ag+a,a+aza’+
. otaaa”)
=a,(z-0) +22(Z-a’F ... +a 2" -a")
=(z -a)Q(z)
- where Q(2) is a polynomial of degree (n - 1). Applying the fundamental Theorem of algebra
again, we see that Q(z) has at least one zero which we can denote by p (which may equal o)

and so P(2) = (z - alz - B)R(z). Continuing in this manner we see that P(2) has exactly n
TOOLS.
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Enuple_sﬁivcmennq:hmshnwﬂmifi{z}is'anﬂyﬁcimidemdmaﬁmphahm
curve C and f{z) = 0 at some point inside C, then [f(z)] need not assume its minimum value
on C. ; i

Solution : Let f{z) = z for Hs].mtthisacﬁclemﬂamueatthﬁ;uiginmd_mcﬁmm
C.Wehave f{z)=0atz=0.1f z=re ™, then |f(z)|= r and it is clear that the minimum value
of |f(z)] does not occur on C but occurs inside C where r=0, i.e. at z=0." '

Supplementary Problems

1. Prove that if f(z) is integrable along a ourvé C having finite lesigth L and if there exists a
positive number M such that |f(z)|<M on C, then :

Ilf{z)dstML
2. IfCis the curve y = x* -3x" + 4x -1 joining points (1,1) and (2,3), find the value of

fa22* - 4iz)dz
C

3. Evaluamf e

cZ—-a

where C is any simple closed curve C and z = a is (i) outside C (ji) inside

C.
(z*+1)? 1 ¢f(2) ; .
4. f(z) = ——r—r, —— le |z =4.
Lﬁ (z) @ +2242) Evllu:tg zm‘ngwth.lsth:meH 4
5. Ifﬂz]isanalyﬁcwithinmdun:circ_lcl:defmedbyH:Randiflisnpnimwithm{'.‘.
then :
R'-az

i .
f(a) = — | ———— d that
(a) irrictz—n)(R‘-zi} (z)dz and hence deduce

1% R?! -2
!

f(e")mt
=) R - 2Rrcos(0—4) + r

= +T(Rr'*)d where a = re” is any

point inside the circle |z} =R ..

6. The function of a real variable defined by f{x) = sinx is (a) analytic everywhere and (b) .
bounded i.e. fsinx|<1for all x but it is certainly not a constant. Does this contradict -
Liouville’s Theorem? Explain.




7. lfﬂ:)hmbﬁcmﬂe:ﬂm-ﬁuphchsdmCumptfoupolmfmdumu z
= g inside C, prove that

kz -a)" F(z]]

—#5 F(z) =

H(m t)'
8. If l{z}’nmﬂyﬁcimidnmdmnhnphclmadmc,prwcﬂm

in
@M @) Lo j e *f(a+e9)d0
_ ny

R S T G
@) - o '21;!" f(a+¢*)d0

9. Ifﬂ{z}umﬂyﬁcm:m&mmﬂf{z),i’(z) . are analytic in R i.e. all higher
derivatives exist in R. :

10. Latf{z}hemyusmmmnmedmﬂnmic |4 < R, and let u(r.8) be its real part.
Then for 0 Sr<R,show that _ _
. '

.y 2= W
8,0 = - [ u(R. -
0

R? -2Rrcos(0—¢)+r




UNIT 3
POWER SERIES

Introduction : This unit is devoted to a consideration of functions which are analytic at all
puinmiuabmmdeddomainmeptatnﬁnitenmnbers.smmpﬁommmtnuwnas
singular points. In this context, a study of isolated singular points has been made and the
mhchﬁunhaappﬁmﬁuummemmufﬂybmicuqmﬁum. '

Definition 3.1 Power series : A series about a is an infinite series of the form D.a,(z-a)".
\ =)
One of the casicst example of power serics is the geometric series 9 2"
(L)

It is easy to see that

1-2"'=(l -z}l +2+...+2"
1-z"
1-z

e l+z+ .. 4+2%=

If 7 < lﬂxmﬂ#lhnz'andmﬁngeumeuinmiﬁiumﬁgmlnﬁth

= |
-
nz-;z et

If |4> Ithen|]" = wand the series diverges . Not only is this result an archetype for what
happens to a general power series, but it can be used to explore the convergence properties of
power series.
Taylor's Theorem

If a function f{z) is analytic within a circle C with its centre a and radius r then at
every point z inside C, :

f(z) =f(a) +(z—a}f'{a}+m+{z—_r—]-:f“(a}+m
nl ;

=‘ (z=2)".....
.E_; ——{"(a)

f"(a)

n!

or, f(z) = ia,{z —a)"‘where a_
. n=d

i.e. f{z) can be expressed as a power series about a.

36




.hnﬁm:hmmmm&cthufm"nddeNr ‘Construct & circle C
with centre at a and enclosing z(fig 3.1)

Then by Cauchy’s integral formula

f{z}--—L %—widw | —(3.1)

we have

1 1 1 [ 1
-z w-0-@-3) -0 1=V

ENENE :T*"f[:'.‘]r_' (=) =)

¥ 1 Ez=a o -a)’ {z—-} +(z—l]' 1 62)

w-z w-a (w- -a)? {w-a} (w-l} w-a) w-z

S mlmmmmum.zmmw}mdmmm.u, we have

- L. g f(w) f(w) {z.»,} £(w) o
f(:!}l 3 3w- ‘d 2m f{ _‘}1* a i{w-—a}“ +U, .(33)

—a]‘ f{w}dw
w-=—I
Llising(:audty‘iimzyalfmnnﬂw

@)=L [ _gw,0=0,1,2,3,..

2 (w - s

flo-)
[33}bwomﬂ f(z) = f(a) +f'(a)z~ a}+—(-l{z a)? +-- +Tr.|-_§il(z -2y +U,

L1




If we can now show that lim U, = 0, we will-have proved the required résult. To do this we
note that since w is on C;,

e
w-a| [
whereﬁuamm&nt&lm,w;lmvc]f{zjsMﬂmH_iummd

: fwﬁzfn[(w—a}—(z—njzr, ~|z-4|
where r, is the radius of C,. Hence, we have

_L Z-a "f[w}

]U,| ix,j‘[w-a] w-zdw -
Since0<y< 1, weseethat U,—0asn—xm

Hence from (3.3) we have, -

: 1 "M M
-2 = .
(2 n —|!-l' MI L] —'IZ-I’

f(z)= f(l)+f‘(axz—n}+ﬂ'-)-{z—:)= +'--'-+m(z-n}"' dene
: ; 2 {(n-I)! :

- (z_l}u o
=§—-—n! f*(a)
-in,{z—n}" where a,, =m.
ne0 n!

Dtﬁnlﬂonﬂﬁm‘imufﬂic form i:_[z—n]'isca]ledul.aur:nt’ s:riu.'[‘hnp_artnu+'

3/(z-) + ax(z-a)" + .. is called the analytic part of the Laurent series while the remainder part
a.i(z-a) +axz-a)’ + ..is called the principal part. If the principal part is zero then
Laurent series reduces to a Taylor series.

Theorem 3.2: Laurent’s Theorem :

If f{z) is analytic in‘sidnandonth:bouudaryofthgﬁngshlpedmgimkbwndﬁdby
two concentric circles C, and C; with centre at a and respective radii ry andr; (r; > r2), then
forallzin R, '

| f{z}:inn{r-n]'dui I

P {z-ﬂ'

. -l g L) :
where a,, Zm'cfl{w—a}“*' dw, n=0, 1. 2,...
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f(w) s
a_,= Emf(w -41 ,o=1,23,...

Proof: By Cauchy’s integral formula
Cy -

\/

o — 1w - = § ™) 4 G4
2 W=z

mclw~z ImCZ

Consider the first integral in (3.4), and we write

[ 1
w-z {w—a}tl—f“}{,_ﬂ}

: - &
o Lo om0 e) +(H} A e
w-a (w-a)’ (w—a)" \w-a) w-z
skt _ff{w) —lrff(w}dw z- af f(w) —dw 4+
2mi; w-a 2mi ¢ (w- a)’
0" ¢ 1) 4y 4y
2xi fl{w-a}" ;
= gg + a;{z - a‘,i'.*- e F (2. a}“‘l +U, - ...(3.5)
wherea, =L -t?':;—wld -—”—ﬂ—dw a,.,.= —Hﬂ-—dwand
= 2mi oW Zm (W= -a) 21!1 (w - -a)"

u, =_l_‘.f(z““] o) 4
2m \w-a) w- z
Let now consider the second integral in (3.4). We have on interchanging w and z jn (3.5);

1 1 1 w-—a (w-a)"" [wﬁa]" 1
ot +
z

_w-z=(z-—a]{l-**“)/h_.}}-z—a+{zaa}’ (z-a)" \z-sa -w

so that
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f{w} I f{w} g
Imcf W= z Zm f [z —a)? f(w}dw+ i
{W a}l-l
2::1f (z~a)" AR,
= a-l a...: LR L l_' fad -
z-a+(z+a)=+ +{z-a}'+v" &
where,

. 1 i
o Bty ff(w}dw,n_, =—,f{w—a}f[w)dw,...,
2mi 2ni
Cz Cz
l o=
- =—2ﬁc§1{w-a} 'f{w}.u_iw

and V, -Lf(w*“r f(w}dw
2m G\Z—8) z-w

me (3.4), (3.6) and (3.7) we have

f(z)={so+ai(z-2) + ... + api(z- 2)"" }+

{il..+ “—12+ B . }u,+v ..(3.8)
Z-32 (z-a) [z u] _

The required result follows if we can show that
lim U, =0 and lim V, =0
L

Now, we have fu =5 f[ J %‘ - .39
i.

For every point w on C,, b =m, <1
w-a

where m is a constant. Also we have [f(w) < M where M is a constant and
o= =w=a) -z - a2 po~a |z~ o= 5 -]z -

~.From (3.9) we have U|s ——2 M - 2mr, " Ms

2:: 5 ~|z-4 —|z-a4




Since O<m; <1 therefore U,—0 as n—o. Again, for every point w on Cs,
w-a
l’;‘:;l" ms <d
 where m; is a constant and |
|z -w =z -a)~(w-a) 2|z | ~|w-d] =|z-a]-r

1 m,"M m, M
Thus [V ]s— 2mr =F_»_1

Since 0< 2 <1 therefore V,—»0 as n—»o, Thus from (3.8) we have

fz) = ag + ay(z - 8) + ... + 2z -8)" +... + ~—l-'—'-=+¢Lz+...+_..'_'L+...
' z-a (z-a) (z-e)"

'- - g = L] a .
En,(z a) +£_1_(=._.)-

1 f(w

m a, -Eq(w_‘)ld s Ilqll 1:2: res

1 f(w) E
=— g ——————dw ,n=1,23,...
e e

Definition 3.3 A zero of an analytic function f{z) is a value of z such that f{z) = 0. An
mlyﬁcﬁmnﬁonf{z}issaidtohwe:mufaﬂermiff[z}mbeexprmndinthefmmf{z}
= (z-8)™§(z),where #(z) is analytic and ¢(a) # 0. The analytic function f{z) is said to have a
zero of order z = a if z = a is a zero of order one.

Definition 3.4 A point where a given function is not analytic is called a singular point of that
function. Considering the set of singular points of a function, we may see that a singular point
will be an isolated point of the set , if the function is analytic at each point in some deleted
neighbourhood of the point. Clearly a limiting point of the set, of singular points is itself a
singular point so that the set of singular points is closed. We shall, in the following, consider
isolated singular points only. ; '
A point = a is said to be an isolated singularity of a function f{z) if
(i) f(z) is not analyticatz=a,
(ii))  fz) is analytic in the deleted neighbourhood of z=a.

Hence, if z be any point of this neighbourhood, then by Laurent's Theorem,

&l




f(z)= Za {z—n} +Z‘n_ﬂ{z -a)™

n=]

The part zan{z a)" is called analytic part of Laurent’s series and Za_, {z a)™" is called
the prmmpal part of the expansion of fiz) at the isolated singularity z = a.
Relatively to the principal part, we have ﬂ:uree possibilities:

(lfl no term.

(b) a finite number of terms with non-zero coefficients

(c) an infinite number of terms with non-zero coefficients.

These three possibilities may be considered as follows:

(a) Removable singularity : If the principal part of f(z) contains no part, then the

smgulanty z = a is called removable singularity i.e. if a single-valued function f[z]
is not defined at z = a is called a removable smgu[nnty -

e Ennple* If f(z)= % then z = 0 is called a removable singularity.

(b) Pole : If the principal part of f{z) consists of a finite number of terms say m, then
the singularity z = a is called a pole of order m. A pole of order one is called a
simple pole ie. If there exists a positive integer n such that

lim(z—a)™ f(z) =k # 0 ,then z = a is called a pole of order n.
T=+0

Example: If f(z) =—1-—,then z=2is called a pole of order 4 and z =3 is
T {z=2)(z-3) '

called a pole order one.

(c) Essential singularity : If the principal part of f{z) consists of an infinite number
of terms, then the singularity z = a is called an essential singularity i.e. If there
exists no finite value of n such that lim(z - a)" f(z) = C(finite non-zero constant),

then z = a is an essential singularity.

21 -
Example: If f(z) = e*, then z = 0.is called an essential singularity.

Definition 3.5 Meromorphic function : A function f{z) is said to be moromorphic in a finite
plane if it is analytic in that plane except at a finite number of poles.

Definition 3.6 Entire function : A function which is analytic everywhere in the finite plane
(i.e, everywhere except at =) is called an entire function or Integral function.
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Theorem 3.3: The Argument Theorem :

Letl{z}beml;.rticinsidnandonashnpleclnudcmrﬂemeptforn&nitenumﬁer
of poles inside C, then

I(z)
Zm f () s o

where N and P respectively the number of zeros and poles of f{z) inside C.

Proof : Let f{z) be analytic inside and on a simple closed curve C except for & pole z = a of
order p inside C. Suppme:lanmuimidnﬂf{;}xhu_lmz-pnfurdun, '

Let C; and Iy be non-overlapping circles lying inside C and enclosingz=ca and z=p
respectively. Then : '

f {z} f {I} f (;) g
Imf fz) 2. ff{z} f (3,10

since f{z}haupoleofurderpatz=u,weh:ve

. _F@z)
f{z}"{z—a}' wl(3.11)

‘where F(z) is analytic and different from zero inside and on C,. Then taking logarithms in
(3.10) and differentiating, we find

f'2) _F@__p
f(zy F(z) z-a

f{z} F(z), p [ dz
th —Zdz -t f——dz=0-p=-p ..G.12
T - () Zn:i TP s PR e
Again, since f{z) has a zero of order n at z = B, we have . J
; ; . lq
f(z)~(z - B)°G(2) k
Where G(z) is analytic and different from zero inside and on C. )

Then by logarithmic differentiation we have




I""tfﬂ:}= n ;G'{z}
f(zy z-p G(z)

so that
' @), G'@),,
Imf f(z) Zm f *on f ' G(2) -0-1)

Henice from (3.10), (3.11)“1(3 12) we have

f"{z) 1 (z z)
sz 2’“ f—-—ldz —L—dz =-p+n -o(3.14)

f(z) f(z) Zm f f(z}

Now, we suppase that f{z) has poles of order p..u Z=auform=1,2, ..., rand f{z) has zero
of order n. at z = Py, for m=1, 2, ...,s inside C. We enclose each pole and zero by non-
overlapping circles C,,Cs....,Crand [y, [s,..., I. Then (5.14) becomes

£ z) i e r .
sz @ —.z.tp_ +§n_ =N-Pif -E_Iu_ = N.-Z_IP. =P

Thnran 34 M:Thorau

If f(z) and g(z) are analytic inside and a simple closed curve C and if |g(z)] < |f{z)iun
C, then f{z) + g(z) and f{z) have the same number of zeros inside C.
Proof: Since the function f{z) and f{z) + g(z) analytic inside and on C therefore they have no

poles inside C. LntdeN’belhenumbuofmuf[{z}mdﬂjz}+g{z}mcﬁveﬁrmde
C. Therefore using the fact that they have no poles inside C we have

H=-'-_-§£dz il - Ne it
2mig f 2xig f+g

.-.N*-N-L, g o
2mg| f+g f

Letus mndw F{z} -5
f(z)

so that glz) = F(2)f(z)
Again, we have

H{Iﬂ:&H{I:&H:I




~N'=N=

1 ¢f'+Ff+Ff 1 f
el g e il
2nl  f+fF mir
_ & [5'[ F, 1 gf
20l f 1+F] 2mlf
WUT 5
2xi<1+F

:=.=—l-— - 2—-4.---
h:igﬂl F+F . Yz

u:.ingﬂ:wfmuhatHﬂpnCmthauhnuﬁuhsmifunnlmeCmdﬂ:muﬁng
Cauchy's Theorem we have

- N'-N=0 ie. N'=N
i.e. the number of zeros of f{z) + g(z) and f(z) are equal.

Solved Problems
-1,
Example 1. Prove that logz =(z-1}-T+-+-.|z—1|<1,
Solution: Let f{z) = logz. BjTiylar'sThnnmm ”

L] )
f(z)=Y (z-a)" i—f“—)
n=0 o

2
) + (z- )t @)+ E- ).

Taking a = 1, we get f{1) =logl =0,

Now, f'(z) =-l1I f°(z) = —L:,..‘ etc.
z z
Thus (1) =0, £'(1) =1, £*(1) =-1, ...etc.
LT
and f(z) = (1) + - 1) £'(1) +E%f’{l}+...

) M
2

'{Z' I}n
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(z—-2Xz+2)

Example 2. Obtain the expression
e o (z+1Mz+4)

lch:at,(m i) |4 >4.

]mhmwhdwhm{t] l4<1, Gi)

Solution: Let f{z)= (z- 2)(z+2} zt -4
(z+1)z+4) z*+5z+4

__ Sz-1
(z+4)z+1)

1 4
=] - ———
l+z z+4 ®

. =1
fz)=1-(1+2)" -{|+§J
=l~[l-z+2Z- ... H-1)"2+...] -
z z B:at .Z n’
ey ]
=1+ [-z+Z+.. H-1)"' P+ ] -
z (2V NEA
[r(ﬂ - (3] ]
=1+ 30 fea]
¥ e .
This is Maclaurin’s series.

(ii) when.l<|z|-:4ﬂwn-—<:l H

&
Now (i) can be expressed as

fiz)= 1-(1+2)” —[1+§]~I

tlfebeg Hetoi -]




.[ H
Sl (] X

This is Laurent’s series.

NI--

+,..i——i... - ..E+[E)l_... LR
z2? 2z’ 4 \4 - .

(iii) whm]zi:ulthen—--cl

14

Now (i) can be expressed as

R

1@ a1 _ 4% naf4)
:-l-;é{—l]. - zg{ ) [z)

-1- S [ [“]]

n+l

-l.]. E{ l} {'l+4}ﬂ+l

Example 3. If the function f(z) is analytic and single valued in |z—a| <R, prove that when 0
<r<R, ; :

n ,
f'(a) = # [P(@)e™ where p(8) is real part of Ra + re®).
0
Also prove that

‘“’{n}

In
]’ p(0)e"°d0.
1]

i
nr”

Solution : Suppose f(z) is analytic inside the circle C whose equation is |z -] = r such that 0
“<r<Randsoz-a=re"
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Then f{z) can be expressed by Taylor’s Theorem about z = a as

f{z) = fju.ta—u}' =f:u,r'e“° o)
n=l a={ i
- (@) = f:i‘r'e'“ (i)
n=d .

Ix ;
We note that [¢™d8 = 0if k = 0 and k is integer.
0 :

Now L[ 1@ 4 L e B s

{Z _‘}l-rl rurleltltl“

I ‘- = ]
=§ J’e-ilr 40

=0as oo f* oo .. iif)

@ _1( f@

ol o 2= £ (z-a)™ 9
Adding (iii) and (iv),

1 If{zu@ _ f"a)
2mig (z-a)"™ o

ff“(a} I ~ p(0)de

(Z i}“l

s TE 8)ire*de
i : rn+lc1tn+iw

=
-Lﬂ !p(ﬂ}e"'ndﬂ
L

when n = |, then we have

n
f'(a) = ﬁ [p(@)e™d6.
0




Example 4. 1f a > ¢, prove that the equation az* = ¢* has 1 roots inside |2|=1.
Solution : Let us consider the circle C defined by |4 =1

wz=e®onC.
Given equation is az” —e"=0. th-f{zjﬂuz',ﬁz)=-e’
“ . Both the function f{z) and g(z) are analytic inside and on C.

4 .
5J°_|_ since a is positive and real

"
.
2rT B o
B Lo s[5 TR, |

- lg@l<lf)

Thus the conditions of Rouche’s Theorem are satisfied. Hence {z) + g(z) =az" - ¢" has
n number of zeros all located at the origin . Thus f(z)+g(z) bas n number of zeros inside
l4=1 i.e. the equation az" = ¢* has n roots inside|g=1.

: (2 +1) 1 ¢f'(2) ’ g
. = — i =i,
Example 5. Let f(2) = Evaluate —— gﬁ—df @ z where C is the circle|z]

Solution : By Argment Theorem , ilﬁg%—:;dz =.H — P where N dmnlcs_ the number of
zeros of f{z) insidé C and P denotes the number of poles of f{2) inside C.

Now, the zeros of f{z) are givenby (Z/+ 1’ =0 i z=+i

.~.the number of zeros of f{z) is 4.

Again,thepqlﬁuff(z}mgi\rmby (22+Ii+2]3'==l}' iez=-1%i

. : fl‘
. the number of poles of f(z) is 6. Thus L,f—(—z:!dlﬂ 4-6=-2
C

2m

f(z)




Supplementary Problems

1. Expand f(z) = sinz in a Taylor series about z:%

1
2. Expand f{z}ﬂm
O<fz+1 <2, (iv) [4 <I.

3. Find the function f{z) which is analytic throughout the circle C and its interior, whose
centre is at the origin and whose radius is unity and has the value :

in a Laurent series valid for ) 1<|q<3 (i) [4>3, (i)

a—cosO isin® ' :
3 +=3 - a1 . b
a®-2acos@+1 a’—2acos@+1 :

_ and @ is the vectorial angle, at points on the circumference of C.
a, Show that

51 H e . m ey
e’? *}-Za,z' where  a, =~2~1:—rlms{mﬁ—gsinﬂ}dﬂ
- 0

5. Prove that the function sin[c{z + 4 Jcan be expanded in a series of the type

L] (] &
2 a,z" +3 b,z in which the coefficient of both of 2" and 7" are
n=g ]

ix .
zlfslm:kmﬂ)mnﬂdﬂ.
x L]
6. Prove that all the roots of 2’ - 52 +12 = 0 lie between the circles [2| =land | =2.

7. Determine the number of roots of the equation 2* - 42° + 2 - 1 = 0 inside the circle |=1.

8. Ushgkmm‘alheommmuwﬂypﬂlymiﬂuf&egfmnhﬂmlynm.
9. Prove that one root of the equation 2* + 2* + I = Olies in the first quadrant.

10. Show that the equation z* - 2’ + 42° +22 + 3 = 0 has no roots in the first quadrant,




UNIT 4
THE CALCULUS OF RESIDUES

lumm:ﬁisunitisdwmedmmemm&qmufwdmingcmuhnypuufmﬂ
definite integrals with the help of the notions of complex integration and of residue at a point.
-hmhﬁmme,ﬁecbuheufanﬂhhhwweahngwhkhiﬁtegnﬁmhbeaﬂecwdvdﬂ :
plnymhnpurhntmle.Thiscmaisumﬂyknmuamnhuandimegnﬁmahngtﬁu
-same as Contour Integration.

Definition 4.1: Let f{z) be a single-valued function which has a pole of order m at z = a, then
bydeﬁnitiunufpuhthcprin:ipalpmoﬂmmu‘nexpmshneff[z]mnﬁinsunbrmm
so that we have :

f[ﬂ:inn(z—a]' +ih‘{z—a}"’ . .(4.1)
n=0 =l '

.whcma e EICE, and b :Lf___f[z)dz
n inc(z—a}'*’ bt Iﬂ:ir_.[z-a}'“"'

cuﬁ;. circle defined by [z—a|=r

Pas . 1 :
Evidently, b, =2—m-:§f{z}dz ...(4.2)
C i “

The coefficient b; is called the residue of f{z) at the pole z = a. Since the value of by does not
depend upon the order of the pole hence (4.2) represents a general definition of the residue at
a pole. '

In the case, where z = a is a pole of order m then there is a simple formula for b, given
by TNy

b, =li I kz—al”f(z]l_ ...(4.3)

i —
2 (m=1)! dz™

If m = 1 (simple pole) the result is especially simple and is given by

by =lim(z - a)f(2) (44

Definition 4.2 The residue of f(z) at infinity may also be defined. If f(z) has an isolated
singularity at infinity, or is analytic there, and if C is a large circle which encloses all the
finite singularities of f{z), then the residue at z = « is defined to be . .

1
3]0

7




taken round C in the negative sense(negative with respect to the origin), provided that this
integral has a definite value. '

Hwenpply&ctmfmmﬁmz=%tolheimegul,i!bmmu ;

A

taken positively round as small circle, centre the origin. It follows that if
' il
E{-’[;‘L/} = E— zf(z)

" has a definite value, that value is the residue of f{z) at infinity,
Theorem 4.1 Cauchy’s Residue Theorem

If f(z) is analytic within and on a simple closed curve C except at a finite number of
poles z,, 73, ..., z, within C, then

[f(2)dz=2xi3"R where ER is the sum of the residues of f{z) of the poles withif C

) .
Proof : Let 2), 2;, ..., Z, be the n poles of f{z) within C. We draw a set of circles C; of radius g -
and centre z,, which do not intersect and all lie within C, provided that & is sufficiently small.

Then f{z) is analytic in the region between C and these small circles C,. Now by Cauchy
Theorem we have,

[t@)z= [t)z+ [fa)dz++ [f(2)dz  ..a5)
c L& Cy Cr

ﬁsﬁn,th:ruiﬂucufﬂz)alapulez-m_h
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%‘{f{z}a =R, ieR2ni= é[‘f{z]d:

Th-_miduﬂuff[z]uapolcz-z:ia
_ ﬁiﬂz}dun, Le.26iR, = J;t‘(z)dz

Sknilm'ly,thcmidueofﬁz}ut_apuh'ztz.is_

'z'i?i Lj. f(z)dz=R, ie.2uR, = Jﬂ_f(z)dx
Therefore from (6.5) we have

jf(z}dz- 2ni[R, + R4 +--+R,]

) =2xy R '
where ER deaotes the sum of residue of f{z) at its poles within C.

.l'bnrﬂlu.lf H{(z—t}f{z}} =h{amnm}mdifﬂi:ﬂummlhﬂﬂpmg(z—a}ﬂz.
of the circle |z~ a| = rthen '

Lug!f(z}dz-rn(ez =)
Proat: Since lim{(z - a)f(2)} = b therefore given & > 0, 3 3 depending upon & such that
(z-a)(z)-b| < ¢ for |z-2| <.
But |z ~ 8| = r therefore if one take r < & then |(z~a}f{z}—b{{aonthemc,whi¢h implies
(z-a)fz)-b=n -where |f<e |

b+n

Z—a

ie flz)=

z-a

- [f@)z= Ih+“dz-=?!:§im“dﬁ
C c & :

'.'?{h+n}d0 =ib(0, -8,)+ifndo
| L
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L’ﬂz}dz -ib(, -8 ]-Tv.aelw d0 = &0, - 0;)

Taking limit as e—0 and consequently r—0 we obtain
lim j £(z)dz = ib(®, - 0;)

Theorem 4.3 If lim z[f(z)dz = band if C is the arc, @ < 0'< B of the circle |4=R, then
+ b
c‘ a
lim [£(z)dz = i(B - )b
c
Proof : Since lnn-zjﬁz)dz=b,h¢mﬁorgimao.mmmg'mwm
—a0 c . : ]

|zf{z}—l;-|-:s on the arc C
 which implies
zf{z) ~-b=n where [nf<e

or, 11'2)-“"

' b 5 : ;
:.j‘r{z)duj“'“dz =[220;Re* go =i (b+ 9 = ib(B~a) +i[ndo -
'_L‘ . C z uRe i [} ; @

Jreos-nep-o)-
c

B
ifﬂd‘{ <s(B -a)
Making e->0 and consequently R~ we get IEEF{IHZ =i(f-a)b
| E o

Note 4.1 If 0<0 < #2, then the inequality 48 < 5in 6 < @is known ds Jordan's inequality.
Theorem 4.4 Jordan’s lemma : |
lfChélsuni—cimle,untrclh:oﬁgjn.mdhui{mdﬂz}besubjecimihemndiﬁm:
0] f{z) is meromorphic in the upper half plane,
(i)  f(z)-0 unifornaty as |7/ - o for 0 argz < =,

(ili) . m is positive, then

4




Ie"“f(z}dz —0a R—o>x
c

Proof : Since f{z)—>0 uniformly as || -« therefore 3 & > 0 such that
[f(z) <e¥zonC

If z= Re® then lf.&i'“'l=a="'®""“'h"EI ['.']eﬂ:lfprev:rfreal pl

=
.'.l!c“"f{z < fu"“‘"‘“‘aﬂda
]

% —28) 172 : :
szfm""[%me -2 q'i—miif} =%[l—:'-ﬂ]—bﬂas R

[']

- lim !e““f{z}dz =0,m>0

Note 4.2 The Residue Theorem, although quite simple to prove, is a very useful tool which
can be applied in many different situations. We now-consider a number of techniques for the
evaluation of various kinds of real integrals. :

1 Integration round the unit circle

iz
We consider the integral of the type { #(cos ©,5in 6)d0

0
where #(cos0,sin0)is a rational function of sin and cos8. If we write z= ¢”, then

mﬂ.=l[z+l].sinﬂ=L(z-l E= do
2 z

2n z) iz
1' .
and so Iﬂmﬂ,sin 0)do = _[\p'{z)dz.
[ 0

Where y(z) is a rational function of z and C is the unit circle |2 =1.
Hence [w(z)z =23 R
c

where ZR denotes the sum of residues of y(z) at its poles inside C.

15




11 Evaluation of a type of infinite integral
Let Q(2) be a function of z satisfying the conditions;

(i) Q(z) meromorphic in the upper half plane;
(i)  Q(z) has no poles on the real axis:

(it} 2f(z)—>0 uniformly, as |[g] = o for0 Sargz < x;

[ c 1]
(iv) _[ Q(x)dx and jQ(x]dxbuth converge, then !Q{x}dx =2miy R*

] - - - )
where ZR" denotes the sum of the residues of Q(2) at its poles in the upper half plane.
Chmumnhuurascmi-circ!c.cmtheoﬁgin-md radius R, in the upper half

ﬂmmmesemjnimlebedﬂmtadbyr,mdchmﬂhrgcmoughﬁorthesmﬁ-&chm
include all the poles of Q(z). Then by Residue's Theorem,

R
. Jomyx+ [Q(z)dz = 2mi YR
R r :
From (iii), if R be large enough, |2Q(z) <& for all points on I', and so

IQ(z,dzl =}_[Q{Rg“m:” idﬂ' <efd0=ne
r 0 0

Hence, as R—, the integral round I tends to zero. If (iv) is satisfied, it follows that |

L]

JQx)ax = 273 R*

=

If Q(z) be a rational function of Z, it will be the ratio of two polynomials N(zVD(z),
and condition (iv) is satisfied if the degree of D(z) exceeds that of N(z) by at least two.

The theorem can be extended to-the case in which D(z)=0 has non-repeated real roots,
so that Q(z) has simple poles on the real axis. In this case we can exclude the poles on the
real axis by enclosing them with semi-circles of small radii. This procedure is called
“Indenting at a point™ '

Ll Integral involving many-valued functions.

A type of integral of the form jx"’Q{x}dx, where a is not an integer, can also be
e .

cvaluated by contour integration, but sine 2 is a many-valued function, it becomes
necessary to use the cut plane. Orie method of dealing with integrals of this type is to use as
contour a large circle I, centre the origin and radius R; but we must cut the plane along the
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real axis from O to o and also enclose the branch point z = 0 in a small circle y of radius R.
The contour is illustrated in the fig below. o

IV Use of quadrant, sector and rectangular contours.

The contours used so far have been either circles or semi-circles, and although a large
semi-circle in the upper haif plane is generally used for integrals of the type discussed in II,
there is no special merit in a semi-circle. The rectangle with vertices R, +R+R could also be
used in these case. To evaluate the values of some useful integrals integrating a given
" function round a prescribed contour, we require sometimes a rectangle, sector or quadrant of
a circle.

Note 4.3 Summation of series by the calculus of Residues:

The method of contour integration can be used with advantage for summing series of
the type Zf{n), if f{z) be a meromorphic function of a fairly simple kind,

Let C be 2 closed contour including the poiats m, m + 1, ..., n, and suppose that f(z)
has simple poles at the points a,, a3, ...,8 with residues by, b, ...,bx. Consider the integral

Ina&t nzf (z)dz
c

The function ncotnz has simple poles inside C at the points z = m, m+1, ...,n with residue
unity at each pole. The residues at these poles of ncotnzf(z) are accordingly f{m), fim+1), !..,
f{n). Hence, by the residue Theorem

It‘(z)umtmdz = 2xi{f(m) + f(m+1) +--- + f(n) + b,xcot na, +---
o]
+b, mcotna,}

If conditions-are satisfied which ensure that the contour integral tends to zero as
n—»o, we can find the sum of the series Zf{n). Suppose that f(z) is a rational function, none of
whose zeros or poles are integers, such that zf{z)—»0 on |z - . Let C be the square with

1 ; : :
comers (IH-E-}ﬂ_il}we have seen that cotmz is bounded on this square and so




l!zf(:}nmtnd—zls;-m;u—; for n large enough, where M is the upper bound nf|cottzimﬁ.

L is the length of C and R is the least distance of the origin from the contour. Snwelﬁsk,m-a
integral tends to zero as n—o0, and so :

ilug if[m}:-u{b,mtm,+-~--+:htmtmt}.

If we use ncoecnz instead of ncotnz, we can obtain similarly the sum of series of the

type Z(-1)"f(m).

Solved Problems

2’ +4 and determine the residues at the poles.

] F'mdﬂmm mdpolesoff[zk-s—i?-zﬂ-
+22% 422

Solution: The zeros of f{z) are given by z'+4=0ic.z=12i
The poles of f{z) are given by
2+ 422=0 ie.z=0,-1%i.
therefore the residue of f{z) at z =0 is

gols - & +4 s T +4
=0 2’ +22+2z] 0z’ 42242
the residue of {Z)at z=-1+iis

lim -1 2+ 4 - z' +4 ___ F
**[{z ( H}z +22° +22-| =ln‘?ﬂz{z -(=1-i)} “ 39

And the residue of f{z) at z =-1-i is

lu:n it z! +4 . z+4 1 3.'
“[{z 3 I}}z ¥ 4272 +Iz] =—:ﬁ42{z_—{-l—+i]i . E{H )
2. Let fiz)be mnlﬁlc inside and on a simple closed curmCemeptazupu]eauf order m
inside C.
Prove that the residue of f{z) at a is given by
. 1 m=I

d 3
T (2-9) £(2)}

a = lim
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Solution : 1f (2) has a pole 3 of order in, then the Laurent serics of f(z) i
fay=3a,(z-a) + 32, (z-a)"
w=l n=l

L. S 2, b b -
z-a (z-a) . (z-a)"

=y + 2,(z —a) + ax(z @) +...+—
The multiplying both sides by (z—a)", wehave
(z- 8)"A(2) = B+ Btz - 8) +...F2s(z -0)™ + 20(z—0)" +81(z &)™ 4.

Differentiating both sides (m-1) times-with respect to z, we have

) (a8 s Dirn(m— 1.2y}

&I"‘[
Thusonlctliug z->a,
o R f())=(m-Dta
Thus, a_ = {ml 5 o [{ -.a} f(z}}

3. Prove that if a >b> 0, then

e

n+hmB b
Solution: Letz=¢e®

mﬂ'=i(z +~‘-l-}smﬂ = l[z—-l] andﬂz* =do
2 z 2i ¥ iz

?si:nzﬁdﬂ _l- “2(1_1.}2 dz

ua+bmﬂ-_ a+h- 1{z+ﬂlz whege C is the unit circle |z|=|

(z* -1)’dz (22 -1)%dz
ghl 1(2,‘3/] 2:.-.] 2 (z-aXz-B) ZhI{}dz
MO /Y ] ﬁ_;a_m

b il 'b

where o =

are the roots of the quadratic z’+za-z-+l==ﬂ.




Since the product of the roots a.p is unity, we have|aff] =1 where |fl>|a|, and s0 2= a is
the only simple pole inside C. The origin is a pole of order two. Therefore, we calculate the
residuesatz=candz=0. :

The residue of f{z) at z = a (of order 1) is given by

e . (2= (@? 1)
R - @@

_{ﬂ.-ﬂf__{u—mz wa<p _2411-!&! :
a-p a-p _ b

@ -y

2| 2 2az
—_—]
Z[z + b*]

and the residve of f{z) at z = O{of order 2) is the coefficient of ¥/ in , where

z is small.

@-p _ -3f
- of 2 2 ] I+dled

. A i1
z_z+b

~f-gegientedh -2+ )i (102 )e)

Clearly the coefficient of } is — 22, Hence By Cauchy residue Theorem

him[_ahz_____di'—h*]-:_;[,mﬁ]

2b b

LR
4

4." Prove that , if a > 0 then I -
' o X +a 242a

1
x*+a*

Solution: Let fiz)= . We consider the integral 1= [f(z)dzwhere C is the closed
4

contour consisting of the real axis from -R to +R and the semi-circle I which is the upper




half of the large circle H-R,uavmudinthcpodﬁwmnMinﬁg.
Now the poles of f{2) are given by

+at=0

ie z =w="“‘“’% ,an=012,...

~ e
je z=8e" 2t ...

But the only pole lying within C are
u-ui%_mdﬁ=um
= The residue of f{z) at z= o is given by

N (z-a) _ _'; 1 |};
hm(z a)f(z) iunz o iﬁ&#: : 4‘3\:

and the residue of f{z) at z=p is given by

lim(z- P)f(2) = N ) N W

'-*--I'z +at  4a’

By Cauchy residue Theorem ,

‘ R :
x -
or, l f(2)dz + "l;f(x)dx oy

Making R—o0, we have

: R
% i g
lim ]_[f(z}dz+ :[n f{x}dx:-j;t—a (D)
Now, Illilm zf{z}: im o =0

.-.ﬂlf{§m=i(u-u}-u=u

dx = — ieT . SR
xtrat | 2 ox'+at 2428

Thus from (i) we have I

Bl




Fsin _n ;
. Prove that [ ke ifm>0
mdhmmlune}"‘”

. .
Solution: Luﬂ:z}-—-— We consider the integral If{z}dzwhemtheclnmdmmc_

consists of I, the upper half of the large circle H=Randthemlmsﬁom—ﬂtu+lt,

mdmeduz-ﬂbylsmdlmhfofmdlmr Ewdmﬂy.f[z}hunumguhmymﬂmc
lndhemh}'&uchymmehemem

If{z}dz-ﬂ
T

ie. ff(mx +[fexiz+ frood+ [tz =0 .6
T r -R r

Now, since

- lim ! f(z)dz = ~i(x-0)+1 = —in
oL

By applying Jordan’s lemma we have lim | ™ L
- z
!

Now making r—0 and R—w, we have from (i) -




Tf(xﬁx+ Tf{x}dx =x
0 -t

- oo B T . ™ .3
ie. -_Lf{x}dx—m ie. I f{l)dlﬁl-zﬂ- ie. {demz
. feosmx Tsinmx ;. .%
"N dx =]
i ! = +! - dx 12
Comparing the imaginary parts we have,
Ismmdx=—§, when m = 1, we have Iﬁdx:i
s X 2 48 i 2.
@ sl
6. Prove that [~—adx = " ifo<a<l.
o 14X sin xa

-1
Solution : Let t{z)nfu':;,uqu 1 and 1=jf(z}dz where C is a closed contour. consisting
] .

of the large circle |4 = R,a small circle | = rsuch that a cut along the positive real axis join
their ends as shown in fig. ' : :

Since1-2>0 .+.f{z};m
And the poles of f{z) are given by
' A+22%=0  iez=0,-1

Hence the only pole of f(z) within C is -1.

a=1

Residue of f{z) at z = -1 is given by HI{(2+ Df(2)}= E}{{zﬂ}h} -1 =™




~.By Cauchy’s residue Theorem , If(z)dz = ~27ie®™
c

ie. jf{x)dx+If(z}d;-:+if{u"‘}d{u”ﬂjf{z}dz-—zm’u" (D)
r r | 3 T :

Now,  lim 2f(z) = |#"—'L*T_'° » lim l[f(z}dz-i{:lt—ﬂ]-ﬂnﬂ
Agiin, lim2((z) = lim %= g - lim [ 2z =0
H‘r

Thus mking 1—+0,R—>c0, we have from (i)

: - o
JEGx)dx + [£(xe?™ )d(xe?™) = —2xie™
0 -

ie. E :Ildx-i-ix:l mdx:-?.ﬁg'i' ie (I— { —dl]-—zm*

- _a=l

]

PO
ie. (7 - ‘“]I-v——dxn -2ni ie. -!x+ldx=sihn
7. By contour integration, prove that ﬂ’*”: .:%
and hence deducothat [ S0% g = %

X 2

i
Solution : Let f{z) = 5;- and I = [f(2)dz, where C is the closed contour consisting of the
S | .

positive quadrant I of a large circle || = R, and the positive real and imaginary axes indented




at z = 0, as shown in figure.
The pole of f{(z) is givea by z=0, but this pole is avoided by indentation.
+. By Cauchy residue Theorem,
]‘f(z)dun
C

ie. Tf{x}dx + [f(z)dz+ jf{iy]d(iy) +[f(2)dz=0 ..(i)
r r R T

k2
Now, limzf(z)=limz——=1
—+ 2l z .

. " 3 T
.‘.hﬁ!f{z}ﬁﬂﬂ{a—ﬂ}*l=—lg

P

mg!:‘{m-g!—;h

[letting 2* = u]

Now, since lim —— = Otherefore by Jordan's lemma umjf(z)dz lim j——a‘“duu

u—bm 21

Thus making r—0,R—>o, we have from (1)

-wf'

ld'jl'.=i%

Tf(x)d.x +Tf(iy)d[iy}=-i§ ie. I-—-dx+]'
0 -

" Substituting x” = t, we have

I:mt dt y - I-ihildx:%




8. Prove that Imx’dl.-Iﬂi“’d""lEE . .

Solution: Let (z) = ¢ and 1= [f(z)dz, where C is the closed contour consisting of an arc
: C

I" of a large circle |2] = R, where 0 < argz < x/4 as shown in fig.

_ 0 R
Since f{z) has no pole within C.
=By Cauchy’s Theorem,

If[z)dz:ﬂ
c
R . -
ie. If{:’:}dx+ [ f(z)dz+ jf(re’«"*)d(m")-ﬂ ()
] r R
Now, 1‘. f(z)dz = li gy e"du
ow. i [f(e)de = lim [ 'tz o oy [
S | ' ;
Now, Em-u.thuafm:bylmdmukm
'E'Iffikh

Thus making R-»w, we have from (i)

a . = T K v
'[ﬂ:)dx+i‘r(m”{ld(m‘”}=ﬂ ie. je*’dx-je{ ]’e‘?‘d;su

[

i S R = < T al 1+i7 2 1+i
ie. |e dx——=fe" dr=0 ie. dx=—=je" dr = ¥
proel ikt - b L

o U [l xS i o LI
'! cOs m +




Hence comparing the real and imaginary parts we have

T N PR 1
_!m:dx-z—‘&-.!mxdx-m

9. Prove that (i) Te"’ cos 2axdx -%JE:'*’
L]

(i) 'fu"’ sin2axdx = ¢~ ju"zdx
L]

i
by integrating e“zmundtiwmnnglewbnnemﬁcumﬂ, R.jl‘._*}a,i-.
Solution: I
Let fz) = ¢ and I = [f(2)dz, where C is the perimeter of the rectangle whose vertices are.
: . :

0, R, R + ia, ia respectively as shown in the fig.

B (R,2)

> : > x
0(0,0) A(R,0)

Since f{z) has singularity within C, therefore by Caunchy’s Theorem,

[f(xMz=0
ie. If(z}dz+ If{z}dz+ jf{z}dz+ I_f{z}dz=ﬂ
DA AB BD DC
K ] ] o .
feexdx + JER +iy)d(R +iy) + [ +in)d(x +ia) + |fGiy)idy=0 ...0)
] . R .
Thus making R0, we have from (i)

. . .3 0 . a 1] ’1 . 3
Je dx+ lim [e ™ idy + [ de+ifer dy=0  ...(i0)
.0 "_”n L .
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T I#-. i_‘lih --I‘{K]-ﬁ'

Now, I iy = Ia"'
Again i#ﬂ*}:idf e j’er-ﬂtiﬂiﬁrz!id},
[ )

. ,iu‘{t*‘h'?id4-ﬁu'(l’+=&'7‘:’id4 S'e;'jjlﬂ.:dy fﬂl' F <a
0 [ [
=ae ™"’ 50 aR o0

and hence we have

H-E-{ e idy =0
Again, _Te"“"‘"dx -e"Td"’ o™= g | s
[] []

myi-fa“"”zidy -ifﬁ"!d:
0 e
Then we have from (ii),

f e’ £ e

a
ey - ife* dx = 0
']

*’ e (cos 20xdx —isin 2ax)dx -%-i}:”u
0

]
Compering the real and imaginary parts we have

2 2 P .
e !a" mhxdx--%& and a'ijc"iainznhnj'e"‘zdx.
1] ]

10. Find the sum of the series z ~wherea>0,
.,.111 +a?
g Solutiou: Lt fizye
: z +n’

And so zflz)}0 as [f - .




: Thepol«o!'!{z)mgimhyz’+a’#0i.e.z=tinmdtharmi&uunﬁuapohsm
gk -
2ai

Hence, E —-——- = »n{—mt mai ——oot(-m}}

n-—-ﬂ

=-"_{- icothxa ~icoth ma}="cothma
2a1 _ a

n
ie _.._+2 =-—uuthm
En +a a

1
ie -—mthm-—-
En +a’ " 2a?

Supplementary Problems

2 .
. Find the residues of 1,2, 3 and their
| the [ @ -I](z—i](zﬂiim 23 mandsimwtht sum is zero.

2. E\‘lhlllﬁl

e
—— —-'_"'-""dz irgl:_ 'th 3 =3..
2'£z={z’+ wis around the circle C with equation |2|

3 smmi'f . S .
' L (xF+Dx?+2x+2) S0

1Ix 2
4. Pmuihlt[ i T=K 1-p+p’ O<p<l.
o1—2pcos20+p 1-p

5, Prove thatifa>0, m >0 then

+maje
!{a +:r.2]|2 4a’ yO0+mee™
6. Prove that qug?}l =-%,us_ing as contour a large semi-circle in the upper half
3 ; '
plane indented at z=0.

Shuwthufﬂcaﬂ&wnj'-u—dx—nmu

8. By integrating ¢“Z"" round a quadrant of a circle of radius R, prove that if0<a<1 then




-

jx'"'msxdxul"mm% G
T
‘9. By mmmrr‘mlesmion, prove that
Im&hndx B EJHH{I- ,
nmahx 2 2
10. Show that
o =) x 1
! =—cosechna ———where a > 0.
" :Z.In1+:’ Za‘:_‘“_&‘i 293 Y
! 1 1 x2
RS T B
(ii) 22*1#31 5
g 1 1 1 1 n’
(iii) 1—,-3—3-+S_J_F+...=E

: = 1 x
=— where a > 0.
(iv) | 2. = s amthm a>0

: S (-1)" x’cosma
."' Phwmma...‘E.,{J:tﬂl}2 2sin’ xa

Where a is real and different from 0, £1,42,....
12. Use the method of contour integration to prove the following results:

0 Lx’ +b2d;x’ +ch) zhf;:i}}’ ‘b}ﬁ’c;ﬂ";

) -i[.x’ +?}?f:+b"} o sz [%—%'-},a.}.h}ﬂ.
(iii) .Ll‘x:ix‘ - ;’rlﬁﬂ,. >0. ;
'{iv} . Lf?::":::} = 4:3 (€™ ~1+2ma),m>0,a>0 _




University Questions
1996
l
1. {n}CummaRmmnmﬁmibrﬂnﬁmumz’ Shuwﬂutthenmmmmﬁoefw
the function
L1
£(z) =27 +27° has 6 sheets.
| {b}[fumdvmhmmmicinaﬂqimk,-prwethlt
au v) [ &) . .
(ay—ax}{a*--éﬂ is analytic in .
(c) Iff[z}-u+ivinmnm.lyticﬁm¢timofz,mdif
‘2sin 2x

us= find v.
e +e ¥ ~2cos2x

2. (a) Discuss the transformation

1+z

and show that it transforms the circle |z|=1 into the real axis of the w-plane and the
* interior of the circle |z <1 into the upper half of the w-plane.

(b) Find the bilinear transformation which maps 1, <, 2, on 0, 2, -i respectively.

3. (a)Find the orthogonal trajectories of the family of curves in the xy-plane defined hy
{xs:ny ymsﬂ=u where a is a real constant.

(b) Evaluate j(z +3z)dz

along the circle | ]=2 from (2, 0) to (0, 2) in a counterclockwise direction.
(c) If c is the circle |zi-r, show that

z' +2z-5
£{z *+4) (2 +2:+2}dz

4. (a) State and prove R.uudw’s meorun about the zeros of analytic function.

¥

 CO5TE

(b) Evaluate 2::1 . i, 2-1, 2+, i.
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5. {n}lf:ﬂummf{z}mmﬂyucmﬂnchmdlﬁhwﬁedbymmhcﬁdnm
ﬁmofmamduduﬂ.mdh(kﬁﬁ;} if z is any point of the annulus, prove
t

flz)= Za (z=a) +Zb (z-a)™

1 fit 1 t
where a_ =— . d bow— :
" 2mi th;“ - 5 Zm"[t-a "

) Expand ——1—
@ o<zl
@ I<g<
Gi) Rp2

6 (a) Distinguish between a pole and essential singularity of a function of a complex variable
Z huwdmﬂlemofmmshmﬁmmmmlmdpmnm.

(b}AppIythumlctﬂmufmtdnestoﬂaluat:myMoﬂhe follow:n;im:gm!s:

O T!IGE x!)_‘ I

3 1+x
. L] KH .
(ii) !mdx {ﬂ{p-:l}
- h ¥
() ‘h sm&l-’
1997

1. (a) Let (X.d) be a complete metric space and let d, beamthnrmct:icnn}(d:ﬁnedhy

1( ?"}"1_'_5;{’]:}} - forx,yeX.

Fmvelhltfx.dﬂisnhonmmplttemetricspace

(b) Let (X, dy) and (X3, d2) be metric spaces. If f:X;—X: is continuous function and X,
is compact, prove that f is uniformly continuous.

(c) If fz) is analytic in a region R, Prove that

f'(z),f"(z),f"(z)-+- are analytic in R.




* 2. (a) Prove that the function
. v =sin x coshy + 2cosx sinhy + x* ~y* +4xy
is harmonic. Determine the corresponding analytic function u+iv in terms of z.
0 Find the Blinear wasaformution whic transforms R(z) 2 0 into the unit circle [w]
(c) Prove that the mapping given by w = f{z) from the z-plane to w-plane is conformal at
zqit‘f[z}isumljrtica_t_nmdf'{zq}#ﬂ

3. (a) If an entire function is bounded for all values of z, then show that it is constant.

i B
(b) Evaluate {E;dz where C is the circle [z] = 2.

1 (f2) -
(c) Evaluate _hiiﬁdz' where f(z)=

oy |

: and C is the circle [z = 4.
2% +2242

4. (a) If f{z) is analytic hm'demdonasimp!eclnﬂcurvec,thmpmﬂmﬂ:emhum
value of |f{z)| occurs on C, unless f{z) is a constant. .

4 o0 . !a:.
(b) Prove that cxp{%c(z—z")}=§a_z‘, 2#0 where a_ =%[ cos(nB - csin 0)d0

3 :
= :1, find a Taylor series valid in the neighbourhood of
z z

5 (a) For the function f(z) =
the point z=i and a Laurent’s series valid within the annulus of which the center is the
origin. :

(b) State Rouche’s theorem and apply it to determine the number of roots of the equation

' -4z° +2° -1=0 .

6 (a) The function of a real variable defined by f{x) = sinx is analytic everywhere and
bounded, so that | sinx | < 1 for all x but it is certainly not a constant. Does it contradict

Liouville’s theorem ? Explain.
(b) Apply the calculus of residues to evaluate any two of the following integrals:

o

I CO5 X 5

x? +a?)ix? +b? s o

(@

-
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i) i x*+1

(i) f—d’i“ 2.
1]

1998
(a) Find the distance formula in extended complex plane.
(b) Prove that the range of a function continuous incompmls& is imﬂfcumpact.

il 'to the areas in the z-plane

(c) Discuss the application of the transformation ® =

Z+1

which are respectively inside and outside the unit circle with its centre at origin. -

(a) Define conformal mapping with example. Find the image of {z: Re<0, Im<x}
under the exj:umnﬁal f_umction. )

- (b) Find the Mobius transformation which transforms-the half plane Imz =0 into
the circle |w|< 1.

(a) If f{z) is regular within and on a closed contour C and if a is a point within C, then

prove that | f{a};LfC g_%dz

2mi
1 f(z)
Deduce that fla)]= — —d
| -3k G
i E.‘I:
(b) Evaluate £ —dz if Cis the circle |z-1]=4. -
z-m :

(a) If the function f(z) is analytic’ and single valued in | z-a| <R, prove that for 0 <r <
R

t'a)= #Tp(ﬁ);""da where P(0) is the real part of (a + re® )
1] : '




(b) Find the valﬁe of

L $In Z 42 ifCisthecircle |z|=1.

S.  (a) The only singularities of a single valued function f(z) are poles of order 2 and 1 at
z =1 and z = 2 with residues of these poles, | and 3 respectively. If f{0) = 3/2,
f{-l}=_rl, determine the function.

(b) Find the function f{z) which is analytic within and on a circle C with centre at
origin and with radius unity, has the values

a—cosh i5in0
a’-2acos0+1 a’-2acos@+1’

a>l,

0 being the vectorial angle, at points on the circumference of C.

6. - (a)Let f{z) be analytic inside and on asimp-[culused&une(inceputlpolcauf
order m inside C. Prove that the residue of f{(z) at a is given by :

a_ = E?H[:ﬂ ,:;*21[ v a}' f (z]}

(b) By integrating a suitable function round a rectangle whose vertices are the points
+X, +X + 2mi, show that 1

dx =— , if0<a<l.
1+e" sinan

ie“ n

(b) Prove that

>

(— I'I.E +a”

i ZhI -;—r- cot h{na), where a>0

L 4 2
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2006

MATHEMATICS

Paper : 201
Full Marks : BO
Time : 4 hours
The figures in the margin indicate full marks
Jor the questions
( New Syllabus )
( Complex Anslysis )
1. Answer any four parts : qxg=16
fa) If a function f(z is contiouous on a
contour C of finite length L and if M is the
upper bound of |[f(z}] on C, then prove
that
| s taae}s 2
{&} Ewahiate
" 1 p coswz
|
around a rectangle with vertices at —i
2-4 240 L

e} I f is entire analytic and bounded in the
complex plane, then prove that f(2) is
constant throughout the plane.

(d) Prove that every polynomial equation
P1d=iq-z‘an
. i=0
where the degree n21 and a, #0, has
exactly n roots.
(e} I f(2)is analytic inside and on a circle C
of radius r and centre at z = q, prove that

Ifln}ﬂliég!ﬂ n=0,123 -

where M is constant such that

If @< M
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2. Angwer any four parts : Ax4=16
o) Prove that both the power series

3 e
a=D
and the cormresponding - series - of
derivatives
S a2

n=

have the same radius of convergence.

{b} Find the Laurent geries of the function
i ks
:1{’__32

at z=3 .and specify the region of
convergence and nature of singularity at
r=3.

fc) H![ﬁhmahrdcwithinmﬂunamk
closed curve C, except at a finite number
of poles inside C, then prove that
A BgenN-P
ik 119

where N and P denote respectively the
number of zeros and poles inside C

{d) State Rouche's theorem and use it to
show that if a> e, the equation az" =e”
has n roots inside |z|=1.

fe} Prove that all the roots of
27 -5z +120 lic between the circles
|zj=1 and |z|=2.

3. Answer any four parts : 4x4=16
fa) Let f{2)be analytic inside a simple closed
pathCmdonGu:mpt.fnraﬁnitdy

many singular points 2, 25, -, B
jnside C. Prove that

k
fc f(#Adz=2ni 3 Reslf (3, z;]

Jel
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.

(b}

Find the residues of the function
2 22 -2¢
T+ +q

at all its poles in the finite plane.

Applying calculus of residues show that
cos38 n
e i

Hyounﬁurinhﬁtﬂunp!mth.t
By contour integration prove that

Jogix? +1) ,
k T

Define a conformal transformation. Prove
th-tﬂ:c_l.n;lehet-umt-nmnuqm
C;Pﬂlhgthrmlghﬂ:updntsninthc
zplane is preserved in magnitude and
sense under the transformation w= f (3
if f{2} is analytic at z, and f'(z,)#0. !
Find a bilinear transformation which
maps the upper half of the zplane into
the unit circle in the urplane in such a
way that z =i is mapped into w= 0 while
the point at infinity is mapped into
W*-l-ﬂm.xiﬂl'smphicdﬂcsn-ipﬁnn_

_of the situation.

fcj Prove (with a graphical explanation) that

the semi-plane R(z)>d; >0 iz mapped
conformally on the exterior of the
parabola 0? =4d?id? -} by the
transformation w = z°.
Or

(d) Prove that the bilinear transformations

transform two points which are inverse
w.r.t. a circle into two points which are
inverse with respect to the transformed
circle.

98




5. (a)

®)

Define analytic continuation with
yaphinﬂcqﬂmnﬁm.ﬁmthltthe
series

1ez+22 42t 128 4=14 Y 2

n=0

cannot be continued aoalytically beyond

|zl=1

{f F, (2 and Fy(z) are analytic in a region R
prove that F]lﬂ‘Fg{ﬂ in R.

Prove that the power series
z+izdalotya
2 3

and  ix-(z-2)+5(z-2% -

have no common region of convergence
yet they are analytic continuations of the
same functions.

Or

Shuwt_httﬂmﬂ.lmﬁun
1 z 27 2
f[dﬁ;*-a—z-"i‘-—*;;‘f"'

can be contimued analytically outside the
circle of convergence.




2007
MATHEMATICS
Paper : 201
Full Marks : 80
Time : 3 hours

The figures in the margin indicate fill marks
( New Syllabus )
( Complex Analysis )
1. Answer any four parts : dxd4m]b
fa) fla is analytic inside and on triangle
ABC with derivative f‘(z which is
continuous at all points inside and on
it. I A A, A, .. is a sequence of
triangles each of which is contained in
the preceding and there exists a point
2y which lies in every triangle of the
sequence, then for anyc >0 thereis a §

such that |nl<c whenever |z-2g]<8,
show that :

J1a = fizo)+ [ (20)(z - 2) + niz ~ 29)
SB- flzg) .
wh P S S e
ke 1 z- 2 S tzg)
b) Prove Cauchy-Goursat theorem for
multiply-connecied regions, .

) Y Cis the curve y=x° -3x% +4x-1
joining points (1, 1) and 2, 3), find the
value of Lu:!z? - 4iz) dx

(d) Prove Cauchy’s integral formula for
simply connected region R. '

fe) State and prove Gauss' mean wvalue
theorsm.
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z..ﬁn:w.wjburpuu: ' . 4x4=16
{a) Staté-m;pmﬁlam:mnﬂm:m.
{b) Prove that an absolutely convergent
series is convergent.
fc) Find the Laurent's series about the
indicated singularity for each of the
following :

id) ngﬁmamuanm'ph.icﬁmcﬁmhphjn

e} f fw=z"-3i2"+22-1+i then
‘evaluat:

LLE.E
14
where © encloses all the geros of flz

3. Answer any four parts : dx4=16

fa} Explain the terms :

{j Rewmdue of a pole ol order greater
thaa wnity

{i} Residue at infinity

B I Eta:-—dﬁzj-c.i and if € is the arc
8, S658, of the circle |z-aj=r, then
show that lim | f(zidz = iA®; -6}

je} Prove that

x? -.:-:2 'dx:-“-“"-ﬁ
x* <1022 +9 12

{d) Prove tha
s ;
E X n__.®rD
ﬁ—-'ﬁ-—m—
]-ux2 2 2

where =1 <b <1}
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J State (only) Mitlag-Lefller expansion
. theorem completely and explain with
the help of an example. 3+1=4

4. Answer any four parts : _ 4"‘_‘7-15
fa) Prove that the bilinear transformation
can be considered as a combination of
. the transformations of translation,
rotation, stretching and inversion.

(b} Find a bilinear transformation which
maps points z, 23, z3 of the z-plane
into points w, Wy, wy of the usplane

fo) Let w=Fl@ be a bilinear
transformation. Show that the most
general linear transformation for which
PF(d) =3 is given by LR ox22F,

w—g zZ-q
where k? =1.

{d} Prove that a bilinear transformetion
which has only one fixed point a can be

put in the form
. ___!__..- 1 +4
w-z z-0
(e} Discuss the transformation w=z? in
detail.
S. Answer any four parts : §xd=16

fa) Discuss the onotion of analytc
continuation with examples. :

() Show that the series
M Eznil

nw=Q

; 'z ﬂ
@
n?b ﬁ i l
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fg Find a function which represents all
possible analytic continuation of
A= Sz
nml S
{d] By the use of analytic continuation,
Mthﬂr[—-}}--—ﬂﬁ\ )

fe} Given that the identity sin? z+cos® z=1
holds for real values of 2. Prove that it
also holds for all complex values of z

'2009

MATHEMATICS
l‘-‘a.pm' - ﬁﬂl '
{ Complex Analysis |

Full Marks : 80
Time : 3 hours

Mﬁpuuhﬁanwﬁnhﬁmmﬁxumks
Jor the questions

1. fa) State and prove complex form at‘Greﬁfs
theorem. Hence deduce the Cauchy’s

theorem.

m .
fi2 is analytic in a simply-connected
rcgionkmda.z_arepoimsinﬂ'.

(@ Prove F(a) = [ fti)du is analytic in R.
fij Prove F'(5)=[I3
{b) Assuming the Cauchy's integral formula
1 ;- [
= "'-"‘"'""d?r
ra=s- ilz_w

103




for the analytic function f(2) inside and

on & curve G, of a simply-connected

region: R, prove that, if /(2 is analytic in

a region R, then f'a, /", .. are

analytic in R. 6
Or

State and prove the minimum modulus
theorem. Justify the necessity of non-
vanishing of the complex function for its

modulus to assume jts ::_linimum value

on C (with usual meaning).

is independent of the path joining
1 and z and indicate the relationship

with Morera's theorem. 4
2. fa) State and prove Laurent’s theorem. 6
Or

Classify all possible singularities of &
function f(@ by examination of the
lanrent series.

f5) Find lLaurent series about z=l and -
z=-2 respectively for each of the
following functions. Also pame the
singularities in each case and give the
region of convergence of each : 6
W r=—=

z-1?

(i) {13 =(z-3sin——

z4+2

Or ;
! # : ; Hﬂg;-xs -3iz? +2:-1.+i, evaluate
£,
f e

where C encloses all the zeros of fiz).
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{c) Prove that tan s = az, a >0, has infinitely
many real Toots. _ 4

3. f(a) Define a residue of & complex function
fl2). Explain the technique for obtaining
the residues of a function with the help
of the example

" 2z+1

fla =

z*-z-2
at its poles. 6
i ;
Prove the residue theorem.

{b) Ewvaluate
: =t

1 e
— s
2._“'£z’lz|’+2:+z _

around the circle Cwith equation | 2| =3. 5

Or
Show that
o T
'5-=4cosd 12
fo State and prove  Mittag-leffler
expangion theorem. S

4. {a) Find the Jacobian of the transformation
in
@ w=2e"/*z+0-29
@) w=z?
and interpret geometrically. 6
Or

If w= f(2=(z? +1/2, then—

{ show that z= i are branch points
of fl3; .

i) show 1hat a complete circuit
around both branch points
produces ne change  in  the
branches of fiz. '
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fb} Discuss in detail that the. bilinear
transformation can be considered as a
combination of the transformation of
translation; rotation, stretching and
: Or
ﬁmndnuw::f[#-[z’+1]"?.ﬂlﬂ!hﬂw
its branch line.
foJ Find a bilinear transformation which
' maps points 5, z,, 23 of the =plane
into points wy, wy, wy of the w-plane
rﬂpnchvdy . 4
5. [a) Show that the series
. "
ﬂ E:n*]

; (z—-i)"
@ Lyt
are analytic continuation of each other. ]
. Or B '

Prove that if an analytic function f{3

_vanishes at all points on an arc PQ

: inside its region R, then F{Z vanishes

R throughout R. Hence deduce thal if the
identity sin? z + cos” z = 1 halds for real
values of 2z then ft alse holds for ali
complex values of =

- (b Prove the following giving emphasis on
thenoﬁoaofnmhrﬁcmnﬁnuity; ; 5

'I'I'—-‘
Wﬁﬂﬂ‘m“

' 5 i) r(-il-)--iv’;
i 'G.,.

Evaluate :
] E’Er’ - 24t

2
(i) Er"ﬂﬁ-t'}; dt
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i Pmihuth:mﬁmuﬁm_
=S
¥ kkik.

is analytic in the region of the >-plane
for which Re(g21+& for any fixed
positive &

ook ok

107







