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Unit -1
Introduction :

Functional Analysis is the study of certain structures arising out of the marriage of
topology and algebraic structures, and application of these structures to analytical problems.
The origin of the systematic study of such abstract structures goes back to M.Fréchet (1906).
It was S. Banach who, in 1932, in his book gave an elegant account of the work of many
mathematicians involved in the development of functional analysis approach. Mathematicians
observed that problems from different fields often enjoy related features and properties. This
fact was exploited for effective unification with the omission of unessential details of
individual cases. For instance, absolute value of difference between two reals, modulus of
difference between two complex numbers, maximum absolute difference between functional
values of two functions and ,two sequences have been unified as metric notion . Similarly.
normed spaces, Banach spaces , Hilbert spaces etc. came into existence. In this connection,
the concept of a *space’ is used in a very wide and surprisingly general sense.

An ‘abstract space’ is a set of elements satisfying certain axioms. With the choice of
different sets of axioms we shall come across different spaces.

It has been widely accepted that functional analysis plays a pivotal role in the growth -
of Pure and Applied Sciences . It plays key role in solving problems of mathematics, physics,
mechanics, engineering, operational research and many other branches. Functional analysis is
now regarded as queen of applied Sciences.

The study material in functional analysis is broken into three sets.

SET 1 : Banach spaces : definition and examples, continuous linear functions, finite
dimensional normed spaces, bounded linear functions. '

SET Ul :The Hahn Banach theorem, the natural embedding of N in N** , weak and weak
topologies, the open mapping theorem , the closed graph theorem, the Banach
Steinhaus theorem and the conjugate of an operator.

SET liI: Hilbert Spaces and finite dimensional spectral theory : Definition and Examples,
orthogonal complements and orthognﬁal sets, the conjugate space H , the adjoined
of an operator, self-adjoined, normal, unitary, positive and projection operators, the

spectral theorem.
Symbols :
K : Scalar field of real or complex numbers
R : field of reals '

C - hield of complex numbers
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. linear span of a subset E of a linear space

: dimension of linear space X

: quotient space of a linear space X by a subspace Y.
: range space of linear map F.

: null space of linear map F
: the set of p-summable scalar sequences,1 £ p < @

: the set of bounded scalar sequences

: the interior of a subset E of a metric space

. the closure of a subset E of a metric space
: sequence whose nth term is x,

: Sequence {x,} converges to x

. distance of x from a subset E of a metric space

: the set of real valued continuous functions on [a,b].

: space of convergent scalar sequences

: space of scalar sequences converging to zero

: scalar sequences having only finitely many non-zero terms.

: quotient norm of x+Y. -

: space of linear mapping from a linear space X into linear space Y.
: space of bounded linear mappings from a normed linear space X

into a normed linear space Y.

: dual space of normed linear space X.
: inner product of x with y.

: Hilbert Space

D Xis bnhogﬂnal toy.

: E is orthogonal to F. .

: elements orthogonal to set E.

: adjoint operator of T.

: for all.

: there exists.

1. Prerequisites : For easy understanding of the meterial in the sequel a freshman requires

the knowledge of metric space and linear space . Some essentials on metric space and linear

space theory have been introduced in this section without proof before the start of actual
syllabus.




- Definitions 1.1 :

Let X be a non empty set and d: XxX—R be a mapping on XxX. 'd’ is called a
metric on X and (X,d) is called a metric space if d satisfies : ;

MDD d(x,y) 20V x,y e X
(M2) d(x,y) =0 if and only if x=y
(M3) dix,y)=d(x,y) [symmetry]
and  (M4) d(x,y) < d(x,2}+ d(zy) V¥ x,y,zeX [Triangular inequality]

If Yo Z then d(y,, y;) = d(yy, ¥2) ¥(y:,¥;) € ¥ x Y induces a metric on Y. In-
fact, (v,d)is a metric space. So every subset of a metric space is a metric space with the
induced metric.

Examples of metric spaces :
(1) (R,d) , d(xy,x3) =[x; = x| (x),%2) € X2 X
@ @), dxr,xa hrr,ya )= 3 i -yi )
i=l -
(3) (Cla.b], d]. dif. g) = sup{je(x) - g(x)[ : a < x < b}
~ Let (X.d) be a metric space , x, e Xand r>0. Then

(a) B(xg, 1) = [x| dix, xq) < r}
(b) B(xg.1) = x| d(x.xg) <t}
(c) S(xg, 1) = {JL| di(xz, xp) = r}

are called open ball, closed ball and open sphere respectively . xp is called centre and r is
called radius. A subset M of a metric space (X,d) is called an open set if for
x € M, 3r > Osuch thatB(x, r) ¢ M. That is every point of M is an interior point of M. A
subset F of (X,d) is said to be closed if X\F is an open set. An open ball B{xg,r) is called a r-
neighborhood of xo . A subset N of (X,d) which contains a r-neighborhood of x, is called a
neighborhood of xg and x, is called interior point of N. The interior of subset M is the set of
all interior points of M and is denoted by M° or int(M). In fact, M” is the largest open set
contained in M. If 34be the collection of all open subsets of a metric space (X,d) then

(T1) XeJabe Iy

(T2) . J4is closed with respect to arbitrary union

and (T3) g isclosed with respect to finite intersection.




In general, a non empty set X together with a collection 3 of subsets X satisfying
(T;), (T2), (T5) is called a topological space and Xis called a topology on X. 3, is called a
topology induced by metric ‘d’.

A mapping F:(X,d)—>(Y.d)is said to be continuous at Xo €Xif for £>0 there exists a
&>0 such that

d(F(x), F(x,)) < € when dix, xg) < &

If F is continuous, at every point of X, then F is said to continuous in X or simﬁly
continuous. : :

Theorem 1.2 A mapping F : (X, d) — (Y, d) is continuous if and only if inverse image of
every open (closed) subset of Y is an open (closed) subset of X.

Definitions 1.3 : Let M be a subset of a metric space (X,d). A point xpeX is called an
accumulation peint or limit point of M if every neighbarhood of xa contains atleast one
point yeM distinct from xo. The set consisting of the points of M and the accumulation points
of M is called the closure of M and it is denoted by M.M is the smallest closed set
containing M. A subset M of a metric space X is said to be dense in X if M =M. A metric
space X is said to be separable if it has a countable dense subset . For subsets A and B of
(X.4), .

(8 AcA (b (&) ik (c) AoB=AUB and (d) ANBCANB

A sequence {X,} in (X,d) is said to converge to a point xeX if for &> o0there exists
ng €N such that : ‘

d(x,,x)<e¥vnz2n,
' Equivalently, lim d(x,, x) = 0. We denote it by X, — Xor limx,=x. A
. n=—+w ]
sequence {x, which is not convergent is said to be divergent.
A non-empty subset M of a metric space (X,d) is said to be bounded if its diameter
d(H’,l:sup{d[x,}r]{x.yeM}cm

A sequence {x,}is bounded if the corresponding point set is bounded, that is,
{x, }= B(xg.r) for some xo € Xand r>0.

A sequence {Xa} is a Cauchy sequence if for >0 there exists ng €R such that

dix,.tw) <& ¥n,mz2ng

A metric space X is said to be complete if every cauchy sequence in X converges to a
point of X. '




Theorem 1.4 In a metric space (X.d),
(a) every convergent sequence is cauchy sequence
(b} every My sequence is bounded
(c) the limit of convergent sequence is unique
(d) X, — X and ¥, —* ¥Ythen d(x,,¥,) > d(x,y)
Theorem 1.5 : For an infinite subset M of a metric space (X,d)
(2) xe ﬁ_if:lmd only if there is a sequence {X,} in M such that x, = x
(b) M is closed if and only if x, € M,x, — X implies X € M

|

Theorem 1.6 : A subspace M of a complete metric space X is itself complete if and only if
the set M is closed in X.

Theorem 1.7 A mapping F : X — Y of a metric space (X,d) into a metric space (Y, d)is
continuous at a point xg € X if and only if x, — xgimplies F(x ;) = F(x;)

Definition 1.8 : If SSN = X =(X,d)be a sequence and gN—=N be a stﬁnﬂy increasing
function then Seg: N - X is called a subsequence of the sequence S.

A metric space (X,d) is said to be compact if every sequence in X has a convergent
subsequence. A subset M of X is said to be compact if M is compact when considered as a
subspace of X, that is, if every sequence in M has a convergent subsequence whose limit is an
element of M.

2. Linear space or Vector space: Vector space or Linear space plays a very important role
in many branches of mathematics. The disadvantage of metric spaces of not being capable to
add, subtract or multiply an element by a scaldr are overcome in a linear space structure.
Normed linear spaces of which Banach space and Hilbert space are special cases are defined
for linear spaces.
Definition 2.1 : Let X be a non empty set and K be a field. Define intemal composition

+:XxX—X andexternal composition

o: KxX = X, (x; %)= x+x2 and (a,x) =»a x

X is called a linear space over the field K and denoted by X(K) if

A ) xtxeX Yx:eX

(i) (=t (e +x3) Vx, %2, x3 € X

{iii) there exists 0 e X such that x+0= x = O+ xforallxe X.




. (iv) for xeX th:fecxists;x e€X such that x + (-x)=0=(-x) + x
W xFx=X+x; Vxi,xxeX
B. (i) oxeX VaeKandx eX
(i) a(xtx)=ax+ax; VacKandx €X, xz €X
(ifi) (+P)x = ax + Px ¥ a,feK and x eX
(ivy (aP)x = a(fx) ¥V ofeKandx eX
 lx=xforall xeXand leK (lL.a=a=a.l ¥ ackK)
1 As easy consequences of definition , we have
- 0x=0,0.0=0,(-1)x =-x, —(‘.lr.—}"}‘= y-x :
A linear space X(K) is real linear space or complex linear space accordingas Kis RorC.

Examples of linear spaces
@ R"(R)with (x;....... X2) + [y;..,,“.,}.r_:}=[x|+;.r1....,,,,.,,xﬂ+y.}
and a(xy,.......XaP {0 Xy, OXq)

(i) C* (C ) with some operations as in R" (R )

Gii) & or E*(K)= {ix,} c K: ilxnlp{m, lsps m}with operations

n=l
(XatYa}={Xatyn}and a{xaj={0Xa}

(v} € or m={ {xa}< K : sup|x,| < o }with operations same as in *
nzl

) Cla,b}(R) with operations (f + g)x = f{x) + g(x)
(afx=afx) _ .

A non empty subset Y of a vector space X(K) is called a linear space of X if Y(K)isa .
subspace of X(K) if and only if y,€Y, y:€Y, a,p € K implies ay; + Py:€Y. X and {0} are
trivial subspaces of X(K). A subspace other than these two subspaces is called a proper
subspace of X . A subset C of a linear space X is said to be convex if 1CH(I-)CcC

v 1, 0=t=l.

An expression of the form a;x;toaxst ...... +a, X, where oy €K and x;eX =X(K) is
called linear combinations of x;,x3, ....... X -




For any nom empty subset M of a vector space X(K) the set of all linear combinations of
vectors of M is called the span of M, written as span M or <M>. It is the smallest subspace of
X containing M. <M> is also called a subspace generated or spanned by M.

A finite subset-M ={ x;,X3, .......X, } is called linearly independent (L.I) set if
yxtazxst ... +o, X, = Oimplies oy = a3 =.....= 0z =0.

An infinite subset is called L.1. set if every finite subset of it is L.I. A subset which is not.
L.L is called linearly dependent set. In this case , there exists a set of scalars r,13,,........T, ROt
all zero but

0x) + Xt =0

A linear space X(K) is said to be finite dimensional and dimension of X is said to be n if
X contains a linearly independent sef of n vectors but all sets having more than n vectors are
linearly dependent. In this case , we write dim X =n.X={0} is a zero dimensional space. If
X is not finite dimensional then it is said to be infinite dimensional space. R" and C‘ are n

dimensional space but £ and C[a,b] have infinite dimensional space.

If dim X = n, then a linearly mdepcndsm n-tuples of a vector space X is called a basis
- for X. If B={e,.......ex} is a basis for X then x€X can be uniquely expressible as

=X +mXe+ .. F Xy (o € K)
B={e;<1,0, ..., 0), &;=(0, 1,0, ...0), ...ex=(0,0, ..., 1)} is a basis for R"and C" .

More generally, if X is any vector space , not necessarily finite dimensional , a subset B of X
is called a basis (Hamel basis) for X if B is linearly independent and B spans X

Theorem 2.2 : Every vector space X # {0}has a basis .

Theorem 2.3 : All bases for finite dimensional or infinite dimensional vector space X have
the same cardinal number . This means that two bases have the same number of elements or
one-one correspondence. This number is called dimension of X.

Theorem 2.4 : If X is an n-dimensional vector space then any proper subspace Y of X has
dimension less than n.

Definition 2.5 : Let Y be a subspace of vector Spah: X. The coset of an element xe X with
respect to Y is denoted by x+Y and is defined by

x+Y = {x+y|ye Y}
Clearly, x,+Y=x;+Y if and only if x)-x; €Y and in particular y+Y=Y iff ye 'Y

The set X/Y of distinct cosets in a vector space under algebraic operations defined by

(X|*Y]+(13+YHX |+.'(2;H'Y

a(x+Y)=ax+Y




This space is called quotient space and is denoted by X/Y.
The dimension of X/Y'is called codimension of Y and is denoted by codim Y, that is,
codim Y=dim X/Y

3, Normed linear spaces and Banach Spaces:

Definition 3.1: Let X be a linear space over the field K. A norm on X is amap | |:x-;-R+
from the linear space X to the set of non negative reals which satisfies :

(Ny) x| = 0ifand only if x=0 .
(N2) Ictxl = |ojx] Ve e Kand x <X (homogenity)
M)+ s <)+ Iy] ¥x,y e X (triangle inequality)

The [:nnarspncex equ:ppedmmammsdcfumdasanmmcdhmrspane{nls}wmlyn
normed space.

ote: 1. |- x| = k-0x] = |- ] = |l
2.1 = lox] = olf<f = 0
3.0 = o = bx + < [ + | =] = 2] Heace 0 < |
sH=kx-n+Ask-A+b-So H-Msk-
Also, | - b < Iy - xl = fx - s} Hence [ - [ | s Ix - A
Propaosition 3.2 A norm in a linear space X induces a metric on X.
Proof: Let d : X x X —» R, be defined by
d(xy, x3) = I - x5]
Then (M1)d(x;,x;) =[x, - x,] 20 ¥x; € X,x; € X
(M2) d(x,, x;) = |x, - x,] = Oifand only if x, = x,
~ (M3) d(x;, x,) = i - xf = k2 - x| = d(x2. %))
{M4] d(x;, x3) =[x = x3) = J(x) = x2) + (x = x5)
< fxy = x2f + Jxz - x3)f

= d{xy. x5) + d(x,, x;)

This shows that (X.d) is a metric space .




Delinl_‘.ﬁm.’!.l&uls [x,"}issaidwbcaﬂmachspaceif{x',d] is a complete metric space
with the metric d, induced by the norm, that is, d(x,y)=|x - .

Since a nls is a metric space , all the notions of metric spaces can be redefined in a
nls. For instance,

1. asequence {X,} inanls (X, }j)converges to x e X if for ¢ > 0there exists nge £ such that
. ~x] <& Vvnzn,

2. F:(x,0,) » (v.]{,) is continuous at x, € Xif for & > 0 there exists 5>0 such that

[F(x) - F(xo}l, < & when |x — x;} <&

Similarly any notion of a metric space can be redefined simply replacing d(x,y) by

-

f[vi]'.: v | | ‘ |

Proof: Let F be continuous at (a;,ay,......,8)€ [ [ X; - For £>0, there exists >0 such that

i=l
I]:('xh Kpyesey In} o F{llh L pe— ani < g if
Kxy X35 %) < (28358, < &

ie if Hx| —a,ll +..,+.,+|Jr.n —nnln <8

Lﬂ\?‘={y |y - F{n,,....nd < r.}and v _={::|:t.—-n-,|<5f'n:'

Hence; F(x;,..xz)eVif x; € V(i = 12,..,n). So, H‘H’,-] o V.




The proof of the converse is left as an exercise for the readers.
Proposition 3.5 Let (X, [{)be 2 normed linear space . .
Then (1) the map (x,y)—= x+y from XxXinto X
(2) the map (., x)— ax from K x Xinto X
(3) the map x— || fromXintuKa.remntinumm.. ;
Proof:(1) Let (a,b) e X x X
[(x+ ) - (a+ )] =J(x=a) + (v -B)| < Je —a] + |y -5
So,fore > 0,(x + y) = (a + b < & if x —af < &2 and Iy - ¥ < &/2
That is, F(V, x \.r;,'} c Vwhere V| = {x tx - a] < g,‘z}, V, = {y:fy-b] <g/2
and V.= {y:[y-(a+b)f <el

So, by proposition 3.4, F(x+y)=x+y is continuous at (a,b). Since (a,b) is an arbitrary point of
X=X . F is continuous in X. '

{2) Let Gla, x) = ax. ﬁ&uﬂh@ to theorem 1.7, it is enough tu show tha
(@y, Xp) = (@, x)in X x X = a,x, = axinX.

Given ¢ > 0,3 ng € N such that ,
koo x0) - (@ x)f =|a, - +x, ~x} <& Vo 2n,

So, a, —» aand X, — X. Since {a, }tsbnunded,suda|n M < w®

la.x, ~ax| =|e,x, ~a,x+ax-ax<|a,| |, ~d+ea, -a| |d<Mlx,-A+|a,-a] |

- Since, x, — xand a, — o, there exists ny N 2

Such that ||x; - x| < EE?E and |a, - ——  (provided x= 0)

91 o

Hence [ja,x, - ax] < evn 2 n,.
(3) Let ae X, We have already seen that |} - ]| < | - o i
Let hix)=|x].Then [h(x)- hiaf<e if ]: - ul <. H.r.:noe norm is 4 continuous function

Note: It follows from the continuity of norm that

10




xo +x=[x] 2] Thatis, x| = .I;n:}q[x,l

or, limx=l'm|u. particular, | lim a_| = lim :
; s 2] IliI n—blm I'II In " nl—-'ln“m - n-iu:lﬂnr

Definition 3.6 A map F : (X, Jf) - (Y. [{) is called an isometry if

b - x| = [F(x,) - F(x,)]and F is said to be linear if

Flax; + Px;) = oF(x)) + PF(x;) ¥x;,x; € X and o, e K. Clearly a linear map F is
isometry if and only if JF(x)] = |x] vx e X.

F: _{x,_. "] — (YH} is an Isplﬁttrit isomorphism if F is linear , one-one, onto, and
isometry. F is called a homeomorphism if it is one-one, onto, and F and F' are continuous.

Proposition 3.7 :
(a) The translation T, : X — X, T,(x) = x + aisan isometry and a homeomerphism

(b) The multiplicative operator M, : X — X, M, (x) = Ax(h = O)isa

Proof (a): It is immediate that |T, (x) - T = |x ~ y] and Tu(x-a) =x

Since, T,(x) = T,(y) = x +a = y + a = x = y, T, is one-one and onto.
Continuity of T, follows from the equality [T, (x) - T,(y)] = |x - y].

T7'(x) = (x - a) = T, x).

So, -T," = Ty is also continuous . Hence T, is a hnmeumorphi.sm.
B): My(x) = M, (y) = ik =AYy =>x=yifA =0

Also, M; '(x) = A7'x Vx € Xand M, = M,_,.

S0, M; is one-one and onto.

|M:.{ﬂ 3 M:.{"n'l = Jax - Axo = A fx - xq}
This shows that M, is continuous for all A.Sa, M,~' = M,_, is also continuous and M is a
: i |
Definitions 3.8 For subsets A and B of a linear space X,

A+B={a+b|a E.A andbéB}.Inparriculnr.

atA=h +xx e A}




4

AA -=-{hix € A}

Clearly, A+B=| ] @ + B).
iHA

Proposition 3.9 If A is a subset of a nls (X, J{), then
()A+a=A+a (i) MA=2A ViekK
proof: If F : (X,Jp — (Y.} is a homeomorphism and A < X,
then F(A)=F(A). Since T, and M, are homeomorphisms,
T,(A) = T,(A)and My () = My (A)
and the results follow. (2) holds when A=0 .
Exercise:  (1). Show that B(a,)=B(0,e)+a
' (2) Show that a bijective isometry is a homeomorphism.
B) x> xandy, = Yy =Xat Ya X Y
(4) 0 = @, X >+ X =00 Xo —> AX.
Proposition 3.10 Let X be a normed linear space. Then
(a) ifGisopenin X and A c X, then G+A is open in X;
(b) if C is convex subset of‘_ X then r.h-e closure C and the interior C° are also convex.
IfC® # ¢,then C = C° '
(c) if Y be a subspace of X then Y® = ¢if and only if Y=X.
Proof:

(2) The translation map T, = x + Xpisa homeomorphism.

So, if G is open in X then T,, = G + xyis open in X and G+A= | J(G + a)being union of
. ash

open sets is open in X.

{b}Lcthcaconmmbsctnfx.Lctx,yeEmdn:stﬁl.'[henthmeximmqmmu
{x,} and {y,} in C such that x, — xand y, — y.Now tx, + (1 = t)y, = tx + (1 - O)y.
Since C is convex, tx, + (1 - t)y, € C. Hence tx + (1 - )y e Cand C + (I - 1)C < C.
This proves that C is a convex set. '

Again iIC° + (1 -t)C" ctIC+(1-)C g C

12




Since M,(x) = txis a homeomorphism, tC° and (1-)C° are open subsets and by
part(a), «° + (1 - )C°is an open subset of C. Hence 1C* + (1 - )C° < C“and(f“:sa
convex subset of X, .

Let C* # ¢. To show that C = Eifﬂisamnmsat.{?“ cC imp!icsg c C.It

is enough to how that C c EE Since C* = ¢, there exists a . X such that a e C°. So,
there exists r>0 such that B(a, ©} < C.Then a + ry € CVy e X with Jyj - 1.in fact,

o+ m -l =lol =l <
Let x € Cand =, =ta +(1- t)x (0<t<])
Next, we show that

B(x,, i) = fz e X:z = x_ +uy,Jpf -1} with]pf <1,
iz—-xlltiﬂylﬁlrf-&ZEB{xvt} .

Conversely, zeBx,n)=>fk-xJ<u=|y]<nr
where y, .= Z - X0 Z=X+ Yo =X +1iry,y = -El;yq with |y < 1
Now we show that B(x,, tr) c C and x;, e C°
Also, x, =ta + (1 -t)x + xast - 0 (because ‘a’ is fixed).
This shows that x € C° Thus C c C°andhence C < C°.
ic) If'Y is a subspace of a non zero space X, then to show that Y° = ¢t ana onlvif Y=X.

If Y=X then Y° = X # ¢.Conversely, let Y° = ¢.

Consider a € Y®°. Then there exists r>0 such that B{a,r}) = Y. For x € X if x=0

then » ¢ Y. If dthenfore < r
it 4
So, E:-ﬂieﬂq[},r}—_.ﬂ{u,r}-a: e [L 2% eBlaryc¥ %1
I . It
Hence Y = X.




4, WM Banach Spaces :

Example 1. R is a Banach Space with norm [x] = ||, the absolute value of x.
R{R) is a vector space .

Further
N[ z20

(N2) x| = 0 ifand only if x=0

(N3) fox| = |afx| and

(N4) |x + 3] < |x| +]o
So, (R,u)is a normed linear space .

The completeness ofﬁ follows from the following two lemmas.
Lemma 1: A Cauchy sequence is bounded. |

Let {a, } be a Cauchy sequence in R. For ¢ = 1, 3n, & N such that
|:1.,-—u,,|-:l'rn.mzn°+'ﬂ1¢n |r.ln] < fnn + u,,n{ <] +la..°| Vo = n, :

Let M= max'"ll + fotag bl [etng 1“ Hence a,| < Mva 2 1and {a,,}. is bounded.

Lemma 2: If a subsequence of a Cauchy sequence {-:: }convmgﬁtunpmmu then the
sequence {a, } also converges to the same limit a,

Suppose the subsequence fa,, fof the Cauchy sequence {u. }converges to the point
o, . There exists k, e N such that

|a.

" - uﬂl < gf2 ¥n, 2 k,.

i'!LI'SCI. qu i ﬂ'l'ﬂl < Efz- Vn,m 2 kTT kl (= .N

to max {kg, k; }. Then,

| - o] < Jag = o] + Joiy - @] < &2 + &/2 = . The result follows.

Now we show the completeness of R. If {o, Jbe a Cauchy sequence in R then o, }is

bounded. By Bolzano-weierstrass 'I'lmorem this bounded sequence has a convergent
_subsequence {“-u fwhich converges to a, €R. By lemma 2, a, —» a4. Hence R is a Banach

Space .
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Example 2. The linear space C isaBmthpaucwiﬂ:numwd'deﬁnedby H = |4for z eC.
Clearly (C,|) isanls. Let {z, = x, + iy, }be a Cauchy sequence of complex numbers. Then
there exists n, €N, such that,

|In = Z..;1|2 = (Xa = X@)? + (¥, - Yu)? < & ¥n,m 2 n,. Consequently, [xn—%m|<e and

[¥a = Yml <& ¥n,m 2 n,. This shows that {x,} and {y,}are two Cauchy sequences of
reals. Since R is complete, there exist xp and yp in R such that

E

Ixn'lﬂl'cfi' and IY-'J'DI"‘E ¥n 2 n,.

Let z; = x5 + iyg. Then |z, - zulz = (X, - Xg)° * (¥, - yujz <g® vn2 n,
Hence 'z, — z,and C is a Banach Space.

Example 3. The n-dimensional Euclidean space R® is a Banach Space with norm, defined by
. o vz g
kxpx )| = [E x,-’] . R"(R) is a vector space with operations
=1

(Xte e esXad (FaeeesYl= (Ri+ Yiseros Xa +¥n)
a (X1, Xa)=(0x, -+, 0x,) @R
For x = (xy,-X,), ¥ = (¥, y,) in R,
: 5 T
FI = [z Kiz] =0

i=l

.mni:mmjnhmeuﬂ=

_ [N;'!} Ha:;l =]{ax,,,.ﬂx"H=J§(m;}’ =ja|J§.q’ =|a|i,;"

o oA =S st < instsneSneE ety
i=l

] i=1 f=] =}

= Fr + IFI;' + I—)-rl2 (Cauchy Schwartz inequality)
6P

HenceF.+;-|sIE|+H.




Hence (R®Jis a normial lincar space . To prove R" is a Banach Space , consider
Cauchy sequence {;:}m R” where X, = (X5 x.,_,,.,.x_.“]

Ix_"._x—'r a5 i(x.u = xu]]. <¢’ Vmnzn,
Sn,lx_j—x_‘,'lﬁa ¥Ym,nzn,

This shows that {x  ; }“H is a Cauchy sequence of reals for each i=1,2,...n. Since R is
complete, 3x; R such that lim x; = x;(1 € i < n). For & > 0,3n; €N such that

£
|xm - 1;| < ;}: ¥m 2 n;
Let ny, = max™{n,, Dy By} and X = (Xpy Xgyeeey K )=

Then E—-Il - i{xm -x;) <&’ Vm2n,

Her@e,ﬁ—?l{s ¥m 2 ng.That is, “Ei_!fmx_ = x €R".

Enﬁlph 4. C" is a complex Banach Space with norm,
. W
fovza) = (S
=]
Proof : Similar to that of R".

Example 5. C[a,b] is a Banach Space with norm defined by Jf] = sup |f(x)].

aszsh
Proof ;

Since a continuous real valued function in [a,b], is bounded . ] is a finite real
number.

Also Jf] = sup [f(x)] 2 ©

asxgh

(N1) £=0implies || = 0 and conversly |} = 0 implies |f(x] =0 ¥x e [a,b]. Hence
f=0, the zero function . C

(N2)Fora € R, f € (Ja, b,

laf]=sup{j(a/)x)|: x ela,b]} =|a|sup{|f(x): xela,b]} =|a] |/]
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(N3) For f € (la, bl,g € Cfa, b} and x & [a, b]
[fx) + gx)f < ) + Je(x) < | +d-
Su,lf+dam'r[x]+g{sza Sx< h}slfl+|g|

Thus C[a,b] is & ns. It can be seen that Cla,b] is a Banach Space . Let {f, be a
Cauchy sequence in Cla.b). For & > 0, there exists n, &N such that i

® -l = s [ (1) ~ fa() <& Vn,m 2 n,

This shows that {f, (x)},,, is a cauchy sequence of reals for each x e [a, b). Since R is
complete, lim £, (x) eR. '

Define f : [a,b] -+ Rby, fix)= “litl'n fa(x).
Wemshnrwthat.li_? fo =fand f € [a,b]

From (*) Jf,{x] - f.{x] <& Vn,m2n, and ¥x e [a, h}.

Keeping m fixed and letting n — «, we have,

[f(x) = fu(x) <& Vm 2 n, and ¥x & [a, b]
Hence [f - fuf = sup [f(x) - f(x) <& Vm 2 n,
asagh -
Thus we have, lim £, = f. Asin(*), wehave
[6(x) = fu(x)] < &/3 Vm 2 ;1. and Vx e [a,b]
Also  |f(x) - f,(x)} < ¢/3 V¥n,m 2 n, and ‘v’x‘_%" [a, b}
From the continuity of f, at X, , we have
|£u(x) = f(xo)| < &/3 when |Jx = xo] < 8
. Now,

If(x) - £(xo) s [£(x) - 1, ) + |f,, ) = fu (X0} + |y, (x0) - f(xo)|

cgwhmlx-—xd-:ﬁ
misshuwsthallf is continuous at x, and hence in [ab).
Hence Cla,b] is a Banach Space .
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Theorem 4.1 Let M be a non empty subset of a normed linear space (X, | and M its closure.
Then '

(a) x.e M if and only if there is a sequence {x,}in M such that x, — x
(b) M is closed if and only if x, € M, x, = X implies x € M.

Proof. (a) Let x e M. Either x « Mor x is an accumulation point of M. If
x € M, {x, x,...}is & sequence in M which converges to x. If x & M, x is an accumulation

point of M. Ball B[x.-'-]mntains a point x, € M, x, * X. Takhmg'n=l,2,3...., {x,} is a
) n ’ :

n

_ sequence in M with x, B[x,l].l{enc: fxa — o < L This shows x, = x.
n .

Conversely let f{x,} ¢ Mand x, - x. ‘Either x € Mor,x ¢ M. Then

X, € %x,l] and x, # x.Su,xismamumulaﬁonpainmfm.'lneithumse, x€M.
n '

(b) M is closed if and only if M = M. Then (b) follows from (a).

Theorem 4.2: A subspace M of Banach Space X is a Banach Space if and only if M is
closed in X, .

me:lntlhﬂsuhspmeMufth:BamchSpamXbeaBanthpacc.lfxE-ﬁthcnthem
exists a sequence {x,} in M such that x, — x. The sequence x,} then being a cauchy in
Banach Space M, converges to a point of M. From the uniqueness of limit of convergent
sequence {x, }, it follows that x e M . Hence M is closed by Theorem 4.1(b).

Assume M is a closed linear subspace, of the Banach Space X. If {x,} is a cauchy

sequence in M, then it is also a cauchy sequence in X. By the completeness of X ,
Xg = X € X . Since M is closed in X, by Theorem 4.1(b), x € M. Hence M is a2 Banach

Space .
Theorem 4.3 :

AmapT:X = Yfmmanlsx-inman]sYiscontmumlsatnpuintxnifmdmtyif
K, = Xpimplies Tx, — Tx,. '

Proof: Let T : X — Y be continuous at x, € X. For given £ > o there exists & > Osuch
that : '

()  [rx - Txo| < & whenever Jx - xo <
If x, = Xg, then there exists n, €R such that

Ix. - xo] <8 ¥nzng




Sﬂ, ﬁw (‘)I I:rx;l - Txgl <E ¥n 2 fg. Hence TK“ - Txg.
Conversely , let us assume that x, — x, implies Tx, = Txg.

Suppose T is not continuous at x, then there exists & > 0 such that for wer_-.r & > Othere is an

X # xgsatisfying
= xo] <8 but frx - Txg] 2 e.

Inparnmﬂar, for & = ;]’—thcre is an x, satisfying

Ix, —'xnl < % but JTx, - Txp] 2 6.
This shows that x, — x, but Tx, -» Txy . This is a contradiction and the result is proved.

Theorem 4.4: The closure Fof a linear subspace F of a Banach Space X is a Banach Space.

We observe that every subspace of a normed linear space is 8 normed linear space and
closed subset of a complete metric space is complete. It is enough to show that the closure

Fof a linear subspace is a linear subspace. Let x,y be in F and a,peK. Then there exist
x,} < Fand {y,} c Fsuch that x, — xand Y» = ¥. Since F is a subspace .,
{ax, + By,} < Fand ax, + By, - ax + py.

Hence ax+pyeF. So, F is a closed linear subspace of the Banach Space X and
consequently F is a Banach Space . ' '

Example 6: 1”or m is a Banach Space .

orm = {fxs} & K|l < o} ander e, - s

I” is a linear space with operations LY e ™~
fou) + B} = {an +B,} and Ao, = fua)
where 0={0,0,0,...} is thj: zero element of 1™
Clearly f{a,} = supla| 2 0 X

(N1) {a,} = 0 ifand only if supla,| = Oor Ja,}§ = 0

) laf=lra)]=sup lta|={isup fo)=l3) )| for 2eK and (a}er
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™) fa)+ (Y=l {a.+A) |=s_ggia.+ﬂ,1la.+ﬁ.lSIa,i+|ﬂ.t5I{a.}'|+!{ﬂ.}l

Hence, fica} + $all < Houll + 181
Let {u[m} be a cauchy sequence in 1° where

o™ = {am,am,...ﬁ. Then for & > 0, there exists ny eN such that
* e = [n.'._.. (n} W = ;
(*) ’;':I_:""'-m a,,_,l |a. o |<z mn = ng
So, hm}misacauchysequmnemxforeachﬁmd izl.
Since K is a complete metric space , @, ; = o € K
Let @ = {a;},,. We can complete the proof showing that o € 1”and im a™ = a
2 i

From (*) 1{:,_,_ - “-u.ii <¢ ¥Ymmn2n, and Vizl
Taking limitas n — « and keeping m fixed, we have
**)  |omi -] <& ¥m > ng and Vil

Since «™’ e I° we have suplann_-,l =Ky <@
, izl

Hence, o] < 1-:1; - “"o-"1 + |“nu~il s e+ Ky,

Since this inequality holds for all i 2 1, suplay| < =
Also from (**), m _ ol = suplay, —ajl S€e ¥m2n
_ S SR 1 |<e "

Hence lim a'™ = u e I®. This proves that 1* is a Banach Space .

m =

Identifying C and Cg as closed linear subspaces of i, we have two more examples of
Banach Spaces. :

Example 7: The linear space C consisting of all convergent sequences of mmple:v-c numbers,
with the norm induced from 1% is a Banach Space .

Since a convergent sequence is bounded, we have C < I*. C is a linear subspace of 1™
since, a, — o,B, —» Pimplies




ka, +18, - ka + 18 Vk,1eV Thatis fka, +IB, }ECVn-{uu}EC.ﬂ B.) eC
and k,leC.

It suffices to show that C is a closed subspaces of 1°. Let @ = {a,} € C, the closure
of C in 1”. There exists a sequence Ll"‘“}in.{l' such that o™ — q,where u*'“'-'-{mm‘,-,}m,
For given & > Othere exists ny, &N such that sup'am - u,-l <gf3 Vm 2 n,
: izl

In particular o,y ; ~ o] < ¢/3 Vi 2 1
Also, o' = {u“ﬂ_;}isaCauchy sequence . So, 3n; e N such that
|tagi = @ng.i| < &3 Vi.j 2 n,

NDW, |'-1i 5 njl 5 iﬂ'i o u’lﬂ,ill+ [ﬂn,u,l =-a

— +|‘1m.j - aj| <gVi,jzmn

This shows that @ = {a, }is a Cauchy sequence in C. Since C is complete, {a, }is a

convergent sequence and a €C. ThusCmaa!madlmsubspacenfi”mdhmc:Cma
Banach Space .

Example 8: The set Co of all sequences of complex numbers mnwrgmg to zero is a Banmh
Space with induced norm of 1°.

Clearly Coc C c1”. Alsoifa = {a;} € Cyand B = {;} e Cythen

ka +1p = {ka; + 1;}and ka; + 1; — Oand hence ka + Ip € C; Vk,1 €C. Thus Cpis a’
linear subspace of C and 1™. It is enough to show that Cj is a closed linear subspace of 1.
Let a = {o;} € C,. Then there exists a sequence Lx““}}in Co such that o™ - awhere

a'™ = {tlm,pﬂ-m;.*“}- For given e> 0there exists ny e £ such that
i Lot
sil;flam u,! lu uI < &2 Vm 2 n,
Also, Qppi > 0 Hence |ﬂm.i < gf2 ¥i z n, forsome n; 2. So,

o] S fengs = @i + Jongi| <& i 2,

This shows that @ = {o;} & C,. Consequently, C; is a closed linear subspace of 1° and
hence Cy is a Banach Space .

Example 9: For 1 < p < «the set I”of all sequences {a, Jof scalars for which the series

" |oa|” converges . in a Banach Space with norm defined by
nzl
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[
; B ]
ool = (Sl |
n=| s
The closure property of IPunder addition and the triangle inequality follow from the
Minkowskii's Inequality which is established as a cosequence of the following lemma and
Holder's Inequality. -
Lemma: If >0.8>0and a+p=1then forw>0,v>0,  u™? < au’s Pv
Proof of the lemma:
Hel,fit)=t*0<a<)is cﬁwemnr.ave downwards [for o = %, fig(i). So, the curve is
below the tangent at (1,1). The equation of tangent at (1,1)1s y = at + (l-c)=at+p

#

For KLY
w
_./ H\X
T of 4 i
Fig. 1
So, t* < at + B. Putting t = ﬂv.weuhtam u® < auv®! o

+ v
multiplying by v'~®, we have u®¥ < au + Bv.

Holder’s inequality : For (l < p <«)and —+— =1

2
q

- |-

~ Thanl < [iixal"]_'l’ : [imr]‘

Coi=l i=l i=l

Proof : §+l = limplies p=q(p-1)
) q

; h"i
L}

SkE . S

j-:'l j-l

P q
_Pulpn%nndq=l,l.,elui=—|iu1dv— |

From the lemma,
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“iﬂ""'iII S au; + Pv;, we have Jxil - |yl |
(Brr] (b
i!‘i}’if

Therefore, L lﬁﬁiui;ﬁivi=u+ﬂ=l
Lk p

gerl(ee]

So, the Holders inequality Z'XiFiIs[i]I*'le]P[iI?jlq}q follows.

Forl < p < «, we have

< aa; + ﬂ\"i

Sl s Tl Gl b= Shsent i+ Shos
= = =]
Ll il 1] Lk
(St F (St T (St (S ¥
(Holder's inequality)

1

_ {8 y.-i"]a[[g“"'?f : [ilr.-r]i] .

i=1

Dividing by [i |x; + 3.r‘,-f"]|¥
. i=l

(g (o]

-

{}:_.',Ix.- + r.-!"]t-

) < Hixil + Hyil i {xi) € Pandy,} € 1P

: 1
Since this inequality holds for all n> 1, the sequence {[Zl: Jx; + y,|"]?’ being
i=l ’
nzl

monotonic increasing and bounded above is convergent.




Hence the series Y |x: + il is convergent , ie. b} + it e . Thus 1P is closed
i=1

under addition . The verification that 1P is a linear space is a routine work. Also from (*)

[E|== +rr’] tun,[zlxiw. [ <ttt 1600

Hence |{x;} + {vi}] s |{xi}] + 1{xi}] - 1t is now easy to check that (1I°,}])is a
normed linear space.

To prove the completeness of I° , consider a. Cauchy sequence k"‘“’]iﬁl I* where

l[-) = Emis xm,u.}

**) |rmi - nil < il"ﬂ-i - xpil = |x"" - xmlp < ¢® Vm,n 2 ny. This shows that
T iml
{"u.i}mlisacauchy.saqmenfmhnwhichmvmtoapuimn, _

Let X = {x;}.,,- We are left to show that x € IPand lim x'™ = x. From (**), we have

= B 2

.T‘ahnglumtas n—w, keeping m fixed, Z[xm-xrﬁs’ Vm 2 ngand Vk 2 1

i=l
Taking limit as k — =,
1

") [E'lmt = Ni ] Se VYm 2z ng

i=]
This shows that {x“’“] - ;) e I?. Also x™0 g I?
Hence x = x‘*0) - (Jr.[“"ﬂr - ;) e IP
Also from (***), I‘M - ;‘ Se Vm 2z ng

Hence lim x'™ = x.Thus I°(1 < p < m}maBanw:h Space .

m—sm
Some e::mplu of normed linear spaces which are oot Banach Space

Example 10. The set P of all polynomials mnsadcmd as functions of t on some finite closed
mtervai [a.b] with nonn defined by
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<} = max |x(t), where x(1) = Zuiii, (a; «R) finitely many a;'s being non-zero.

tefa,b ;
Then (P,}]) is a normed linear space which is not complete.
Example 11. If X be the set of all continuous , real valued functions x(t) on [0,1] and
I = j]x{tﬂd& . Then X is a normed linear space but not a Banach Space .
]

Verification that (X,|])is a normed linear space is routine. Consider the cauchy
sequence {Xm} defined by

y= x,(t) =0ift € |0,

gl
-iyralos]

y

A

| e

b | ==

.
o —
m

b | =

B"mﬁu] Cilanl)
111}

of A2 1ada)
Li+lim

ﬂx_—I.H=Itx_{r]-xw{f}|d:=area of MBCz%[%-ﬁ].:f n<m

o # ol
e o = S|l—+—|j<—
2in m n m n
This shows that {x,} is a Cauchy sequence in X. But this sequence does not converge to any
x e X.Forevery x e X,
2elfm

r % )
%, =] = [}x. ()~ x2) d:=f|;(;){d;+ [ l-x@|de+ [ p-x(njdr
] a [TF]

Wi+lfm

If x,, — x then each integrand approaches to zero. Since x is continuous and the

integrands are non-negative,
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x(t) = 0 iftefo, %}

H |
|
b | —
S
o R
i
~—
HI—”I_
H
kJ | ==
g =
=
—g|=
| e |

Asm — o, x(t) = 0 ift E[ﬂ,%]

: 1
=1 1t‘te[E.l]
'J-{".

- Clearly x(t) is a discontinuous function . Hence the Cauchy sequence {Xu} does not
converge to any x e X . This shows that X is not a Banach Space .

Series Convergence in Banach Spaces : o

Definitions 5.1: Let X be a normed linear space and x, e X. The series 3 x,, is said to be
nxl

. 55
summable in X if the sequence {Sq} of its partial value sums S,, = ) x, converges in X. If

{Sm} converges to S in X, then we write § = 3 x, and say that S is the sum of the series . A

series ) x,, is said to be absolutely summable if the series 3" Ixa]is convergent.
' nzl szl :

Theorem 5.1 : A normed space X is a Banach Space if and only if every absolutely
summable series of elements in X is summable in X. .

F 2 Lo
Proof: Let X be a Banach Space and z fxal <. If 5, = ) x,, then

nzl n=l

IS..., = Sl =+t x| Shoall® ] ¥mi=123.

Since Y |x,]is convergent, by cauchy criteria , forall € > 0 3 no eN such that

© mzl
F""J - S,,,I < Ixmaill + o + I“mﬂ'l <& Vm,n 2 ny. Hence S} _,,is a cauchy sequence

in the Banach Space X. Consequently Z x, is summable in X.
nzl

Conversely , suppose every absolutely summable series be summable in X. Let
S, |, be a cauchy sequence in X. There exists a positive integer m; such that

Ism _Smal <] ¥Ym z m.




Define inductively m,, m;, ---such that m ;< m .+ and Isﬂ_“-l‘:% Vmzm,.
: E n2 .

Let %, =5, -5, forn=1,2,3--- Thcnixicr-—andzgxﬂlcz-——cm

nEl nzl 0

Hence )" x, is summable in X. But S, = S,, *Z" So, the subsequence {S,, | . of

nzl
nzl : =1
the cauchy sequence {S,, jconverges in X. Hence {s.}converses in X and X is a Banach
Space . :

Theorem 5.2: Let Y be a closed subspace of a normed linear space X, Then
a) X/Y = {x+ ¥|x e X}is a normed linear space with norm defined by
llx + Y]] = inf {}x + y] : y € Y}, called quotient riorm

b) Auqumu{x + Y}mnvmgmmHmefY lffmg:mmaSequulce{y,]mY
sushthm{x.“**rn}mmemstoxmx.

c) X is a Banach space iff Y and X /Y are Banach spaces.
Proof: Forxe X, I|Jr.+'|’“-inf“x+yl:ye‘f}aﬂ
NI) Ifx+Y=Y,then |jx+Y]|=inf{pj:yeY}=0 @incceoecv)

Conversely, if Jx + Y]] = 0, there is a sequence {y, }in Y such that x + y, > 0, that
iS5, Yo — —x.Since Yisclosed, - x € Y. Sox+ Y=Y, .

N2) For x € X and k(» 0) € K,
Bex+ Nl =i+ Y| =inf { flx+)]: y e ¥} =|K|inf {|x+£"yﬂ;yer}
=|klinf { |x+uj:ue¥} (Since k'Y=Y)
=[] b+ 1
1t also holds for k = 0.
N3)Fore > 0 dnﬁcxisty.mﬂyﬂnfmhmat

I'rl +.}'|l'inx|'+ Yll+-§- and Ixz+yzu.<ﬂxz+)’ﬁ+§

So, Ix, +}'+x,+}’IISI{x,+'x=}+[yl +y,)H£lx,;}-YII+Ix] +1’H+£

for every & > 0. Hence the triangular inequality follows.
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(b) Let {x, + Y)be a sequence in X/Y and {y, }be a sequence in Y such that
X, + ¥y - xin X, Then
I(x_+]’}—-{x+’}’ﬁal{x"-x}+}’)“£|x_—x+r,§—.rﬂ as n—w. So, x,+¥ »x+Y
Conversely assume that x, + Y — x + Yin X/Y

Then there exist y, e Y such that
Jx, - x+ ] {Ili:.r_ +¥)—(x+ }")ﬁ+%.{n =1,2,..)>0asnow

Hence, x, + ¥, = x.

(c) Let X be a Banach Space . Y being a closed subspace of X, is also a Banach Space . Then
to show that X/Y is a Banach Space , by Theorem 5.1, it is enough to show that absolutely

convergent series E{x  + Y)is also convergent.
n=]

For each positive integer n, there exist y, € Y such that

o+ vl s oo+ Y|+ 0 = 123.)

Hence ZIx + Yl}is convergent implies z |x. + y,| is convergent.

n=l n=l

Since X is a Banach Space , by Theorem 5.1 3 (x,, + ¥,) = 5 € X.

n=l

MNow,

Z{x +¥)- {s+}')§t= i.r.+r—-_s+}"i|z i’»'“‘ (CY+Y=Y)

=Hi{x_ +3,)=5+ r![ S+ ='YJ

m=] w=l

ui[x *3,)- s|—>0usm—>m

=
Hence the absolutely convergent series Z x, + Yis also convergent, This proves
"F a=l :
that X/Y is a Banach Space . g
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Conversely , assume that Y and X/Y are Banach Spaces . Let {x, }be a cauchy
sequence in X. Since,

Jixo + ¥) = (x + VI = Jixa = %) + YN < Ixa = %l

{xo + Y} is a cauchy sequence in X/Y. If x, + Y = x + Yin X/Y, by (b) part,
there is a sequence {y, }in Y such that x, + y, = xin X,

Then {y, }is a cauchy sequence in Y, since

bya = Yal < ba + %0 - +xn - %l + m + yu = 2}

Since Y is a Banach Space, y, + ye Y. .

Then x, = (X, + ¥p) = ¥n = X -yhXHMXEanachSpm.

Theorem 5.3 Let ||.be a norm on a linear space Xj (1 < j < m)and let 1 < p < w. For
k= [lturq X.} =4 Xlx""xxll - x.

Let |x|, {EH ] iflSp<w = HSJ;J{] ifp=oo

Then {n}“pisannrmcmx

®) If X = (X4 Xnm) € X, then x™ - x ifandonlyif x,; = x; as
n=w(l<js m
(c) X is a Banach Space if and only if X; is a Banach Space .

Proof: (a) All conditions except the triangular inequality are obvious. If (1 < p < «)
' )
e+ A, = [ZI"] +-PJI ] [ (I.r "‘lJ’JI ] ]F
5[2"‘:-!'; ] [Zﬂyn ] (Holder's inequality) = Exﬂ +l| g
=

lfp:lﬂ'

o+ A, =maxbx,+ ], <smax (Je ], +]v], ) s maxs ], +maxs |, <l +1A,

Mence (XU i d nemed linewr snace 4~ < 'r.} :
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A=

- {e) Let lim x' = x. For &> 0there exists n, €N such that Ix"" - 4;- <& ¥n2ng
N i1
Thenfor 1 < p < m, Ixn] —lejl’ 52':(,,4-;].']" <e? vazn
i=1

fp=w Ix!-l'“i!jil"m“‘i.,‘a Vo 2 ng

Hence, x, ; = xjas n — ofl S p S w)

Conversely, let x, ; = x; in Xj(l £ j < m)

Then !.x,*j - thlj < E:_-l,: ¥n z ng

Hence |xl“} - x' P <e” ¥Yn2nyad xX™ o xinX.
P

(c) Let X; be a Banach Space (1 < j < m) and ™ Jbe a Cauchy sequence in X. Then each
{x..j}m (1 < j < m)is a Cauchy sequence . Hence x,; —» x; € X;(1 < j < m). By 5.3(b),
x™) — x.This proves that X is a Banach Space . '

Conversely, suppose X is a Banach Space . If {x, ;} is a Cauchy sequence in X;, then
{:"” }is a Cauchy sequence in X where x = (00...0, x,‘j.ﬂ,..,{i}

So, x™™ - (x,, Xppers Kjurey Xp) € X. Then by 5.3 (b) x,,; — x;as
n ~ o and x; € X;. So, X is a Banach Space. This proves the theorem.
5. Continuity of Linear Maps:

Suppose X and Y are normed linear spaces and x, € X. A linear ‘map F :'X — Yis
continuous at x; e Xif for ¢ > Othere is a & > Osuch that [F(x - xo)f <& whenever
Ik - xo| < &. F is said to be continuous in X if it is continuous at every point of X. F is said
to be uniformly continuous in X if if for ¢ > Othere is a § > Osuch that

IFtx - v} < & whenever |x -'y] < 5.

Theorem 6.1

(a) Every linear map from a finite dimensional normed linear space X to a normed linear
space Y is continuous. - '

(b) If X is infinite dimensional and Y = {0}then there is a discontinuous linear map from X
o : :




Proof(a): Suppose dim X=n<wand f : X — Y is a linear map . Let
B={x,, X3,..X, | be a basis for X and {u,, }be a sequence in X where

llm = ﬂm'.xl + Im':XZ +*= e ¥ ﬂ.m.“ﬁn.
Suppose u,, — U = a;x; + 83X, + .. + 8%, .Then by 5.3 (b),

a

mj —* 8i(1 < j s1). Then by the continuity of addition and scalar multiplication

Flum) = 2 8 Flx;) = 2 aF(x) = Zujxj} = F(u)
j=1 i=l j=1 _
Thus u, — u = Fu,) = F{u].HémeFi;scﬂntinums.

(b) Let X be an infinite dimensional normed linear space and let fe,, e;,..jbe an infinitely
linearly independent subset of X. If x, = _Iil%ll then L={x,, x;,...}is an infinite linearly

independent subset of X and Ix.l = 1 L, 0asn - «. Extend L to a basis B such that
. n
L < B.Let Y be a non-zero normed linear space and b= 0) e Y.

Define F: X — Yby,
. F(x)=b,ifxe L
=0,ifxeB\L

Extend F from B to the whole space X linearly. x, — 0but F(x,) = bdoes not tend to 0.
So, F is a linear discontinuous. Thus there exists a linear map from X to Y which is not
continuous. :

Theorem 6.2 Let X and Y be normed linear spaces and F : X — Y be a linear map. The
following conditions are equivalent . ;

()  Fisboundedon B:(®) = fx : [} < r}forsome r>0.
(i)  F is continuous at 0 '

(iii)  F is continuous on X

(iv)  F is uniformly continuous onX

(v ) € afx] vx € Xand some a>0.

{\n} * The null space N(F}={xex{ﬁ,u}=ﬂ}uf F is closed in X and the linear map
F: X/N(F)— Y defined by Fix + N(F))=F(x),x € X , is continuous . '

[F:X—Y is bounded on A < X means [F(x]] < K <= Vx € A]

Proof: We complete the proof by showing that
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(i) = (v) = (iv) - (i) - i) = @)
I

(vi)

(i)= (v): Let F be bounded on B.(0)for some r>0. So, there exists M>0 such that
IFx)] < Mfor x € B(0). Then forall x e X, x = 0,

T I

It also holds for x=0. So (v) follows.

s =

(v) = (iv): Let JF(x] < ofx] Vvx e X and some @ > 0. Then for & > 0,

IF{"}—F[}’1=]F{I'-F1$cllx—ﬂ-ﬂsiflx-ylcir
Hence F is uniformly continuous on X and (iv) follows.

@iv) - (ili). Suppose (iv) holds. Let x, € Xbe an arbitrary point of X. By (iv), for
g > 0,356 > 0such that

[F(x) - F(xo)}| < € when |x — xo] < 8

So, F is continuous at Xp and hence on X.

(iii)}— (i) : If F is continuous on X then F is continuous at every point of X. Hence it is
continuous at 0.

(ii) —» (i) : Let F be continuous at the origin. For ¢ > 0,35 > 0Osuch that

[F(x)] < e whenever || < &
oo Mk Bx Er
Then x e B.(0)implies H < §and hence |F{--] < gand IF{xj < s =M
. r r

Hence (i) is proved.
Lastly we prove that (iii) « (vi). Let F : X — Y be continuous on X. Since {0}is a closed set
in Y and the inverse of a closed set under continuous map is closed, we see that the null space
of F,

N(F) = F'({0})is a .losed subspace of X and X/N(F)is well defined. Also for
e N{FL

IE[: + N[F]I = IT’{J{ +Z4 N(F]I =] F(x + z)] < c:’x -

Since it holds for all z & N(F) we have

n




JFx + N s ainffx + o = ofx + NP}

'Hence Fis continuous . :
Conversely, assume that N(F) is closed and Fis continuous . Then for @ > 0, we have

lF{x‘rrF{x»#N{F}*sq.lx-bH(F]ﬁa]xl ¥x e X.

By (v) F is continuous .

Theorem 6.3 A linear map F from a normed linear space X to a normed linear space Y is a
homeomorphism from X onto R(F) if and only if there exist o, > 0such that :

. Blx] < JFx} < ofx] ¥x € X. In case, there is a linear homeomorphism from X to
Y, X is complete if and only if Y is complete. '

. Proof: Let F : X — Y be a linear map and suppose

®) sl <soad wvxex

ToshnwthaIF:x%RrF}(cY]isahnnmmrphiﬂn
F is one-to-one:
. FGa)= F(x2)= F(x;-x3)=0.  Hence from (*),
Blx -xf<0saly -x|=f-x]=0 (ra, f>0)=x=x
Also, F:X—R(F)is obvious ly onte. Mm from (*), F is continuous.
F*' : R(F) > Xisalsoonto. Let y;,y, & R(F). So, there exist x,,x, € X such that

Y = F[x,]and. ¥: = F(x;).Fora,pe K, ay, +py, = Flax; + Bx;)
Hence, F™'(ay) + Py;) = ax, + Px; = aF"'(y,) + BF~(y,)

Then from (*), ﬁ"F"{}r‘EH if y=F(x)eR(F).
And this shows that F"' is continuous by Theorem 6.2 (v). Thus F:X - R(F) is a lincar
: homeomorphism . £

Suppose F : X — Yisalin&arhmmmmrphi'mand}[isawmplmemmed
linear space. Let {y, }be a cauchy sequence in Y and y, = F(x,).

Then Pfx, = xu| < [F(x, - x)ff = Iy - val-

From this it follows that since {y.}is a cauchy sequence, {x,}is also a cauchy
sequence .

KX




Since X is complete, x, — x € X. From (*) JFi(x,) - F(x) < dfx, - o
It follows that y, = F(x,) = F(x) e Y if x, = X
Hence Y is complete if X is complete. Similarly X is complete if Y is complete.

Corollary 6.4: Two norm Jjand Q.I'm equivalent , that is , the same topology is generated
by the two norms if and only if there are @, >0 such that Bjf < b < of}  Vxe X

Infact || and | are equivalent if and only if the identity map

L X - {x.[.|'] is a homeomorphism that is , if and only if

B < ool < ol
ol sl < old vxe X
Theorem 6.5 : let X and Y be two normed linear space and X be finite dimensional. Then
fa} every bijective linear map from X to Y isa homeomorphism.
' (b) All norms on X are equivalent

(c) If dim X=n< =, then there is 2 linear homeomorphism from K" onto X and X is
complete with respect to each norm on X.

Proof : (a) Let F : X — Y be a bijective linear map from finite dimensional normed space X
onto Y By Theorem 6.1(a), F is continuous . Since X is finite dimensional and F : X = Yis
a bijective linear map ,Y is also finite dimensional normed space.

Again by Theorem 6.1(a), F~' : Y — Xis continuous .
Hence F is a linear homeomorphism. '
(b) Let || and l.l‘be two norms on X. The identity map 1, : (X, - &, l.ﬂr}is a bijective

linear map. By part (a), I is a linear homeomorphism. So the two topologies induced by -
J} and || must be identical. This means that norms [ and }] are equivalent.

(©) Let dimX=n and B={x,,x;..%,}be a basis for X Then for .
(e, Q0 @) € K, Flay, gy @) = @1%) + @gXp + .. + QoXy i8 3 bijective linear map
from K" onto X. By part (a) , F is a lincar homeomorphismt,

Again ((K.',“P) lsps=s w) is a ::nmpléte normed space(Theorem: 5.3) Hence by

* Theorem 6.5, X is complete normed linear space with any notm in it.
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Theorem 6.6 : Let X and Y be normed spaces and F : X — Y be a linear map such that the

range space R(F) of F is finite dimensional. Then F is continuous if and only if the null space

N(F) of F is a closed subspace of X. '
A linear functional fon X is continuous if and only if N(F).is closed in X.

Proof: Let F : X — Y be a linear map where dim R(F) < . Suppose F is a continuous map
* Then N(F)=F~'(fo}) is a closed subspace of X since {O}is a closed set and the inverse of &
closed set under a continuous map is continuous .

Conversely, suppose N(F) is a closed subspace of X, If R(F)={0} then F(x)=0 for all
xeX. Then constant map F is continuous. Let R(F) = Oand let {y,, y, ... Ym ) be a basis for
R(F). Let x; e X such that F(xj)=y;(1= j=m). It can be easily seen that

X/N(F) = span{x; + N(F),x; + N(F),..., X, + N(F)}
In fact, for xe X,
- F(x)y=ky +hky, +..+ky, = F(kx +k,x, +.. 4k x)
So, x = (kjx; + kX3 + ... + kx,) € N(F). Hence
x+ N(F)=(kx, + k,x, +.,,.+k_rx,]+N{E}=k, (x5 + N(F) +...+k (x + N(F)) :

Hence X/N(F)is a finite dimensiohal normed linear space since N(F) is a closed
subspace of X. By Theorem 6.1, F : X/N(F) - Y, F(X + N(F)) = F(x)is continuous . So F
is continuous by Theorem 6.2 (vi)

Let f:X — Kbe a linear functional on X. dimR(f) < dimK = 1. Hence { is
continuous if and only if the null space N(F) is closed.

Note 1. The result is not true if R(F) infinite dimensional. For example , let
X=C'[0,1], the space of scalar -valued function with continuous first derivative
Y= C[0,1], the space of all continuous scalar -valued function on [0,1]

Both X and Y are normed spaces with supremum norm.

Consider F : C'[0,]] » C[0,1]defined by
F(x) = % (x =x(1),(0 =t <1). Clearly F is linear but not continuous. In fact, if
Xa(t) =t t € [01]then [x,]| = sup|x, () =1
vef0,1]

But [F(x,) = Im“"l = l:lflnp'](nt""} = nfx,]. So there is no M>0 satisfying '

JF(x) < M|x] vx e X. Hence by Theorem 6.2 (v) , F is not continuous.
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We can observe that in this case N(F) is 3 closed subspace but R(F) is not finite
dimensional. In fact, '

N(F) = {;I% - n} the space of all constant functions on [01) . If

{u [xaft) = @0 St < 1} bensaqummnfmnsmmfuncumsmmﬂm Xp =+ X, ‘then
x(t) - x[tz} = hm X,(t) - I:m xp(ty) =0, -a, =0

This shows that x is a constant function. Consequently, N(F)-is closed. But R(F)=C[0,1] is
infinite dimensional space. Thus the condition of finite dimensionality cannot be dropped and
the condition that N(F) is closed alone is not sufficient for continuity.

Note 2: In case of linear functional, the condition of closedness of N(F) cannot be dropped.
For example, consider F : C'[0,1]] = K defined by F(x)=x"(1) [x' = % x(t}] . In this case

NE)= f € C'fo1fx'0) = 0} which is not closed.

Infact, {:,(t]}-{t;%}c N(F)so that x, = x, = t but t & N(F). So, N(F)is not closed. F is
also not continuous as can be seen as in Note 1.

lel..emm{lﬂ#]ﬁ.'TL:tXbeannnnedspam,Ybeaclmedsubspweuf}{detX. .
Let r be a real number such that 0<r<l. Then there exists some x, € Xsuch that fx| = tand

r < dist(x,,Y) < 1
Proof: Since Y # X,thereisan x € Xand x £ Y

Also Y is a closed subspace, so we have d(x,Y) = inE]x -0
ya

Clearly d(x, Y) c%d{x,‘l’].Suﬂmis yo € Y such that fx —ynH {%d{x,‘l’}.

X=-Y¥o : - - o H
Put x, m sothat x| =1 and dls!(x,.‘l"]—mu:t, yls]x,[ 1

Further, dm{x_..]"}-mfﬁx pI—mfI—— % . vﬂ-nr ii{le'ﬂ}r
(T —ro

This proves the lemma. ;
Proposition 6.8 : Let X be a normed space and Y be a subspace nt‘XThen

@@ forxeX,yeY and ke K, [kx+ 3 = [dist(x, ¥)




(b) if Y be finite dimensional then Y is complete and hence closed in X.
.Proof: (a) For k=0, it is trivial

Kk« o0, |h+yi=1k||x+k"}12|k}inf|:-uﬁ (u=k'yel)=|H dist(x,Y)

(b)The completeness of a finite dimensional subspace Y of normed space X can be pmved
with the help of principle of mathematical induction on the dimension m of Y.

If dimY=I,thenY = fkyolk € K} = span{y, ) (yﬂ €Y). Let {y.}= {k.y.}be a thy
sequence in Y.

Then from |y, - ya| = |k = kpflvo] it follows that {k, }is a Cauchy Sequence in K. So,
k, ko eKand hence y, — kyy, € Y. This shows that ":‘ is complete and hence it is a
closed subspace of X.

Assume that every (m-1 )dimensional subspace of X is complete. Let Y be an m-dimensional
subspace of X and B ={y;,y5.... ¥ |be & basis for Y. ;

If {xo} = oyt + ka2¥2 + — + kom¥m] be a Cauchy Sequence in Y.
= ko3t + 2, Where 7, € spanlys., v} = Z.

Also, Ix- *I’I=Mk___| (X _}*1 +(z, - )Izlk.u kp.t_ldi-"{?uz] {N‘{ﬂ}}

and dist(y,,Z)>0 since Z is closed and y, € Z. From this it follows that {
sequence in K and hence k,, — k € K.

n 5,15 2 cauchy

Consequently {z,}={x, —k,,v,Jis a Cauchy sequence in Z. Since dim Z=m-1, Z is
complete and hence

(X =~kpyy)) > zeZ and x, = ky, +ze Y

Thus Y is cqmp!etc and hence closed in X.
Exercise 6.9 In proposition 6.8, show that
(8) xp, = kv + . + ky ¥ — x = kiyy + .. + kpygifand only if k, ; = k;
(b) Ixn}is botmdu-d ifaﬁ.d only if tkmjLHis bounded for j=1,2,...,m.
Note 3: An infinite dimensional subspace of a normed space X may not be closed. Let.
X =17 =the space of all bounded sequences of complex numbers

and Y= Cgy, = the space of sequences of finitely many non zero terms is a subspace of X.

T




dim Y= wand Y is not cllﬂsad. In fact,
Xe = (L2, Yn 00,.} € Cooln 2 1)

But x, — {L,1/2,1/3...} # Cgo. So, the proposition 6.8 is not true for infinite dimensional
subspace.

7. Compactness in finite dimensional normed linear space :

Definition 7.1 : A normed linear space is said to be compact if every sequence in X has a
convergent subsequence. A subset M of a normed linear space X is compact if M is compact
considered as a metric subspace X, that is , if every sequence in M has a convergent
subsequence whose limit is an element of M.

Propesition TE:A compact subset M of a metric space (and hence with the metric induced
by a norm) is closed and bounded. : ;

“Proof : Let x € M. There is a sequence {x, }in M such that x, — x. Since M is compact, a
subsequence jx,, jof {x,}converges to a point of M. But if a subsequence of a cauchy

sequence converges to a point then the whole sequence converges to the same limit. From the
uniqueness of limit of a convergent sequence , x must be in M. So, M is closed. :

Suppose M is unbounded. Then for fixed beMand n eN there exists y, € Msuch
that d(y,,b) > n. The sequence {y,} cannot have a convergent subsequence. This
contradicts the compactness of M. So, M must be bounded.

Remark: The converse of the above result is not true in general. Consider the space

i {{,n} . Y Jaaf* < m}with nomm defined by [fa, | = [ilﬂnff

If e,={0,0,...,0,1,0,...}, 1 being in the n™ place, then M= [e;,e3,¢3...}is a closed and
bounded subset of I* . M is closed as it has no accumulation point. In fact, if M has an
accumulation point p then there exists a sequence in M which converges to p. Such sequence

must be Cauchy. But this is not true since [e, - ¢ = J2. Also M is bounded since
fe.] =1 va = 1. But M is not compact since len }oar has no convergent subsequence.

The following theorem shows that the converse is also partially true in case of finite
dimensional normed linear space .

Theorem 7.2: In a normed linear space {IH] the following conditions are equivalent.

. {i) Every closed and bounded subset of X is compact,
(ii)  The closed unit ball |x:|<j <1}of X is compact

(iii) X is finite dimensional
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Proof :
()= (ii) The closed unit ball is closed and bounded. So, by (i), it is compact.

(it)— (iii) Let the closed unit ball be compact. If X be infinite dimensional, there exists an
infinite linearly independent set {z, z,,..., z,,..} in X. Let Z, = spaniz,, z,.., 2,},n 2 1.
Being finite dimensional Z, is a closed subspace of Z,., by Theorem 6.8. Clearly 2, =2,,,.
Since {zy, 3,y Zy, Zy4) }is linearly independent. By Riesz Lemma (6.7), there is some
Xy € Z,, such that . : :

Ix.] = 1and dist(x,., Z,) 2 %

Now ([x, }is a sequence in the closed unit ball having no convergent subsequence, because
e - xaf 2 —;— Vm = n, the set {x:|x] <1} cannot be compact. Thus (ii) imiplies (iii)

(iii) — (i) Let E be a closed and bounded subset of finite dimensional space X. To prove that
E is compact. Let B = {y,,..., y,,,}be a basis for X. Consider a sequence ,

{x.i = {kﬁ.lrl + kn.zy: + ..+ kl.ﬂlyﬁ}namE’

The boundedness of {x, }implies boundedness fk, ;}  (j = 1,.., m) [exercise 6.9, In fact,

ol

I_x‘_l =ikn.l.}'| +k, ., +...+i__.y,,”2[#,_;1dist{yj,};]wher¢ Yj = Spﬁﬂ{ﬂt,{j = L2,..,m) i
i}

By Bolzano-Weierstrass Theorem the bounded scquence f,;} has a subsequence
converging to ki. Let {x,,} , be the corresponding subsequence {x,}. Again fk,,has a

subsequence converging to ka. Let {x,,be the comresponding subsequence of {x,,}.
Proceeding in this way, after the m" step ,we have the subsequence {x,, , Jozt Of {x4}. Here

Xmn = k‘nm.IFI + ku..,.z?z * o+ knm.m?m
“ri.l-h kllm..j = k_.a.l:ld ln' -+ kil"l + k:}rz e k“}"m = K

Thus the sequence (x,}has a convergent subsequence {x,,,converging to xeX.
Since {x,,L,,LH < Eand E is closed, we have x<E . Hence E is compact.

8. Bounded Linear Maps:

Definition 8.1: A linear map F:(X.J))— (Y.}Dis called bounded linear map if F maps a
bounded subset of X into a bounded subset of Y.

Proposition 8.2 A linear map F:(X.}}y— (Y.}}) is bounded if and only if there is a positive
number M>0 such that [Fix)] = Mfx] vx e X..
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Proof: Let F be bounded linear map . {x:Jd=1}is a bounded subset of X. So we have a
positive number M such that

|F{x;'|zmshd vx(= 0) € X So, Ff s Mix] vxeX

It is also noted that the inequality also holds for x=0. Conversely, let
JFx) s MJx] Vx & X.and for some fixed M>0. Let B = {x: <] < r}be a bounded subset of X.

Then JF(x)] < Mr ¥x ¢ B. So, F is bounded in B and hence it is 2 bounded linear map.

Proposition 8.3 : A linear map F: (X, Jp — (Y.}Dis bounded if and only if F is

Proof: Follows from Theorem 6.2 (see equivalenceof (iii) and (v)) and proposition 8.1.
Examples of bounded linear maps 8.4 :

Example 1 If (X, ] is a normed linear space then the identity operator 1, : X — Xon a
normed space X = {0}is bounded. [L(x)=x VxeX] .

Example 2 : The zero operator O : X — Xonanormed space X is bounded . :

[Ox)0 VxeX]

Example 3: Let X be normed space of all polynomials on [0,1] with norm defined by
I = ﬁ!x{tﬂﬁtdiﬂ‘mﬁalopemw D:X - X,
L 4 . :

_ [D{x]h}:%x{t}is a linear operator but it is not bounded operator. If
x,(t) = 1,0 < t S 1,then B = {x,(t}n 2 1} is a bounded set, because
= = = .Bll i = n-1 = =
bl = o) = mp o = 1.Bu oocaf = ] = 2 = e
So, there exists no M>0 satisfying [D(x, ] < Mjx,] va 21

Example 4: If X=C[0,1], then the integral operator T : C[0,] = C[0,1] defined by
1
[T = | K, x(ode
1]

. Here K(t,t)is a continuous function on [0,1]x[0,1]

1 5 | P
T{ax, + fx,)t) = I K(t,r¥ax, + fx,Xr)dr = arI K{t,t)x(r)dr + ﬂjK (t,r)x,(r)dr
il a [N
= a[T(x, X1+ BIT(x,){0) =[aT(x,) + BT (x,)}(1), V't €[0,1]




So, T is a linear map. T is also bounded.

Since K(t, r)is contifluous on the compact subset [0,1]X[0,1], there exists kg = 0such
that K(t, 1) < kg ¥(t, 1) € [0,1]X[0,1]. Also, |x(t) < sup |x(t)] = [x]
ozusl.

1 I
Heace |7 =sup|(Tx)(0)}= ?'m’”h x(r.ertr)|d: < sup [|K (e, )x(ride <k o
eyt e . 0%

Thus [Tx] < kefx] vx e [0,1]. Hence T is a bounded linear operator.

~ Theorem 8.5: If a normed linear !;pam: X is finite dimensional, then every linear operator on
X is bounded. :

Proof : It follows from Theorem 8.3 and Theorem 6.1 (a)
Linear Space of Bounded Linear operators 8.6 :

The set of all bounded linear maps from a normed linear space X into a normed linear
space Y is denoted by B(X,Y). If Y=X, then we write B3, Y)=B(X). If Y=K, then we write
B(X,K)=X, called dual space or conjugate space of X. It will be shown that B(X,Y) is a
linear space. For T € B(X, Y), we can define a norm for T, called operator norm , as

follows : ,I’T‘I:aup"[‘x.l:lxlif}

Since JTx] < Mjx] < M vx with || < 1|1} is a finite unique number.

ruser [ < sellod W< =Bt so ol < e

Before proving B(X.Y) is a normed linear space , we see that the operator norm of
T e B(X,Y)can be defined in four equivalent forms. :

Propesition 8.7: For T € B(X,Y), if
I = swffrsf : pd s 1}, B = sup{fr] : | = 1}
r=swp{fix] : ] <1},  ag=inrle>0:rxf<afxfvx e X
thenfTf =ap =B =y

Proof: Clearly, p < [Tjand y < f1j

Foranon-zero x € Xand 0 < r £ 1, we have HTA:@ET{%]s@s@{ |n-|;|;|,= ,-}

Takingr=1, weget ~ |Tx| < || sup{|Tx] : || = 1} = Bix]
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s0,a05p. Taking0<r<l, ref s Elap{prsg : W <) =2
Letting r—1, we see that [rx] s fdforalixe X hence ao <y

Finally, we can show that |T| s a,. Consider a0 such that JTx] < ofx] forallx € X.
Taking supremum over all xeX with Jx]< 1, we obtain [T] < a. Since oq is the infimum of
all such a’, we obtainjr|] < a, - : ’

Thus |1} < oo < min{f, y}(since ao <P and ae<y) j
< (since <|T] and y<f1])  and the proof is complete.
Proposition 8.8 : If X and Y are normed linear spaces then |

a) B(X,Y) is a Banach space if and only if Y is 2 Banach space with respect to
operator norm; :

b) The dual space X is a Banach space.

Proof : We know thiat the set L(X,Y) of all linear maps is a linear space with respect to the
operations : !
AT+ T =Tix+ T

(oTy)x = o(Tx)
B(X.Y) is a subspace of L(X,Y). In fact B(X,Y)#® and if T, T2 €B(X,Y) and o BeK then

ety + BTy < [ofTid] + [BfT2x]

< |ojM, x| + [BM]x] for someM, > OandM, > 0

- chm, s HMEH"I
This shows that T, +BT; €B(X,Y). Hence B(X,Y) is a linear subspace of L(X,Y).

B(X,Y) is 2 normed linear space . For Te B(X,Y)andaeK,
NI J1| = sup{l'l‘r.l I = ijzo0

if T=0, T} = 0 andconverselyif |T| = 0, then |Tx} = 0 for eachx with Jxs1.

Hence forall x # 0, I’l‘[ﬁ] = Oor frx]=0

Also [’f[{:-] < 0. Thus Tx=0 forall x e X and hence T=0. | : -
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N Jar] = sup{ |(aT) o} 4] <1} =sup{ la |: e <1} =|alsup{ |7 <1} =laljr]
Ny)For T, T, € BX,Y), [T, + T = sup{Tix + Tox] : | < 1}

Forblst, [T + Toad s [ia] + [T < [T + )
Since it holds for all x with pd<1, |1, + To] < n] + |T)-

Hence B(X,Y) is a normed linear space . '

Let Y be a Banach Space .. We have to show that B(X,Y) is a Banach Space . Let {F, jbe a
Cauchy sequence in BQLY). For € > 0, there exists n; €N such that forall m,n 2 n,

IFrn = Fll <8
Then forall x € X and m,n 214,
(") JFa® - B ) < [Fa - R < &

this shows that fora fixed x € X {}’,[x}}ma(lauchysoqumem‘f Since Y is a Banach
Space , there exists y € Y such that I:mF,{x}—y

Define r : x - vbyF{x)-ylem F,(x).
It can be shown that (i) lim F, = Fand (ii) F € B(X, Y).

F Is linear . Indeed, for x;,x; € Xand a,peK

F(ax, +px,)=lim F,(ax, +ﬂx,}=:r[gﬁ;(x.l+ﬁ1iﬂﬂ{xﬂ =aF(x)+ fF(x,)

Letting m — «, we have [mm{*].

(**) [0 - Fax) s ] vx e Xandall n 2 n,

Hence (F - F,) € B(X,Y) Vn 2 nnm;ui since B(X,Y) is a linear space , we have
F=(F-F)+F, BXY)

Further from (**),  |F, = H| = sup{|F.(x) ~ Fo : [x] < 1} <& vn > n,.

Hence, lim F, = F. Thus B(X,Y) is a Banach Space if Y is a Banach Space .

A—+@

Conversely, let B(X,Y) be a Banach Space and X # 0. To prove that Y is a Banach
Space . The proof of this result depends on the following fact which is not yet proved. The
result will be proved at a later stage as a consequence of Hahn Banach Theorem . The result
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states that for xg(»0)eX, there is some f e X'such that f(xo)=|xo]=0and Jff = 1.

Consider a cauchy sequence {y, }in Y and define F,(x) = f(x)y, for x € X. It can be easily
checked that F, & B(X,Y).

F, is linear since
Fiax, + Bx)= f(@x + Br)y, =af(5)y, + B =)y, = aF (x)+ PF(x)
for all xl,x; eXand a,pek
Also, I, = 6l = [yl < llyoli = Ml where, M = [y, |

Next we see that {F, }is a Cauchy suiuan—::e in B(X,Y). For xe X,

15,0 = Fo o =17 . = vyl =1 @) b =vadsiA H 1. -2l
=l Pr.-»d ClA=D

So, |F, - F.||= suplF, (1)~ F. N sly.-ral<e ¥ nmzn,
=1

Because {y, }is a Cauchy sequence . Hence {F,},» is a cauchy sequence in Banach Space
B(X,Y). So there exists Fe B(X,Y)such that F, - F. :

Consequently, Falxo/fxol) = Flxo/Ixol)

Hence y, — yg = F(xp)/Jxo] € Y and this shows .that Y is a Banach Space

(c) Since K is a Banach Space , X"=B(X,K) is a Banach Space .
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Unit 2
Set [I:

The Hahn Banach Theorem, the natural embedding of N in N, weak and weak’
topologies, theupenmnppmgﬁmn,thﬂclmedﬁmphThWNM,Theﬂzmh
Steinhaus Theorem and the Conjugate of an operator.

9. The Hahn Banach Theorem

We shall need Zorn's Lemma in the proof of the Hahn Banach Theorem. Ti:e setting for the
lemma requires the knowledge of a partially ordered set.

Definition 9.1: A partially ordered set (p.o.set) i:n..a non-empty set P together with a (binary)
relation denoted by *<', which satisfies the conditions:

(i) x < x for all xeP(reflexivity)
(i) Ifx<yand y<x then x = y (antisymmetry)
(iif) Ifx <y and y< z then x < z (transitivity)

‘Partially” emphasizes that there may exist two elements x and y in P such that neitherx < y
nor y < X. Two elements x and v are said to be comparable if either x<y or y<x. So in a p.o.
set two elements may not be comparable. A p.o. set is called a totally ordered set or a chain
if any two elements of the set are comparable. If M is a subset of a p.o. set (P, <), an element
ueP is called upper bound of M if-x S u for all x € M. An element m € P is called a
maximal element of the p.o. set (P,<) if m < x implies m= k. A poset may or may not have a
maximal element. The poset (3, <) has no maximal element. The power set (P(X),c)of X isa
p.o. set for which X is the only maximal element.

Zorn's lemma 9.2; Let {FS}beapo,mSupposawmchnmmPhnsanuppcrboundm
P. Then P has a maximal element.

The Hahn Banach Theorem is an extension theorem. It asserts that every continuous
linear functional on a subspace of a normed linear space can be extended to the whole space
with preservation of the norm. This theorem also shows that there is a plenty of bounded
linear functionals on a normed linear space apd facilitates the study of adequate theory of
dual spaces. This theorem is due to H. Hahn (1927) for real normed linear space. S.Banach

{1929) rediscovered a more general form of it. H.F. Bnhnmblust and A.Sobeczyk (1938)
generalised to complex normed linear space.

Theorem 9.3 (The Hahn Bananch Theorem ): Let{X,]. | be 2 normed linear space and M a
subspace of X. Let f be a continuous linear functional on M. Then there exists a continuous
linear functional g on X such that f=gonMand |f[=]g] .

Proof: We c&mrp]ele the proof into three parts. Firstly we extend f from-M to N =span
Mu f z }, ze X \ M Then we extend to the whole space X in case X is a real normed linear
space. Lastly, we extend to complex normed linear space X.
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Step I : Let X be a real normed linear space and z e X M. Let:N be the subspace generated
by M and z . We can show that f can be extended from M to N by :‘"wim|?|=|r[,my.,

y2 €M, We have
fiyn - fiyn =fyry)s| £ |y -v: |
| nlf”}r,+z—(y,+z}lslfl |yt+z|+lf_| |y.+2}:
hence -|'f|]yz+z|—£<y,1s|r||y.+=j.-r{}.}+
So u:mp{—lflIy-l-'zlaf{y})s';u.tufufl[y+z|n[{y})?ﬁ

Let |.tbcanyrmlmunbuamhﬂmtuiusﬁ.ﬁnelmﬂﬂmhemﬁqulyw
asy+Az,yeM and A 3. Define F:N—3 by f(y+Az)=f(y)+Ap

Clearly fislinearon N.If A >0,

By +Az)=f£(y) + A =A{fQ"'y) + 1}
<a{ro'y)+8) (-asusp)

st o] [ty +z)-faty) (Since, <] []y+2]-f)
s|afle |ty +z|=l e} |y +rz] @
and fy+22)=A{f('y) +u |
al{f{r‘y]@} (raspsp)
=—{-f('y)-a | :
.'+-v‘f(y+.lz}sl{-f(l;'yj,—uislllf“l."y-r-zl (=l ly+z)-to)<a)
=le]ly+2z] - e @ .
So, from(1)and(2) {r*'{y+;.z)|s|f||y+1z| if A>0
If <0, . F{y;.tz;;f{mLu-:,{r(r-.-'y}m}za{f{r'ypﬁ} (-.-ys,emz-:n)_
allt'"l.."yytzl (-Bs]t]]y+z]-f(n and r<0)

- so, ~Ty+rn)s-afef|xty+z]| = | Fljxty 2| =[e] fy+22]
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and f(y +A2) =Affa'y) +is} _
sl{f{ "y]+ﬁ} | (ra<p and A<0)
it |]aty+2)) ‘ (4 elly+z]-tr<a ana a<0)

W Iel|+'y+2] =] e] |y +2e]
So,if A <0f(y+22)| <| £} | y +2z]
Hence T is continuous and linear. Further,
|+ <]e] - it |y;1z|51

So, Sup |f_[y+i.‘|.z}|'$lfﬂ, Thatis,  |f|<|f]

Atso | £]= sup |£(y)|< sfﬂtlf(y+lz}.|=|f|+ so, |E]=|t|

rfa yeizfa

This shows that f can be extended to f from M to N=span (Mu {z} ). Continuing the process
and applying Zomn’s Lemma f can be extended to the whole space X.

Step II: If N=span {Mu{z}]atx, memexists z, e X\ N. As in step 1, fcan be extended
to I from N to N’ =span (N U {z, }). Continuing the process we get a set

P-{{Njﬂ?isane:iensionoffﬁ‘othuNsmhﬂlatMcN, f=fon Mand
HEHR ’ '
Define an order '<' on Pby (N,f)<(N’,f)ifand only if N N'and f = ' on N. It is Easy :

to-check that (P,<)is a partially ordered set. We can show that every chain in P has an upper
bound .

Consider an arbitrary chain ¢ = {(N_,f.)} in (P,).
_ SetNo= U N, and§: N, — K be defined as follows:

Forx €Ng,x € N forsomea - define, §(x)=F,(x)
Eiswelideﬁnedmdlmm ¢is a chain .

Further §= fon Mand | gx)|=| .0 | <] & | | x| =] €] I x]-
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Taking supremum over all x with [x|<1, we have |g]<}f|. Also from definition
[£]<]g]. since the domain of f is contained in the domain of §, hence , |E=]f|-
Consequently, '

(No. E) is an upper bound of {(N,,f.)}. Zom’s lemma guaranties that the partially
ordered set (P,<)has a maximal element (N',g) in P. We claim that N' =X. If not, there
exists z, e X\N' and as in step I, there exists a continuous linear extension g on
N"=span(N'w {z,})with f=gg on M and |f|=|g, I.‘I'hus (N",g,)ePand

(N',g) = (Np.80)-

This contradicts maximality of (N',g).So, N'=X and g is the required extension of-f
from M to X. This proves the Hahn Banach theorem for real normed linear space. In the next
step we shall prove it for complex normed linear space.

Step 111: We note that if X is a vector space over ¥ then by restricting to real scalars mﬂy X
is also a vector space over 3. Let Xp be the underlying real normed linear space of the

complex normed linear space (X, ll} We consider the set M as a subspace My of X, .
Let f{x) = fi(x) + i f (x) = Re f{x) + i Im f{x).

Then x — f;(x) n-.R.n:f{x} is clearly real linear and | f,(x) l < | f(x) | = I f l ! X I So,
| £.]<] £ ] Thus £ is a real continuous linear functional on Me. Further, if{x) = fiix) = fi(ix)
+ i f{ix). Substituting for f{x), if;(x) - f2(x) = fi(ix) + ifz(ix). Comparing the real parts

We have, fa(x}= - fi(ix). Thus, f(x) = fi(x) - ifi(ix)

By step I, there exists an extension gy of fj on X, with Ig,':lf,l. Define,
g(x)=g,(x)-ig(ix) forxeX.

We can show that g is the required extension. For this, we need to show {(a) =gon M
(b)geX* and (o) [f|=|z|

(a) for xeM, g(x) = gi(x) —igi(ix) = fi(x)-ifi(ix) (g, is extension of f,)
=fx)
(b) glxs + x2) = gi(x1 + x2) — ig(ix, + ixz)
=gi(x1) + g(x2) - igi(ixs) - iga(ixz) = glxi}rgix2)
For reR, g(rx) = gi(rx)-igi(irx)= rgi(x)-rigi(ix)= r g(x)
glix) = gi(ix) — igi(-x) =gi(ix) + igi(x) = i {gi(x)-igi(ix)}=ig(x)

For xe X, suppose, g(x) =re" where r is positive real.
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Then, [ﬁx} | =r=¢"g(x) = g(e*x)
=g, (e*x) (v gle™x) is positive real)
=|s.c™x)|sfe | |x] (8 €X;)

Aali=] slel i
This shows that geX* and [g]<|f] . Also from definition | £]<|g]. So, | g]=] €]
and the Hahn Banach theorem is proved completely.
Consequences of Hahn Banach Theorem :
Thmrem'ilAIfNiummadIinnrmmdxnisanmmvminﬂlhmﬂmeﬁstsa
functional o in N* such that fy(xo)= |x,| and [£,[=1 -

Proof: Consider the subspace M=(x, ), the linear space spanned by xo and define f from M
to K by flaxe J=a|xo|. Since, for a fixed x in M , « is fixed, f is well-defined. Then

fla(axo)+b(Pxe)] = (ac + bf) [xol= aftoxe) + bf(Bxe) which shows that f is a linear
functional on M. Further,

fixo) = ]x,l and |f{ux,}]=iu" x,l:lax. | This shows that feM* and  f{xo)= Ix,l..
By Hahn Banach Theorem , f can be extended to a continuous linear functional f; in N* with
f=foonMand | f]=| 1, ]

So, fo (%) = fixo)= |x,| and | foxe) =] ax,] which shows that fe]=1. Thus |
I5l=]¢=1

Corollary : N* separates points of N. That is, for x# y there exists feN* such that f{x)# f{y).
Proof: Since x-y+# 0 and x-yeN, there exists by Theorem 94 , feN* such that

fix-y)= Ix —yl:&ﬁ. Coi:m:nml!y f{x) = f{y).
Note (1) f{x) =0 for all feN* implies x=0.

Theorem 95 If M is a closed linear subspace of a normed linear space N and x, is a vector
not in M, then there exists a functional f in N* such that f(M)=0 and fp(xg) = 0.

Proof: Consider the natural mapping T from N onto N{ defined by  T(x)=x +M for
xeN. Recall that%is a vector space.with M as its zero element and norm on % is
defined by |x + M| =inf{]x +m]:m e M},




Since meM, T(m)=m + M = M we write T(M)=0
T(xg) =%+ M = 0(Since xo¢ M)

So by consequence 1, there exists a continuous linear functional f in {%}" such that

F(xo+tM)=] x, +M | #0.
Define, fo:N— K by fo = £ oT clearly, foeN* and fo (M) = T(M) = 0
-
N ——NM : K

W

Further fo(xe) = KT(w) = flxo+ M) =] x, + M| # 0,
Thus fyeN* such that fo(M)=0 and fo(xg) # 0. This proves the result completely.

Thmum9’5LctheanurmedlinnuspacemdMasuhspaccan,quthmai
d(xo,M)>0. Then there is a bounded linear functional f on N such that fix) = 0 for all
xeM,f(xo)=d and Jf] =1 :

Proof: Let Mo = span (MU{xo)). Clearly x€M. If X €M then
d(ng}ﬁiangfx.mijMFﬁ , a contradiction . Hence xo#£ M. Every element of Mg can

be uniquely expressed as y + axo where aeK. Define, f; (y + axo) =« d forall yeM and
a ek '

Then f, eM®. Clearly fy is linear. Further for o =0, fo(y)=0<] y |. mmfurq;n,
|3,r+q.?:; |=!cr,.t ‘%y+x,|31u1d and so

| foly +ax,)| =] ad <] y+ax, |-
Hence | f,(u)| <] u | forall u e Mo This shows that fy €Ma* and |f| <1.

Since, fo (y + oxo) = ad for ally € M, .we have fy(-y+x) = d. Hence,

d=| fy(=y+xg)| S| fo | | %o~y | forally e M.

4, 5
thmmﬁlﬂgxn-}rlzd, 50._15Ht1,|




Thus we have fo € My* with | f, | =1. By Hahn Banach theorem, there exists f € N* such
that fo(y)=fy)=0¥yeM and |f, [=]f]=1.

And foxo) = fp(0 + 1.0) =1.d = d. This proves the theorem
Theorem 97 If X be a normed linear space over K and let x € X. Then
[ x = sup{jfcof: £ < X *and] £ <1,
proof: For x=0, itis trivial that - | x | = sup{| f(x)|: f & X *and] ]| <1}
Suppose x= 0. :
[f@ls el x|s|x] for an fexs win |r]s1
Hence sup{| £(x):] £ | <1,£ € X*}<| x | If possibe,
Letsup {| e £|sLeex*f<)x]
So, . |f(x)|<}x|- for feX* with |f]s<1
This leads to a contradiction to Theorem 94 . Hence
|x;|=sup|f{x]]:rexv and |f]si1}.

Theorem 98 If N is a normed linear space and suppose that N* is separable. Then N is
separable. But the converse is not true in general.

Proof: Let {f, :n eN}be a countable dense subset of N* .
Since | £, | =sup{ | f, (x) |:] x | =1}, there exists x, & N with

[x.|=! mﬂ!%’c}r_{x;}i‘mlrbelheclmd!imhuuuf{xn}.w;cﬁianw.ir

possible let F# N. By Theorem 9.5, there is a bounded linear functional £, eN* such that 7

fo(x)=0 for all x € F but fy #0. Since {f,:n eN}is dense in N* there is a positive integer ny
. 1 ;
with If, -t‘n.l-r::ﬂ f, | then

%lfhlslf,.(xn.)lwith”x,izl _. . _ g

=|f @)~ Lox,)| (o x,, €F)
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<]t -t fxal <21l
1<) -+ e <5l | +51%. A
Which is not possible. Hence, F =F= N and N is a separable space.-

SECOND PART: If N be a separable normed linear space then N* may not be separable.

Consider N-E:{{x,}:th_lﬁm}'. In the next section, it would be shown that
i nzl

¢* =mor{_in the sense that £* is imnmica]lyimmnrphictnm.Wc.mshnwlhat lis
separable but m is not.

Let X={x,}e! andsbﬂﬁl‘hcreisanintegnn.,wiih Z x_|{}éfmuzn_+

m=n+l

For each x;cR there exists y;& R such that i{x, -yi|-=}f2'.
i =l
Let F={y1Y2re- o000 cccrcccc}

Then d(X,¥)= Y | x-yi|+ i] x, | <e. This shows that every e-nbhd of X contains a
IKign, n,+l

¥ eM={{y1.¥2---Yn0.0,0..0cccv... } | neN}. Hence M = £and M is countable. This proves that
£ is a separable space.

But £* =m is not separable. Let y={a;,02,..... }be a sequence of zeros and un:s Then yem.

With y,a real number § can be associated whose binary representation is

. 0L a @
=Lt 4, 4.0,

rrrrrrrrrr

z 2 2"

We now use the fact that the set of points in the interval [0,1] is uncountable, each

i €[0,1]has binary representation. Hence there are uncountably many sequences of zeros and
ones. The metric on m, d.[i.?} =sup | X, =Y, l shows that any two of them which are not
equal must be of distance | apart. Lf we let each of these séquences be the center of a small
ball, say, of radius -;- , these balls do not intersect and we have uncounmbl_)r many of them. If

M be any dense subset in m, each of these non intersecting balls must contain an element of
M. Hence M can not have subsets which are countable, Consequently, m is not separable.
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10. Natural imbedding of N in N**: .

If N be a normed linear space then the set N* of all bounded linear functionals is a
Banach space. N* is called dual space or conjugate space of N, Similarly, dual space of N”
is denoted by N** and it is called the second dual of N. Each xeN induces a continuous
linear functional F, on N* defined by

Fx (f) = f(x) for all feN*.
Theorem 1071: N is a normed linear space, N* and N** are first and second dual of N.
Then the mapping x—F 5 i:sanisomn'inisomorphiﬁn.

Proof : To show J : N— N** is well defined, it is enough to show that for each xeN, J(x) =
Fyisin N** ., .

Fx: N — K defined by F, (f) = f{(x) is linear. For f, g N" and o, p €K

Fy (af + Bg) = (af + Pg)x) = af(x) + Bg(x) = oF (1) + PFx(g) and
| F.(f)|=] £(x)| <] £] | x | . Hence F, is a bounded linear map on N*.

Clearly J:N — N** is an isometry, that is | x | =] F, |. In fact,

[E. |=supl] E.0: £ ] =1 =swp {| €00 -] £ | =1}=] x| cThesrem97)
J is an isomorphism inte N**, |
Bax, +Bx,))(1) = Fyy o, () =F(ax, +Px;)
=af(x,)+Bf(x,) =aF, (f)+PF, ()=|oF, +BF, | ()= |aJ, +BJ, | (D)
So, J is linear in N**. I

Jis one-one: If Jx, =Jx,, then F, =F, and so F, (f)=F, (f)for all feN *. Hence
fixi) = f(xz) V¥ feN".

or f{x)-x2) = 0 for all feN *

. Then by corollary to Theorem 95, x; - x; = [) or x/= x2, Hence J is an isometric mmorphlsm
of Ninto N **. In general ] is not onto.

11. Reflexive Spaces :

A normed linear space N is said to be reflexive if ;N - N** d:rnad by [}x)] ()=
f{x), feN* is an onto isometric isomorphism.
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Proposition 11'1. A reflexive space is a Banach space.

Proof : Dual X** of X* is a Banach space. The natural imbedding J:X — X** is an isometric
isomorphism. Hence completeness of X** implies completeness of X.

Proposition 112 : every finite dimensional normed linear space X is reflexive.
Proof : In case of finite dimensional normed space, every linear functional is continuous. So,
B(X,K) =X* = L(X,K) =X' -

Also dim X = dim X* = dim X**. The one- one linear map J from X to X** must be onto.
Hence X is reflexive.

Some facts on reflexivity

1. A reflexive space is complete but a complete space may not be reflexive. For example the
Banach space C, is not reflexive.

2. €7 (1<p< ) is reflexive but £ is not reflexive.
12. Some Dual Spaces :

The dual space X* of a normed linear space X contains the zero linear functional, 8,
given by® (x)=0 for all xeX. The Hahn Banach theorem (9.4) has established that for non-
zero space X,X* contains non-zero bounded linear functional. We shall obtain
representations for the bounded linear functional on certain normed linear space and identify
their dual spaces. ;

Theorem 12.1: Let X be a finite dimensional normed linear space over K. Then every linear
functional on X is bounded, the dual space X* is finite dimensional and X and X* have the
same dimension. i

Proof : Let (X, il] be an n-dimensional normed linear spacgwith base {e€,€2,.....6x}. For
xeX, there exist a;, o2,......, 0 in K such that

which is a norm on X. Since any two norms on a finite dimensional space are equivalent,
there exists M>0 such that

ixutﬂMﬂxﬂ for all xeX .

Now, we construct a basis {f,}*, consisting of n elenients for X*. This would prove that dim
X=dim X*. -

Define  f(x)=a if x= Y a,e,
k=l




It is easy to check that f, is a linear functional on X. Also, | f,(x)|=[a, |5 | x|, sM]x{
for all xeX. : '

r T

Thus f, €X*. Next we show that {f,}"., is linearly independent and X*= span [ {f,}", ].
9

If 3a,f, =0, then 0 = O(a) = (38,1, X&) = adr =1,2,.....n). Hence{f,}2, is. linearly
k=] k=]
independent.

. ] nﬁl
Lastly , X*=span({f: 1 <r<n}). ForxeXifx= Zu,e,,rhénfurnn}rlinﬂrﬁamlinml g’

we have

Y e, =3 0 fe,) = 3608, where B, =£¢e,)
r=1 =] el
'ilﬁirf,](x}

So, f = B,f, . This shows that feX* and {£,f; ......., fu}in a basis for X*. Thus dim X =
dim X* and every linear functional on X is bounded.

Theorem 12.2: 'I11= dual space of R"isR".
Proof: Let (R") and (R™)"  be algebraic and topological dual of R ",

By Theorem 12.1, R*=R" . B = {&;=(1,0,.....0), &=(0,1,0,......0),... ,£=(0,0,......0,1)} is
abasis for R". Forx € R", x =3 e, and fix)= 3 o, f(e,)

k=] k=l

$a, f[e;)| < [gai]ﬂ[gcf{nn’]z = x| [i{f (CN )J’]}g

k=l k=l

|£60]|=

. K
Hence |f I < {):{f[h H!]

k=l
However, since for x = (f{e)),......f(es)) equality is achieved in the Cauchy Schawrz
" X
inequality, we must in fact have If |-(Zr f(e,) I’J . Hence the mapping of (R")’ onto R"
- k=l

defined by  f—»(f{e1),......f{e)) is norm preserving and since it is linear and bijective, it is
an isomorphism. This proves that (R") =R"

Theorem 12.3: {* = m. The equality is not in the set theoretic sense but in the sense that £*
is isometric isomorphic to m.
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Proof : Let eo ={00,....0,10, ..}, being in the nth place. We recall
¢={{xa}: 3| x,| <= }and m the space of all bounded scalar sequences. Clearly c,& £ and

Jef=1.1fX={x,} € then Enix,e, . Put S.-ixl:,.

Then | X -8, | = z| x, | - Since Elx.tmm:mmimm:nmﬂn,

such that | X -8, | < & for all n2n,. Hence limS, =¥ or x-g‘:xket Define T: £*—m,
by T() = {fe\ )i
We can show that T is the required isometric isomorphism.
T is well defined . | f(e,) | <[ £] | ec] =] £] for k21
This shows that {f{ex)} em. Further,

_ IT{I‘}':s:Elf[ea}lﬂlfl.........”.{‘}
T is linear : Forf,g et anda,peK

Taf + Bg) = {(of + Bg) ()i = affte, ). +Blge,))i =a TO +BT®

T is one-one: Since X _zxuel ,for fe £ *, t‘(:}-zx.f{q]

k=l

If T() = {flex)}uzs =0, the zero sequence, then f{X )=0 for all x€ ¢. Hence f=0 and T is an
One-oné mapping.

T is into:

Let z ={ay}em. Then Y x,a, is absolutely convergent for each Kby €. We

kzl
define g: ¢ - K by g({x}) =2 x,, . We chim ge ¢* and T(g) =z. Clearly g is linear in ¢
kzl
and

|8 |=

PIECHEPIEN |ak|5|zl El’tl‘lzl Izl
Kzl kzl kzl

This proves that ge ¢* and T(g)= {g(e\ )i =lCihy =2

So, T maps ¢ * onto m. Further | g <] z|




T is norm pr&erﬂng or isometry:

Let fe¢* and let z = T(f). As seen in the proof of T is onto, f = g where
g(X)= 3, (TD),

kzl

so, [t]=e|s|z] =) T ] | £ ] (from (*)). This shows that | T(F) | =|f |. Thatis, T is

norm preserving or isometry. This proves that £ * is isometrically isomorphic to m.

Theorem 12.4: C,* =/ in the sense that C,* is isometrically isomorphic to €.

Proof: As in Theorem 12.3, e, C,; and le_ '=i. Let X ={x,}€C, and let Sn=21tl:u ;
: K=l

Since limx, =0 dmexismanintcgmngsuchthan|xh|<a forkzm,. '
=l

[x-s, |=3.lf-| x|<e forn2n,. Thus X =lim$, = lim S xies =Txies
' K=l Kzl

For fe C,*, we have, | T6 9 b0 15 { (N TN o
kzl

We claim that {f(e,)},,, € £. Let n be a positive, and

oif fle,)=0
% = ledie e, ) 2 0

fie,}

and let y = iu,:,‘ﬂbviuusly, I}.r_ ISI '
r=1 ’

Fom(*)  fiy)=3)]f(e,)]

k=l

<itilvl=ltl

Therefore, 3| f(e,)|=] f(y.)

This shows that i| f(e,) | converges and i[ TCN1ES [ )
k=l .

k=1
Define T: Co*—5 £,by T(f)={f{es)}a21. We have seen that T is well defined and

1T =) it |=3| e [S] ] oonnnienon (**)

Clearly T is linear. We can show that T is also one-one onto and isometric.
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T is one-one: From (*), f{X)=) x,f(e, ).

kzl
T f={fe)}=0= {0,0,0,.....} = f{ex) =0for k> 1
Hence f{. EJ =0 for all X eC,. So, =0 and T is one-one.

T is onto:

Let {yx} € €. For each X={xy}€C,, the series ) x,y, converges absolutely.
i 5 ]
Define, 2.Co— Kby

g(X)=3 x,y, foreach (x}eC,
k=l

We claim geC,* and T(g)= ?i{yt }:_L'. It is clear that g is linear in C,

6] =| S xuve [ 3] % | [ 9l <ERI ) %
k=l k=l : k=l i

So, g is bounded linear on C, and T(g)={g(ex)}={n}.- Hence T:is onto. Further,
|glsif_}rl!. Lastly, T is norm preserving or isometric.
k=l
Let f €C, then T(f)={few)} and | f| < i|f{:.)|=|1‘{f}|5|t‘|.
k=i
Thus| T(F) | =| £ |- So, T is isometric isomosphism..,
Theorem 12.5 w}'={~whem,%+$=l,1}:p<ﬁ:'

Proof: As in the preceding theorems, every X={x} < £ has unique representation

a
X=X x.0

k=l

Fot fe €%, X} =3 X, f(€, ) rvvvvnen®)

k=l

Let  q be the conjugate of p and consider x , =i1f""} with

o itk <nandfe)#0

a, = fiey )

Difk>n or (e, )=0
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. By substituting this in (*), we obtain

ﬂnr?:ut"r{e.) =3 lecee )"

we also have, using (**)and (g-1)p=4q, .
) A 4

' | k % g i
<) £ | % | =k £ [Elu{“ |') -|f(§|f(ct)|“' "“] =|f|[§|f{eu}|"]

. & q n. ; }:
So, flx.)= §| fle,)| <|f}] [§| r{c,}|‘J |

Dividing by the last factor sod usirig 1- = 1.,
P 9q

-»

4 = B A
k=l -
As n’is arbitrary lettirig n — o0, we obtain
" % } :
: [Zl f{ct]r] 5'[',.....,"...{“”]
kal

Hence, {f{ex)}e *
Conversely, for any b={Py} € £9we can get a comresponding bounded linear functional g on
€. In fact, we may define g on ( by setting g(X)=)_ x,pB, where X=({x,}e ¢". Then g is
d d . lest .

linear and bounded follows from the Holder inequality .  Hence ge £°*.
Next we show that the norm of f&C, is'the norm of {f(et]}f_; in £9

Vo

| )] =| )':x,f{c.,}
2 Y
Hm,|r|5[2| r{e,}|] from (***)
k=l

. J4
We see that equality holds, i.e., I |s[Z| f{et}r)
k=l




this can be written as | £ | =] T(f) |, where T: ¢7*— £% defined by

T(D={f(e -

The map T is linear one-one, onto and norm preserving. So, £P * is
isometrically isomarphic fo €9 with l+i =191,
P

Examples of reflexive and non-reflexive spaces:

Example 12.6: £* (p>1)is a reflexive spa.r.::.

Proof: Let p>1 and q = p{p-1). As seen in Theorem 12.5, there is linear isometry T, of

eonto £ *such that(T,7)X = 3 x,y, forall X ¢ and forall ¥ ¢*. Similarly there is a
i=l

linear isometry Ty of ¢° onto £* such that (T,©¥ =3 x,y, forall X €¢® and for all

Fg!“, we have to show that J: €7 —» £7 ** 5 onto. H

Let Fe #° **. To show that there exists X € £ such that F=F%. Let g=F,Tp : £? =K Cleary
ge 9%, So there exists X € £° such that g=T,X | :

Let fe(¢#®)*. Then =T,y forsome Y€ s

and we have - F(O=RT,(3))=8(F) =(TeX)¥ = 3. x,y, <(Ty¥XX) =)

il
This shows that F=Fx or J(X) and J is onto. Hence ¢”is a reflexive space.
Example 12.7 The Banach space ¢, is non reflexive :

Proof : We have seen in Theorem 12.4 that C_ = ¢ and that there is a isometric isomorphism
T of Co* onto £. Forany fe C, ,T(f)={f{e;))}e £. Since T is one-one and onto, :

fiX) ixlf{ei}fw all X={x;}eC,

=l

For each fe C, , Fy(F)= 1 X) =3 x,£(€,) cerreverel®)

i=l

Let ={yde mCoandlet  G(f)= 3 y.f(e)forall feC; .......... **

al

We claim G eC; . G is clearly lincar and




el s Zhvleel =M Zieef =W To1=]51 ¢
We can show that G has no pre image under the natural imbedding J:C,— C_ . If possible,

let, G=F% for some X €C,

From (and (**),  3.x,f(e)=3 y.f(e) for feC;.

i=l

Since T maps Cand ¢, 2xe =2y (iF1.23,.....0)

= il
Hence X=¥ which is impossible as ¥ £C, and X C,.

Exercises

1. Is the dual space of every finite dimensional space, the space itself ? -
2. Obtain the dual space of each of the following normed linear spaces:

@  Clab)
G ¢

(iii) £,
(ivi Lyllsp<=)

3. Show that extension in the Hahn Banach Theorem is not unique, state conditions under
which the extension is unique?
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13 Weak and Wuk'tnpﬂogrfmnmrmedﬂlﬂr:pm

A normed ]incarspa-:e{N.i,l]isammlugicnlspm:c.tha:tﬁpologyheinginducedby
‘the metric d(x,y) =] x —y | . All members of N" are continuous with respect to this topology
which is referred as strong topology. There may exist another topology on N with respect to

which all the members of N” are continuous. Our interest is to investigate the weakest
topology on N with respect to which all the members of N are continuous. This topology is

known as weak topology of the normed linear space (N, | .|) which has very important role
in finctional analysis. For instance, a Banach space is reflexive if and only if the closed unit
ball {x: leﬁl}ls wmklycumpaci which means that the ball is compact w:thmpecthth:
weak topology.

Definition 13.1
Weak Topelogy : (N, I.I}isanmﬁmmspme,xeﬂandfeﬂ"

Consider S(x,f,g) = {yeN: |f[x]-t{)r} |< g},6>0. The unions of finite intersections of all such
S(x,f,g) on varying x, fand £ generate a topology wuhthnfsmﬂyufﬁ{x.f. £) as a subbasis of
it. This topology is called weak topology on N. :

Proposition 13.2:The weak topology is weaker than the norm (strong) topology.

Proof: S(x,f.€) is a subbasic neighbourhood of x. By the continuity of f, there exists 5>0 such
that | f{x)-f{y) | < £ whenever l x- yﬂ <b,

Hence the open ball Bs(x) < S(x,f,e) and therefore S(x,fg) is a mighhuurhood of x with
respect to norm wpnlugy This shows that the weak tupulugy is weaker than the norm

tapology .

Proposition 13.3 Weak topology is the weakest topology on a normed linear space (N, Il}
with respect to which all the members of N are continuous.

Proof: Let T be a topology on N such that all feN" are continuous with respect to T. We
show that the weak topology is weaker than the topology T. Consider weat subbasic
neighbourhood S(x,f,c) of x €N. Since £(N,T)—K is continuous , B = f " {yeK: |y-
fix)|<e}is a T-neighbourhood of x. Then B S(x.fe).  since ueB implies- | fu)-
fix)| < &. Hence S(x,f,) is a T-nbhd of x and consequently weak topology is weaker than the
topology T and all feX" are also continuous with respect to weak topology. This proves the
result.

Throughout weakly convergent, weakly cauchy etc. mean convergent and Cauchy
with respect to weak topology.

Proposition 13.4 : In a nonmed linear space (N, Il )




(a) a sequence {x,} weakly converges to x, in symbol, x, ——»x if and only if fi{xP]-rﬂx}

for all feN",
(b) weak limit of a weakly convergent sequeme is unique,
(c) every subsequence of a weakly convergent sequence is bounded,
(@) if x, —>xthen {]x, | Jis bounded.

Proof: x, ——»xif and only if everysubbasic weak nbhd S(x,f,€) of x contains all but a
finite number of terms of {x,] Equivalently, there exists nge.£ such that x,e S(x,f.) for all

n2ng. 4
'Ihisiseq;.lhrnhnt to | f{xs) — f(x) | <& for n>ny , that is, f{xa)—f(x).
Thus x, —=>x iff f{xa)-3f(x) for all faN'.
(b) Suppose x.—.-_"'—.-»xand Xy~ Y
=> f{xa)—>f(x) and f(x.}—:t{y] for all fe X'
=HRx)=1fly) - forall feX
= f(x-y)=0 . forall feX’
=>x-y=0 (consequence of Hahn Bam:.:h Theorem )
=x=y. . So weak limit is unique.
(©) X, —=>x=> f(x,)-f(x) forall feX’

V- =f(x,, )->f(x) for every subsequence {x,, } of {Xa}.

=5 X, — X

+ (d) The proof of this part follows from the principle of uniform boundedness which states that

“If {T;}is a hon empty set of continuous linear transformations of Banach space B into
normed linear space N with the propérty that {Ti(x)} is a bounded subset of N for each

vector x in B, then {| T; | }is a bounded set of numbers”

Xy —2sx = fi%)>(x) forall feN’
= | f{x,) | M for each feN’, for all n21

=|F,, (7] M for cach feN”
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=2 {I E. I J‘ is bounded (principle of uniform boundedness)

. {! X, I }is. bounded (since the natural embedding x—F, is an isometry)
Hence proved.
Theorem 13.4: Let {x,} be a sequence in a normed linear space N. Then
(a) Strong convergence implies weak convergence with the same limit
(b) The converse of (a) is not true
(c) If dim x < o, then the weak convergence implies strong convergence.
Proof:

(8) If {xa}strongly converges to x, then for £>0, there exists nge £ such that | x, -x | <&for
allnzng

For feN’,
Eﬂx.}-f{x}inlﬂx,—x] 1-5.’] fﬂ Ix_ -xl—rﬁun—m
So f(x,)—f(x) for each feN" and x, ——>x

(b) Let X=£°, 1<p<w and &,={0,0,..,0,1,0,...},1 being in the n” place. |, |'-1 for each n,
so that e, -»0 in X with respect to norm topology.

In the proof of €7 = ¢, we have seen that for fe £* there exists y={y;} € £* such
that

f(x) =) x;y, for each x={x;} € £*.
f=
So, fle,) = yo—> 0 since Z! ¥; r <, .
P

Hence ¢, ——>0in ¢* but ¢, -» 0in (¢*,].] ).

{(c) Suppose that x, ——xand dimX=k<eo.

. Il {ey,e,...8,} be a basis for X and

X, =0, e+’

Ve, +--+a, e, and x =aye; Fa e+ 048y




By assumption f{x,)—f{x) for each feX".
Consider fi f3,..., fi in X" defined by

(&)=L, i (e))=0 if izj

So, fj (xa)=;™, §; (=g
Hence, f; (x)— f; (0)= u,_;‘i"‘-' — @;. We readily obtain

i [ 4
ls-sl<| S -ae |<Sla-a,| 1o Js0mnse
. J=l i=l

So, weak convergence implies norm convergence
13.5 Weak” Topology:

For each xeN, if Fy(f)=f(x), feN" then F,eN"".Weak topology is defined for (N,
I, |} as the weakest topology on N with respect to which all feN" are continuous. Similarly,
weakest topology on N” can be defined so that all F,eN"" are continuous.

Definition 13.6: For fixed feN", xeN and £>0, let $'(f;x,€)={geN": | Fu(@)}-F.(f) |=!gtx)-
fx) | <e}. Varying f, x, and ¢, the family B*={ 5(f,x,€) }generates a topology on N'. An open
subset of this topology is union of finite intersections of members of B” and B is a subbasis
for this topology. This is the weakest topology on N’ with respect to which all F,eN™" are
continuous. This topology is called the weak topology on N,

Propesition 13.7 Weak' topology is HausdorfT.

Proof: Let f,geN" and f # g. Then there exists xeN such that f{x) = g(x). Suppose | fix)-
g(x) | =3¢ Consider, S, (f,x,€) and S; (fx,£). Then S,” and S;" are disjoint neighbourhoods of
fami g in the weak” topology of N”. Suppose he S,’~ S,". Then [h(x)-fix)] <¢ and | h(x)-
gZ{x) | <e. :

So, 3e=| ﬂ:x)-g{x}}s | fx)-h(x) | + | hex)-g(x) | < 2e, which is not possible. Hence S;'r Sy'=¢
and N is weak HausdorfT.

14. B(N) as a Banach Algebra:

14.1 Definition : A linear space X is called an algebra if a multiplication of the elements of
X be defined such that forx, y, zin X, .

(1) (xy)z=x(yz)
(2) (x+y)z=xz+yzandx (y+2z)=xy + xz
(3) alxy) = (ax)y=x(ay) for every scalar a.

The algebra is real or complex according as scalars are real or complex.
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An algebra X is called a commutative algebra
If (4) xy = yx for all x and y in X.
An algebra X is called an algebra with identity if there exists 1 X such that
l.x=x=x.1 forall xeX. .
/A Banach Algebra is a Complex algebra with identity which is a Banach space with respect
manorml.lsmhtjmfl}lxylsﬂxﬂ!yl and (2) lll=l.
Proposition 14.2: B(N) is a Banach Algebra whsp:N is a normed linear space.

Proof: We have already seen that B(N) the vector space of all bounded linear operators
forms a Banach space with supremum norm defined by - _ :

IT]=sup{] T || x| =1 f=sup | Tx || x | =1}1t can be easily seen that B(N) is
an algebra if multiplication is defined by :
(T T2)x =(T1(T2(x)) for T T2€B(N)
(1) [T TTs100 =T TaXTox)= Ti(T(Tsx)
and [(T: (T2T3))() =T ((TTay0)= Tu(To(T3x))
So, (TyTYTs=Ti (T:T)
Similarly
(2) Ty(T2+T) =T T+ T T; and (T +T2)T; =T Ty+TaTy
®) T\ T) =TT |
(4) The identity operator IeB(N) and TI =T =IT

O A E i":lfal (T Tx|
= sup | 0] < o | T | | T | <o T ]| Tl x<|m 1]

© J1=sop |10 f=sp] x}=!

So, B(N) is a Banach Algebra.

Note: (1) In a Banach Algebra multiplication is continuous. That is T,—T and S,—5=>
T.S,~TS. '

|T.5. -8} =] T.i5, -1+ @, - TS| | . || s, -S|+ T, -T]]s]




5MIS¢_SI+IT=.‘T“3! (since sup| T, [ <M <)

= 0ssn—o, So, T,5,—TS.
15. The open mapping Theorem :

This theorem provides a set of sufficient conditions under which a bounded linear
map becomes an open map. The Baire's Theorem plays the main role in this theorem which
states that : 5 T

“If a cmuplnte metric space is the union of a sequence of its subsets then the closum of at
least one set in the sequence must have non empty interior”,

We also recall that under a homeomorphism f(A) = f(A).

Theorem 15.1 If B and B’ are Banach spaces, and T is a continuous linear transformation of

B onto B', then T is an open mapping. ¥

The most difficult part of the theorem will be covered in the following lemma.

Lemma: If B and B’ are Banach spaces, and if T is a continuous linear transformation of B
onto B', thenthemgeufmhopensphmmtmdmmemgmofﬂmmmsmupcn
sphere centered on the origin of B'.

Proof of the Lemma:

Let S, = {x EB[ | x |<r)ands; ={xeB‘I | x| <r }.Clearly T(S)=T(rS,)=rT(S)). So, it
is enough to show that T(S,) contains S,’ then we shall show that T(S,) contains S,". Since T
is onto, we see that B'=| JT(S,) . SinceB'is cornplete by Baire’s Theorem, some T(S, )

has an interior point yo, which may be assumed to lie in T(S, o )+ [If yo does not lie

1:1?['!{!5,,&I ),it must be a limit point of T(S,, )-So, the open sphere centred at y, and contained
in T{S.‘r Jcontains a point of T(Snﬂ Jwhich in turn becomes limit point of T{S,"u )]- Clearly,
De "I'l{S“II )=¥o. Since translation is a homeomorphism, 0 is an interior point T{:“»,,'J )<Yo,

Also T{S,._a J-voE T{Snﬂ ) T(S,n }=T{Snn +Snﬂ )= T{Enu }, since - Snﬂ = S.n . Then
T[Snﬁ )-¥o= T(S, . )-¥y (since y—y-yp is a homeomorphism and under

homeomorphism f, f[ﬁ}:ﬁ_ﬁ} < T(Sz,, ) -So, the origin is an interior point of
T(S,,, ) = 20,T(S,) = 2, T(S,),

Since y—(2no)y is hnmmnmrphi.s;mi It follows from this that the origin is also an interior
point of T(S,), So S_ - < T(8,) for some ry>0.
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We conclude the proof by showing that S; < T(S;), equivalently, S:% = T(S;). Letybea

vector in S, = T(S,). So, there exists a vector xi1eB,| x, | <1and|y-y, | <94 where
yi=T(x;). Next we observe that 5:9/ < T(S,). Then y — y.eSZ% implies there exists x;€X,
4 4

*“zl{.’éﬂﬂdlff'ii}-jf; |.<'.:r;wh¢re y=Txz. Proceeding in this we get a ge:qumm
{xu}cﬂmhﬂmtlx. l{};._;mdly-(qu.}r! +'"‘"Y.]I“-}§-1Whmh‘Tﬂn~

If we put Su= X; + X2 + ...+Xq, then forn>m

IS, =S | =] Xews + 2. o Fo PO N {2_L,+.,.+ 2:“ —»0 as n,m—.

So, {S.}is a Cauchy sequence in B. Since B is complete there exists a vector x in B such that
Xqo—>x and

|x, |=]tims, | =], | =t} + %, x| S Tienc] HEN RN

y 1 1
< l|:n[l +E+“.+F-T)$ 2<3

This shows that x is in S;. F_‘ina‘lly

TIx}'T[li:nsn }-Iim(TSn}ﬂlim{y. + yy +...+ ya)= ¥ from which we see that y = TxeT(S)).
Thus S, < T(S;)or 5:%: < T(S,). This proves the lemma and with the help of it the open
mapping Theorem can be proved easily.

Let G be an open susbet of B. We have to show that T(G) is open in B'. If y is a point in -
T(G), y = T(x) and x is in G. Since x is an interior point of the set G, there exists an open
sphere S, in B such that x+S,cG. By the lemma, there exists r,>0 such that S, cT(S,).
Finally, y +8, cT(x) + T(S)=T(x+ S,)cT(G). This shows that every yeT(G) is an interior
point of T(G). Hence T(G) is open and the Theorem is proved.

16. The Closed Graph Theorem :

If B and B’ are Banach spaces, and if T is a linear transformation of Band B, then T
_is continuous if and only if its graph is closed.

Proof: Suppose T:B—B"' is continuous linear. To prove that graph of T=G=
{(x,T(x) | xe B}is a closed subset of the product space of BxB’, the product topology of
which is equivalent to the topology included by the norm defined on BxB' by

I{x‘ﬂlmr -;len +l Y'u'




Let {(xnTxa)}be sequence in G and [x,,,Tx.,} - (x,y). It is sufficient to show that (x,y)eG,
equivalently, y=Tx.

since, |(x,.Tx,)-(x. Y ]=] x, -x.Tx, -9 | =] x, - x| +] ™%, -]

(X T%s) = (x,¥)=%,—x and Tx,—y. Since T is continuous, X,—x = Tx,—Tx. From the
uniqueness of limit of a convergent sequence in a normed linear space, it follows that y = Tx.
Hence (x,y)=(x,Tx)eG and G is a closed subset of BxB’. ;

meﬁrscly, suppose the graph of T is closed. To prove that the linear map T:B—B’ is
continuous. Define a new norm _|'.|in B by | x|=]x [u +| Tx |rwhere |-1, and]. |, are

original norms of B and B’ respectively. With this new norm |.|, , the continuity of T can
be proved immediately. It follows from

| x|, =1 x|, +] Tx |, = x| hat T®, |.|)> T(®", |.| &) is continuous . ...(*)

The proof can be completed by showing that |. | -topology and [} s -topology are the same.

Equivalently, the identity mapping Is:(B, |.|)~(B, |.| ») is a homeomorphism. This will
follow from the open mapping theorem if we can show that (i) Is is continuous linear and
onto map and (2) (B, I I]uaﬂanachspnc: The continuity of Is:(B, |.] }>(B, I |g}

follows from the fact that | 1,(x)| =] x|, s]x], +] 7], =] x |- Also 1s is linear and
onto. For completeness of (B, | .| ), let {x,}be a Cauchy sequence in (B, |.| ). Since,

Ix_ -xml ==I X, —xm|+lTxn -Txmlnr

{xa}be a Cauchy sequence in (B, |.|) and {Tx}be a Cauchy sequence in (B', |- o)- Since
both the spaces are complete, there exists xeB and yeB’ such that Exﬂ _"!u =0 and
fTx, - y]g —0 as n—<o. Then,

. I(NMTI“}—{XJ‘H,K =| X,-X L +HTI. -ylk-r‘rﬁasn—mn.

Thus the sequence {({x,,Tx,}}in G converges to (x,y). Since G is closed, (x,y)eGand y = Tx.
We complete the proof, showing that | x, = x [| =0 as n—.

%, -x[=lx, = x|y +] T0x, =0l =[xa—x], +]Tx. -Tx |,
=| X, =X H“ +ﬂ Tx, .—yIH,—}EIasn—m:_

S0, Xg—x in (B, |[[] Hence B is a Banach space. By the open mapping theorem, I:(B,

| )-8, |.]w) is 2 homeomorphism. So, I | and H : u g are equivalent.




So, T«(B, |.|e)(®", || &) is continuous as seen in (*). This proves the theorem.

17. Banach Steinhaus Theorem (The uniform Boundedness Theorem ):

Theorem 17.1: Let B be s Banach space and N be a normed linear space. If {T;}is a non-
empty set of continuous linear transformations of B into N with the property that {Ti(x)}is a
bounded subset of N for each x in B, then {| T, | }is a bounded set of numbers; that is, {Ti}is

bounded as a subset of B(B,N).

Proof : For each positive integer n, the set Fy={x:xeB and I T.(x) f<n for all i}

is clearly a closed subset of B. Indeed, for any xe F, there is a sequence {x;}in F, such that
xj—x as j—. For each fixed i, I'I‘,-{xj)ISn. Taking limit as j—»oo, we obtain
| T:()|| < n for all i. Hence x&Fy and Fy is closed. :

For fixed xeB, there exists neN such that | T,(x) | < n for all i

So, xeF, and hence B=|_JF, . Since B is complete, by Baire’s Theorem some Fy contains an

n=]

openball,  Bo=Blxo)Fi

Let xeB be arbitrary, not zero.

W:mtm+nwhmvz5m . Thcnﬂz-—xal=l*fﬂﬂx|=%ﬁisuum

zeBocAy. We thus have [T,z < k for all i. Also | T;x, | < ksince xeeBo.

For all i,
| 00| = T[“;w (since, z = X, +7%)
1
=; I T;{z-x,]i
| 2
L )<L
: 4k
for al = o
Hence, for all 1 ET,I ls:JIEJT,{x}I{ .

Thus we have that {| T, | }is a bounded sequence of numbers,

Appl}"ilng Banach Steinhaus Theorem, we have the following useful result.
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17.2 Theorem : A non-empty set A of a normed linear space N is bounded if and oaly if f{A)
is & bounded set of numbers for each feN".

Proof: Suppose A is bounded. Then | x | <k for all xeA and a fixed ke3;. Then
i l<] ] x| | |xforal xea

Hence f{A)={f(x):xeA}is a bounded subset of numbers.

CﬂlWH'S&l}r, suppose {f{x): xEA}ha a bounded set of numbers for ecach feN". We recall,
F,eN" where Fy(D=f(x) for all feN". So, {F.(f)} is bounded at each feN. Applying Banach
“Steinhaus Theorem {| F, |:x € A}={| x ]: x € A} is bounded. Hence A is bounded and the

result is proved.
18. Conjugate Operator T :
Let N’ and N” be the algebraic dual (vector space of all linear functionals on N) and
tnpologm] dual (vector space of bounded linear functionals on N) respectively. Clearly
N'cN'. Let T:N—N be a linear operator. Thnupemtancanheumamdmmmupcmur
T:N'-»N’ defined by [T'(D}(x)=RT(x)).
T'ls well defined: To show T'(f)eN’. For x;,x;eN and scalars o and B,

[T'(H)ex: + Bra) = f{T(ax; + pxz)] = flaT(xi) + PT(x)]

= af[T(xy)] + BAT(x2)]= o[ T'(H)(x:)] + BT (DI(x2)

T’ is a linear map: For f,geN’ and scalars o,p if xeN; then

[T'(af + Pg))(x)= (af + PE)T(x))= af{T(x)) + Pa(T(x))

= a[T'(D)(x) + B[T'(&)x)= [aT() + BT (8))(x)

| This shows that the map T is also linear.

Proposition 18.1: If TeB(N) then T™= Tl;". :N" = N'is

(2) well defined, that is, T'(N)JcN"  (b) T is bounded linear ~ (c) |T‘H;[T|

(T, is the restriction of T" ﬁr’om N’ to N")

Proof: (a) Let feN". To show that T'(f)eN’. As seen m the preceding discussmn, T'(f) is
linear.

Let S be the closed unit ball in N.
T is continuous linear=T(S) is bounded in N=>{{T(S)) is bounded in K

= (T'S) is bounded=T'f is continuous.
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Hence T'(N")cN" and T is well defined.
Remark: Retracing back, one can easily see that T:N'—N’ is continuous.

(b) T is linear as we have seen that T' is linear. The continuity of T" follows from the fact
that

|.T {f}.|=ﬁ1|£|n--{f;](x}[ =ﬁ£| f(T(x)| s?ﬂﬂ fTx ]

-salel 1] Ix]=1 el 4]
So,JT'®}<|f]] T and T is continuous linear. Also Is:;g]'r‘(f}|s|'r|_.“ Hence
IT|=IT]-

. We recall that, J:N—>N""x—>F is an isometric isomorphism.

Then | x| =| ¥, | = sup| 1. 0| =supf 1] =g (10|

=sugf £ || T ] |0 =]x1 |7

Irpa

So,ls:llEITxlslT'InnlelslT'l, Thus.IT'|=|TI.
Proposition 18.2: If T}, T, are bounded linear transformations and 1y the identity operator on
anormed linear space N, then .

(@) (aT, + BTo)=aT, + BT M)(MT)=T'Ty @I =1, :
Proof:(a)

[(@T1 + BT2) (DI=A(@T: + FT2Xx)}= flaTi(x) + BT2(x)}= ofT: () + B(T2 (OXx)

=[a(T, () + BTz (MI)=[aT) + BT WD)(x)  forall feN and all xeN

Hence (a) follows,
() [(TVT2) (DI00)= fI(Ti Ta)x] = I TH(T2x)] = (T2 H(T2x) = (T2 (1 DI={(T2 T NOIx)
for all feN" and for all xeN. Hence (T;T2)' =TT}’

() [N (D)%) = £y (x)) = f(x) =[1, . (O}x)

So, I, =1, .




Exercises (problems)

(1) Produce counter examples to show that open mapping theorem and closed graph theorem
may not be true in ordinary normed linear spaces (ie. in non-Banach spaces ).

(2) Explain with examples the dlfferencm between algebraic isomorphism and topological
isomorphism. Describe the connection of topological isomorphism with the continuity of

a linear operator.

(3) Construct an unbounded linear operator. Can we construct an unbounded linear operator
" on a finite dimensional Banach space?

{(4) State two Theorems guaranteeing that a Banach space will be a Hilbert space.

(5} Sm:ﬂvcrmmswhjrhmtm:innBamizspanchmnmmina:HiMspme,

aaa
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HILBERT SPACES and FINITE Diﬁ_lEHSlﬂNAL‘
SPECTRAL THEORY

. Definition and Examples :

We have already mld:rad normed linear spaces in which, we feel me absence of
analogues of the familiar dot product

ab=ab, +ab,+ab,,
|al= -M]sl.:= 4 a_f-+ a:

and the condition of orthogonality , namely, a.6=0. In this pait we shall study the
generalization of such notions in the form of inner pmdur:t space and Hilbert space.

Finally we shall study the generalization of the notion.of ﬂgmvactpr for Hilbert space
operators which we have studied in the matrix theory in under graduate course . Historically

. this study is older than that of the general normed  lincar spaces. Hllbcrj. spaces is named in
the honour of David Hilbert who initiated the whole theory in 1912 on integral equation .
However the present form of notations and terminology is:due to E.Schmidt (1908).

Definition 1.1 . An inner product on a conplex vector space is 8 mapping of X x X into the
scaler field C ; that is , with every pair of vectors x and y there is associated a scalar written
as < x, ybandlscailadthnmnerpmdm:ﬂfxmdyﬁsuchthatforallvnctorsx,y,zand

scalars o we have ,

l. <x+y,zz=<x,z>+<y,z> [I..inuﬂtyinﬁntnrhhle]
' - hH K

2. <ax,y>=a<x,y>

3. <x,y>=<y,x> ~ [Conjugate - Symmetry]
4 <x,x>20 and <x,x >=0 ifandonly if x=0

[ Positive - Definiteness]

Neote :  Another notation for inner product used authors is ( x ,y ).To avoid the
confusion of inner product-with ordered pml‘( %Y, iall strictly use the symbol <x,y
> for inner product . :

Deduction : In an inner product space

l. <ax+Py,z>=a<x,z >+f<y,z>

2. <x,By>=p<x,y>

3,{xlﬁ}r+-rz}=;ﬁ{xly}+;{1,z>
Proof: l.<ax+Py,z>=<ax, z>+<fy, z>

=g<x,z>+p<y,z>
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: 2<x,py>= <@y, F&’"ﬁ‘:]*: x>
-ﬂ{y,;}-ﬁ{x,y?
I<x,pytyz>=<xpy>+<x,yz>

=f<x, y>+y<x, z>
Proposition : In an innier product space ( X , <>)if | x | =+/<x,X > then -
a Ix+yll2+lix-yli?=2x[|2+2] y ) * [Parallelogram Law ]
b. d<x,y>=|x+yf -Ix-y i +ilx+iyh2-ifx-iy}>

[ Polarization Identity |

¢ I<xy>Isix My | [ Schwarz Inequality |
d <x,y>=0 forall y €X ifand onlyifx =10
e {x,ﬁ.l‘]iutmmulliml:rspm.
inner product is continuous
Proof :
. Ix+yl*+Ix-yi?

= <x+y , x+y>+<x-y,x-y>
= {x,x>+<:,y>+éy,x>+<y,y}+¢;,x>+-r:x,-y:-+-=:-y,x:>+<*yl.y}
- ZEI[[’Hi.r>+-=#r.x>-<x,r>~‘fr,x>+llril‘Hr.:ﬁ*
=20xI*+2Qyl*
b lIx+yl2=<x+y,x+y>=|xj +<x,y>+<y,x>+[y|’
X +igll? =il x| 2+i<x, iy >+i<iy, x> +ifl iy | 2
C=ifxf<xiy>-<yx>+illiy)?
fx-yi? =-x P+ <x, y>-<yx>- |yl
=-fx ¥ +<x,y>+<y,x>-|y|’
fx-iyl>=-illx||*+i<x,iy> +i~ iy, x>-i]liy[|?
=-if[x+<xy>-<yx>-ilyl’
Adding we have . _
Ix+yll2 -l x-yll? +ix+iyl? <[ x-iyl =4 <x,y>
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<. For any scalarA € C

Osjix+ylP=<Ax+y,Ax+y>

o —

=A<, X>+ AL,V + Ay, >4+ <y, ¥
=|AR I xF+r<x >+ A<y, o+ || ¥

-<X, Y >

T where x =0. Then we have,
9 x

Take A=

ﬂ'sl <xy> E ';l <xy>| _| cx,y}f-

+ Fi
i< =l i=r ol

or *"‘"—;?H?—[ Ayl or ke SIxF Iyif

Hence, j<x,v>| < lix|| |lv]l. The inequality becomes equality if x=10.
Second part: If { x,y } is linear dependent , then x =ay and .

k<x, y>| = [<ay, y>| = |a] [<y.y>]

P iR =<ay, ay> <yy>=laf <¥¥> <yy>=lof <yy>?

So [<xy>{= Il Il =lod I<yy>l
Let <xy>f'=<x,x><y,y>.Thenif z= <y,y>x -.*CK,PI'F.
We have <z, 2> = <<y,y>x - <X,y>Y, <Y,y>%- <x,y>y >

= [y <x,x>- <y,y> <y,x> {.x,}.-:r

<X, y><y,y><y x>+ay <y,y>

=1,
Hencez=0and <y,y>x'= <x,y>ysothat { x,y }isa lincar dependent set.
d. Suppose <x,y>=0 forevery y € X. Thenin particular<x,x>=0sothat x=0.

Conversely , suppose x =0 .Then<x,y>=0forevery ye X.
e Nj) . |x|=1||'<x.y:>20

x=0=><x,x>=0 and [xl|=0= J<x,x>=0=sxx>=0=>x=0
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N2 Jjx] = <ax, ax>=a a<t,x>=|af x|} So that jjox|| = e [Ixi]
Ny)  lixtylf = <x+y, x+y> |
=i+ <x,y>+<y,x> +|ylf = kI’ +2Re<x,y> +|ylf
<[P + 2 Jex,y>] + [yl < BixIF + 2 kel iyl + iyl [Schwarz Inequality ]
= (il + Iyl
Hence , [jx + yi| < |Ix]| + lyll. Thus (X, ||. ||} is a normed linear space .
£ T?pmvememnthuﬂt}rufinnerprmct,itismughmshawthat
Xa = X, Ya = ¥ = Ka, Yo> —> <K, ¥>
[<Xas Yo *ﬂ.ﬁﬂl‘?imru*-%)'}+<xnb’>-'“¢“‘|
< <X Y = Y21+ o = %, Y1 S Ixall [lyn - ¥l + lI%a = x| Iivl
—+0 simcx..-—u,y.—naﬁdt[lx.ll}isborundmd.

Definition : An inner product space ( X , <> ) is called a Hilbert space if (X,[}]) is 2 Banach
space with the norm induced by | x |=J<x,y>.

Example 1. : The uﬁjtaryspanﬂ C"is a Hilbert space with inner product defined by
<X,Y>=X Y1 +X2 Y2t eeeernn +Xa Yo
where A =(X), X2, X3, -...,%u) A0A Y =(¥1, ¥2, Y3100 ¥)
I <x,x>= X X3+ 4+X020509 <x x>=0ifand only if x=0 .
2. <OX,y>=0X; Y1+ 0Kz Y2+ ocreentOXg Ya =R <X,Y>
3. <x+y, 2= (x+y1) z1+ (xoty2) 22+ oo HXet¥n) Zn
=Xy ZtF oo hg Z)F (Vi 21t e Ya Zo)
=<x,z>+<y,z>

Hence (C",<e>) isan IPS and | x| =y<x,x>=fx] +x3 +---x]

so that (C" |LI}) is a Banach space .Thus C" is a Hilbert space .

Example 2. : L*[a,b], the vector space of all continuois complex valued functions on [ a, b]

1
b . A
forms a normed space with normed defined by I X I = [J'|x[1)i' dl]
a
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product as follows :
h [
<xy>= [x(Oy(0) dt

Hence L?[a,b]isan1 P S but not a Hilbert space .

Example 3. : £ is a Hilbert space with the inner product define by

e Sy i"i;i_

i=l . - L]
T
£ is already e o be a Banach space*with nomm |x|=[)':lx,|’ ? induced - by inner
pmductr 3 =l
We have scen thatin I P S, the parallelogram law
Il + v + flx ~ yi? = 21t + 2lyif

holds. Hence , if in a vector space parallelogram law does not hold then it can not be an inner’
product space. This idea is used to find examples of vector which are not inner product
spaces. '

‘Example 4. The space £* with p=2 is not an inner product space and hence not a Hilbert
space. : :

Proof :It is enough to show that the parallelogram law is not satisfied for p= 2.
Take x={1,1,0,0, ...}efandy={I,-1,00,....} .

1 1
Ix]=2% |y]=2"
Ik +y =142, 0,0,.... 1= 2, [ix—yil=1{0,2,0,...}=2
Therefore,  [x+ylf +[x-yl’ =8

2 2 2
But 2 [P +2 [lyl? = 22P +2.2° =427 «8,ifp=2.

Thus fix + yl + [x = yif # 2P + 2lyl . So, &°(p+2 ) is not an 1 P S and hence not a
Hilbert space. '

Enmplas.'.C[a.b]i;nnianl-?ﬁmdhmnmaHilbcrtm.

For x e C[a,b],lixl|= sup|x(t)].
asish




if x(t)=tV tefab] then[jxj}=1 andif y(t) = (t-a)/(t-b),

we have, - |yl = sup|y(t) =1
astsh
t-a|
oo
‘ t—a
lx— ¥l =- -WF|!"E|=|

and |jx + yii* + [x - ylI* = 5 #2 [ix|* + 2lly|’. So, C[a,b] isnotan IPS.
Theorem : If the norm of a Banach space X satisfies the parallelogram law then the Banach
ﬂpanetsaﬂﬂbm:rpmemthﬂm lmerpmdmtdcﬁnedby

. 4<x: .'a'='=ll='t+)fllJE le v +1trx+131i -*Ibt iyl
Proof: (1) 4<x,x>= [2x| +ilx+ x|’ - i Jx - ix//*
= 4+ i2 - i2 = 4
So, 41|;ﬂ’ = <x,Xx> Hmcn{x,xb-zﬂ and{x,x>=ﬂ if and only if x = 0.

@ ’f'- ‘**f"'-tbmru’ Ik — yift= lllx*irlf’ﬂﬂx iylf
-ib'+xllz Ilr x| - lly - —ixj? +ifty + x|’ : "
"4':.‘1" x.‘:- .

Sﬂ', < K.}r};: {x'r}

@) 4<x +z,y>=fx+z+yf - [KEz-yiP +ilx+ 2+ iylP- i o+ z—iyiP

1 2
| (x+2)s z! | (x-2)+(=-2) H
r4¥| ;
. +;| z+ jl i I1|’ z-—:"Ir

2 2
--ZI)H%l +2|z+%i -i'x—'zlz-llx—-;—rl *le—%l +]x-zf +

iy | N Ay wl 1 [ s '
iZl:H-%‘ +i2lz+-zx| -in-zlf—iZ‘x—%I *izlz-%ﬁ +if x=z| _

y y
=R<x,= +B -
E_r.z::» <3




So, <x +z,y>= 2<x.—zx:>+2-::z',1:r

2
Putting z=ﬂ,{x,}'>=2f-‘x,§> [Since from the polarization formula <0,u> =0 YueX.]

Hence, <x +z,y> =<x,y>+ <z,y> forallx,y,z inH
4. For positive integern , <nxX,y> =n<x,y>
Itistrue forn=2,since <2x,y>=<x+X,y>=<x ,y>+<x ,y>= 2<x,y>
Suppo&e{ﬁx,y} = n<x ,y> then
<(n+l)x ,y> =<nx +x,¥y> = <nx ,y> +<x,y>
- n< x ,y> +<x ,y>
=={n+1}-=:x,;‘,r}
So,<nx,y> = n<x,y> forall positive integers n. Itis also true forn=0.
From polarization formula ,
4<-x,y> =[x +yf - fFx -yl i fx + iyl - i | x =il
== {lx+ 9P -l yIP +i fix + iyl - e iylf) =- 4<x,y>
Su,*:-.x,jrl‘*--ﬂx,jf:*
If n=-mis anegative integer then

<X ,¥y> =<-mX ,¥>=-<mX ,¥y> =-m<X,y> =1<x ,¥y>

if n=2 is a rational number , then
q

p<x,y>=<px,y>=<q Bx ,y>=q<Bx ,y>
q q

P

sothat<nx,y>=<EBx y>=F

q

<X,¥>=n<x,y=>
If abeanyreal then <ax,y>= <limr,x,y> wherer, is rational .
3 =y
= lim<rXxy>= limr, <x,y>= a<x,y>
e A—eal

Again from the polarization formula ,

d<ix,y> = fix+ yiP- - i + llix + ilf - iix - i
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=i {lx + I~ Il - yif* + illx - iyl - il iy
= i4<x,y>Sothat <ix,y>= i<x,y>
Lastly if n = o + if be a complex number, then
<nx,y> = {{q+ij}}x,y>=-cqx+jﬂ;_y:-
‘ =<ax,y>+<ifx,y> =a< Ly>+i<px,y>
=a< X, y>+ipix,y>=(a+if)<x y>.

Thus the Banach space X satisfying the parallelogram law is an inner product space and norm
is induced by the inner product by the relation.

<x,y> = ||x|’.  Hence X is a Hilbert space.

Orthogonal Complements :An element x of a Hilbert space H is said to be orthogonal to a

pointyin Hif<x,y>=0. Since <X,y> =<y,x >, x is orthogonal to y if and only if y is
orthogonal to x .Without ambiguity , we can say x and y are othogonal . In symbol, we write
xly.

. Given a non empty subset ﬁ. of Hilbert space H , we shall write

At={x e H:< %y >=0forally € A}. The set A* is called the orthogonal complement of
AinH.Since <0,x>=0, 0 € A* for any subset A of H. If x € A%, we can also write
thatx L A,

Proposition : In a Hilbert Space H , if S,5,,5; are subsets of H, then
I.{0}y'=H 2. H'={0} J.S.ns*f;iﬁ}
4 S8 =S st
5. St isaclosed subspace of H.  6.Sc (SY) = st

Proof : 1. By definition{ 0}*c H. Also x € H implies <x,0>=0 so that, x e {0}*
and hence H ¢ {0}*. Hence, {0} =H

2. xeH" = <x,y>=0 forall ye H.
= <x,x>=0 when y=x
= x=0

So,H'< {0}. Also 0 e H* .So H'={0}.

3 xeSNnS'=xeSand xeS*

= <Xx,x>=0
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= x=0, So,SNS"< {0}
4. Let S51cS.x eS8t =><xy>=0 forall ye §;
= <x,y>=0 forall ye S
=xeS* | Hence, S;*c Si*.
5.S"isu:luudwbspumurl‘H,me.ﬂEK,m,szSlmdyES.welmve
{uxl+ﬁx1|y}=u{;h}r}+ﬂ.-_l:;2‘y} :
=a0+p0=0,

So, ax; + Pxz € S* . Hence S* is a subspace . To show that s* is closed, let {ys}c S* and
Ya—*Y.- '

'niﬂlfﬂl' xeH,<y,x> -{]imyn.x}-]jm{}lr.,x}q]
P e .

This shows that y € 8%, Hence S* is a closed subspace of H.
6. Let xeS.Then<y,x>=0 for ye S"

Then x e (SY* = s“ sothat S¢S**.

Proposition : Mmmnerpmdm:t space , the pythagoras theorem holds . If (R PRI
bumuthosunalset,ﬂluu.m,xpwﬂfor:ﬂmm .

Ixi+xa+ .t xlP=lxll? +hxz 2+ Xl

Prqul’:uxﬁxg-i-,..+x.||1=--=t1|+x;+..,+x...,xl+xz+m+xﬂ=-

= Z{:,,x > = Ec: ,x; > ( Since <x;,%;>=0 for 1:_1}

ij=1
= Ix 2+ ixali+ e+l %l
We recall the definition of convex subset.

Definition : A subset C of a vector space X ( K) is called a convex subset of Xifx,yeC
and 0<t<1 implies tx+(1-t)yeC. : '

Proposition : A closed convex subset C of a Hilbert space H contains a unique vector of
smallest norm.




Proof : Letd = inf{|| x || :x €C }. Forn e N,d+ — is not a lower bound of {J x | : x €C }.
n

So, there exists X € C such that || x, || > d + % Taking n=1,2,3, ..... there exists a

Xm T X,

sequence { X, } in C s.t. lim| x, | =d By the convexity of C, eC.
A=k

So |" e e 'adand l Xa*+ X | = 2d . Using the parallelogram law ,

[l Xa = %m [F = 21 Xen IF + 2 || Xa I - || %o+ Xen IF
S2|xmlP +2 )| xa [P -4d" —»2d%+2d%4d?=0" asm,n— o,

This shows that { xa } is a Cauchy sequence in C. SmmCu:somnpletethmmls.xEC
such that x,—» x . . ;

It is clear that [x[:lji_lgxn!=lﬂﬂxnH=d.1hisshuwsﬂmtxisﬂmvmtorinCwith_lhe
mllﬁlnurmt.

Uniqueness : Tnshnwthnt x is unique , suppose that x' isa vecmrmcmhenhanx wh:ch
also has norm d. nm("” ) sinc. Applymgpamllclngmmlaw we obtain ,

X+X
=24— +2 “2

So,d< I% which is contrary to the definition of d . So x is unique and this numplems

—;-ﬁxl’+§lx‘ Iz=dz

the proof of the result ,

Proposition : Let M be a closed linnear subspace of a Hilbert space H , let x be a vector not
in M , and let d be the distance from x to M .Then there exists a unique vector yp in M sui:h

that | x - y,| = d.

Proof : Clearly C = x + M is a closed and convex set and

: d=d(x,M)=inf {{x—m| : meM} = inf{[]x-uluﬂ : meM) ['-'M=-M]=d{ﬂ,x_4_-M )
So, there exists a unique vector z in C such that |jzo] = d. ' '

Then yo=x - 2z €M and Hx. yall = 2ol = d. Uniqueness of y, follows from the un:qucnﬁs :

of zq. If y) is a vector in M such that z; = x —y,, is a vector in C such that z; #zy and |jzj]] =
d ,which contradicts uniqueness of z.
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Proposition : 1f M is a proper closed linear subspace of a Hilbert space H ,then there exists a
non — zero vector g is H such that zo L M.

Pmuf:_LetxbeavemornotM,letdbeﬂm-distanceﬁumme.S&ﬂm&cﬂmaww
in M such that [jx — yol = d. Put zn=x—yn‘z¢isannn—z¢mve¢torainaed}1}.We
complete the proof by showing that if y is an arbitrary vector in M , then zo 1 M. For any
scalar of, we have

o - ayil = Iix - Yo + o)l 2 d =izoll. S0, [Izo - oy’ - [loll 2 0.
and -E{zn,y}-uﬁz,,,y>+|u|1|yrzt}.
Putting a = P<z, y> foran arbitrary real number P , then it becomes

2Bi<ze, y>I + Bli<za, yoI IyIF 20.

Ifwcpur.a-fl-ﬁmy}|landh=ﬂylf|],wﬂuhtain-zﬂa+ﬁzabaﬂ or Pa (Bb-2) 2 0 forall
real B . :

However if a > 0 , then fa (Bb - 2) 2 0 is false for all sufficiently small positive P . This
shows that a = 0 which means that zp L y. ' ;

Definition : Two non empty subsets S; and 5; of a Hilbert space H are said to be orthogonal
md_writtmas_S.J.Sqifx,LjrfurxinS; andyinS;.

Proposition : If M and N are closed linear subspaces of a Hilbert space H suchthat M LN,
then the linear subspace M + N is also closed . _ ;

" Proof : Let u be a limit point of M + N . There exists a sequence {ua} in MHN such that

limu, =u . By the assumption that M LN ,M n N = {0}.

P30

So, u, can be uniquely expressed as X, + ¥a. Xa eM and y,eN . By pythagorean theorem
= U I = [em *+ Yo = X = Yal* = 1%en = Xl + lym =yl

S0, {X»}and {y,} are cauchy sequences in M and N . M and N are being closed subspaces are
complete . So , there exists vectors xandyinM and N such that x, —x and y,—Y .

Finally u= limu, = lim(x,#+y,)=limx, +limy,=x+y eM+N.
A—+D A—# =k ==

This shows that every limit point of M + N isin M -+ N and hence M + N is closed.
Proposition : If M is a closed subspace of a Hilbert space H, then H=M®M"

Proof : M and M are closed subspaces of H and M L M". Hence M + M* is a closd
subspace of H . Since M N M* = {0}, it is enough to show that H=M+M". If possible
M + M* be a proper closed subspace of H . Then there exists a non zero zp in H such that z
L(M+M"Y.Clearly zp LM and zaLlM".S0,z€ M* AM** and this is impossible .
Hence H =M +M"* and M A M*= {0}. This proves that H=M & M".
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Proposition : If S is 2 non empty subset of Hilbert space then §*= S+

Proof : We have S < S**. Replacing S by S*, wehaveS'¢ S**%

L ;
Also, we have, S, = 5;: = S ;Sf'. So,Sc St siiic SL. It follows that
SJ.= sJ_.LJ.'
Proposition : M is a linear subspace of a Hilbert space H .Then M is closed if and only if
M=M",

Proof : We know that S* is a closed linear subspace . So, M = ( M*)* is a closed linear
subspace . Conversely , let M be a closed linear subspace . We have to show that M = ML,

Forany set S in H, we have ScS** So, Mg M** and M'* is a Hilbert space .
If possible let M be a proper closed linear subspace of the Hilbert space M**. So, there

exists a non zero vector zg in M** s.t zp L M. Then zo € M* 1 M** = {0}. This shows
that zy=0, a contradiction . So, M = M**,

Orthonormal Set :

Definition : A non empty subset A of a Hilbert space H is said to be orthonormal if and only
if

a. <x,y>=0 forallx,y eA with x= vy, and
b. <x,x>=1 forall x €A.
Proposition : Each orthonormal subset of Hilbert space H is linearly independent.

Proof : Let A be an orthonormal subset of H and {x, X3, ...,Xs} be a finite subset of a A . If
Ay A2y .ophe g are element of K with

hixg+hoxat.. X =0 then form=1,2,...,n, we have
0 - AixrFhaxzte th ooy Xm> =< X1 Xm >+ RS X, X >+ L A Xy X > = A
This shows that A is a linear independent. |
Theorem : ( Gra_m — Schmidt Orthonormalization )
Let {xi, X2, ...} be a linear independent subset of an inner product space X . Define yi=x,.

¥i
U, = ——— -
I Iyllandfnrn 2.3

¥n = Xp = <Xg, > U = .oeees = <Xy Up 1= Un.1,

Yn

Iv.l

u, =

85




Then {u;, u, ...} is an orthonormal set in X and forn=1,2,.......
Span {uj, U, ...Us}= Span {Xy, Xz, X3, ..--Xa} - '

Proof : We pmw;re it by the method of induction .

As {x;} is a linearly independent set, y,=x;#0,

x1| ﬂl—--=1 and span {u} = span {xi} .

For n 21, assume that we have defined y, and u, as given such that {uy,...us} is an
orthonormal set satisfying

span {ul'l ey uﬂ}= Span {xlr """" L] 1Q'I] *
Define ya+1 = Xatl = <Xg+1, W= W) — ooes = <Kg+ly Un™ Un.

As {X), ....., X1} is a linearly independent set, Xq+1 does not belong to'  span {uh.u-: wl=
span {Xi, ..... Xa} . Hence yon = 0. Let u,, =Ja8l_ Then [gsal| =1 and forall jsn,we

l Yo+

have
n

':}Fn“‘lsujbs{xl'}'h 'I.l’:"“' - Z “Kn+ls utHull ui> = <Xn+ls ui}-{x‘ﬂ*l* “P =n

k=l

N . LS i o . . . {Y“_-I,uj}
Since <u, u>=0 fork#j,k=1,2,.......,n.Thus {uml,uj}x_i?_l_
o+l

=1,2,....,naswell. Hence {u, ..., Ugt} is a orthonormal set . Also

=0 for j

span {u, ..., Ug1} = span {Xxi, ..., Xn, un+|}.= span {Xi, X2, -+« Xa Xat1}-
By mathemetical induction , the proof is complete .
The following basic inequality. generalizes the schwarz inequality [<x,y> Ix} Iyl
Bessel’s Inequality : Let {uj, u, ....} be a countable othonormal set in an inner product
space X and x € X. Then E j<x, u.;?lz £ i[::ll2 where equality holds if and only if x

n=]
£
-E [<x, un>| un .

L]
Proof: For m=1,2,3,....,let ) <x,un>un .Since {ul,...,um) is an orthonormal

set , we have <x, xm>=<x, z ﬁx,mﬁunbﬂz-t:xu > <X,y > = Zl‘:xu )!

n=] n=l




Similarly , < X, xm> -':’x:rt,x:'--ﬁxm.:m}ﬂikx,u. >|!
‘n=

Hence, 0<[ix - xmj]2 = <x - xm, X - xm>=<x, x> - <x xm > - <xm, x>+ < xm, x m>

= |IxII2 - “)::k X,U, >|f-1 i}( xu, > + i‘,]c x,u, >’

=|Ix|i2 - ikx,u. >|z . So, ik x,u, >{1 <l
=l n=l
Taking limit as m —0 ik xu, > .$.HX!E1

: .
If equality bolds , tim >'J< x,u, 5 = |2 and from o

-

lix - xml}2= [|x]|2 - ﬁle: x,u, 3> , wehave = 0 that is,
n=l
x= ﬂx, = ,I,’_T,,i{ XU, >U, =§< XU, >U,.

Conversely , suppose, . x =) <x,u, >u, . Then

n=l
Ikl =<x,x>=<¥ <xu, >u,, Y <xu, >u,>= Yl xu, 3’
n=l o=} n=l
by the continuity , the linearity in first varible and conjugate linearity is second variable .
Proeposition :Let X be a inner product space, {u;, us, us, ... }Be a countable orthnormal set in
X and ki, ks, .... belong to K . : . '

a. If ) k,u, convergestox in X then {k.} & £
n=| :

L)

b. If X is a Hilbert space and {k.} € ¢° then Eknu“ converges in X. [Riesz-Firsher
n=|

Theorem |

Proof : a. Suppose ) k,u, =x.Then

m=]




L] i T
S < x,um> = <Y kgu,,u, >= lim <) ku,u, >= lim k; = k

n=] i=]

and x =) < x,.un >u, .So, by the preceding proposition ,
n=l

= : o 2
Yhol =hexu > =pf sothat {kaje €.

b. Put xy = ik,u“'. Then xm—x,;- -iknu“ and

A=l . [ BN |
11“ —XI‘II =< anuu! Eklun = Z| kl|1
nsf+] n=f+l n=f+]

' 2
1]
Since {kajef’, Y|k, —>0asm, €~ oo. This shows that {x,}is a Cauchy sequence in the
=l i ; :

Hilbert space H .Since H is complete
X } = {Zk,u.} converges in H . This proves that  k,u, is a convergent series.
pel n=l

Proposition :Let {u,} be an orthonormal set in an inner product space X and x € X . Then
E={ug: <x, u,> # 0} is a countable set . if E, is denumerable say {u,} then<x,u>—0
as n—> o,

If H is a Hilbert space , then ) <x,u, >u, converges in X to some y such that x -y ug
for every .

Proof : If x=0, E,= ¢ which is countable . Suppose x #0.

Forj=1;2,......,1etE= {ug:|lxll = j l<x,u>|} -

For fixed j ,suppose Ej contains distinct elements u, ,0g ,...nlg - Then

0< ml X ﬂz < jzilvz X,Ug >]h <j Ixf*, by Besﬁel's inequality.

m=]

So, m < j % This shows that E; contains atmost j ° elements. Since E, =|_JE; , we see that
: =

E; isa cuontable set .




Second part : Suppose E.= {uy, uy, ...} is denumerable .Then ) |< x,u, :-|I <| x[z <.
n=l
From the convergence. of the series , we obtain that .!"qu'u“ >=0.

Third part : Since {<x, u,>}<# and the space is a Hilbert space , by Reisz — Fisher
Theorem E{ X,u, >u, converges to some y in X and

n=]

o
<Y, Ug>= <D <X,U, DU, , Ue> =<K, Ug> SO that

n=l :
<x-y, u;>=0 for every o.This proves that x —y 1 u, for every c.

Definition : An orthonormal set {u,} in a Hilbet space H is said to be complete
orthonormal set or orthonormal basis if it is maximal in the sense that if {u,} is contained in.
some orthonormal subset E of H , then E = {u,}.

Proposition : Every non-zero Hilbert space H contains a complete orthonormal set.

Pmn!‘:lfH:{l]}thethasnmn—zemelmmxmd{L}isanurﬂwmmﬂseth:H.

ixf
Let P be the set of all orthonormal sets in H containing the orthonormal set {i%i} Then (
P .<) is a partially ordered set and if C is any chain in P then the union of its members is a

upper bound of the chain .By Zorn’s lemma P has a maximal element which is the complete
orthonormal set.

Proposition : Let {u,} be an orthonormal set is a hilbert space H .Then the following
conditions are equivalent:

1. {us} is an orthonormal basis for H

2. Forevery xeH,x = Z-‘:x,uﬂ >u, {Fouﬁrrexpmlsion]
- n

L

Forevery x eH, |.x|2 =Y |<x,u, >’ [Parseval Formula]
L]

4. Span {u,} isdenseinH
5, If » «: H and <x,u;>=0 forall a,thenx=0.
Here , {un} = {ua :<x, us> 20} .

Proof : (1) = (2): Let {u,} be a maximal orthonormal set in H .If x € H, then
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Z{x,un >u,= yforsomeyinHwithx-y Lu,.

Ifyzx,u= :sumtmm since [ju| =1 and also, ul{ﬁ}.mﬁﬂ{%}”{“} is an

H:-' XE
orthonormal set in H ,contradicting th: mumhty of {ug}, Heum: y. = x and
Zcxu >u,= X

2) & (3 : E-u:xu >u, <> the equality of the Bessel’s inequlhtj'f that is, ﬂi'-ilz

uzlcx u, >|

(2) =(4) : Suppose x = Y <x,u, >u, = lim ) <x,u, >,
; n e o= :

L =

= lim v,, where v, =Z{1u >u Espan{ul,u;.m.....}
=4

n=}
This proves (4).
(4) = (5) : Suppose spanf{u,}=H and <x,u, >=0 foralla

x € H=>x= lim x, where X, € span{ug}
=00 s

<A, =0 = <x,Xu>=0

= lim <x,x, >=0=> <x,x>=0=> x=0

ol
{5) = (1) : Suppose <x,u>=0 t‘ora.'llu..—.:"x";ﬁ.
If {uy} becontained in an orthonormal set E then there exists u€ E,

U # Ug and < X , ug> = 0 for all a. Then by (5) , u=0 and hence fjuj] = 0. This is not possible
since u_is an unit vector .So, {ug} unutcunlumdmmonhomrmalm .This proves that
'{m}clsamamma]mﬂmmnnalm ;

Proposition : Let H be a Hilbert space . Then
a. If H is a separable , then H has a countable complete orthonormal set.

" b.If H has a countable complete orthonormal set then H is separable .

c. If H has a countable orthonormal basis then H is linearly isometic to k" for some n or
to €.




Pml':a.LetHbeaseparablespmdea{ﬂ},thmHhasmoﬁhmmnmls&tM.To
show M is countable let B be any dence subset of H .If possible let M be uncountable .Any
two distinct elements x and y of M have distance V2 since |jx - y[f’ =~y X-y>=<x x>
+<y,y>=2.

The spherical balls N, of x and N, of y of radius {3 are disjoint .Since B is dence in H,
thereisa be BinN,anda beBinN, and b= b since N, N, = . '

Hence if M were uncountable , we would have uncountably many such pairwise disjoint
spherical neighbourhoods ( for each x € M one of them ), so that B would be uncountable
_ .Thus B is any dense set which is not countable, contradicting separability. So, we conclude

that M must be countable. This proves that H has a cunntahle orthonormal set and hence it
has a complete orthonormal set.

b. Let {ey} be a complete orthonormal sequence in H and A the set of all linear
combinations C 0 +C 8y +..tc e, (n=1,2,....) ;

Whmcq =a, +ibﬂ with a,jEQ andhq € Q. Clearly A is countable. We prove that A is
dense in H by showing that for x € Hand € > 0 there is a veA such that ||x - v|| < &.We
have SPan{e.}=H g, fore>0 thereisanyin span {eq}such that [jx — yli<e/2 .

. n 3 a 5
Let y=)ae then<ye>= (Ea,a,.:_i>-n.
ol . .1-1
So, ]rﬂz-r:y,ejb-ej
LA
It can be chosen thaty = Y <x,e; > ¢; for which
i

Z =x-—¥.ly. Hence .wehavelx-z;: X, e :-elgq%,
k=l :

Since the rationals are dense on R , for each <x,e> there is a ¢, ( with rational real and

imaginary parts } such that [< X,€ > —Cy_ ]ek < %
k=l

Heace veA defined by. V’“Z‘Ft}a satisfies

Ix-v= x—ch Etl x--i{x,:k >el'+ 3 <X,8 > €, -zn:‘:ck_e. >ﬂ
k

] k=l ™| k=l

a1




<gf2+ef2=¢
ThispmmthathisdmwinH,mdsimeAismnmhh,Hissepmble.
¢. Let {e1, &, .....} be countable complete orthonormal st
For xeH, let

F(x)={<x,e>},{e} is either a finite set or a denumerable set. Accordingly
F is maps H into K" or £ since by parseval’s formula

'F{xﬂ; =iic x,e, :’|:t n[xlz <w
n=l
Fisnlmdylimﬁ:andimtﬂic.

F(x)=Fly)=<x,ep=<y,&>

= <x -y,e>=0 foralleg, =>x-y=0 =>x=y
and {o;} & €2 = ) ae; cmvagcuMsmuéerand.q:q,up
il ; .

So,F(x)={<x,e>}.HenceF is onto . Thus H is linearly isometric to K" or to £*.
Representation of Functionals on Hilbert Spaces :

Propesition : If z is any fixed element of an inner product space X, then f(x ) =<x, 2>
defines a bounded linear functional fon X, of norm ||zf|.

Proof ; The inner product space X is a normal space with |lx|’ =<x,x>.

flax; + Bxa) = afix;, z) + Pfixs, 2) for all o,feK and x;, x2 in X..

This shows that f is linear. And f(x)| = |<x, 2= < llzll lixll ( Scharz Inequality )
shows that f is bounded . Hence f is a bounded linear mapping and

supmiizl shows that | f]] £ || z].
xatl XI :

If z#0, || £ = sup {|fx): [ x|l=1}

sl fe)

So, I fli=1zlk

-

1
=r<z,2> =[z]
Iz
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We now establish the converse of it , known as Reisz's representation Theorem for
functionals on Hilbert space . :

Theorem : Every bounded linedr functional f on a Hilbert space H can be represented in
terms of the inner product , namely ,

f(x)=<x,z>
where z depends on f, is uniquely determined by fand has norm || zJ| = | £l
Proof ;:a. f has a representation f(x)=<x,z>: ’
Iff=0thenf(x)=<x,0>forall xéHand [ z]|=} 0] =0.Suppose f=0. The null
space N ( f) of f is a proper closed linear subspace of H. So, there exists a non — zero vector

vo which is orthogonal to N ( ). We can show that z = ayy is the required vector for some
suitable a. .

For any xeN {f],f(x]=ﬂ={xl,uy¢:=-foranyusihmqu.H[f].

{Th}_
Iyol’

Next forx = yg, f(yo) =< }"ﬂ»ﬂ?b""*a:l?ul ifa=

Finally , we show that z=ay, with a = E-E'E—i satisfies
Yo

f(x)=<x,z>forall xeH.

Each x in H can be written l.l.'l. the form x =m + Pyp where meN(f). Then 0=f{m)=f(x - Byo) =
£0x) - Bilyo) 50 that p = -2 Then

1(yo)
f(x) f(x)
5 = f
-ﬂ:x} {m""f{}"] U‘} ( }+f{ a} {}F]
i oL mes S
=<x,ay,>=<x,z> wherez=ay, and a=lf[)'u;2
; o

b. Representation is unique :
Let z; and z: be two vector such that

f(x)=<x,z>=<x,z>.Then<x,z-2> =0/forxeH. So,2z-z=0and
z;= 7». This shows that the representation is unique .

¢. IT) = z| follows from the preceding results .
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Sesquilinear and Bilinear form :

Let X and Y be vector spaces over the same field K . A mappingh: X xY —-K is
called a s:squllmmfomlfhuhnmmﬂuﬁrslwmhle but conjugete linear in the
second variable. Explicitely, for all xy, Xz, x€X ; ¥1, ¥2, ¥ €Y and for all scalars a, B

=

h(x) +x2,¥) =h (x, ¥) + h(xz, ¥)

- h{ax,y)=ch(x.y)

h(x, y1 + y2) = h (x, y1) + h(x, y2)
4,h('x,ﬂy} =PBh(x,y)

A Sesquilinear form h is called a bilinear form if

4a.  h(x,Py)=ph(x,y). |

If X and Y are normed linear spaces , hmmlledabmmdudﬁnmﬂunahfthmmﬂch
0 such that [h(x, y) [scl|x || [y [| forall (x, yymXxY.. i

For example , themnﬂpmducnsmqm[mu and bounded . The nymber

wooN

| h{x. :fi
h Iw(xy is called the norm of h.
Theorem ( Reisz representation ) :

Let H,, H; be Hilbert spaces and h : H; x H;—K a bounded sesquilinear form .Then' h .
has representation : '

h(x,y) = <Sx,y>

Where S : H; - H; is a bounded linear operator . S is uniquely determined by h and norm IJ
SIH=lhi

Proof : f(y) ="(Y) is a bounded linear form in Y . So, there exists unique z in Hy, such
that f(y)= MY =<y, z>.

Hence,h(x,y)=<z,y>.z eH, is unique but depends on xeH,. Define S: Hi—>H; by
S(x)=z. '

So.h(x,y)=<z,y>=<8x,y>
S is linear : <S{ax, + Bxz), y>= h{ax; + Pxz, y) = ah(x), y) + Phixs,¥)
= q<8x;, y> + P<Sx;, y> = <aSx; + pSxz, y> forall y eH; .

So, S{ox;+ px;)=aSx» *"Bsz.




S is bounded :

k-::Sxy)-] |<Sx5x>| lIsx|

hi= = sup ={5
e AN F = AR TR 1E

y=0

Thisprumthnhnundednﬁwfhmd Ik ||z||S||.

| SL P LS L -
Also, hlﬂﬂpk S|  Hence, [IS]|=Ihll.
L ¥ P P =1 Y
y=0
S is unique : Suppose T : Hi—Hj, such that for all x eH,, and yéHz, we have
b({x,y)=<8x,y>=<Tx,y>. _
This shows that S x = T x for all x €H and hence S$=T.
HILBERT - ADJOINT'OPERATOR :

Definition : Let T : I-h-iﬂ;bcubounxled]mearuperamr where H,andHaareHﬂben
spaces .Then the Hilbert-adjoint op-:ratorT of T is the operation

T :H; - H; such that forall x e, and yeH; , <Tx,y>=<x,Ty
The following theorm shows that for a given T such a T does exist .

Theorem : The Hilbert adjoint T" of T exists , is unique and is a bounded linear operator with
norm || T = TI.

Proof : h : HjxH;—K ,defined by h(y,x)=<y, Tx}:sasnsqlulm-rfurm{mH]xH:
andttmboundud

h{yx, + Bxz) = <y ,T(ax; + fxa)> =<y, aTx, + fTx>
= a<y, Txi> + ey, Te> = ahly, x)+ Bl x2)
Bo, h is conjugate linear in second variable and it is clearly linear in first variable.
Also by schwarz inequality
[y, x) = [<y, Tx>| < liyll [Tl < fyll KTH [x[
This shows that [fh]| < [[T]|. Also [jhj| = |[T]| follows from

& Tx,T
N wpli:“"f l_ﬂ';T:““f—E?ri Together , [j| = |||

yal

The representation theorem gives that there exists a bounded linear operator
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S : Hy—H), uniquely determined such that
h(y.,x) =<Sy,x>.Writing T" forS,

wehave h(y,x) =<T y x> T : Hy—H, is uniquely determined bounded linear
operator such that

Tl = lISi{ = Iij| = [T
Also <y,Tx>= h(y,x)=<Ty,x>
So, <Tx,y>= <x,T"y> taking conjugate. Thus T  exists with [[T']|=[IT].
Properties of Hilbert - adjoint operators :
Proposition:

Let H;, H; be Hilbert spaces , S :H;—H; and T :Hj—H; bounded linear operators and a
any &calar . Then we have

. <Ty,x>=<y,Tx>

2. (S+T)=8+T |

3. (@f)'= aT

4. (T =T

5. T = ITT") = T

6. TT=0=T=0 |

7. (ST) =TS ( assuming H; =H, )
Proof : 1. From definition of T',

<Tx,y>= {x,T‘}r}

= HIRYEuCKT y>

= <y, x> =<T'y, x>.
2. <x,(S+T)y> =<(S+T)x,y> [ Definition of T']
=< §x,y>+<Tx,y>
=< x,Sy>+<x,Ty>=<x,(Sy+ Typ

=< x,(S$+T)y>

forall x and y .Hence (S+T)'y = ( 8'+T )y forally.




3. <(@N)y,x > =<y, (@)x> =<y, a(Tx)>= a<y,Tx>
= a<Ty,x> =<( al)y,x>
forallxandy.So,(aT)' = aT .
4. <(Thx,y>=<x,T'y> = <Tx,y>
So, <(T"-T)x,y> = 0 forallxandy.
Hence, T -T=0or T =T.
5. wemmatT‘T:H,-:H,andﬂ':uﬁﬂg.ﬂyms&wmimqwny,
Il = <Tx, T> = <T"Tx, x> < [T"Txil i<l < T°T)

So, supfTxf" < [T°1]. This: implies T < 7"

Further , {TIf' < IT"T)| <|IT") (Y| = |ITIF ( Since T = D
This shows that [1° T = [TI". Replaciag T by T', we have.
T =P o TTY=ITP
6. From 5, TT =0 &T = 0.
7. <x,(ST) y>=<(ST)x,y>=<Tx,;S"y>
= <x,T'Sy> forallxandy.

This implies that (ST) = T'S
Exercise:

1. Showthat 0" =Qand I"=1.-

2. Let T: H-H be a bijective , bom:dedhnwnpmmrwhus:mvmubuundud
.Show that (T'}‘cxmand.:"r'}‘-(r}

3. If {T,} :saseqmnceufbuundud l:nearuperatorsmammplex!hlbm spacc H
and T,—T.Showthat T, > T .

4. Let T, and T; be bounded linear operators on a complete Hilbert space H in:oitsﬂr
f <Tyx,x>=<T;x,x> forall xeH. Show that T, = T5.

Self — Adjoint , Unitary and Normal Operators :
Definition : A bounded linear operator T:H—H on a Hilbert space H is said to be

I Selfadjointif T'= T,thatis,<Tx,y>=<x,Ty>,




2. Unitary if T is bijectiveand T'= T".
3, Nomalif TT =TT .

Note : If an operator is self adjoint or unitary then the operator is normal .But the converse is
not true . For example 2 i | is normal , but it is neither self adjoint nor unitary .

Theorem : Let T:H—>H be a bounded linear operator on a Hilbert space H Then
a. IfTis.sa!fndjuint,ﬂTx, x > is a real for all xeH. |
b. If His complete and < Tx,x >isareal forall xeH , the

operator T is self - adjoint .

Proof :a. If T is self adjoint , then for all x,

<STRX> o cx Tx>=<Tx x>,
Hence < Tx , x > is equal to its complex conjugate , So that it is real .

b. If<Tx,x>isareal forallx, then

T > _<x,T *
<Tx,x>=<1%X> = <KL X2 acTx x>

Hence, <(T-T )x,x> =0 orT=T" since H is complex.

Theorem : The product of two bounded self adjoint lincar operators S and T on a Hilbert
space H is self adjoint if and only if the operators commute,

 ST=TS.
Proof : For self adjoint operators Sand T,
(STY=T'§'=TS.
Hence , S T is self adjointor (ST) = TS.iff TS=ST.

Theorem : Let { T,} be a sequence of bounded self adjoint linear operator ToH—Hona -
Hilbert space H .Suppose that { T,,} converges , say,

T, - T.Then T is bounded self adjoint linear operator on H. :
Proof : [[Ta" - Tl = (Ta - T)ll = ITa - Til- By using triangle ineqality in B(H,H),

IT =T < [IT-Toll # [ Ta=Ta I+ JITa - Tl = 2JT-Tel| -0 as n—> 0
Hence, ||T - T‘It =0and T = T . This shows that T is self adjoint .

Theorem : Let the operators U : H = H and V: H— H be unitary . Then
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‘a. U is isometric
b.||Ul=1, provided H= { 0 }
c. U' (=U") is unitary
d. U V is unitary
e, U is normal
Proof : a. U is isometry follows from

lUxjff=<Ux,Ux>=<x,U Ux>=<x,Ix>= |x|?.

-2
jux] 1.So, Ul=1

b. From (a),sup

E=l l xlz

¢. Uisbijective = U™ is bijective

Also, (U =(U"Y (+U is unitary U = U")
=U= (") So, U is unitary .
d. Uand V are bijective = U V is bijective and
(U =V'U =vU'= (UV) : A
e. Uisunitary=U"= U
So,” UU'=uU'=] and Vivaviv =g,

Theorem : A bounded linear operator T on a complex Hilbert space H is unitary if and cml:.r
if T is isometric and surjective .

Proof : Suppose T is isometric and surjective .T is isometric =T is one — one . So T is
bijective . We have to show that T" = T"' .By the isomety

<T Tx,x> =<Tx, Tx> =<x,x>=<[x,x>
=<(T'T-1)x,x>=0 forx.
So, TT=1LAIS0 TT =TT(T T)=T(T'T)T' =T IT =T T"'=1

Together, T" T=TT =1.Hence T' =T, so that T is unitary .The converse is clear by (a)
and definition .

Exeércise :

I. IfSand T are bounded self adjoint linear operators on a Hilbert space H and @ and f3 are
- real , show that aS + B T is self adjoint .




2. Show thatif T:H—H is bounded self adjoint linear operator , 50 is T?*wherenisa
positive integer. :

3. Shﬂwﬂ:atﬁurmybmndndlinmupemrTmH,them T,=-%{T+T'}aud

y =%{T-T')m self adjoint. Show that T=T + iT; and T' =T —iTz.

4 If Ta:H->H(n=1,2,3,......... ) are normal linéar operators and
T.#T,s&nﬁfﬂutTiumnnal linear operator .

5. If'S and T are normal ﬁnwapmmrmﬁsfyingsr’=*r'5and-'rs'=s"r,;huwms+
T are product S T are normal .

6. Show that a bounded linear operatar T : H -+ H on a complex Hilbert space H is normal
ifmgl only if [T x||=|ITx]| for all xeH. Using this show that for a normal operator It
::H‘T _ ' f

Projection Operator :

Definition : A lincar operator P on Banach space is said to be a projection if and only if P=
P.

Note : Some authors call a bounded lincar operator P on a Banach space X, & projection
upemmrifitisid:mpummI,ﬂmisP’—P.Sincemmyrmﬂmcanbcﬁtahadwiﬂmn
mﬁnﬁ@uf?,wbﬂﬁmhapmjmwmammdmw.
Pt;npniiﬁnn:uthupmjmiununaBamhspmex.Thm

a. | - P is a projection on X,

b.R(P) ={xeX:Px=x}

¢.R(P) = N(I1-P)

dX =R(P)®N(1-P)

e. If P is bounded then R ( P) and R (1-P) are closed .
Hmn(_Pj and N (1— P ) stand for.range and null space of P and I - P respectively .

a. -(1—§)*=1—2P+PI=1-P

b. Clearly (xeX: x=Px }cR(P) . Conversely y € R (P)
impliﬁ. y=Px for some xe€X and hence

Py=P(Px)=Px=Px=y.SoR(P)c{x:Px=x}.

c. xeR(P)ex=Pxe(I-P)x=0
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d xeX=2x=Px+(I-P)x
' =x-R(P}ﬁ_’1u-p}.
Also, xeR(P)R(I-P) .
=x=Px=(I-P)x
= x=P(I-P)x=Px-P’x=Px-Px =0
So, R(P)AR(I-P)={0}.
e.1f P is a bounded Einesr operator ,
R(P) =N(I-P)=(I-P)'({0}) isaclosed subspace
PR
R(I-P)=N(P)=F"({0}) isalso closed subspace .

Luun:mMnndNbﬂﬁmrmbspacesanwithXHMGH.Thmﬂlmkluuiqu
projectionPon X with R(P) =Mand R([-P) =N.

Proof : Let xeX . Then there are unique points yeM and z € N with
x=y+z,Let Px=y . Then P: X > X isalincarand R(P)=M and
N(P)=N.AloP*=P.Sincex € X impliesPxeM ,P(Px)=Px.

Hence P is a projection on X . We have seen R(P) =M and N (P ) =N . Also from the
preceding result , we have N ( P) =R(1-P). So, R(-P) = N.

Uniqueness : Let Q be a projectionon X with R{(Q )=Mand R{1-Q)=N. Foreachx e
X,wehave x=Qx+(I-Q)x,QxeMand

(I-Q)x € N. So, by definition of P, we must have P x = Q x. This proves that P=Q.
Note : By the last two parts of the preceding result, X has a direct sumdecomposition

~ X=R(P)®R(1-P)
Where R ( P) and R (1P ) are closed linear subspaces of X .
Theorem :l..ctXbanBanachspmm:lleth!andﬂbcclumdlinmrsubspme;wf?switﬁx_
jr}?::MnmemisamMnﬂmmFonx such that R(P)=Mand R (1
Proof: By the Lemma, it is enough to show that graph of P is closed. Let{ x, }
be a sequence in X such that limx, = x and limPx, =y . Since Px, € M and M is closed
- wehavey eM . Also xn-Fx::'El—F}x.,eN.n# -
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Then Py=y since R(P)={xeX:Px=x}and P(x-y)=0 since R(P)=N(I-
P}.Corlsequently,yﬂl'yﬂl’x.Thisshuwsthatmphnf?isclmedmdhmce?w
Projection on Hilbert Space :

Theorem : If P is a bounded projection on H with R (P)=Mand N (P)=NthenM LN &
P is self adjoint and N = M* .

Pmni':Enr.hmm'zinHmbéwﬁumuniquniyinthef‘nrz-x+ywiﬂ1xandyinMaud
N.If MLN,sothat x 1ly,then ' -

<P'z,z2>=<z,P2z>=<x+y,x>=<x,x>= <x,xty>= <Pz,z>
_ =<(P'-P)z,z>=0 vzeH .
So,P'=P and P is self adjoint .
Ifcunvus:ly,?'*?,thmfwxehl,yehl,wainvc

{;;y:— u-:Px,yb-:{;,P'}r:-w-cx,Py:n-::x,u‘::ﬂ
This shows that M LN .
We are left to show that M LN = N= M*.

xeN=<x,y>=0 forallyeM

= xeM'

So, N c M* and M" is a Hilbert space . If possible let N be a proper closed subspace of
Hilbert space M so, there exists a non-zero vector zo in M" such that zo L N. ;

ZE H=M&1N:>¢fu.z:=-=:=z¢,1+y} withxeM,yeN
=0 (since zoeM" and zoeN")
Hence, zoeH* = {0}s0 that z5= 0, This is a contradiction. This proves that N=M" .
Perpendicular Projection : :

A projection on a Hilbert space whose range and null space are orthogonal is sometimes
called a perpendicular projection . In the following subsection we discuss only

perpendicular projections.

Definition : A projection in a Hilbert is defined as a bounded lincar idempotent and self
adjoint operator. Clearly for a projection P.<Px,x>20. Wedefine P2 Qif<Px,x>2< :
- Qx,x> forall x.

Proposition : If P is a projection on a Hilbert space H with Range (P ) = M then xe M &
Px=x<|Px||=|xlland0 s P s 1
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Proof : It is clear that P is a projecton with Range ( P ) = M <1 — P is the projection with
Range ([-P)=M"

PeM o Px=x < [Px] =il
Also [P = IPx + (1 - P)xJi* = [PxIF + i - P)x .......(*)
So,JIPx|| = [jx[| = [I(1 - P)x|* =0 = Px =x.

Also from {"}I|xﬂ’2||l"x[[’or,|%gsl forallx=0.

"‘So,|IPjj£1. Alsoforx e H,
<Px,x>=<PPx,x>=<Px,Px>=|Px|’2 0.

Se, P=z0. |

Since P =0 for any projection PonH,wehave 1-P20 as 2P

This proves the result.

Invariant Subspace : Let T be an operator on a Hilbert space H . A closed linear subspace M-
of H is said to be Invariant under Tif T (M ) < M . In this case the restriction of Tto M-
mb;ugamedasmmmrmm.w;saymmducesﬁrmmmmwmiumt
under T .

Pmpnsihuu A closed linear subspace M of H is invariant undm‘ an npemtur Te M* as
invariant under T .

Proof : M is invariant under TﬂT(M};M.Wehavewshuwthat

T (M )cM'For xeM" and ye M,
<T(x),y>=<x,Ty>=0 (sincexe M', TyeM)
=T x eM'V xeM..
=:-T"(Ml};w

So, M! is invariant under T". The converse follows from M =M**and T=T"

Prupoemion : A closed linear subspace M of H reduces an operator T <>M is invariant under
Tand T'.

" Proof : Mreduces Te>T(M)cM and T (M) g M".
SsT(M)eM and T (M*Y)gM**

ST(M)cM andT (M)cM
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l_’npuitlon:lf?isth:pmjmﬁm on a closed linear subspace M of H (ie,R(P)=
M) , then M is invariant under T <> TP =PTP.

Proof : Suppose T(M)cM Thenforx eH ,
TP(x)eM.SoP(TP(x))=TP(x).

This shows that P TP=T P . Conversely ifPTP=TP and x €M, then Tx=TP
(x)=PTP(x)eM.So, T(M)cM. '

Proposition : If P is the projection on aclusedﬁnursubsplceMpr,.thm-Mmdumm
operator T TP =PT .

Proof : M reduces T <>M is invariant under Tand T .
&TP=PTPand T'P=PT P |
e TP=PTPandPT=PTP (Takingadjointin second equation)
;TF=P'T ( Multiplying by P from right and left
of last step to obiain the preceding )
Prnpodtlon:lfPmdethppmjectinnonclusedﬁmarmhspamMdeHof.H,thm
MLN&PQ =0 < QP=0
Proof: PQ -n'=(pqr=n'=>q‘p'-u=>qp=u‘
Similarly QP=0 =>PQ=0.
Now, MLN =NgM" .For xeH,
(PQ)x=P(Qx)=0 (- Qx) eN cM" = null space of P)

Hence P Q = 0. Conversely , [f PQ = 0 then for every xeN,Px=PQx=0.50,N e null
space P=M"and MLN. '

Theorem : I€ Py, Ps, ... , Py are the projection on closed linear subspaces ‘M, My, .., M of
H, then P =P, + P, + ...+P, is a projection <> P’ are pairwise orthogonal ( in the sence that
P, Pj= 0 for i#j)and in this case Range of P=M=M,;+M:+...+M,

Proof: P’ =P, +P; +...+P, =P, + P, +...+P,= P . P are pairwise orthogonal = PP;=0
for i#j. So, P* = P. Conversely , suppose P is a projection . So, P = P.

Let x € Range P;. Then x = Pix and

ﬁxl2 =| Pixf < il P‘i)gl2 =ic Px,x > =< Px.x >=| P‘xll <| ml1 N o |
i=l =1




Hmnegl Px] =jrx

= |IPxl= 0 for j=i
=Px=0 for j=#i
#.xenullspmoﬂ'j(-j:i}

So, M; = Mj* (j # i) . Hence M; L M; and P; P;=0 fori #j.

We are left to show that Range(P) = M, + M; + ...+ M,. From (*) , we have ||Px|| = [jx|| for
every x €M; and hence P x = x for xeM;. This shows that

M; cRange (P ) for eachii.
= M; +M;+...+M, < Range(P)

Also, x eRange (P)=>x = Px= Pix+Px +...+Px EM|+M;_+...+!~L' M
So,Range (P)=M=M, + My +... + M,.
Finite Dimensional Spectral Theory : . ;
. l}cﬂliﬂul:ifTismmmaHiMsmH,mmqmn—mym“ﬁsﬁringﬂw
equation Tx = Ax for some scaler A is called an eigen vector T and a scalar A satisfying for
some non — zero X is called an eigen value of T .

1. Each eigen value has one or more eigen vectors associated with it

2. To each eigen vector there corresponds precisely one eigen value .
Forif Tx=Ax=h;x th;m{h,l;}x=ﬂandx¥ﬂ implies A,=A;.

Proposition : The set M of all eigen vectors i:drres.pondi.ng to eigen value A of bounded
linear operator T together with the zero vector is a closed linear subspace of H .

Proof :M={x [Tx=Ax} {0}, X1, X2€M and a, BeK implies
T (ax; + Bxa) = aTx; + PTxz = ahx; + PAxa = Max + Pxz)
This shows that ax, + px; €M and M is a linear subspace of H .
Let {x.} oM and x,—x. Then Tx,= Ax, and
EETK“ =ji_:£1x“ = Ax
=Tx =kx ( Since T is bounded )
= xeM S0, M is a closed linear subspace of H .
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" Definition : The closed linear subspace M of H called eigen space of T corresponding to A.
Proposition : M is invariant under T . ' ok b
Proof : To show that T{ﬂ};M,Fm;EM,Tx =]x.
But Ax eM.So,Tx eMand T(M ) g M. Hence proved .
Example of an operator in an infinite dimensional Hilbert space which has no eigmvaiun.
Consider T : a-> £ definedby  T({X1, Xz X3y vy } ) = {0, Kty Kasev}
wmﬁisamdliﬁumonﬂ.Smpmﬂliﬂmd{x!,}#ﬂsushlhni
T( (X1 %2 -} )= A{x, %2, }
={0, x1, X2,..-} = {Ax), Axy, .0}
= Ax; =0, X; = Axz, X = AXy, ...
=x=0,%=0x=0..
= {X1, X3, X3, ...} = 0, @ contradiction . So., T has no eigen vector .
We can show that a finite dimensional Hilbert space must have eigenvalues.
Theorem :If T is an arbitrary operator an a finite dimensional Hilbert space H then the
eigenvalues of T constitute a non empty finite subset of the complex plane . The number of
points in this set does not exceed the dimension n of the space H.. s
Proof : A is an eigenvalue of T .
ﬁannon—zemvecturx'suchdmt{T-il]x=ﬂ
& T - A1is singular
<det (T-A1)=0 _
The eigenvalues of T are therefore precisely the distinct roots of the equation
det (T-A1)=0 :
If we choose a basis B I'orHa;nd find the matrix [a;;] of T relative to B , then the

n=h ap Ay,
21 »=h dap ' '
det (T-Al)= =0 —eeeemee (*) 3 '
ay PN Y A —

eigenvalues of T are the roots of the equation (*).
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 The equation ( * ) is a polynomial equation of degree n in the variableA By the fundamental
Theorem of algebra this equation has exactly n complex roots . Since some of these roots
may be equal , the numberof distinct roots does not exceed n . :

Definition : The set eigenvalues of T ia called spectrum of the operator T . It is denoted by o
(T).

Theorem : Suppose H is a Hilbert space of dimension n and A, X3,..., Am

are eigenvalues of T € B ( H) . M;,M;,..., My are eigenspaces of A, Az,..., Am respectively
and Py, Py,..., Py are projections on M,Mj,...,Ma: Then the followings are equivalent

i . M; are pairwise orthogonal and span H
ii . P; s are pairwise orthogonal , [ = P+ Py+...4Pg and
T-1|P|+}|.3Pz+...imf‘m
iii. T is normal . .
Proof : (i) =>(ii): We have already seen that
PiRy= 0 ML M. '
So , Pis are pairwise orthogonal .
Ev&y x & H can be uniquely expressed as
X=X+ X2+ ...+ X, withx;'e M.
SoTx=Tx;+Txz+... + Tx,
=Mx; +Agxz t+ ...+ A
= MPX HAPax + ... FAaPuX = (AP} +AgP2 + ... FAaPu)X
So, T =MP) +3aPz + ... +APm,
Also, I x = x= x;+x3 +... +x,
= Pyx+Paxt .., +Ppx
= (P +Pa+... +F..}x. forevery xinH .
So, 1 =P 4P+ .. +P,
(i) = (iii):

T =MP; +AsP; + ... +AuPy implies

T= AP+ MaPot... + APy




So, TT™= (MP) +AP2+ ... FAaPm) ( MP1+ AaP2 ¥ .. AaPa)
= PP+ A P2+ ... + [ Pmand similarly,
T T= PP+ A2l P2+ ... + Pl Pm
So, TT= T'T andTisnormal.

(ili)=>(i):LetT eB(H) be a normal operator . It is easy to check that

T-Al is normed
(T-A) =T M=T- U
So, {T—M}{T—M}‘;[T-M} (T M)
= TT- AT-AT-Pf 1
and (T-AI) (T-AL)= (T AI)(T-AI)
=TT- AT- AT+RLI
smue_ﬁsqumal.misr-u.chmwma:’fmmmmrr "
i T°xil = i T | since |

T‘K_Jiin{T.KiT'x} = {TT‘x',x} - {TxiTx}-{r.m}={Tx.n}-"
Tx ||

tfunsaqu:nﬂy,
IT-A1)=)(T = A)x]|

This shows that x is eigenvector of T coresponding to A iff X is also eigenvector of T
corresponding to A .

Now we show that M; s are pairwise orthogonal .Let x; and x; be vectors in M; and M; for i #
jy so that Tx; = Ax; and Tx; = A; x;. Then

A <X =< Xpx> = < Tx;, x> = {ia.T'xj >=<x;, X = hi<xi %>
or (hi-A)<xpx>=0=x,%=0 since hi# Ay
Hence M; L M; for i #j
Lastly , we have to show that M; s span H .First, we show that each M;
reduces T . For this we have to show that M; is invariant under T and T".

x; € M; = Tx; =& x; € M;. So, T" (Mi)c Mi. Hence M,; reduces T. We know that P =P+
Py+... 4Py is a projection on M = M; + My+... +M.
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M; reduces T = TP; = P;T for each P;

= TP =PT

= M reduces T.
Hence , TM*) ¢ M*. We know that H = M @ M". If possible M*# {0}. Then since all'
the eigenvectors of T are contained in M , the restriction of T to M' is an operator on a non
~ trivial finite dimensional Hilbert space which has no eigenvalues. This is not possible. So,
M* = {0} and H=M=M;+M;+... + My= Span of M;s.
Definition :The expression T = AP} + AP + ... + APy is called sepctral resolution T . The
. preceding theorem asserts that in a finite dimensional Hilbert space every normal operator
has spectral resolution .
Uniqueness of Spectral resolution :
Proposition : The spectral resolution T = APy + APz + ... + APy is unique .
Proof :T=AP; . 0aP: + ... + AP —— ( 1 ) implies

T = (MPy s APa+ .. +APu)= AP PLads Pr+... +Am P

In general ,

T =0"Pi+ A" P2+ ... ¥y Py . It is customary to writt T°=1=P;+P;+...+P,.
Leip(z}-uﬁ+mz+u.:zz+ e Fag" withey e C

"and z e C. Then

P(T)=tol+ T+ T’ +....+ GuT™= ip(a.,}ﬁ.
L i=!
Consider particular polynomialn pj, defined by
(z-1.}[z—:Lz)...(z7:.,_,}(z-:.j,,),.,{=~';._1 |
flj 'h)("-j "lz)---ﬂ"j —lj—imj‘lm}mﬂj ~An)

p(z)=
Clearly p(A) =0if i and pi()=1.
So,p(T) =2 p;()p; =p;-
=l

This shows that p; s are uniquely determined as specific polynominals in T .
Suppose T has another spectral resolution ,
T =p1Qi +P2Qz+ ...+ BuiQm

(2)
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Where [; - smdmunﬂmmple: numbers , the Q; s are non—zero pairwise orthogonal
projection , andl-EQ, chtmshuw{l}md(?]mﬂmmLWeﬁmtshowM are
Bi s are exaalhri.;‘s.lnl

Such that Q;x = x and Qyx = 0 for j # i. Then from (2 ) , we have

Tx ﬂﬂ.xsntha.tﬁg:smgcnvaluenfT Conversely, mppmlmmmgmvﬂuﬂfT so that
T x=Ax for some non—zero x , then

g k k
Tx=Ax =Alx = A)Qx =2 AQx
=l "=l

k
Also Tx =Y aQx

=l

Z{l o,)Q;x=

Since Q; x smpanw:seurthugaml th:mmummmgthem there is at least one
., for x#0 are linearly independent , mdth:umphenhnt

A= q for somei. So A; ‘sand oy ‘s are the same. ( 2 ) can be written as
T =MQy +M2Qe + ... + AuQm

Proceding in a similar way, it can be shown that Q; = py(T) for every j. Thus P;= Qj'- piT).
This shows that spectral resolution is unique .

Problem 1. Let T be an operator on a finite dimensional Hilbert space H . Then
a. T is singular ﬂﬂeo{?};
b. If T is non — singular , then Lea{ﬂﬁl"euﬂ"!:
¢. If A is non - singular , then 6(ATA™) = o(T);
d. IfAeo(T), and if p in any polynomial then B(A) € o((T);
_ e. If T*=0 for some positive integer k; then o (T)={0}.
Proof : a. T is singular '
<> T is not one — one
4:>31£U'EH s.t. T(x)=0=0.x

=0 ec(T)




b. Aeo(T)
=>3Ix#0 in Hst Tx=2x
= T(Tx) = T'(Ax) = MT"'x).
=T'x=A1"x
=11 e o(T)
Conversely, A~ eo(T")
=3x#0 in H stT'x=1"x 2 TTx=TQ %) =1"T(x)
= Ix=1"Tx =>Tx=Ax=ieo(T) The rest is left as an exercise .
Problem 2. Show that an operator T on H is normal iff its adjoint T" is a
WWMT. '
Proof : T is normal
S T=MP + P2+ ... + AuPn
= T= LPy+ P+ ...+ LP-
But pj = f(T). Hence T"= Aipy(T) + AopAT) + ... + Anpu(T)

(@=2)(Z=A )z =Ry (2=Rg)

P )y )y Ay )

Themv&uhhﬂummmiﬂ.

PrnblenJ.Lcthqamrmnlnpenturonaﬁnitcdimmﬂum] space T with spectrum {*s
A2y <es Am } , prove that

a. T is self — adjoint <> each ; isreﬂ
b. T is positive <> &> 0 for each i
c. T is unitary <> |A;|= 1 foreachi
M: a T -1.|'P1+1;P;+...+J.~. Pa
=T = AP +A2P; +---+AuP,
T-»T'_=> e —I:JP.:IM -22)P, +eort (g ~Am)Py =0 o
= (A =A)PX; +(Ag =A2)PyX; +--+ (R —Ai)Px; +o+ (A —Am)PX; g

= (; —Ii}xi =0 = A, =i
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Try the converse yourself .
b <Tx,x> >0 ?
= < (uPrHAPr+.. HAmPa)Xi, x> > 0
= <Ax, x>20 [ x>0 = 4> 0
mmhhﬂumﬂmﬂ.
c. TI'=I=T%
<T'Tx,x>=<TT x,x> =<Ix,x>=|xf’
= <Tx ,Tx > ={x|f |
= <Py + APy + oo + MR+ .+ AP,
Py .+ AP+ o+ AP > = I
= P IPi? = lxi* = af el = Il = Pab= 1
Try the converse yourself .

il
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( New Syllabus )
{ Functional Analysis—I )

1. Answer any two parts : 5x2=10

faj Let B be a subset of the vector space ¥
and let T be a linear operator with range
in Y. If B is convex, balanced and
sbsorbing, prove that T7!{B} has the
same properties.

{b] Suppose that A is a balanced subset of
a vector space X. Prove that A is
absorbing if and only if the following
holds :

*For each x in X, there is a positive
number £, such that xe { A"

fe} I nis a pgsitive integer, then show that
the vector space F" of all n-tuples of
scalars is a normed space with the
Euclidean norm given by the formula

. /2
”f‘lp Rgy-eey nnll!-{ EfﬂjF]

j=

2. Apswer any fwo parts : 5x2=10
fa) Let X be a normed space. Prove—
(§ addition .of vectors is a continuous
operation from X %X into X;
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Mrmﬂt:plimumﬁmbymhn
is .a continuous operation from
F x X into X {with usual notion).

[} MMtnnwmﬂlmXinn

Banach space if and only if each
absolutely convergent series in X
COnverges. :

Let ¥ x, be a formal series in a Banach

‘m

space. Prove that if the. series is
absolutely convergent, .then it is
unconditionally convergent. Show with
a counterexample that the converse of
the above result is not true.

3. Answer any one part :

fa)

®)

Prove that every bounded linear
operator from a Banach space onto a
Banach space is an open mapping.

Let & be a non-empty family ~of
bounded linear operators from a
Banach space X into a normed space Y.
H sup{|iTx]l: Tes#}  is finite for
each x in X, then show that
sup{}|Tlj: Te #} is fnite.

Answer any one part !

fa)

)

Prove that if M is a closed subspace of a
Banach space X, then X /M is also a
Banach space. By using the above
result or otherwise, examine if the space
R?/ M is a Banach space, where R? is

the Euclidean two-dimensional space
and M= fio, f}: x = O}

Let M be a closed subspace of 2 normed
space X. Prove the following :

() The quotient map n from X onto
X/ M is a bounded linear operator
that is also an open mapping and
has M as its kemnel.

(i) If M= X, then |in]|=1
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B. Answer any fwo parts : _ . Sx2=10
fa) Suppose that X is a normed space. Let
fis fas-u fa be . a non-empty finite
collection of bounded linear functionals
on X, and let ¢,e¢5,...6, be a
. corresponding collection ‘of scalars.
Prove that the following are equivalent :
() There is an x, in X such that
fjlxg)=c;, when j=12,.,n
(i) There is a non-negative . real
number M such that
lzsey 4ot BnCp lS M @y f; +o¥Fa, folf
for each linear combination
@y fy 483 fp +. 40 fn O fiy f20ems fo
that is, for each element
{{f1s f2s 0 Su 1) :

{b) Llet X and Y be normed spaces. If
T € L{X, Y), then show that T is bounded
if and onmly if

sup(|(Tx ¥')|: x& By, y* € B,.)
is finite. If T is bounded, then its norm
equals this supremum.

fc} Let X be a normed space, and let A and
B be subsets of X and X" respectively. -
Prove that the sets Al and *B are
closed subspaces of X' and X
respectively.

6. Answer any three parts : ' 5x3=15

fa) Let X =C([a H)), the linear space of all
scalar-valued continuous funclions on
[a B). For x and y in X, define

{xy)=[0i@at
Show that (,} is an inner product on X.
) If E is an orthonormal subset of a .
Hilbert space H, then show that
Nx-yll=+2 forall x#yinE
{c) ' Let H be a Hilbert space, {u), uj,...} bea

countable orthonormal set in H and
ky, kg, .. to the field F. Prove the

following
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) oY knu, mmgummmxmﬂ;. gy -
thea (xuy)=k, for cach n and
E_[k,' < -, 2
n

@ ¥ YikP<= then Ik,uy

converges in H.
{d) Let {u,} be an orthononnal sct ina
Hilbert space H and xeH. let
E, = (ug:(x ug)#0}. Then. prove that
E,hnmtlblempurﬂmr,ﬂm
that if E, is denumerable, say
E, ={uy, U, ...}, then (x, u, )40 as ==

7. Answer any three parts : 5x3=15
fa) Let H be a Hilbert space and A € BL{H).
Prove that there is & unique B e BL{H)
such that for’all x, ye H

(AL, y) = (= Biul) -
() Let A Be BL{H) Prove that
(A+B) =A* +B*
and (AB)" =B"A°

f) Define a positive operator and give an

- example. Let A€ BL{H) be self-adjoint.
Prove that A or —A ia a positive operator
if and only if

KAG, )12 < (A, x).(A, )
for all x, ye H.

{d) Let uy, ug,.. constitute an arthonormal
basis for H. Suppose that A€ BL{H) is
defined by a matrix M with respect to
the basis u, u,, .. . Assume that M is
triangular. Prove that A is normal if and

only if M is diagonal. .

fe) Let H=K?2, K& field. Define an operator
A:H—- H by. Alx 1 =lax+py, ox +dij,
(cyeH, a b ¢ d in K Show
that A is unitary if and only if
laf? +|bf =1 =[c]*+|d? and aE + bd =0.
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. Answer any two parts : 5x2=10
{a) Let Cbe the collection of all convergent

sequences  of scalars with the wector

space operations

lxn]"‘mnl-[xn +yn]o.a‘xu]’mnl
and norm defined by

Hixp ke = m:p!x..!
show that C is a Banach space.

fb) If Cis a convex subset of X, then both-
C and C* are convex. Prove it for a
normed linear space X. '

fc)] Suppose that T is a linear operator
from a Banach space X into a normed
space Y. Show that if 77!(B, ) is closed,
then T is vontinuous at O, where

By ={yeY:|lylis1}

. Answer any fwo parts : 5x2=10
fa] let T:CP,1]—~CP,1] be a mapping
deﬂ.nadbyﬂ[ﬂ]m-;f[.ﬂds. Show that
T is a bounded linear operator and

[ITll= 1
fb) Let X and ¥ be normed spaces such that
; X is infinite dimensional ¥ # {0}. Show
that there exists some linear operator
from X into ¥ which is unbounded.

fc} Prove that every countably subadditive
seminorm on a Banach space is
continuous. 117




3. Answer any two parts ! 5x2=10
fa) Let T be a linear operator frem a Banach
space X into a Banach space Y.
Suppose that whenever a sequence (x, )
in X converges to some x in X and (Tx, )
converges to some y in Y, it follows that
y = Tx. Prove that T is bounded.

(b) Let (T,) be a sequence of bounded linear
operators from a Banach space X into a
normed space Y such that lim T, x exists
for sach x in X. Define "

T:X->Y
by the formula Tx =lim 7, x. Prove that
T is a bounded linear operator from X
into Y. .

fc) Suppose that ||-|h and |||l are two
' Banach norms on a vector space X and
that the identity map from (X, ||-lk) o
(X, I|-l) is continuous. Prove that the

two norms are equivalent.

4. Answer any fwo parts : 5x2=10

{a) If M is a closed subspace of a Banach

space X, then prove that the quotient
space X / M is also a Banach space.

() Show that completeneéss is a three-
space property.

(] Suppose that f, is a bounded linear
functional on a subspace ¥ of a normed
space X. Prove that there is a bounded
linear functional f on all of X such
that ||f]l=|lfoll and the restriction of
fwoYis fg. _

5. Answer any fhwo parts Ex2=10
fa) If x be an element of a normed linear
space X, then prwe_tha.t
llx|=sup{jxx|: x*€ B,.)

and the supremum is attained at some
point of B,..
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fb) Prove - that every finite-dimensional
normed space is reflexive,
fe) I the dual space X* of a normed linear

space is separable, then prove that X is
also separable. Is the converse true?

6. Answer any three parts : 5:3-;5
(a) Show that [ with p#2 is not an inner
. product space.

(b} HY be any closed subspace of a Hilbert
space H, then prove that H=Y &’

fc) Let (e, ) be an orthonormal sequence in
an inner product space X. Prove that for
every xe X

15 ex)? S i

kml

(d) Orthonormalize xp =1, x, =t, x, =t% on
the interval [-1, 1], where

(=)= xtyuar

. T. Answer any. three parts : 5x3=15

{a) Show that every bounded  linear
functional f on a Hilbert space H can be
represented in terms of the inner
product, namely, f(x)={x 2}, where =z
depends on f and is uniguely
determined by f and ||Z||=|If |}

{b} Show that the Hilbert adjoint operator
T' :H, = H, of T: H; - H, defined by

(Tx ) ={x T"y)

exists, is unique and a bounded linear
opérator with norm N7 N=1Tik

f) ¥ T:C?C? be defined by
Tx=(z +izy, 3 -iz;), where x =(z, 2;),
then find T*. :

{d) - State and prove the Banach Fixed Point
theorem.

fe) State and - prove the Krein-Milman
theorem.
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!‘luﬁgurumthemurnnmﬁﬂmh
Jor the guestions

1. "Answer any hwo parts : 5x2=10
fa) Show that the subspace Cy of [~ defined
by C;,-{{x,,l:x,—rﬂ; is a Banach
space.

fhjmtdnwummbr—ix..is

nw}
absolutely convergent series in a
normed linear space (X, [|-1)?
State and prove a necessary and
sufficient condition for absolute

convergence of a series 3 x, in a
n=l

normed linear #pace X.

fe¢ Prove that in a finite-dimensional
normed linear space, any two norms are

3. Answer any two parts : S5x2=10

fa) Prove that in a finite-dimensional
normed linear space, a closed and
bounded subset is compact. Is the
converse true for a general normed
linear space?-

fb) If X =CJ0, 1} then prove that the integral
operator T: X — X defined by

':rmunff,ku. shxigdt
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is a continuous linear operator, where
ki, s:10, 1]x[0, 1] +R is continuous.
What is the upper limit of the value of
ri? .

fc) 1 X and ¥ are normed linear spaces and
Te€ B(X, Y), then show that
IT||= supf|[Tx||: l|x||< 1)
= sup{ || Tx]|: lix|i=1)
= sup{||Td: llx]i< 1}
=infla >0: ||Tx|isajix|] ¥ xe X}

3. Answer any two parts : Sx2=10
fa) If X is & normed linear space, then show
that X* = B(X, R}, the dual space X, is a
Banach space.

(b} Stnt:mdp_mwtheprincipleofunifmm
boundedness.
betl’b:_tldmndsuhnpao:nfnnnrmad
ﬁnearspnuex.?rmthuaaequcm::
{x, +Y} converges to x+Y in x;}’ if
and only if there is a sequence {y,} inY
such that {x, +yn]mnmgutuxinx.

4, Answer any two parts : 5x2=]0

fa} Prove that X is a Banach space if and
only If ¥ and X /Y are Banach spaces.
Here Y is a closed subspace of X.

{b) State and prove the first isomorphism
theorem for Banach spaces .

jc) State Vector Space Version and Normed
Space Version of the Hahin-Banach
theorem. Show that for xp#0 in a
normed linur space (X, |} i} there ﬁ‘n‘l'l‘.l
a continuous linear functional xg in
dual space X' such that

xglxg) =lxg Il and |xq |j=1
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5. Answer any lwo parts : 5x2=10

fa} Show that a normed space is finite-
dmenmnnﬂlfmdunhrﬂimduﬂnpm
is finite dimensional.

) If Tel{X,Y), then show that T .ia
bounded if and enly if
sup((Tx y' )l: xe By, y' €B,.)
is finite.
fc) Obtain the dual space of 1,,.

Answer any three parts : 5x3=15

fa} Define an inner product space. Let X
mdl’hetwoinnapmdum:pm
Prove ' that ahnmmonx—gY
satisfies

(Fld, Py =(x y) for all x, ye X
if and only o1 it satisfies '
HFix l=lix]| for all xe X

whzreﬂmnormsonxmlfm
induced by the respective inner
products.

fb) Let{x;, x5, .. lhlﬁumbmwml
subset of dn inner product gm X.
Define

L)) - U9
=X, U B W
-, AERET el 2 T ik

for n=234,.. and

Un = Xp = {Xn, )1y = o= (Xn, Up ) Utgy
Show that {u,, ug,...) is an orthonormal
set in X and
span {u, Uy, ..., Un ) = Span {x, Xy, ..., X}
forn=12...

: {¢) Suppose (u;,us, ..} is a countable
*  orthonormal set in an inner product
space X, and x€ X. Prove that

T iz ug W2 <lixff?

Further, show that the equality holds if
and only if
x =y (% up)up
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{d) Llet {u,] be an orthonormal set in a
Hilbert space H. Prove that the following
conditions are eguivalent :

) {ug) is an orthonormal basis for H.
{ii) For cvery xe H
J:-E(x. u, ju,
‘where {uy, Uy, ...} = jug (X, ug) » O}
(@) If xe H and (x,u,)=0 for all o
then x=0.
(i) Span {u,} is dense in H

fe) Suppose X is an inner product space
and that Ec X is closed under scalar
multiplication, and xe X. Prove that
x1E if and only if
' dist{x, E} = ||x||

T. Answer any three parts : S5x3=
() Define the adjoint of an operator on‘a
' Hilbert space. Let A:R2 L, R2 be an
operator defined by
Alx, 1) = Rx -y, 5y
Obtain the adjoint of A
.l"bj Let H be a Hilbert space, and
A, Bc BL(H} Prove that
@ A+B =A"+5’
i} (A% =B"A"
(@ A is invertible if and only if A" is
invertible

(6} - Let H be a Hilbert space and A € BL(H).
Show that A is unitary if and only if
lAx|l=||x]| for all xe H Purther, show
that if A - s surjective, then
HAll=HA™" |}= 1
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f{d} Let A and B be normal. If A commutes

(e}

with B* and B commutes with A", then
prove that A+B and AB are normal.

Let A € BL(H) be self-adjoint. Prove that
A or -A is a positive operator if and
only if

(Ax w)i* < (Ax XAy )
for all x, ye H.

* &
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