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Unit-1

Fluid Dynamics is the science of treating the study of fluids in motion. By the term ‘fluid’ is meant
a substance that flows. Fluids may be divided into two kinds-(1) Liquids which are incompressible, i.e.
their volumes do not change when the pressure changes, and (2) gases which are compressible fluids
suffering change in volume whenever the pressure changes. The term "hydrodynamics' (the term was
introduced by Daniel Bernoulli (1700-1783))is often applied to the science of moving incompressible
~ fluids i.e. liquids.

When matter is subjected to examination on microscopic or molecular scale, itis fuundtnmns:st
of moleculesin random motion and separated from one another by distances which are at least comparable
with molecular size. In the case of gases, the separation distances are great: in the case of liquids, they are
less great and in the case of solids even less so. :

For the purpose of macroscopic analysis, mm.ﬁmnﬂmulmsuﬂmmf matter is, in general,
of no interest. It is thus more convenient to treat the fluid as having continuous structure so that at each
point we can prescribe a unique velocity, a unique pressure, a unique density, cﬂ:.Mmmver. fora continuous
or ideal fluid we can define a ‘fluid particle' as the fluid contained within an infinitesimal volume whose
nulswmnallﬂ'ja.t itmay be regarded as a geometrical point.

Not so many years ago the dynamics of a frictionless fluid had come tobe mgardedasm academic
subject incapable of practical application owing to the greatdiscrepency between calculated and observed
results. The ultimate recognition, however, that Lanchester’s theory of circulation in a perfect fluid could
explain the lift of an aerofoil, and the adoption of Prandtl's hypothesis that outside the boundary layer the

effect of viscosity is negligible, gave a fresh impetus to the subject which has always been necessary tothe . .

naval architect and which the advent of modern aeroplane has placed in the front rank.

Historical milestones

The term "hydrodynamics’ was introduced by Daniel Bernoulli(1700-1783) to comprise the
two sciences of hydrostatics and hydraulics. He also discovered the famous theorem still known by his
name.

- d'Alembert(1717-1783) investigated resistance, discovered the paradox associated with his name,

and introduced the principle of conservation of mass (equation of continuity) in a liquid. '

Euler(1707-1783) formed the equations of motion of a perfect fluid and developed the mathematical
theory. This work was continued by Lagrange(1736-1813). :

Navier(1785-1836) derived the equations of motion of a viscous fluid from certain hypothesis of .

Stokes(1819-1903) also obtained the equations of motion of a viscous fluid. He may be regarded
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as having founded the modem theory of hydrodynamics.

Rankine (1820-1872) developed the theory of sources and sinks.

Helmboltz (1821-1894) introduced the term ‘velocity potential', founded the theory of vortex
motion, and discontinuous motion, making fundamental contributions to the subject.

Kirchoff (1824-1887) and Rayleigh (1842-1919) continued the study ufdiscmtmuous motion
and the resistance due toit.

Osborne Reynolds (1842-1912) studied the motion of viscous fluids, introduced the concepts
of laminar and turbulent flow, and pointed out the abrupt transition from one to the other.

Joukowski (1847-1921) made outstanding contributions to aerofoil design and theory, and
introduced the aerofoils known by his name. .

Lanchester(1868-1945) made two fundamental contributions to the modern theory of flight; (i)
the idea of circulation as the cause of lift, (if) the idea of tip vortices as the cause of induced drag. He
explained his theories to the Birmingham Natural History Society in 1894 but did not publish them till
_ 1907 in his 'Aerodynamics’ ;

Viscous (or real) and Inviscid (non-viscous, fridlnnless, perfect or ideal) Fluids' Viscosity :

An infinitestimal fluid element is acted upon by two types of forces, namely, body forces and
surface forces. The former is a type of force which is proportional to the mass (or the volume) of the
body on which it acts while the latter is one which acts on a surface element and is proportional to the
surface area. '

, Suppose that the fluid element be enclosed by the
surface S. Let P be an arbitrary point of S and letdS be the i o
surface element arourid P. Then the surface force on dS is,

in general not in the direction of normal at P to dS. Hence m“g: N
: Hormal Stress

the force may be resolved into components, one normal

 and the other tangential to the area dS. The normal force
per unit area is said to be the normal stress or presure
while the tangential force per unit area is aid to be the
shearing stress.

A fluid is said to be viscous when normal as well as shearing stresses exist. On the other hand, a
fluid is to be inviscid when it does not exert any shearing stress, whether at rest or in motion. Clearly the
presureexerted by an inviscid fluid on any surface is always along the normal to the urface at that point.
Due to shearing stress a viscous fluid produces resistance to the body moving through it as well as between
the particles of the fluid itself. Water and air are treated inviscid fluids whereas syrup and hevy oil are
treated as viscous fluids. '

We know that the flow of water and air is much easier than syrup and heavy oil. This demonstrates
the existence of a property in the fluid, which controls its rate of flow. This property of fluids is said to be
viscosity or internal friction. :




Some Importanttypesorhuw:
(i) Laminar (streamline) and Turbulent flows :

A flow, in which each fluid particle traces out a definite curve and the curves traced out by any two
different fluid particles do not intersect, is said to be laminar. On the other hand, a flow, in which each fluid
particle does not trace our a definite curve and the curves traced out by fluid particles intersect, issaid to
be turbulent.

(ii) Steady and Unsteady Flows :
A flow, in which properties and conditions (P, say) associated with the motion of the fluid are
independent of the time so that the flow pattern remains unchanged with the time, is said to be steady.

ot

other hand, a flow, in whichwcpuﬁexandmﬂiﬁmsassmimﬁiﬁm the motion of the fluid depend on the
time so that the flow pattern varies with time, is said to be unsteady.

oP
Mathematically, we may write —— = 0. Here P may be velocity, density, pressure, temperature etc. On the

[Iil}UﬁfurnundNnn-uﬂlhthws:

A flow, in which the fluid particles posses equal velocities at each section of the channel or pipe is
called uniform. On the other hand, a flow, in which the fluid particles posses different velocities ateach
section of the channel or pipe is called non-uniform. These terms are usually used in connection with flow
inchannels. :

(iv) Rotational and Irrotational Flows :

A flow, in which the fluid particles go on rotating about their own axes, while flowing, is said to be
rotational. On the other hand, a flow in which the fluid particles do not rotate about their own axes, while
flowing, is said to be irrotational. :

(v)Barotropic Flow : y
The flow is aid to be barotropic when the pressure is a function of the density.

Methods of describing Fluid Motion :
There are two methods for studying fluid motion mathematically. These are Lagrangian and
Eulerian (Flux) methods and refer to "individual time-rate of change' and 'local time rate of change'

respectively.

(I) Lagrangian Method :
In this method we study the history of each fluid particle, i.e., any fluid particle is selected and is
pursued on its onward course observing the changes in velocity, presure and density at each point and at
3 o




each instant. Let (x,, ¥,, Z,) be the coordinates of the choosen particle at a given time t=1,. Ata later time,
t=t, let the co-ordinates of the same particle be (x, y, z). Since the choosen particle is any particle in the
ﬂmd,thnmﬂmam{x y, z) will be functions of t and also of their viues (x,, ¥,, Z,), 50 that

X = (X Yoo Zgo D ¥ = (K0 Yoo Zo 1 25 1,(%g ¥ Zpp - wovee(1)
Letu, v,wandn‘.n,,aiber.tw:mapumnmofvehciqrandmlm'ahmmspn;ﬁﬂy,ﬁmw:haw

Ly 2
u_at,v a:‘w_at A )
a*x 9’y 2’z :
= AT W e

] (L

Remark 1. :

The fundamental equations of motion in Lagrangian form are non-lincar and hence it leads to many
difficulties while solving a problem. In fact, the present method is employed with an advantage only in some
41t one-dimensional (involving one space coordinate) problems. Hence we need to think another method of

describing fluid motion. '

Remark 2. : _ ;

This method resembles that of dynamics of a particle in so far as (x, y, z) are de_pcnd.em ont.

However, in Lagrangian method of fluid dynamics (x, y, z) are dependent on four independent vriables x,,

Yo Zpo L :

u B

(H) Eulerian Method :

_ In this method we select any point fixed in spact occupled by the fluid and sludjr the changes
which take place in velocity, presure and density as the fluid pass&s through this point. Letu, v, w be the
components of velocity at the point (x, y, z) at time t. Then we have

u=F x5z, v=FXxnz),w=Fxyzt) ..4
For a particular value of t, (4) exhibits the motion at all points in the fluid at that time. Again fora
particular point (x, y, 2), u, v, w are functions of t, which define the mode of variations of velocity at that
point. ’ '

Remark :
The point under consideration being fixed, x, y, z and t are independent variables and hence

dx d*x

i etctmvenunmmgmﬂusrrﬂim

Relationship between the Lagrangian and Eulerian Methods :
In arder to establish a relation between the two methods, we investigate a relation between the

particle parameters and space parameters.
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(i) Lagrangian to Eulerian :
Suppose §(X,, ¥,» Z» t) be some physical quantity involving Lagrangian desmptlm
=Xy Yy Zp D) k5
Since Lagrangian description is given, (1) holds.Solving (1) for X, ¥, 2, We have
%=X N Y, =g 1 0. =g . 20 e {6)
Using (6), (5) reduces to
0=0g,(x. %20 BE N ER%HHOT D
which express ¢ in terms of Eulerian desription.

(ii) Eulerian to Lagrangian :
Supposc 'P(x, ¥, 2, ) be some physical quantity involving Eulerian description |
Y=Y(x,y.2,t} cesend B)
Since Eulerian description is given, {4} holds. Again, (2) holds forﬂmpfaposed Lagrangmn
dmpnmﬂm{l]:nd{-‘l}ymm

& gz
* =F(x,y. Z.t}.% =F(x,y.2, H'E =FK(x %zt ..(9)

The integration of (9) involves three consants of integration which may be taken as nitial coordinates
x,y,zumuﬂmdmmuuimmufmmmﬂuwmmmmmmummm
Using (1), (8) reduces to

W =W[f (X Yoo Zop h £3(Kgp Yo Zn O (%00 Yo Zp O ] ..(10)
which express ¥ in terms of Lagrangian description.

Exercise 1. :
m_wwmmhammmm§mmnmgiminmmmehy
u=2x+2y+3, v=x+Yy +%l . Find the displacement of a fluid particle in the Lagrangian system.
Solution :
Given u=2x+2y+3t, v-x+y+%l (1)

In terms ufﬂmediapmnundy.dmwlxitymmmwu an v may also be represented by

o_dx _dy :

us= e V= g sl )
From (1) and (2), we have

%s21+13+3t,%-x+y+%t e 3




Let D h%,'l‘h:equaﬁum (3) becomes
(D-2)x-2y=3t e )
—-1+{D+i}}r=%t ' : sl BY
Operating (5) by (D - 2), we have

—(D—2]x+{D-2}[D-I}y=:;—{D—2}t

or -{D—2}11m1—3D+2}y=%—t ...... (6)
Adding (4) and (6), we have
(D* -3D)y = %+ 2

Amhnqequanmuf{?}mﬂ’ iD= ﬂSulnngme it gives D=0, 3. Hence complementary
function (C.F) is given by
CE=c, +cge"
Next, the particular integral (P.1) is given by |

' 1 1
PlL= Sy
: 01-30[2 )

2
=—-]-{2xl—+1xtJ;_t_1__:‘r_‘

3 2 6 3 I8
Hence the general solution of (7)is
' 1 7
y=c1+c,e3 *[E}i —[E} el B)
d 2 | 7
e I
Re-writing the second equation of (3), we get '
1 .
“%_’_5' 10




2 d
Putting the values of y and d—{ given by (8)and (9)in (10), we get

2
X =3-c,e’“_--§t—l;];:j--::l =-C;C +lt s fenat

% 19 7 .
i x=—c,+2¢,e"“+[§]t '[.E}_[E) (11

x=x,y=y,whent=t,=0 weren 12)
Using (12), (8) and (11) reduce to
"? B
Yo=¢, +¢, and Xo =7C, +2¢c, - 18 wien(13)
Solving (13) for ¢, and ¢, we have

“WomXo T o _Xot¥e T

nl 3 ‘s_ig 1 3 54 ++++++ {14]
Using (14), (11) and (8) give
1. 2 1 Ty o Lo d
=Xy ==Y +—| 2X, +2¥,+—= f ——t+ -t —-—
1 2 1 TV 7 | |
-—— =Y t= +— pr-—t==tt——
y 3“&"'33% 3[1q+]’n 18} 'lﬂt 3 54 wween(16)
(15)and (16)give the desired displacements x and y in the Lagrangian system involving the initial
positions x,and y, and the time t.
Velocity of a fluid particle :

Let the fluid particle be at P at any timetandletitbeatQatﬁmn&tmh that
OP =7 and OQ =7 +8&r- '

Thmimlﬁilm'lllﬁtdw movement of the prticleis PQ = 5r and hence the prticle velocity g atPis

q=1li E = ~d_—r
& ot dt’
assuming sucha Hmitt&exist uniquely. Taking the fluid as continuous, the above asumption is justifed.

Ciearly  isafunction of 7 and tand hence it can be expresed as § =f(7, t). Ifu, v, w are the components

of § along the axes, we have § = ui + vj+ wk -
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Material, local and convective derivatives :

Suppose a fluid particle moves form P(x, y, z) at time t to Q(x +&l&.}r+3y 2 +8z) at time t+ Bt Further
suppose f(x, ¥, Z, ) be a scalar function asociated with some property of the fluid (e.g. the presure or
density). Let the total change of f due to movement of the fluid particle from P to Q be 5£. Then we have,

1§

Sz _dz .aol2}
St

where q = (u, v, w) is th velocity of the fluid particle at P. Making 5t — Oand uing (2), (1) reduces to

De_, 2, o0, 0
DF Ko, I B | e ST e 3

But q—uh{j.mi RS @)
ﬂ' - d -ﬂ
V=i—+j—+k—
and x F}y Ez ...... {5)
From (4) and (5),
*-?.=u—+vi+wi (i
1 x 3y ™ e (6)
Using (61, (3) reduces to
Df of
Dt - 3t +(g ?}!’ -

Again, suppose g(x,v,Z,t) hammﬁmmmmw:mmmofm:sﬂmd{e
velocity etc.). lenprmeedmgasabnw we have

Dg g
Dt ot

From (7) and (8), we have, for both scalar and vector functions

—=+@-V)E ' ee(B)

%’éa;*‘_l‘v Pl Foe ot e ©) .

d
% (or T ]mcalhdﬂmmamial{nrpmﬁchwmhsmﬂ-l}dermﬁw Itis also spoken
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of as differentistion following the motion of the fluid. The first term on R.H.S. of (9), namely gt-. is

called the local derivative and it is associated with time variation at a fixed position. The second term on
R.H.S.of (9), namely -V, is called the convetive derivative and it is asociated with the change of a
physical quantity for § due tomotion of the fluid particle. '

D
Note : The operator Eﬁgl‘liﬁlﬁ that we are calculating the rate of change of a physical quantity for g
associated with the same fluid particle as it moves about.

. Significance of the Equation of Continuity, or conserversion of mass : .
The law of conservation of mass states that fluid mass can neither be created nor destroyed. The
equation of continuity axioms at expressing the law of conservtion of mass in a mathematical form.
‘Thus, in continuous motion, the equation of continuity expresses the fact that the increases in the
mass of the fluid within any closed surface drawn in the fluid in any time must be equal to the exces of the
m#ﬂﬂm&hmﬂwmdﬂﬂmm '

The equation of continuity (Vector form) by Euler's method :

Let S be an arbitrary small closed surface drawn in the compressible fluid enclosing a volume V
‘and let S be taken fixed in space.Let P(x, y, z) be any point of S and let p(x, y, z, t) be the fluid
density at P at any time t. Let 85 denote element of the surface § enclosing P. Let §; be the unit

outward-drawn normal at §S and let § be the fluid velocity at P. Then the normal component of g
measured outwards from V is %.ﬁ. Thus, .
q

=2

" Rate of mass flow across 88 = p( /.3 )5S
A Total rate of mass flow across §

= [p(a)ds
5

-f?-[pﬁ}d‘u’ . - s
v :

(By Gauss divergence theorem)
Total rate of mass flow into V = =, V.(oq)dV 1)

Again, the mass of the fluid within S at time t = [, pdV .

Tuu]mufmamwidﬁns

_ =%Lpd\r'= J' ‘%w wel2)




Suppose that the region V of the fluid contains neither sources nor sinks (i.e. there are no inlets or
outlets through which fluid can enter or leave the region). Then by the law of conservation of the fluid
‘mass, the rate of increase of the mass of fluid within V must be equal to the total rate of mass flowing into
V. Hence from (1) and (2), we have ' '

E' ==[ ¥.{0a | ie .- a = |
-Jv&dv" LV (pgdV  or jv[&+?{m] V=0

whichhuldsﬁm‘m‘biuwysmllﬁdumv.if E;}%.'- V- =0  ...(3)

Equation (3) is called the equation of continuity, or the conservation of mass and it holds at
all points of fluid free from source and sinks.

Corollary 1.:

Since V- (9§) = pV - § + Vp- § , other forms of (3) are
%te+p?-ﬁ+?p-ﬁ=0 ..... 4)
Dp -
—_— v. =
Dt+p q=0 Y a3}
d _ '

and —(logp)+V:-g=0 ; e B)
dt

Corollary2.: ;

For an incompressible fluid the density of any fluid particle is invariable with time so that

D ; ;
I_)IE =0, In such a fluid there could be a variation of p from particle to particle as in the case of a non-

homogeneous and incompressible fluid. For a homogeneous and incompressible fluid p is constant
throughout the entire fiéld. In either case (5) shows that the equation of continuity is V.g=0 or

§+$+-§z—=ﬂ if E"“;""a* wk . From now onwards, unless otherwise stated the term

*imsible fluid' will be taken to imply one which is not only incompressible but also homogeneous.
If in addition the flow is of potential kind, then there exists a velocity potential ¢ s.t. § = -Vé.In

that case the equation of continuity V.g = 0 reduces to V¢ =0 whichis Laplac's equation.

Corollary 3.:

1f the motion is steady, then %?ﬂ‘- T (CgivesV-(pg)=0 and if pis constant then V-g§=0.
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From the above investigation it appears that a fluid can not move according to an arbitrary assigned
* law of distribution of velocity. For the motion to be possible it is evidently necessary that the equatien of,, ,..,
continuity should be satisfied. In particular, possible irrotational motion of a liquid are subject to ﬂ'lt;__;__ et
condition that the velocity potential ¢ shall satisly Laplac's equation. .

e

Equation of continuity in different coordinate systems: '
The general form of the equation of continuity is

a_p+ V-(pg)=0
at

Now, the expression of V - (pg) in orthogonal system (A, 1, v) s given by
1
h,h,h,
where h,, h,, h, are the scale factors.
Hence V. (pq) in cartesian, csvkndrinal and spherical systems bécomes
In cartesian :

|1I=I|h_“=l,h3=1
1=K.H=}’|V=3

qlzu,q]=\.l"q1=w

d d D p.
[ﬁ{pqlhzha J+$[pq3hlhl J+'§v“{m:hrhz J]

Hence v‘ﬂﬁ]=ﬁ:~i[~§;mu‘lrl}+%{pu«l-l]+%[pw-l-l}]
' =%mw+%mv}+%(pw>
" Incylendrical (r, 8, z)
hy=1h,=rh=1
A=r,pu=0,v=z : I s
94 *=9:9,=49 9 =q, i

e 1 |2 d 9
Vs ——| Ztgot ot D4-i0ia. -1 B4 2 0 a. <1
Hence (pq) l-rrl[ﬂ (P-q, T-D+ E(P Q-1 ”+ﬂz{p g,-1 r}]

=%[%{prq. )+:—ﬂ{9qa F%{ml }}

Inspherical (r, 8, ¢)
h = l.'h1=r, h, =rsinB
A=r,u=0,v=9
9,=9,9,=0,q,=4,

11




1 d ) :
V- _n% g 1 ;
Hence {P'CI] e ﬂ[a (p-q, -r-rsin)

0 . d -
+$m-q. ‘TEI]‘-IE'I}i'E{ﬂ'q‘ *1‘T]]
Hence the equation of continuity becomes
In cartesian

W0ty 8 S
a:+ar(p"}+ay{p“]+az(p“’} 0

iﬁcrlendric-l |
212 (ora, )+ 35020+ 2 o, ) | 0
In spherical

% + 5 :ina'[%(pq,rzsini}ﬁ%(prq, sinFTl }+ %(prq. ]] =0

ot

Equation of Continuity of Luguid Flow Through a Channel or a Pipe :

Letan incompressible liquid continuously flow through a channel
or pipe whose cross-sectional area may or may not be fixed. Then the
quantity of liquid passing per second is the same at all sections.

Suppose some liquid is flowing through a tapering pipe as shown
in figure. LetS,, S, S, be the area of the pipe at sections 1-1,2-2,3-3
respectively. Further, let V , V,and V, be velocities of the liquid at 3>
sections 1-1, 2-2, 3-3 respectively. Let Q,, Q, and Q, be the total !
qmﬁtynfliqtﬁdﬂuwingml!wmﬁm 1-1,2-2, 3-3 respectively.
'n,m ] E

-,L- .

o R
NGl

- -

Q,=§V,Q,=5V,Q,=8§,V, reeens(1)
lbmh:awafummmonnfmnmtﬂqmﬁqaﬂiqmd
flowing across the sections 1-1, 2-2, 3-3 must be the same.
Hence Q, =Q,=1Q, ... and so-on.
' Thus, ;
§,V,=8,V,=5,V, isthecquation continuity.

Boundary Conditions (Kinematical) :

* When fluid is in contact with a rigid solid surface (or with another unmixed fluid), the following
boundary condition must be satisfied in order to maintain contact.
12




The fluid and the surface with which contact is preserved must have the same velocity normal w
the surface. :
Let # denote a normal unit vector drawn at the point P of the sarface of contact and let § denote
the fluid velocity at P. When the rigid surface of contact is at rest, we must have §.fi = 0 ateach point of
- the surface. This e:gpreém the condition that the normal velocities are both zero and hence the fluid
velocity is tangential to the surface at its each point as shown in figure.
Next, let the rigid surface be in motion and let § be its velocity at P. Then we must have
G =0 '
or G@-m)Aa=0
widchamdwfactﬂmﬂmmuﬁhmnmmlvdmhyu?hﬂw&qunnhqmdﬂﬁiﬂmigﬂt
velocity of the fluid relative to the boundary is tangential to the boundary at its each point.

Furhﬁsﬁd.ﬂuidmmmiﬁmmmbcsaﬁsﬁadmﬂw-bwm.ﬂuwm for viscous fluid
(in which there is no slip), the fluid and the surface with which contact is maintained must also have the
mmnguuﬁnlvducityam

Mrym&iﬂm{ﬁ?ﬁmﬂ
~ 'The above mentioned kinematical boundary conditions must hnidmd&pmdcntlyufan}rpumcxﬂar_
physical hypothesis. |
MSM&W&W&MM(M&MM}- 'I'lmtl‘:fulluwmga.ddmal
condition must be satisfied :
The pressure must be continuous at the boundary as we pass from one side of S to the other.

Boundary Surface :
© We propose to derive the differential equation satisfied by a boundary surface of a fluid. Thus, we
discuss the following problem : , :
To find the condition that the surface F(7,t) =0 or F(x, y.z.t) = ﬂmaybtahnundarysmfm

13




Forﬁgmt,mfu‘ﬁgme[n}
MPb:apmmmﬂwnmwngbmudarysurfm
E(r,t)=0 : —
where the fluid velocity is § mdﬂ;e\rclmny of the surface is @.
' Nm»mmmpmmmuwﬂmmmsmmmmwhmhmmumbemmmd'
miust have the same velocity normal to the surface. Thus, we have

i

ol
=P
n

o  (@-w)i=0 2
where § in the unit normal vector drawn at P on the boundary surface (1). We know that the direction

Again, =—it+—j+—k : A (3)

which shows that § and VF are parallel vectors and hence we may write § = k'VF. With the value of j,
(2) reduces to
(@-0)-kVF=0
sothat §-VF=1u-VF Y
Let P(7,t) move to a point Q(r + &7, t + 86t) on time §¢ . Then Q must snlisfyﬂ:eequaﬁm of the
boundary surface (1), at time ¢ + 5t , namely
Fr+&f,t+80)=0
Expanding ByThylufsﬂmdm the above equation gives

F(7,t) + &F- ?F+E{aaf] 0

oF &t -
o otz VF=0  (using(D) s

Proceeding to the limits as 8r—0, 5t—0 and noting that

im—=-—=u

08t dt !

(5) gives '%F-I-E YEs . w v or 7 s e {6)
oF  _

or = +3-VF=0 (nsing (4)) el
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whiqhisﬂwmquiredomdiﬁanfw F(F, t) tobe a boundary surface.
- Remark 1.:
Let § = ui + vj+ wk . Then (7) may be re-writiem as,
dF s =« 2\fdF- odF- dF-
—+lui+vj+wk }| —i+—j+=—k [=0
x (I.ll vj+ wi )[axl a}r] T ]
oF oF dF dF

or —+tu—+v—+w-—=0

n ox dy oz
DF

or E.!u ...... (8) .
(8) presents the required condition in cartesian co-ordinates for F(x, y,, 1) =0 to be a boundary
surface.
Remark 2. : .
The normal velocity of the boundary
oF
VF =- X
=0-i=0—— - o iz f .
UA=TTR | Fi T3 | CyGandi6y
ax dy oz
_9F
= at
1 2 1 2 .
oY (Y (9F eee(9)
ox dy oz
: u£1=—+'.ra‘—F+1.1-.-ra—1=
= ax oy oz :
Y (9F 1+ FY| wy@) .(10)
o Ay x| | _
Rﬂllalrkl:

; o § o :
When the boundary surface is at rest, then %t* = {} and hence the condition (8) reduces to

'u—+~v—+w—z-=n e 11)




Exercise 1. :
Show that the surface

H.! y! z]
— —+kt! L+ |=1
a’k’t* (b’ e’
is a possible form of boundary of a liquid at time t.

Salution :
Theglmtsau'ﬁm

- x? yz z?
F V2, ) = ———+kt —+—-— 1=0
(x,y.2,t) Ry (b* e ] ...... {.”

be & possible boundary surface of a liquid, if it satisfies the boundary condition

f (aF) [oF aF)_ :
@ EE - @
and the same values of u, v, w satisfy the equation of continuity

E+§v..+ﬂ_[] . 3

> oy o eeer3)
From (1), . y

oF 411. 1 g2

T'W”’“[%*‘F]

OF _ 2x 9F_2k’y OF_2ki'z
x akit'’'dy b oz

With these values, (2) reduces to

F | T 2

4x u[y z ] 2xu +2kt v, 2kt’zw i

—— G 4
nlkltﬁ a!k'ﬂ.tl b! B_

b o
: 2x - ‘Zkyt
o ikt t b2

which is identically satisfied if we take
_2x L -_.‘.':. ;
R ey ha il )
From (4),
ﬂ_,z.ﬂ".-_lﬁ“’_=_l (5
x t'dy taoz ot s}

Using (5), we find that (3) is also satisfied by the above values of u, vand w. Hence (1) is a
. possible boundary surface with velocity components given in (4).
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Exercise 2. :

K’ : yz
Stnwﬂu{[ tan” t+ - * t =1 5.2 possible form for the boundary surface of 2 liquid,

and find an expression for the normal velocity.
Solution :

dF © ow
For the present two dimensional motion (7 = 0 and e 0), the surface

1 FI
F(x,y.t) = ( ]tan [tﬁ ]mt‘t—lzﬂ sl 1}

can be a possible boundary surface of a liquid, if it satisfies the boundary condition

dF [ dF dF '
E,..;..{E;)J-V(E]%ﬂ' ...... [2]

- . andthe same vnlmufuand v satisfies the equation of continuity

§+E-=ﬁ . )]
2 .‘1
Frun{l}.§=~:—12tantm’t—ii1nmtcoﬁeczt
—=Z_man®t, —==cot’t
ax n’m dy b’

With these values, {2} reduces to

xtant

(xsec? t+ut.ant)+ = t{.-y:us:c’uvcmt}:ﬂ

which is identically satisfied if we take
xsec’t+utant=0 and -ycosec’t+vcott=0

¥

z = - V= s

en BT Sintcost and V= Gintcost - {4}_

From (@, Bm=l " woa T L )
). 5% “sintcost ¢ dy sintcost

Using (5), we find that (3) is also satisfied by the above values of u and v. Hence (1) is a possible
mmmmymgmmm

dF
*  Usingresult (equation lﬂ}nfpageﬂ{mth-é;-ﬂ here), the normal velocity

17




N htnn’t_'_ y ' 2ycot’t
__sintcost a’ sintcost b’

: 1
[[2:;:::1:1"‘t]=|L [Z;nfrv::n::nt’t]*1 ]2
2 s
a b

_a’y’cottcosec’t—b’x” tantsec’ t
J(x?b* tan* t+y?a* cot* t)

" Stream line or line of flow :

A stream line is a curve drawn in the fluid so that its tangent ateach pmnnsmmed:lructinnnf
motion (i.e.fluid velocity) at that point. :

Let 7 be the position vector of a point P on a stream linc and et § be the ﬂuidw;lomty atP. Then

g is parallel to 47 at P on the stream line. Thus, the equation of

stream lines is given by

qxdr =0 (i)
- e (98 +9.8; +q.8, )< (hgdh+hEdp+hdv )=0
where _
q=q¢,+q,8, +q,8, and dr=hgdA+hg,du+h,€dv in orthogonal system (A.lv)
= {q.th}dv _qshzd}l‘h*t + (q;hld?"_‘;lh:.dv]é: +(q;h,du- QI}_'ldl}é! =0

“”q:had"“hhzdu"ﬂ'=’£’d_v=zﬂ: and gq;hdA-ghdv= ﬂmﬂ:ﬂ E:;E
z 3 4

combining the above two we get B iy ldy (ii)
9 qQ a4

Stream line in different coordinate systems: From (ii) we can deduce the equations for stream line in
dlﬁummmsym '

18




- e 9 a
: dr rd0 dz
In cylindrical system __q__'q_
1) L] z

dr rd® rsinBd¢

| The equations (iiy have a double infinite set of solutions. Through cach point of the flow field where

ulx, v, z, t), v(x, ¥, 2, £) and w(x, y.z.t}domx‘nlivmish. there passes one and only one stream line ata
given instant. This fact can be verified by employing the well known existence theorem for the system of
equations (2). Eﬂmvdmwvmﬂnpmpmmmmmmﬁmmmm Such a point is
known as a critical point or stagnation point.

Path line or path of a particle :
hpaﬂihmudwmwtmnhugﬂmhamlmﬂudmhmdsdmﬂgmmm
The differential equations of path lines are :
§= T T A (i)
dx dy dz.
- —_—=, ===y, —= 2
e R R 2

where § = ui + vj+wk and 7 = xi + yj+ wk .

Remark :

' Iﬂnﬂuﬂpumcleofﬁmdidmmybcat(xn.}r,.zu}whent by ﬂmt]wpaﬁlme:sdetmmmd
from equations :

% =u(x,y,zt) 1
%= | eei(3)
_%= W{I-J’-Lt)‘
x(t) =%, Y(t) =¥ 2(t) = 2, e )
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Difference between the stream lines and path lines :

It is important to note that stream lines are not, in gém:rai. the same as the path lines. Sream lines
show how each particle is moving at a given instant of time while the path lines presents the motion of
the particles at each instant. Except in the case of steady motion, u, v, w are always functions of ihe
time and hence the stream lines go on changing with the time, and the actual path of any fluid partictc il
notin general coincide withastream line. '

Stream tube (or tube of flow) and stream filament _

If we draw the stream lines from each point of a closed curve in the fluid, we obtain a tube called
the stream tube.

A stream tube of infinitestimal cross-section is known as a stream filament.
Remark : N

Since there is no movement of fluid across a stream line, no fluid can enter or leave the stream fube
except at the ends. So in the case of the steady mntinn..asunam tube behaves like an actual solid 1ube
through which the fluid is flowing. Due to steady flow, the walls of the tube are fixed in space and henc.: the
* motion through the stream tube would remain unchanged on replacing the walls of thetube by a nigid
boundary.
Exercise : _

The velocity components in a three-dimensional flow field for an incompresible fluid arc (2x. - y.
z). Isita posible field? Determine the equarions o.t‘ the stream line passing through the point (1. |, 1).
Solution : ' '

Hereu=2x,v=-y,w=-2

Stream lines are gi .0 s
i given by e
o d_y _d
ie., x "}'-'Z 1)
Taking the first two members of (1), we have
& _dy by
2x -y X ¥y
Integrating, logx + 2logy =loge, or xy*=c, ireef2)
" Again, taking the first and third members of (1) and proceeding as above, we get
xzi=c, -
Hemn,andc&ma;bimymnstanis,ﬁc streamvlines are given by the curves of inters=. ton
of (2) and (3). The required stream line passes through (1, 1, I) so thatc =l andc,= . Thuv: e

desired stream line is given by the intersection of xy*= 1 and x2’= 1.
We also have
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dw PR
-l —==]"*
13:

du dv  ow _
sothat E;"‘*é‘;‘"iz"ﬂ,
showing that thé equation of continuity is satisfied for the given flow field for an incompresible fluid. Hence
the given velocity components correspond to a possible field.

Exercise 2. : :
Find the strean lines and paths of the particles when

I SOOI AN
u_{I+t:|'1"r |:1+t]'“r (1+1)

Solution :

Stream lines are given by g 8

- g e T seanesd{ 1}
! X :
Taking the first twomember of (1), 7=t -

Taking the last twomember of (1), > = €3 _ )

The desired stream lines are given by the intersection of (2) and (3).
'I"tmpaﬂu_nfﬂmpmﬁc_lcsamgivenby '

. dx x dy y o -3
ie, g @+n’dt (1+0'dt (1410
dx
X

dt dz _ dt
1+t"y 1+t z 1+t

x=c,(l+t),y=c,(1+1), z= c (1 +1),
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which give the desired paths of the particies.
The Velocity Potential or Velocity Function :

Suppose that the fluid velocity at time tis g = (u, v, w). Further suppose that at the considered
instantt, there exists a scalar function §(x, y, , t), uniform ﬂmﬁmtﬂwmﬂmﬁdﬂdﬂwm:mh that

-d¢ udx + vdy + wdz sl 1)
ie [2»:1.1r.+g:d1.'+i ) udx +vdy+wdz )
thmﬁmmmm.n«f(l}ismm;ﬁfrmmmmﬁ;e

T

qﬂ%--smi#. _ end)

Mscal]ndmcwhdtypotmdnl The negative sign in (4) is a convention. Itmmuﬂmﬂuﬂnw
takes pllr.cflmn the higher to lower potentials. .
The necessary and sufficient condition fnr{4}mhu{d|s

Vug=0 . ie, ocwmig=0D ' . . (3) :
i jﬂi_ﬂ + E_Bw v _du =0
or d 7 . Dn F ay B ()|

Relation between velocity components and the velocity potential : .
From equation (4) we have g =-V¢. Writing the equation in orthogonal system we get

- a - ‘E op &, 0¢ €, 00
+ + ==-Vh=| LT 72 ¥ 3 F
9,6, ¥4, 4,5, ¢ ho\ h, a|.i.+ h, ]

Comparing the coefficients of €,,¢,,&, we_.get

1 9 1 9 1 9

‘Il"'h_al +q; -_h_a‘p. gy = ‘EE .

They give the relationship between the velocity components and the velocity potential. Using the -
above equations we can find the relationship between the velocity components and the velocity potential in
all the coordinate systems. ;
Thas, | '

In cartesian system n=-% v,.-_ __%

.sy
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$(x, y, z, t) = constant : .
are called the equipotentials. The stream lines '

dx dy dz

= = = - ...,,.,{B}

__'mmtniﬁghtmghsbytheswfmugimhyﬂudiffmﬁaiaquﬁm e
udx + vdy + wdz=0 ; TR (9)
and the condition for the existence of such orthogonal surface is the condition that (9) may posses a
solution of the form (7) at the considered instant t, the analytical condition being :
ﬁ_i +' ﬁ_a;'.f_ + i’d"’_ﬂ =0
oy ) \%& ox =34 i G
Whmﬁevﬂndﬁrpmﬁaiexim.ﬁ]hd:h.m '

; dw _dv '
ie., . F;t:i ween(11)
Similady,

du ow dv _du

E-a—- ﬁ;—ﬂg ...... {12]

Using [ll]and(li}. we find that ﬂwm&hm{lmuunsﬁﬁ.ﬂmuﬁmmﬂwhmhcutm
stream lines orthogonally. We also mnludﬂttmull pmnu of field of flow, the equipotentials are cut
orthogonally by the stream lines.

‘Remark 2.: '
’_Imti}hddmhcﬂuwiskmwuuﬂ:pmdd kind. It is also known as irrototional. For
such flow the field of q is conservative.

Remark 3. :
The equation of continuity of an incompressible fluidis
du dv _ odw -
— e o e 22 (] el 13)
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Suppose that the fluid move irrotationally. Then the velocity potential ¢ exists such that
36 o dd

I = Ve, W i = voeneel 14)

o’ dy’ az
Using (14), (13) reduces to

da'¢ o° 11 R
?‘* §;+§“ ; e 15)
showing that ¢ is a harmonic function satisfying the Laplace equation V¢ =0, where
a! a'.l: a‘: : :
v =----+
| 3}' 3:1 [ 16)
The Vorticity vector :

Let § = ui + vj+ wk be the fluid veclocity such thatcurl § # 0. Then the vector
Q=curlg ' oo T e (1) .
is called the vorticity vector.
Let Q,,Q . bethe components of Q in cartesian co-ordinates.
The (1) reduces to

ow ov du Iw ) o dv du] "
Q = Pl i LK e
:+ﬂ,j+ﬂk ;[By Eiz]+ =g J+ [Ex _By]

golfow v) _1fdu aw), _1fdv_du
2 % E""(EE ax}'i'a?"é;'

Note: Writing the equation § = curl g in orthogonal sysu::ﬁ we can find the components in all the three
coordinate systems. '

Vortex Line :
A vortex line is a curve drawn in the fluid such that the tangent tmle\fez)rpmnmmﬂudmof
the vorticity vector £2. '

Let R=0,i+Q,j+Q,k and let 7 = xi + yj+ zk be the pésition vector of a point P on a
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virtek s, Thon 0ia pacallel 10 aF 4 Pon the voriex lios. Herice the equation of vortex Ries is given by
Oxdi=0 :
ie.  (@i+0j+9,k k(dxi+dyj+dzk )=0
oo (9,0-0dyf+(Qdx-Qdz)j+(Q,dy-Q dx k=0
whence Q dz - Q,dy =0,Q,dx ~Q,dz =0,Q,dy - Q dx =0

_ dx _dy dz -
s0 that n_l E:_ﬂ_. ..... (I .
Note: Writing the equation ﬁxﬁ;u in orthogonal system we can find the equations in all the three
coordinate systems.
~ Vortex Tube and Vortex Filament :

Ifwcm&mvmhnﬁﬁummhpmnmfn closed curve in the fluid, we obtain a ube called
the vortex tube.,
A vortex tube of infinitestmal cross-section is known as vortex ﬂhmuﬂorsimplynvm

Remark :
It wil be shown that vortex lines and tubes cannot originate or terminate at internal points in a fluid.
They can only form closed curves or terminate on boundaries.

Rnhﬂmﬂlndlrrmﬁunﬂh[udm
' 'Ihummﬂfaﬂmdmmdbhhﬁhﬂﬂﬂﬂwmmﬂmtyvmﬂﬂevﬂﬂum“mh
is zero. When the vorticity vector is different from zero, the motion is said to be rotational.

Since @ =curl g’ ;o
- ow dv du ow). (ov du
o{5-E}E2HERH
we conclude that the motion is irrotational if
curl § =0

o QJy %k oxox o
When the motion is irrotational i.c., when ﬁ:curﬁi =0, then g must be of the form (- grad

¢) for some scalar point function ¢ (say) because curl grad ¢ = 0. Thus velocity potential exists
whenever the fluid motion is irrotational. Again notice that when velocity potential exists,
the motion s irrotational because g = - V= curl q= - curl grad ¢=0.

Rotational motion is also said to be vortex motion. Again by definition it follows that there are no

a5




-vortex lines in an irotational fluid motion.
. _ Kxj-yi) .
Exercise : - Test whether the motion specifiedby 4= *m— {k = constant),

is a possible motion for an incompressible fluid. If 5o, determine the equations of the streamlines. Also test
whether the motion is of the potential kind and if so determine the velocity potential.
Solution : '

Let § = ui + vj+ wk - Then, here
=k k*x

—m- 5= w=0 D

u 0

The equation of continuity for an incompresible fluid is

E{.E.f,é_z— =0 pensel 2)
S, Ay N Ay oW _, -
From (1), 34 (xzﬂ,:)"ay x‘-lly’)ﬂaz

Hence (2) satisfied and so the motion specified by given g Is possible.

The equations of the stream lines are
dx dy dz e
2 2
CRE R e B o) B
o Takingthelastfraction, dz=Osothatz=c,. o8
' Taking the first two fractions simplifying, we get '
:_;}:% or 2xdx + 2ydy=0
Integrating, x* + y*=c, : i)

(4) and (5) together give the stream lines. Clearly, the stream lines are circles whose centres are on
the z-axis, their planes being perpendicular to this axis.

i j k
] 0 0
curlg=| — —_ =
e P~ v »
kly k’x 0
x+y? x*+y?
=k1 ]F?_ 2 x!_ri E={}

X
.(i’+y“}'+(x’+y.‘)’ '
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Hence the flow is of the potential kind and we can find velocity poténtial §(x, v, z) such
that q = - V¢. Thus, we have

3 _ k'y

E_h - I!'l"j"! «{6)

EE,,_ _ k'x

a}, V= x? +}r! (M

. I

it I it IR S Tt S ®)
Equanm{E}slmwsﬂuzthewhmypmmuumﬁmumufundymwmut-ﬁu ¥).
Integratiag (6),

m,mkw[;-]ﬂm o)

when f(y)in an arbitrary function of y. i’
M _ ..o k’x

From (9), - =f(y) Sy .T..‘.um
Comparing (7) and (10) we have

- f(y) =0 so that f(y) = constant.
Since the constant can be omitted while writing velocity potential, the required velocity potential cn
be taken as

ﬁxmrj=k’m"[§) (using (9)) wrned(11)
The equipotentials are given by
k' tan“( - ] = constant

or xX=cy, X
wbwhmplmthmughﬂmzm T}wymmmmndby ;
the stream lines as shown in the figure, Dotted lines represent
equipotentials and ordinary lines represent stream lines.

Exercise :

Ata point in an incompressible fluid having spherical polar co-
ordinates (r, 8, §), the velocity components are [2Mr ->cos8, Mr 5@, 0], where M is a constant. Show
th@qudﬂwmﬂhﬂﬁﬂﬂwﬁmqmuﬂnﬂﬂumamu{ﬂwm lines.
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Solution : ; _
Here q, = 2Mr “*cosB, g, = Mr *sinf, q,=0.
Then, we have _
q = 2Mr~ cos 07 + Mr > 5in 88+ 0.(9)

i 0 rsin6
ik d d d
and l=mlq-r"si.n"’llillq or 00 9¢
4, 9 Qs
T ) rsinﬂ&l

). K ¥ -8

r’sin’@ or a0 a

IMr~*cos® Mr sin® 0

=0 {on simplification). _ ;
Hence the flow is of the potential kind. We have used F for velocity potential to avoid confusion.
Then by definition

..ig =q, = 2Mr"ms9,—%=q, =Mrsin®

aF =0
.mu:l. r:;ilml?ualt_ﬂq"r

oF , dF dF
o GF = =-dr 4200+ 2000 = - (2Mr cos)dr - (Mr 'sin6)d0 +0.d¢

; = d(Mr " *cosf) :
Integrating, F = Mr “%cos6 (omit constant of integration, for it has no significance inF).
Finally, the stream lines given by

dr #dd _rsinbd¢ .

— TT —

9 Qe q,
. dr 5 rdd =rsinﬂd¢i
s IMrPcos6 Mr sin® 0
1
given dd =0 and zﬂﬂﬂﬂﬂ=[;}t.
Integrating, the equation of the stream lines are given by
¢=C, :
and r=Cpsin’®.

The equation ¢ = constant shows that the required stream lines lie in a plane which pass through
| 28




the axis of symmetry 6=0.
Equations of Motion of Inviscid Fluids :

Euler's Equations of Motion :

This mathematical formulation uses Newton's 2nd law of motion which states that the total force
acting on a mass of fluid is equal to the rate of change in linear momentum.

At time t, suppose that AS denotes the closed
surface of a particle of a moving fluid, the particle moving
along with the fluid with velocity . We take the particle
to be of fixed mass pAv, p being the density and Av the
volume. Ultimately, AS and Av are to be made '

Suppose that 8S (<< AS) is a surface element
of AS and that § is the unit normal vector to 8S,drawn
outwards from the particle. If p denotes the fluid pressure at 8S, then since AS is moving locally with the
fluid, the force on it due to the fluid outside the paticle is - p5S . Hence the total surface foroe on the fluid
particle due to the actions of the surrounding fluid is :

-Iﬂﬁpds = —-L' Vpdv
Let F be the body force per unit mass at any volume element &v(<<Av) of the particie. Then

pFiv is the body force on the element Sv and 5o the total body force on the entire particle [, PFdv. -
Since the mass of the volume element v is pSv, that of the entire fluid particle is Imﬂd\' . But this
mass is constant. Hence the equation of motion of the fluid particle is

[, (PF-Vp)dv = %j‘_ pdv

"The terms on the LELS. represent the total force acting on the fluid particle. % is the accleration
of the fluid particle following its motion. To the first order this equation approximates to

- dg
(pF - Vp)Ay = Equ" ko that in the limit Av — 0, we obtain

S

=F-

Vp 1)
: 29
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which is called the Euler's equation of motion.
D3 _dq

— = A
But e Bt+ﬁ q : (2)
Using (2), (1) may be re-written as

", avyg=F-. -

—+(QV)g=F-- ¢

o +(@QV)g p'\"p oK)

Again, V(3-g) =2qxcuig+(@-v)-q

$o that {E.?}ﬁ=%?q’~ﬁx=ﬁ iy iy

Using (4), (3) takes the form

= & = =.1
%‘F‘{%Q: ].._qxguﬂq =F—~E?p f . SN . ]
iy = et 1' ] Y "
e %-quﬂq-l‘—;‘??'ivﬂ? TR (6)
Conservative Field of Force :

In a conservative field of force, the work done by the force F of the field in taking a unit mass from
one point to the other is independent of the path of motion. '
Thus, if F = Xi + Yj+ Zk , then a scalar point function V(x, y, z) exists such that
Xdx+Ydy+Zdz=-dV o  F=-vv *)

av av av
x::——-—.Y:——‘Z=——
so that o o Fw
V is said to be force potential and it measures the potential energy of the field.
Note: Writing the equation (*) in orthogonal system we can find out the relation between the force
components and the force potential in all the three coordinate systems. X
'Euler's equations of motion in cylindrical co-ordinates :
. - RS T
Euler’s equation of motion is %%ﬂ-;?l: el 1)

Let(g,, q,,q,) be the velocity components and (F,, Fy, F,) be the components of external force in
r, B, z directions. Then know that ;

E-' I_h;_i ml‘ +qrql mt :
Du ' .

Dt r Dt r Dt
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B dp 1dp dp
F=(F,F,.F \vp=| -2 L
(FFoF, )P [ar r 8 dz
Substituting in [l}mdequaﬁﬁgthe co-efficients of ¢, 8, k . we obtain Euler's equations of motion
in cylidrical co-ordinates as

Dg, 9 _p_ldp
Dt r " por

D'la+qf‘1¢=F _1lodp ¥
Dt

r " prd® ()
Dq":F —lﬂg
dt ' poz
D_a d q, 0 d ;
where Dt Eat+q,ar+ " aE|+l:1, = | h.....{3}

Eulet’'s equations of motion in spherical co-ordinates :
Euler’s equation of motion is
o A
N oy
Dt 0 P T T i (1)

Let(q,.q, q,) be the velocity components and (F, F,, F)) be the cﬁnmmm of external forcér.
" 8, ¢ directions. Then we know that

E";= qu _q:.‘,q'z Dq'n_qtz cma_l_q,q.} qu ;ng,mrﬂ
Dt Dt r Dt T r ' Dt r

F=(E.E.F, )vp =( %‘%%’rsiln&% ]

Substimtingi‘tl{l}andequa&ngﬂeca-:fﬁciqmuff,é,i,mu&ﬁin&k‘saqmﬁmsufm in
sphﬂ'l;alpularmdinatmas:

ml‘ _'q'll +q’.2 = F _lEE
Dt r " por
mi_q‘zma*‘qrqb __'F _l_@_’r
= te
Dt r r p rod @)
Dq.+qaq.mE=F J1 1 9
Dt r " prsin® ¢
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D_3,.9.92, 9 2
where Dt "at""f-'lr ar"' i aﬂ+r§inﬂa¢ )
lntegrlhu[Equaﬁbnnanﬁm:
Bernoulli's Equation :

Let us suppose that (a) the body forces are conservative (b) that the flow is of the potential kind
_ - d .
and (c)the fluid is barotropic i.¢ pressure is a function of density only so that J'FP exists. Then due to (a)

and (b) there exists scalar functions Q, ¢ such that
=-VQ,3=-V¢

. . d 1
alsodue to (c) IEE exists and there must be a function P P-ff]such that = VP =[ 7 ]UP.

Then equation (5) of Eulet’s equation of motion becomes
0¢ 1 .
-V| — |+V| = ==VQ-
(R])+¥(30 v
Lzt 7 be the position vector of the fluid particle at time tand let df be an instantaneous displacement
nmd:hﬂﬁpmﬁmufdwp:ﬁchﬂﬂﬁshﬂﬁﬁtﬁmnhmﬁﬁy&gﬂ:lﬂmmﬁmwwdfan:l
using dr - VQ = dQ., etc., we obtain ;

{24 )-0-an

subject to t being constant. Rearranging and integrating gives

where f(t) is an arbitrary function of t arising from the integration in which t is being kqncnrmtmt.{l}is_
Bernoulli's equation in its most general form or the pressure equation.
The pressure equation is of paramount importance, for once we know the velocity potential ¢ .

the velocity is determined by g = ~V¢, and the pressure is then found from the pressure equation and the

relation p = f{p). Note that %:- is calculated by varying t only and refers toa point fixed in space.

Other forms of Bernoulli's equation, often of considerable use in the solution of problems, may be
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derived from (1). Thus for steady motion B_¢ = () and f(t) is constant, so that

ot
1_] d.p : 4
—q° +8+|—=constant
-3 | p 7 ST B @) |
If, further, the fluid is homogeneous and incompressible so that p is constant. (2} becomes
1_, P :
-7 +Q+| = |= tan t
2‘1 [p] constant L (3)

Tt follows that in principle the solution of any problem of irrotational motion of a liquid is reduced
to finding the velocity potential ¢ which satisfy Laplac's equation V¢ = 0 and the other conditions of the
problem. The calculation of fluid thrust on a surface is then reduced to an integration.

Animportant Theorem : -
" ¥fthe motion of an ideal fluid, for which density is a function of pressure p only. is steady and the
external forces are conservative, then there exists a family of surfaces which contain the stream lines and

vortex lines,

- Proof :

Euler’s equation in vector form is given by (Refer equation (6), Euler's equ”of motion.)
oq __ = 51 boaig ™=
—- 1g=F-=Vp-=¥ :
= xculy 5 vP3Vd ki)

For steady flow, %ﬂl.

Since the external forces are conservative, there exists force potential V such that F =-VV .

dp . dp
l“un‘.i*l:r,dtsn.sit:,vl:-t:inga{"mm:ti-:n'tv:::f|_:m:mra=]:nl:mI:;f.I‘EFII exists and themmustheafumtiunFEP;[F;

. 1
suchthﬂ"ifr=( -E]VP,Usingdwmfacu.{i]m:lumto

q(\r+p+%q‘ ):ﬁkcuﬂﬁ ...... (i} |
% Lnd ri =cur'|ﬁ =.\I'D:I'l."|¢it“'|" '-'E-E'tf.ﬂ'.

Then ‘F(V+P+%q’]=ﬁxﬂ ...... (iii)
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Then (iii)reduces to = gx &1 -
From(v) .

.

g=@xR)-=@x[)- Q=0

and #-Q=Gx0)-0=7-@x0Q)=0
These results show that ; is perpendicular toboth Gand Gj.
Since VI is perpendicular everywhere to the surface f =constant, (iv) shows that § is perpendicular
to the family of surface
V+P +%q‘ =C ' weeene (Vi)

Thus § and {J are both tangential to the surfaces (vi). I-Emu:{vi}mhmimﬁm lines and

I, '
Another Form : Prove that for steady motion of an inviscid isotropic fluid P = ffp}-f%+5q' Q=

constant over a surface containing the stream lines and vortex lines. -

Exercise : .
Asphere of radius R, whose centre is at rest, vibrates radically in an infinite incompressible fluid of
. density p, which is at rest at infinity. If the pressure at infinity is I'l, show that the presure at the surface of the
sphare at time t is :

1 |aR* (dRY
oo F (5] ]

~ IfR=a(2 +cosnt), show that, to prevent cavitation in the fluid, [T must not be less than 3pa’n’.
Solution ; ' : : '

Here the motion of the fluid will take place in such a manner so that each element of the fluid moves
towards the centre. Hence the free surface would be spherical. Thus the fluid velocity v will be radial and
hence v will be function or ' (the radial distance from the centre of the sphere which is taken as origin), and
time t only.Let P be pressure at a distance r'. Let P be the pressure on the surface of the sphere of radius
R and V be the velocity there. Then the equation of continuity is

fiW=RW=R) @ - T i (1)
v _FQ

Bow(lh s " e @
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F‘{t} ' 1dp :
o T ar'[ =¥ ‘J oo [using@)] ... 3)
Integrating with respect to ', (3) reduces to
—F—{;tl+-£v” w-Lsc
r 2 p
' I
When r'= es, then v/ =0 and p = IT so that C=E~
_F'L’t}q.iv': :-_H—P
2 [
F{t} }:] ;
: m 22—
or F" +2F{ r o D S (4)
BmpnPM\r‘-\'wm:‘-R.Mﬂ{ﬂg‘wes
1.] 2
P -H+50[E{F'{t} | 7 -V‘] : i5)

drR
A!sov“— l-hmunngil}.whmw

{FOO )} =%(R’v)=%[ gzg‘%):%[ %%]

Rd’R’ 1dR*dR _Rd'R’ drR Y
0 i i +R| —
2 d* 2.4 da 2 a dt

Using sbove values ofVamt{F'{t] },.,,-.{S]mdum:sm
RAR* _(dR) ]| (@R
F'n+'2"‘° k{z i “{E) } {d:] }

: 1 [aR? (dr Y
or P=F+EP i +(jﬁ-)] : .......{ﬁ}

Second Part :

mef’v’scmmnt,wemludumatﬁsmammumwhemhsmmtmumw r=R. Hence
punnunmmnnml‘ megﬂdmumsﬂmun

s




1_..

£

Given R =a(2+cosni)

dR ;
— = =an sm nt
dt .

and %=-2a2{2+cdsnl]{;nsinnt} _
d’R’ I | [P . TR
-Et-:—=-2.a n {2 +cosnt)cosnt +'2a"n" 5in" nt

with the above values, (6) reduces to
p=ﬂ-i-[%}m”n’sin"‘nt—a:n’p{lcnﬁm+msz nt] A8)

From (7). R varies from 3a to a. Thus the sphere has the greatest radius 3a when nt=0or 2mm.
Clearly as the sphere shrinks from R = 3a, there is a possibility of a cavitation there becuse pressure would
be minimum there. Hence the minimum value of pressure P (say) on the surface of the sphere is given by
replacing t =0 or nt = 2mm in (8), We thus obtain '

Pall-30a . © T 9)
To prevent cavitation in the fluid. P’ given by (9) must be positivei.e., ITmiust nof less that 3pa™n”.

Exercise :

Liquid is contained between two parallel planes, the free surface is acircular cylinder of radius a
whose axis is perpendicular to the planes. All the liquid within a concentric circular cylinder of radius b is
suddenly annihilated; prove that if I be the pressure at the outer surface, the initial pressure at any pointon
the liquid distant r from the centre is : ;

n logr-logh

laga—-logh -

Solution : . .
- Here the motion of the liquid will take place in uch a manner so that each element of the liquid
moves towards the axis of the cylinder | 2| = b. Hence the free surface would be cylindrical, Thus the liquid
velocity v' will be radical and v will be function of ' (the radial distance from the centre of the cylinder |z
| =b which is taken as origin and time t only.Let p be the pressure at a distance r'. Then the equation of
continuity is

rv =F(1) _ : —r
)
From (1), 'a't_,— > e ra L R =1 (2)

av'  L,av'_ lop
: e 8 o s i e
The equation of motion is 7% + " o




F(v) " 1dp ;
ur. : ar’[ . g2 ]='Eé'r': lusing (2}]
I sne. F (D)} ’+l LR P,
Integrating, o L E+ el 3)

Initially whent=0.v'=0,p=P.
F(0)logr' =-2+C
p
Again, P=TIwhenr=aand P=0whenr'=b
F(0)loga = L C
( }053"‘*5"' and F(O)logb=C i S

Solving (5) for P(0)and C, we have

-'Iaghmﬂ—-_—.
plog =
oo}

Putting these values in (4), we gEt. ;

C= F(0)=

Tie

=g

P n , Tlogb

Hﬂ : Eﬂgr— .
log — log —
ol 3] o}

I:.zl.lh:-gr'-la:»gi:u :niugr'-logb

For the required result, replace ' by rin (6).

Impulsive Action :

Let sudden velocity changes be produced at the boundaries of an incompressible fluid or that
impulsive fmm be made to act to its interior. Then it is known that the tmpulswe pressure at any point is
the same in every direction. Moreover the disturbances produced in both cases are propagated
instantaneously throughout the fluid.

Equation of motion under Impulsive Forces (Vector Form) :
; Let S be an arbitrary small closed surface drawn in the incompresible fluid enclosing a volume V.
Let j be the implusive body force per unit mass. Let this impulse change the velocity at P(7. (yof V

instantaneously fro g, to g, and let it produce impulsive pressure on the boundary S. Let & denote the
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impulsive pressure on the element 5S of S Let § betheunit
outward drawn normal at 8S.Let p be density of the fluid.
We now apply anion‘s second law of impulsive
motion to the fluid enclosed by S, namely
Total impuse applied = Change of momentum

~ fJpav-[ ddds=| p(q, -3, MV ..

Bu [, A®dS=[yadv
| i {hyﬁmsdivnrgﬁm theorem)
From (1), J,[To-V&-p(3,-3, )hv=0 2

Since V is an arbitrary small volume, (2) gives
Ip-va-p(3,~3,)=0

e g 11 R ity Eoa
or qz-ql=l—[5]‘7m ...... 3

This is the gemeral equation of impulsive motion.

. Corollary 1.: .
Let T =0(i.c. external impulsive body forces are absent) whereas impulsive pressures be present.

Then (3) reduces to

ﬁ,-ﬁ.={§ )vm )
ﬁmm.“-{ﬁ,-ﬁ.l'=v-[-[§)vm]
or vq,-v-a,:-[é.]v*m : S {5)

Forthe incompressible fluid, the equation of continuiity gives

V-g,=V-g,=0 iy (6)
Making use of (6), (5) reduces to _
ViH=0 (Laplace'sequation) ... (N

Corollary 2.: Let §, =0and | =0s0that the motion is started from rest by the application of impulsive
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pressure at the boundaries but without use of external impulsive body forces. Then, writing g, =3.(3)

reduces to
" AR %
“qg=-v| — ; :
(8] iy iR ®
: . s
showing that there exists a velocity potential ¢=; and that the motion is irrotational.
Corollary 3.: '

Let § =0, i.e., let there be no extrancous impulses. Further, let §, and ¢, denote the velocity
mﬁdmmﬁ:@jmmmmﬂm.m ' o
g, =- V9, |
ad G, =-Vé, - )

Then (3) reduces to — V&2 + V¢, =.[_;_ ]va.

o Va=pV(e,-¢,)
Integrating, when p is constant
B=p(¢, -9 )+C
Thumunt(.‘.mafbcmﬂuedhymgardingasancmptﬂsurcandmm:antﬂmughcuuhc -
o =pd, - pe, )

Corollary 4. Physical meaning of velocity potential :

Take ¢, =0and p=1incorollary 3. Then we find that any actual motion, for which a single valued
velocity potential exists, could be produced instantancously from rest by applying appropriate impulses.
We then also note that the velocity potential is the impulsive presure atany point.

Itis also easily seen that when a state of rotational motion exists in a fluid, the motion could neither
be created nor destroyed by impulsive pressures. '

Exercise :
A sphere of radius a is surrounded by infinite liquid of density p, the pressure at infinity being ['l.
The sphere is sudenly annihilated. Shiow that the pressure at a distance r from the centre immediately falls

)

Sduﬂnn:lﬂv‘beMwlwiqn:ﬁmfﬁm&md_ﬂ:#mmwﬁmtmdpm
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pressure there., Then the equation of continuity is

riv' =F(t) ; . Tk L)
v’ F(t)
From (1), 'a—t; ='-'r—,'z— ‘ el )
The equation of motion is
¥ v _ 1dp

?'FV ar, par‘

F) a(1...)_ 1o .

o« T o
] Fiy 1 . P

Integrating, =5~ +3 ‘we—bC

I
When r' ==, then p=IT and v' =0 so that C""‘E.

F(), 1. _M-p

r 2 p

When the sphere is sudenly annihilated, we have
t=0,r=a,vV=0andp=0

i 3)

_Fo_n — 1|
From (3), ~—,— = sothat F(0) 5

Hence immediately after the annihilation of the sphere (witht=0, v'=0). {.?:_} reduces to

all IM-p a ;
240=8 yp=nf1-2] "
or o or P [ r] (4)

Thus at the time of annihilation, when r'=r, the pressure is given by

P=H[1“3] ...... (5)

The Energy Equation : _

Statement : The rate of change of total energy (kinetic, potential) of any portion of an incompressible
inviscid fluid as it moves about is equal to the rate at which work is being done by the pressure on the
boundary. The potential due to the extraneous forces is supposed to be independent of time.

Proof’:

Consider any-arbitrary closed surface S drawn in the region occupied by the inviscid fluid and let

V be the volume of the fluid within S. Let p be the density of the fluid particle P within S and dV be the
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volume element surmounding PLet g( 7, t) be the velocity of P. Then the Euler's equation of motion is

p%n—‘?’pﬂ? e 1)

d D d D 9 _

et el W —t Y
{Weusehmdtfurmwﬂmi'm E» q-Vv)
Let the external forces be conservative so that there exists a force potential £ which is independent

a0
of time. Thus, F=-vQ and & =) _..'....{2}

 Using (2) and then multiplying both sides of (1) scalarly by g, we get

p[ﬁ-f]hﬁ-?p-p{q-?ﬂi

di1 , = = '
et Renl AT = -V
¥ p[dt[ Zq ]_—-l-{q }ﬂ] e ek - A SO (3)

df 1 , =
—_ =g*+0 = ¥
Frnm{S}.P’[zﬁi ] "Q_F.

Integrating both sides over V, we get

d(1
L,PE;[ qu +Q )dv = —L{ﬁ -Vp)dv

dfg 1 k
or E[.[v;m:dv*‘fupﬁd‘-’]='qu'?PlﬁV ...... (4)
wherein we have used the equation of continuity.
ie., i[pd\"]nﬂ ,,,,,, (5
Let T, W denote the kinetic, potential energies respectively. Then,by definitions
1
T={,7pq'dV.W= [ pQav 6

Since V.(pg)=pV-V+3-Vp.wehave -

q-Vp=V-(p3)-pV-q

RHS. of (4) = [, V-V + [ pV-qaV
41




=-[ pq-fds+ [, pV-qdV
N ' [by Gauss divergence theorem]
where j is unit inward normal and dS is the element of the fluid surface S.
mmdmhMMemeﬁshudmmnquaﬁmufmﬁnim v-g=0

Hence RHS of (4) = — [, -fids | k)

Agam&wmmdwutdmubyﬂnﬂuidmmandeSufSispﬁS fi - § Hence the net rate at
which work is being done by the fluid presure is
[,pa-AdS=R (say) e d8)

Hence using (6), (7) and (8) in (4) we get
— W)=R
ml‘.'1'+ )=R,
which is the desired energy equation.
Remark : ;
This principle is used to shorthen the solution of some problems.
The energy equation is stated as follows :
The rate of increase of energy in the system is equal to the rate at which work is done on
the system.
Exercise :

mn .
An infinite mass of fluid is acted on by force ; per unit mass directed to the origin. If initially the
: _ .

fluid is at rest and there is a cavity in the form of the sphere r=c init, show that the cavity will be filled up

, L e g
afwrm:ntﬂvnlufum(;u] ct.
Solution : , :
Atany time t, let v’ be the velocity at distance ' from the centre. Again, let r be the radius of the
cavity and v its velocity. Then the equation of continuity yields

: riv=ry & B G Al (1)

When the radius of the cavity is r, then kinetic energy is '

eflapa)t [¢ KE=Gme]

' .. 42




- dr’ -
=2mpr'v?[ =5 [using (1)]

=2mprv?
The initial kinetic energy iszero.
- Let'V be the work function (or force potential) due to external forces.
Then we have
_a_v.:...l'.lr_ V=&
o’ 2 sothat 1
r: t'2

the work done =f\"dm »dm being the elementary mass

[y

We now use to energy equation, namely Increase in energy = work done
3 3
m!vl _u-(l_jﬁ.}m{ci _.I-E ]

e =T

: 1
_dr_ (Bx): .
_ '_"d__:'-[ : ] ; k2

r

=TI
[*1173
bil=

wherein negative sign is taken because r decreases as t increases. _
Let T be the time of filling up the cavity. Then (2) gives

l.:dﬂ{%]‘ir rfdr

T
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A stream is rushing from a boiler through a conical pipe. the diameter of the ends of which are D

and & if V and v be the comesponding velocities of the stream and if the motion be suspended to be that
- of the divergence from the vertex of the cone, prove that '

v b )

i S s Ik

v a

where k is the pressure divided by the density and supposed constant.
Solution : _
" Let AB and A'B’ be the ends of the conical pipe such
that A'B'=d and AB = D. Let p, and p, be densities of the
stream at AB and A’B’ . Hence the equation of continuity is

=k sothat dp=kdp p: 2 S

g
p=Nh-

S
@) gives H%'*?-I] =C using (3)!
Integrating,
N,
klogp+-2-q g . - T 4}
Wheng=v,p=p,andwheng=V,p=p,
: 1 2 e
klpgﬂ,+i-\_r =C and klﬂgp,+5\f =
Subtarcting, '

; :
k( logp, —logp, 15 5(\!”-\:*"): 0
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pz. \"1 _Hv]

 log P2 =
or ﬂ‘Ep1 2K
p !\'l-\",_} B
or 1:'—3*=¢ % . ,...4{51
1
v 2 viay?
ing (5), (1) red ~=—e *
Using (3), (1) reduces to dl_e
Exercise :

A stream in a horizontal pipe, after passing a contraction in the pipe at which its sectionial area is A
is delivered at atmospheric pressure at a place, where the sectional area is B.Show that if a side tube is
connected with the pipe at the former place, water will be sucked up through it into the pipe from a
reservoir at a depth .

Lt 900
2gl A* B’
below the pipe, s being the delivery per second.

Solution :
Let v be the velocity in the tube of smaller { :
Vo]
/

mcﬁonhandplhepressumntﬂtﬂmtimfurdﬂi‘, — 3
let V and I be the corresponding quantities atthe A 1
bigger section B of the figure. Then by Bemnoulli's :
Theorem (in absence of external forces like gravity) 1[ ]n
forincompresible fluid, namely s

q° =constant
. P
we obtain “p“"

or i(n—p}=%{“’ -v?) i1}

Let h be the height through which water is sucked up. Then _
gph =difference of pressure=T1-p . (2)
The equation ofcontinuity is '
Av =BV =5 (delivery per second)

so that V=i and V“% : i3}
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Using (2) and (3), [I;I reduces to

s? s!

1 1
—x R = —_—
p 5"" 2[-A1 B’]

Amass of homogeneous liquid is moving mﬂmﬂ'levelcr:wum point is proportional to the time
and that the pressure is give by

E:j.uyz—-lt’(y‘z’ +2°x% +x%y?)

P 2 :
Prwedutﬂmmohmmayhvebmnmwdﬁmmtbywurﬂfmmmdcpcmbmdﬂm

hmeaﬂshm#dﬁ,fﬂzﬁrmﬂmdmﬂmﬂwwmmmﬂxm&&:mfﬂm

cach particle of the liquid describes a curve which is the intersection of two hyperbolic cylinders.

Solution : -
Given that velocity q is proportional to time.
q=At ' : sl I}
1 1y :
Also 'E= pyz-o (Y2 420 4xy?) 2

Suppose that the motion is produced by finite natural forces (conservative forces) which are
derivativable from the potential function V. Then by Bernoulli's equation, we get

) I PR LS
- o T2a"+V=F
b
p_0d¢ 1 _
@ g 2w (using(D]  -.3)
Snw{l}wﬂ}mbeﬂenmﬂ,eqmungﬂmmekhcmlsufﬁmkﬂs uf{Z}lnd{E}gtm
M=y +zxi+x¥y? -
Using (4), (1) reduces toq’= t’(y’z’ +ixt i) L (5)
(Y (%), (Y -
e, Mo el R e ®
Campairing (5) and (6), an appropriate value of § given by
¢=txyz k)

Uing (7) and (4), (3) reduces to
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%=xyz-%t’{y’z’+zzxz+f}r! ]—-\"-:-F{L] ______ (8)
Compairing (2) and (8), we find
_ F(t)=0and xyz-V=pxyz
e V=xyz(l-y) . ' el P)
IF u, v, w are the components of velocities and X, Y, anﬂmmpumntsnﬂmﬂwn
IJ.‘_'E—:—:- =—t}rz.*.r =%=—m_w'=—%= —.-uy

i o
s xs--a;=m—mz,f=%=m-nn.z=—%=m-uxy

Given tht the direction of motion coincides with that of the acting forces.Heace, we have

dx _dy dz dx _dy dz
u v W X Y Z
A E.—ﬂ.nﬂ B B 0
e, By 5 (10)
taking_l:hcﬁmmnmmbﬂ'mﬁlﬁ},wegﬂ
xdx -ydy=0 :
sothar x-y*=C, | wineiCAL)
taking that last twomember of (10), we get
ydy -zdz=0 sothat y*-2*=C, we(12)

Thus each particle of the fluid will be o the curve which is the intersection of two h}l'pﬁl'bﬂhc
cylinders x*-y*=C, and y*-2*=C,.
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Unit-2
Motion in two-dimensions :

Let a fluid move in such a way that at any given instant the flow pattern in a certain plane {say
XOY) is the same as that in all other parallel planes zZ4 Q
within the fluid. Then the fluid is said to have two-
dimniaulmoﬁmlf{x.y.z}mm—uﬁr@auf, 77 a,//,
any point in the fluid, then all physical quantities ///// .
(velocity, density, presure etc.) associated with the é o BRIV .
fluid are independent of z. Thus u, v are functions of : J
x,y and t and w = 0 for such a motion. o " ' >

To make the concept of two-dimensional 7//
motion more clear, suppose the plane under 7
comsideration by xy-plane. Let P be an arbitrary y
point on that plane. Draw a straight line PQ parallel
to OZ (or perpendicular to the xy-plane). Then all points on the line PQ are said to-corespond to P. Draw
a plane (in the fluid) parallel to xy-plane and metting PQ in R. Then, if the velocity at Pis V in the xy-plane
in a direction making an angle a with OX, the velocity at R is also V in magnitude and parallel in direction
mdrveh:tyn?uﬂnm::mﬂwﬁgln hfuﬂmﬂmuuuﬂmﬁynmﬂmgpmnuuaﬁamof

X, y and the time t, but not of z.

hudummmmnphymmlmhmmmﬂmﬂ:fhuﬂmmu—&mﬂmﬂmmmnﬁmd
between two planes parallel to the plane of motion and at a unit distance apart. The reference plane of
~ motion is taken parallel to and midway between the assumed fixed plares. Thus while studying the flow of
a fluid past a cylinder in two-dimensional motion in planes perpendicular to the axis of the cylinder, it is
useful torestrict attention to a unit length of cylinder confined between the said planes in place of worrying
over the cylinder of infinite lenght. - |

Suppose we are dealing with a two-dimensional motion in xy-plane. Then by flow accross a curve
in this plane, we mean the flow across unit length of a cylinder whose trace on the plane xy is the curve
under consideration, the generators of the cylinder being parallel to the z-axis. By a point in a flow. we
mean a line through that point parallel to z-axis.

Stream function or Current function :
Letu and v be the components of velocity in two-dimensional motion. ﬂwnﬂttﬁffmnalnqunmn
of lines of flow is

=3 - ot
= = or udx -udy =0 . k1)
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and the equation of continuity is
N av_ﬂ ..?_"J=a’l:-l.l}

B e YER e L (2)
(2) shows that L.H.S. of (1) must be an exct differential. d'¥ (say).
Then we have . :
¥ |\, ¥
vdx-udy:d‘l‘:{g]dxﬂ-[g}y i R 3
. ' N -3y Yy
so that i ay ; and V= -aT o

The function ‘¥ is known as the stream function. Then using (1) and (3), the stream lines are given
by d¥ =0i.e., by the equation ‘¥’ =c, where c is an arbitrary constant. Thus the stream function is contant
“along a stream line. Clearly the current function exists by virtue of the equation of continuity and
incompressibility of the fluid. Hence the current function exists in all types of two-dimensional
motion whether rotational or irrotational.
Note: (4) gives the relation between the velocity components and the stream function in cartesian system.’
' Proceeding in the same way we can find the relations in polar system also.
Physical significance of stream function :

Let LM be any curve in the x-y plane and Jet ¥, and ‘¥, be the stream functions at Land M
_respectively. Let P be an arbitrary point on LM such thatarc LP = and let Q be a neighbouring pointon
LM such that arc LQ = s + 8s. Let 8 be the angle between tangent at P and the x-axis. Ifuand v be the
velocity components at P, then velocity at P along inward drawn normal PN.

=vcosB-usin wind(1)
When 'Y is the stream function, then we have

U=-="— and "~'=ﬁ ...... (2)

dy ox
Also from calculus ,

mﬂ.=% and sinﬂ=%§ sl )

Using (1), flux across PQ from right to left
=(vcos 0-usin@)ds .
Total flux across curve LM from right to left

(=R

: o d¥ dx dY¥ dy
=Im{vbﬂsﬁ—u5mﬁ}d5—fm[.*§;-d-;+ a—}r'&; 2 -
(by (2) & (3))




dy

Thus a property of the current function is that the difference of its values at two points reprsents the
flow across any line joining the points.
Remark 1. : '

The current function ‘¥ at any point can also be defined as the flux (i.c., rate of flow of fluid) across
a curve LP where L is some fixed point in the plane. '
Remark 2. : ' ;

Since the velocity normal 8s will contribute to the flux across 3s wheras the velocity along tangent
to 8¢ will not contribiite towands flux acros 3s, ! .

' J flux aross 8s = §s x normal velocity
or  (¥+8¥)-¥=38sxvelocity fromrightto leftacros §s * -

.
=Im[adx+£dy ]E'I::ﬂ =¥, ¥,

‘or  velocity from right toleft cross 8s = %.E ...... )]

Remark 3. :
Velocity components in terms of ¥ in plane-polar co-ordinates (r, 8) can be obtained by using the
method outlined in remark 2 above. Let g, and g, be velocity components in the directions of rand 8
-q, = velocity from right to left across 18 . Pr

and g, =velocity from right toleft acros ¢
. 4 ¢

=lim ===

-2 §r dor . = o ; _ 4

13¥ K
Thus, Q. =-——= and G =3 S, N L (5)

which gives the relationship between the velocity nmrpmcntsmﬂ the stream function in polar system.

'Sm:uped:ﬂﬂm&tnryﬂ:mryﬂhncﬂumnf-amph;vﬂhlu:.
Suppose that z=x +iy and that
w=1(z)=0(x,y) +i¥(x. y),
where x, y, ¢, ¥ are all real and i = |/~ 1. Also, suppose that ¢ and ‘¥ and their first derivatives are
everywhere continuous within a given region. If at any point of the region specifiod by z the derivative

L

d ,
Ew = f'(2) is unique, then w is said 1o be analytic or regular at that point. If the derivative is unique




throughout the region then w is said to be analytic or regular throughout the region. It can be shown
ﬂmﬂwmyandmfﬁcmmmhwm be analytic at z are

a¢ar~r % _ v

x and 5 =" %x
nhinhar:kﬁmasdieﬂmmhr—lﬂmneqnﬂnm. The functions ¢, ¥ are known as conjugate
functions. '
Irrotational motion in two-dimensions :

Lﬂﬂutheanmmhmalmmdmmemlmnypmnmlwmmmm

= “ 2 o ¢
s kD)
mmmﬂﬂwumémfmﬁm%mrmimmm
. ai Gl
a}. ¥ al ,......';[2]

From (1)and (2), wehave
% ¥ 3 _ 0¥
ax T a.’r l“d. ay Ix ..{3]

which are well known Cauchy-Riemann's equations.Hence ¢ +i'¥ is an analyti;: fuction of z=x +1iy.
Moreover ¢ and ¥ are known as conjugate functions.
On multiplying and re-writing, (3) given

— — — i —

showing that the families of curves given by ¢ = constant and ¥ = constant interesect orthogonally. Thus
the curves of equi-velocity potential and the stream lines intersect orthogonally.
Differentiating the equations given in (3) with respect to x and y respectively, we get

e _3'¥ 3% 'Y

o’ axay and ay: e Fyox . B .}
2 2 1 2 :
ol e

Aglm.dtﬂ'amuaungﬂtequnu«mpvmmﬂ] with respectto y mﬂxmpaﬁuwly.wﬁgﬂ

3% _a'¥ 3% _-d'¥
yox oy’ and Sy . kT
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o P '
Subtracting these, ?+?—U sl )

Equations (6) and (7) show that ¢ and ¥ satisfy Laplace's equation when a two-dimensional
irrotational motion is considered. '

(implﬂpotentinl

Let w = ¢ + i'P be taken as a function of x + iy i.e., z. Thus, suppose that w = f(z} i.e.
o +i¥=f(x +iy) ' 5T i)
Differentiating (1) w.r.t. x and y respectively, we get
% '%%:f[x+|y} ' ..... (2)
op  .d¥
i —+i— =if(x +iy)
and dy oy Y
% . 3¢
or aj, 3]’ al [by (2)]

Equating real and imaginary parts, we get
i — e 0 S )

which are Cauchy-Riemann equations. Then w is an analytical function of z and w is known as the complex
; Conversely, if w is an analytic function of z, then its real part is the velocity potential and
imaginary part is the stream function of an irrotational two-dimensional motion.

Remarks :
If ¢ +i¥ =1(x +iy), thenid - ¥ =if(x +iy).
Y-ip=-if(x+iy)= _g{x +1iy), say.
Hence proceeding as before, we get (3). hEnce mthm:irrmntinnai motion is also possible in
which lines of equi-velocity potential are given by ‘¥ =constant and the stream lines by ¢ =constant.

Magnitude of velocity :

" Letw=1f{z) be the complex potential. THen
w=¢+iYandz=x+iy _ s 1)
%_d% % ¥

Also = F-a}' and dy _-a_l ernen2)
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[using (2)] erie:(3)

or ==u+iv _ wssllif)

which is called the complex velocity.
From (3) and (4), we see that the magnitude of velocity g at any pmm in a two-dimensional

dw
irrmaﬁnnalnmlimisg:ivenb}r|3 » where

lsg =‘[§]’+(%T]={E+v*ﬁ =4 .5
Remarks : | |

The points where velucitjr.is zero are known as stagnation points.

Cauchy-Riemann equations in polar form :

Let $+i¥=1(z)=1(rc®) sarel L)
Differentiating (1) w.r.t. and 8, we get

0,9 0

ar+1 > f'(m ) ...... (2)
and %ﬂ-—"f )nc e 3)

From (2) and (3), weeaﬂlyahtmn

%Hg:ir[%-.l-iEJ
Equating real and imaginary parts, we get
R __ v I _ B
0 o ™ 30 ar
d_13¥ 1% ¥ "
; or r 08 rdd e, HTE RS
which are Cauchy-Riemann equations in polar form. They give the relationship between the potential and

the strcam function in polar form.
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Exercise : :
In imotational motion in two dimensions, prove that

(]3]

L]

Solution : : ;

' Simethemuﬁmishmtaﬁmﬂﬂwqelmitypmﬁahmimmhm
: 3% az¢ :
v3¢=1—a;-?+5;-2-=.ﬂ ' — Y
o aj 2 ﬁ 2

-EE -
Differentiating (2) partially w.r.t. x and y respectively, we get
oq 9’ 3 9%
Vo " ox’ oy oy o 3
dq_200% wde
':I.ay alaxay ayayi ----- -{4}

Differentiating (3) and (4) partially w.r.. xandympecdvcty,weget

ﬂ fﬁ z‘fﬂ Na} al‘ a,a!
q + H’X) I‘a_x: a.la.!.!--l' axay ayaxzay -(5} .

2 (3) (20,2 Do (%) 22
“ay"'kay]’kaxay axaxaf*[ay* ayay ~©
Adding () and (6) and simplifying, we get

TR




Next, equaring and adding (3) and (4), we get

OEDIBIEE

(28] 48T 6]

< eef2]3)

Sources and sinks : ey

If the motion of a fluid consists of symmetrical radial flow in al directions proceeding from a point,
the point is known as a simple source. If, however, the flow is such that the fluid is directed radially
inwands to a point from all directions in‘a symmetrical manner, then the point is known as a simple sink.




Obviously a mm@eimplimﬂwmﬁﬁm of fluid ampoilnt whereas a sink implies the annihilation of
fluid ata point. Sources and sinks are not readily obtained by some dynamical effects of the motion of fluid
bul may occur due to some external causes. For example; consider a simple source in a tank filled with a
fluid. This source may be created by taking a long tube of very small cross-section and injecting fluid
through it into the tank as shown in figure (i). In such a suituation, we find that the fluid is coming out from
the tube raduially into the tank. Again, a sink can be created by taking a long tube of very small cross-
section and sucking fluid through the tube from the tank as shown in the figure (ii).

Consider a source at the origin. Then the mass m of the fluid coming out from the origin ina unit
time is known as the strength of the source. Similarly, in a tank at the origin, the amount of fluid going into
the sink in a unit time is called the strength of the sink.

Remark : :
Since the velocity is unique at a point, so usually no two streamlines intersect each other. But some

flow fields may have singularities, where the velocity vector is not unique. Sources and sinks are examples '
of singularities of a flow field because infinitely many stream lines meet at such points as indicated in the
ﬁgi_.'lm (i) and (ii). '

Suuru and sinks in two-dimensions :

In two-dimensions a source of sumgﬂa m is such that the ﬂuwamwsany mmll:menu-rmmdmg
in 2tm. Sink 15 regarded as a source of strength—m.

Consider a circle of radius r with source at its centre. Then radial velocity q_ is given by

 Dhron o
26 9 19¥ |
. R

or q, s [ s 90 J ...... (2)
Then the flow across the circle is 2arq . Hence we have

2nrq, = 2nm or rg,=m vl 3)

10¥

o« HTiagte [by (1]
Integrating and omitting constant of integration, we get

Wl + 0 v o0 weo. dhed (4)
Using (2) and (3), we obtain as before

¢=-mlogr ' wieen3)

Equation (4) shows that the stream lines are 8 = constant, i.¢., straight linea radiati ng from d'.uc
source. Again (5) shows that the curves of equi-velocity potential are r = constant, i.e., concentric circles

with centre at the source.
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Complex potential due to a source :
Let thet be a source of strength m at origin. Then :
w=¢+i¥=-mlogr - im0 =-mlog(re*) = - mlogz.
If, however, the source is at z/, then thé complex potential is given by w =-mlog(z -

z). - :
mrdlﬁmbdmwnﬂz'fwmmnfsmgﬂamvnym,...sinm;dupnimzzzl,z.rz,.
w=-m log(z-z)-mlog(z-z) - m)og(z-z,) ...,
leading 1o ¢=-m,logr, - m,logr, - m,logr, - ...
and - . ¥=-mB -mB,-mH,-...
where r,=|z-z| and 8 =arg(z- z_}tlnl 2.3,
Doublet :

A combination of a source of strength m and a sink of strength - m at a small distance 8s apart,
where in the limit m is taken infinitely great and 3s infinitely small but so that the product més remains finite
and equal to 4, is called a doublet of strength u; and the line 86 taken in the sense from - m to+ mis taken
as the axis of the doublet.

Complex potential due to a doblet in two-dimensions :
Let A, B denote the positions of the sink and source and P be any point. Let AP=r, BP=r
+8rand ZPAB = . Let ¢ be the velocity potential due to this doublet, *
Then  ¢=mlogr- mlog(r+&r)

Iog”&
or "‘N[O{I+E]
r
bmm— )
[The first order of approximation].
Let BM be perpendicular drawn from B on AP. Then, we get
AM=AP-MP=r-(r+8)=-6r

ma*%--g so that §r = - 8scosb

cosO i.l.muﬂ
r

s  From(1), ¢=m5=
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G 3 icosd
{2]! ﬁ' r:

1% __ pcos® [9 E“;zlﬂ]
™ rod dr r oo

o _ _peos® :
sl 00 r _
Integrating it with respect to 0, we get

'tp—-“"r“ann ke e e

1% ov

—e— T 4
thw' rod dr “)
Using (2) and (3), (4) reduces to

;l_ _].I.iil'l'ﬂ. __[usinﬂ_l_f{r}]
r 3 E

or f(r) =0 so that f(r) = constant. Hence omitting the additive constant, (3) reduces o

Y= -L‘— ...... )

Complcrpoﬁnﬁaldmmadmblﬂmg:mby

w=o+i¥ =%(¢nsﬂ-isir_1ﬁ} +  [using (2)and (5)]

T re”

™=

Note L. : :
If the doublet makes an angle ot with x-axis, we have to write 8 - ctfor@sothat
W= p' = l.w = I.Iﬂ

mi{H} mﬂ 7

If the daublet be at point A(x, y) whete z'= X' +iy’ [in place of A being origin (0, 0)] then we

have
]
m:ﬁn_.’-
, Z—Z
NoteIl, :

If doublets of strength 4, Ju,, b, ... situated akz=2,, 2., 2,, ... and their axes makes angles o1, 0L,
o, .*.witn-axjs,ﬂnuthecump]nxpmﬁialducmmubumsystcm is given by
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in o i

€1 €21 KeE
w=BE L B2, +...

T—%, Z—F; Z-Z,

Exercise : i
" ; ’ E a!
What arrangement of sorces and sinks will give rise to the function W = lﬂs[

z“; ]le'e.dm

two of the stream lines subdivided into the circle r=aand axis of y.
Solution :

e ctod o2 ) o] @maXzHR)
Gnmw"l‘)ﬂ{zz]loﬂ[ = ]

or

w=log(z-a)+log(z +a)-logz

which shows that there are two sinks of unit strength at the points z = a and z = - a and a source of unit
strength at origin. Since w = ¢ +i'¥ and z = x + iy, we obtain
¢+ W= log(x +iy - a) + log(x +iy +a) - log(x +1y)

- o+i¥=log{(x - a) + iy] + log[(x + a) + iy] - log(x +iy)
Equating imaginary parts on both sitles, we have

]

W=tan" -2 4tan? 2L —tan' L
x-a X+a X
[ log(ox +if8) z-;—lﬂg(ﬂ’ +p? )+it_un[ g ]]
o
s e
=tapt K-8 _X+a .. Y
! l——L X
X-ax+a i
=tan~ xz_szy- ; -ﬁn" .
y* —a X
_Zxy .y
L ach xl-yl-a?® x
1+Li
llwyz e jo

F 2 F
.:Eta“q}rl +y +a
ilx?+y?-a?
F -—a

The desired stream lines are given by '¥' = constant = tan(C), i.e.,
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r | .2 2
y{x +y’ +a I
=0 g . j
Cx(x*+y*-a’ _ kD)

When C =0, (1) reduces to y = 0. Thus x-axis is a strem linc. Again, when C = o, (1}
reduces to x(x2+y?-a?)=0,i.e., x=0and x’+y==a’m*r}= a, which are strem lines.

Exercise :

" Two sources, each of strength m are placed at points (- a,0), (a, 0) and a sink of strength Zm
at the origin. Show that the stream lines are the curves (x* + y*)? = a%(x? - y? + Axy) where A isa
variable parameter.

2ma’

Show also that the fluid speed at any pointis (rr
1"2%3

, wherer,,T,, erthedistamesaf the
points from the sources and the sink.
Solution :

First Part:

"The complex potential w at ant point P(z) is given by

w=-mlog(z - a) - mlog(z +2) + 2mlogz | worne{ 1)
o w=mflogz- log(z*-#%)]
or ¢ +i'¥ = m[log(x? - y* + 2ixy) - log(x? - y*- a’ + 2ixy)]
- Equating the imaginary parts, we have

T:/

G//o

ot . 0

v (B} o

‘I'=mlan"[

_'za:xy o |
.(x‘ +y? )? -ai(x’ —y? } , on simplification.

4 _2 .
The desired stream lines are given by ‘¥ = constant = mtan '('I],‘I'Iwnweumain

(-2a%xy)

- [_%} [+ J -atlx? “ﬁl: )]




or  (x*+y}) =al(x?- y' +Axy)
Second Part : From (1), we have ’

dw __m m _ 2m _ 2a’m
l;lz. z-a z+a z z{z—a)(z+a)
2a’m him

dz {z“z a||z+a| Ir,T,

where r,=|z-alr,=|z+alandr,=|z|.

Images : :
Ifina liquid a surface S can be drawn across which there is no flow, then any system of sources,
sinks and doublets on opposite sides of this surface is known as the image of the system with regard to the
surface. Moreover, if the surface S is treated as arigidbounda:yandmtiquidrmuvedﬁm one side of
it, the motion on the other side will remain unchanged.

As there is no flow across the surface, it must be stream line. Thus the fluid flows tangentially to the
surface and hence the normal velocity of the fluid at any point of the surface is zero. '

Images in two dimensions :
Ifin a liquid a curve C can be drawn across which there is no flow, then any system of sources,
sinks and doublets on opposite sides of this cutve is known as the image of the system with regard to the

curve.

Advantages of images in fluid dynamics :

' The method of images is used to determine the complex potential due to sources, sinks and doublets
in the presence of rigid boundaries. Suppose we wish to determine the flow field outside a rigid boundary
due to sources, sinks, doublet lying outside the boundary. To this end we assume the existence of some
hypothetical image sources, sinks, doublets within the boundary in such a manner so that the boundardy
behaves as a stream line or surface. Then the given system of sources, sirks and doublets together with the
hypothetical one will be equivalent to the given sources and the rigid boundaries for the region outside the
boundary.

Image of a source with respect to a line :
. Suppose that image of source m at A(a, 0) on x-
axis is required with respect to OY. Take an equal source at
A'(-a,0). Let Pbe any point on OY such that AP=AP =

TSk

m ’ '
r. Then the velocity at P due to source A’ is = along AP. -2 »
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Let PL be perpendicular lnﬂ‘!'lThcﬁ._w:smﬂmtmsulmntvckmityalPdu: 60 sources at A and A’ along

Rl

m-ingdutﬂquwillmﬂw-mﬂtfhwbyd&ﬁﬁﬁm,dpéimgedaﬁmp&e?mmwimmw
to a line in two-dimensions is an equal source equidistant from the line opposite to the source.(Proceeding
similarly the result is found to be true for sink also) ; =

Corollary : Image of a doublet with respect to a line : 'q, T "

Let PQ be a doublet with its axis inclined atan angle @\ - i
& to OX. Then by using the above result for finding the \
images of sources and sink with respect to OY, we see that —-03 " s
the image of the doublet PQ is again an equal doublet PQY - \
symmetrically placed as shown in figure. ' : r .. ey

Immnflmmwlﬂuuﬁnrﬁtnadrd:: .
Letus determine the image of a source of strength m at a point A with respect to the circle with O
as centre. Let OA = fand let B be inverse point of A with respect to the circle. If a be the radius of the

2
a

ch'cla,dwnl}h.(}ﬂ:n’mthatﬂﬂ=T.

* Let there be a source of strengt m at B. If w be the
mplexpuenﬁalduemmatﬂ and B, then we get

w =+mlog{z—-f}-mln{z—%i).

) 2
= —m[lng{rmﬂ—'r +irsin0) + Ing[ ruosﬂ—ff—ﬁrsinﬂ H

(*  z=re®=rcosh +irsind)
Writing w = ¢ + i'}’ and equating real parts, we get

o= m-;l[lng{(rcusﬂ-f‘ )+ (rsin8) }

2 r y
+Iog‘[rm&—%—lﬁ] +l{rsinﬂ]-’ H i
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ols

I:'C‘_S(rl_+f’ -2frmsﬂ}+lu{r’ +:—:- -3 mﬂ)]

I{r-[f‘-)m&} :
m 2(r —f cosB) : 4 ¥

C. P
o 2| rP+f'-2frcos® , a* l-'[a’]
' +—=2 — icosO
' f f :
Hence normal velocity at any point Q on the circle *
a Fy
b a~fcosB [?]{f-amsﬂ} -
={E] = T —2facose [ o - ”
: . [-:_—,—](f’+a‘—1fnmﬂ) :

1

a—fcmﬂ+1——fcmﬁ o
a

al+f’-2facosB . | a

Now, ifweplmamwnfmng&n-muo,themnulvehcitydm toitatQ will be -( % ]

and hence the normal velocity of the system will reduce to zero. _
Hence the image system for a source outside a circle consists of an equal source at the inverse’
point and an equal sink at the centre of the circle.

Image of doublet with regard to a circle :

Let us determine the image of doublet A’ with its axis its
ui.:mak'mgmanglcdwimﬂﬂ.nutaideﬂmcimlc.ﬂmehcingt
sink -matA anda source mat A’. Join OA and OA’, Let B and
B'be the inverse points of A and A’ with regard to the circleé with O
as centre. Then 2
OA.OB=0A'.0F'=a* ... (1)
whu:usﬂrndmot‘&wmcle

Nuwmnmmgenfmumemath’mns:smufnmmemmﬂ’mdtnnk*matD Similarly, the
image of sink - mﬂAmnmtmfannkaanmlammmatﬂ Compounding these, 'we see that source
mtndunk-muﬂcnnoelmho&ernndhmwﬂmlmageoflhemvmdmbletﬁm*uammmﬂ
BB :

Luﬂ»m;:hnfugimdmmm*m
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Then H=JE.(’“'M:} sl 2

0OA _0B
08" OF: 000 v ekl

showing thatriangles OAA' and OB'B arcsimilar. From these similar triangles, we have

From (1),

BB’ GB ﬂB Oﬁ a’
AA’ OA' OA OA’ DA-UA'

.= strength of doublet B'B

-}imfm«ﬂ'ﬁ}

=l Ao (MAA) By
l-ll:

77 »using (2) and taking OA = OA'=

_ Thmﬂmmpofbnmﬁmmﬁmuldnuﬂﬂﬂ&wimmmmnirﬂ:hmdwdmbkutm
inverse point B, the axes of the doublets making supplementary angles with the radius OBA.

Example 1.:

lnth:mpmbomhdbylﬁmdqmmlmm:umdui deduce the motion due to a source
and an equal sink situated at the ends of one of the bounding radii. Show that the stream line leaving either
end atan angle o with radius is

-~ rsin(a+8)=a’sin{a-0)
Solution :
' Let AOB be the circular quarant of radius a wath
OA and OB as bounding radii. Consider a source of
strength m at A and a sink of strength - m at O. Then the
image system consists of (i) a source m at A(a, 0) (ii) a
source m at A'(- a, 0) and (iii) a sink - m at 0(0, 0). Hence o
the complex potential w for the motion of the fluid atany (-
point P(z = x + iy = re®) is given by | :
w =-mlog(z - a) - mlog(z + a) + mlogz
2 2

;l .=-miog(zhazz")

or w =-mlog

or w=_—mlog{r:"-a‘r“='“}. &5 'z=l;c']
‘or  w=-mlogr(cos0+isinB) - a’r-\(cosB - isin@)]
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$+i¥ =-mlog{[ r-—f;-]mﬂ+{r+a—:].sinh:l:|

2
r+2 lsin® o
i T
¥ =-mtan" = =—mmn"{{-z—t%tnnﬂ}
[r——*]mﬁ -
T

The stream line leaving the end A and O at an angle ot is given by
¥=-min-a)

2 1
is -mtan"{_:::,.mnﬁ}rm{n-a}
r’+a’ kind sin o
or = = =tan{M—0)=—tand = -
r'—a® jcos cosol

or (r? +a)sinBcostt = - (* - a¥)cosBsina
or rsin(0t + 8) = a%sin{x - 6)

Exercise 2. : :
Inlhumufﬂmemn-dimensimmlﬂuidmmiunpmﬁumdby a source of strength m placed ata
puhuﬁunﬁd:aﬁgiddmﬂwdiwﬁfmdiusawhmnmmisﬂ.simwﬁmtdwvelﬁcityofslipnfdwﬂuid
*in contact with the disc is greatest at the points where the lines joining S to the ends of the diameter at right
: i
angles to OS meet the circle, prove that its magitude at these points is zmpﬁ;_—_a:‘}

Solution :
Let S’ be the inverse point of S with respect to the circular disc, with O atits centre. Let OS =c..

F !

11:n0$.05’=a*suma105'=5c—.

_ﬂwcq;ﬂvﬂmum;ymnminsuf
(i) a source of strength m at S(c, 0),

.

-

: (.t
(ii) a source of strength m at S =( F*ﬂ'].

* (iii) a sink of strength - m at 0(0, 0).
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R Hﬂﬁ&hﬂuzﬂi&ﬂmﬂwmﬁpﬂpﬂmﬁalfwﬂn motion of the fluid at my'point =
x+iy=re®)is given by

. 2
w =-mlog(z-c) -mln{ z-i— J+ mlogz

dw m m m
— D —— 5 + —
dz z-¢ _ 2" z
: ¢
dw
Let9= o be the velocity at any point z. Then

m -1 {(z—a}z+a)

1
qzm—+ =—=|=m -
i !--a— s z{zwg{z.._'_]
c c

Hence the velocity at any point z = a¢® on the boundary of the circular disc is given by

.(u’-axm*+a)

_ R

cfe® -1)(e" +1)
e®(ae® ~c fce® ~a)

(1-¢® N1+¢*)

ae -c){u -a)

e

2mcsin :
9 a® +c? ~2accos@ L g A (D

Fnrnn:ﬁninnm%ﬂﬂ.l-mﬂ}gim

{a +c -lacemﬂ)coaﬂ-ssne{zacnnﬁ’,t:n
: (a® +c? - 2accos0)’

o (a?+¢? Joos@-2ac=0 or mﬂ-azfc ST

Smﬂ-ﬂgmﬂnnﬁnhmvdmty[qhmmmmuﬁ= 0by (1)1, thl:\ra.'lmnfﬁgwenby
ﬂj.nn:tommupuﬂh&unmimmnvﬂue of velocity g. Moreover (2) gives the same angles which the
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diameter through the point where the ImepmngStudwmdofﬂ‘ne mmmtnrnmglﬂangba to OS cuts the
-circle, will make with OS.

From (2), sin6 = 1‘ il 3 i3

¢l +a’

Using (1), (2) and (3), the maximum value of q is given by

Lt
2mce _r.:l az | bl
L c +a” | . 2mc c:—a'}

= £ =

9

P 4: i (a? +c? J —4a’c?
a’+c
2 m.OS ' .
or q*c,:‘:: =OS:._n,'Sinﬁ:thc.boundaryﬁfﬂ'l:circulnrdiscisnsn'mml:ilw.the
velocity on the boundary is the velocity of the slip.

Exercise 3. : ;

A source S and a sink T of equal strenghts m are situated within the space bounded by a circle
whose centre is O. If S and T are at equal dlsmmesﬁmnﬂonnppumtemdcsuﬁtand on the same
diameter AOB, show thatthe veloity of the liquid atany poiat Pis

0S? +0A? PAPB

Zm o5 S PS . PTPT whﬂtS’amiT“ueﬂﬂmmumedTwiﬂimpmtm&wcimh.
Solution : : :
Let OS = OT = c. Then, we have OA =a, 08 . 08'=a?and OT . OT' = a? so that
P(z)

2 2
os'=2 gdor=L : il
c [~ "

Now the image system of source m at S consists of a source m at ' and a sink - m at O. Again the
imaguymﬂfannk-mu'r' consists of a sink -m at T' and a source m at o, Compounding these, we
find that source m and sink - m at O cancel each other. I-hnm:twaqumhntnmgcsystcmﬁmllymm
of ;
'ﬁ]amofmglhmusmn}
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{':}amufmnglhmals{ {l]
(iif) a sink of strength - m at T(-c, 0)

’ 2
(iv)a sink of strength - muT(‘—" 0]

Taking OS as the x-axis, the complex potential at any point z{ = x + iy) is given by

2 3 ;|
wf-mlog{z—cj-mlbg{z—%—)+mlng{z+c]+mla{z+%]

: a
AL
. 2?-c? , a'
S
c
1, : .2
+ z'-a
=2m':r - . -
< 1 .2 2
2t =c’ )| 2°-—
@-e -5
3. .2
c*+a z-allz+a
o lz=aljzal

a
z+—
c

|z=cllzl|z+elfz-"

0S! +0A? PA-PB
0Ss PS-PS’-PT-PT’

=2m

4 Exercise 4, :
Widlang:dbo&mdatymltnﬁmmd'ﬂwchth{k+a]?+(y -4of = Bu’t]mmsnhqmdmmmn

: dmmadmblemfmglnuatﬂum{ﬂ,@:)mﬂamu;dmofy. Show that the velocity potential
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M 4x-30) . y-3a
(x=3c)* +y*  x*+(y-3a)’

Solution : _
The given circle has centre O/(- &, 4a) and radius = |/ (8a?) = 2, 3t . Let the given doublet be
at P(0, 301). ' '

) 3:1—4:: in
] 'P‘: =-—] = —
Gradientof OF. 0 (—) l=tan e

n
Hence O'P makes an angel 7 with OY. Let P be the image of P. Then the axis

H
[T T 1 I

of P will make an angle 45° with PP and hence it will be parallel o x-axis.
We now show that I lies on x-axis. We have

OP.OPF =8a’

O'P(OP + PP) = 8a?

2

0P = J(a~0)* + (4a-30)* =2 wi(2)
From (2), o2 (02 + PP )= 80

or PP =32 =3asec45® = OPsecds".
_ This shows that P lies on the x-axis and that co-ordinates of P are (3o, 0). Let 1 be the strength
of P. Then the strength of P/ is '
_(radius)’
-.-.-l.l. {D’P}i =
Thmﬂunqmmm;ymnmmofdmﬂauPndF.Hmﬁwmplﬂmﬁﬂd
motiom at point z(= x +iy) is given by

sal
20

B . .

i

o | 0i
pe ' +4|.le
z=-3ie z-30
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4 i
+i¥ = +
e i ul:1+iy—3u x+i}r—3i{!:|

L (x=30)— +i{x—i(r—3d)}j]
(x 3a)* +y'  x +(y-3a)®

%

Emaﬁnsmlpm-ﬂaet
o= Y- ]
(x - 3a]1+y x* +(y-3a)’

Connectivity : Deﬁll’linll
A region of space is sudmbummd:faomunmmpmhgwpmufﬂnmpmhﬁ
- entirely in the given region. : :
Thus the region interior to a sphere, or the region between two coaxial infinitly long cylinders are

Reducible and Irreducible Circuits: g
Definition : ' :

A closed circuit, all of whose points lie in the region, lssmdiu be reducible if itcan be shrunk toa
point of the region without passing outside of the region.
_ The circuit PRQS in figures (i) and (ii) are reducible; the circuit PR'Q'S' in figure (ii) is imeducible,
hitmndhcmademﬂuﬂmﬂu mmmnfumufﬂ:tnmrcylnﬂer

®

Slmplywlldgim:
A region in which every circuitis reducible is known as simply connected. : _
_ Thus the region interior to a sphere, the region exterior to a sphere, the region between two
concentric spheres, unbounded space efc. are simply connected regions. The region between the concentric
cylinders in figure (i) above is not simply connected, for it contains irreducible circuits. This region can be
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made simply connected by inserting one boundary or barrier which may not be crossed, such as AB
"containing a generating line of each cylinder as shownin figure ii). '

Wiith the insertion of this basrier each circuit in the modified region becomes reducible and hence
the modified region is simply connected. '

Double Connected and n-ply Connected Regions :
Definition : _

A region is said to be doubly connected, if it can be
made simply connected by the insertion of one barrier. Similarty,
a region is said to ne n-ply connected, if can be made simply
conneceted by the insertion of n - 1 barriers.

Thus the region between two coaxial infinitely long long

 cylinders, the region exterior to an infinitely long cylinder, the
region interior (or exterior) to an anchor ring etc. are doubly

W

Flowand Circulation: - ,
If A, P be any two points in a fluid the value of the integral

[ (udx + vdy + wd2),

taken olong any path from A to P, is called the flow along that path from A to . ;
When a velocity potential ¢ exists, the flow from A to Pis .

i, 9. N
=*II[5“**5,"”+5“}=J:@=¢a-¢E |

WW@MHEMWEMHWW round the mnt.mtbeclmadm

and I' be the circulation, then we have
T'= [ (udx+vdy+wdz) = [ 3-df

where the line integral is taken round C i a counter clockwise direction and  is the velocity vector.
Remark : : _ _

When a single-valued velocity potential exists the circulation round any closed curve is clearly
zero. Again, itis scen that if the velocity potential is many-valued then there exists curves for which the
circulation is zero, though it is not zero for all such paths.

Stokes's Theorem : _ _
Let § be the velocify vector, Q the velocity vector and S be a surface bounded by a closed curve
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C.Then [ §-&F=[.culg-idS  je, TI=[Q-idS

where I is the circulation round C and the unit normal vector §; at any point of S is drawn in the sense in
which a right-handed screw would move when rotated in the sense of description of C.

Kelvin's Circulation Theorem :

When the external forces are conservative and derivable from a single valued potential function
and the density is a function of pressure only, the circulation in any closed circuit moving with the fluid is
constant for all time. '

Proof : '

Let C be a closed circuit moving with the fluid so that C always consists of the same fluid particles.
Let § be the fluid velocity at point Pof the circuitand let 7 be ts position vector. Then the circulation along
the closed circuit C is given by :

rfaa
DI' D, _
e

E‘;ICH{I.I‘IE}_ ...... (2)
D s D
Bu —(@-d)=Tldf+gd
=2q—.dF+ﬁ+dq ...... (3)

The Euler's equation of motion is

Dg_g_1 i
Dt—F p‘i’p | )

Let the external forces be conservative and deriavable from a single valued potential function V.
Then F = -vV and hence (4) becomes

q 1
*D—E=-W -—Vp . A5)
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=—dV-d-—p : (6)

p
A . | i
Also q.dq:i q-q}:%dqi ...... {7
Using (6) and (7), (3) reduces to
D |
.ﬁt...ﬁ.m = ""dv—EdP +%dqz ceens{B)

Ummmm;ﬂmphasingle_-vahndﬁmnﬂmﬁnmmdmm

pr [1 dp
D [EHI-V“ o )

where []. denotes change in the quantity enclosed within brackets on moving once round C. Since g,
V and pare single-valued functions of 7, so R.H.S. of (9) vanishes. (9) gives the rate of change of
ﬂnw:hngmyclumdmmﬁtmnmngmﬁﬂuﬂuﬂ.ﬂﬂm:tfullnwsttmﬂtemmhummmyclmed
circuit moving with the fluid is constant for all time.

Fernnunueuﬂrrmﬂnn_almuﬂm: :

When the external forces are consecvative and derivable from a single-valued potential, and density
is a function of pressure only, then the motion of an inviscid fluid, if once irrotationial, remains imotational
even aficrwards.

Proof’:
From Stokes's theorem, the circulation is given by

=] g-df = [_Curlq-fds (1)
Atany time t, let the motion be irotational so that Curl § = 0. Then (1) shows that I'=0at that

instant. Heace it follows from Kelvin's circulation theorem that "= for all ime. Hence at any subsequent
mm.{l}s!nw:ﬂm

[ Curlg- AdS =0 wd(2)

Since S is arbitrary, (2) shows that Curl § =0 atall subsequent time i.¢., the motion remains

Green's Theorem : : :
If §, ¢/ are both single-valued nndmnummusly dﬁumulhhscalupmntﬁnmusmhﬂm?q:

mdwm.uummwmmmm
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j’_v{w-w’}dv=L¢~§Eds-jw¢v=¢_‘dv

[ ¢ Ras-[ ¢v?
J 45 as-[,eVedv,
whl:rcSisclomdmfmbmmdingmyﬁnmlymwdmgim.ﬁuhmelmm}tdinwmﬂmmalata
pointon S, and V is the volume enclosed by S. :
“Proof : : '
From vector calculus, we have
V.(48) =5-(VO)+ (V) D)
where ¢ is a scalar point function and 3 is a vector point furiction.
Replacing & by V¢’ in (1), we get
Vs @V = (V&) (Vo) + &(V - V&) ware(2)
Itmmﬁng-hnd:_sldﬁofa}mmlm\f.wegu
[, V-@V§HMV = [ (V6)- (VO + [ (V- V)V ..3)
By Gauss divergence theorem, we have ..
[, V-@V¢)dV = [ fi-@V¢)dS
where # is the unit vector drawn to the surface 5.

or *J,V-(@V§)dV = [ &R V¢S

o [,V-@vv=—f o5t as ael8)
Again, V-V§' =V¢ and V¢'-Ve=Vo-V¢' . {5]
Using (4)and (5), (3) reduces to

= jsqa% dS = [ (Ve-V¢HdV + [, Vi¢'dV

[, 0 vV =—f oL as- [ oviHav .. ®)
Interchanging ¢ and ¢/ in (6]_, we have .

[, (V- 94V = [, ¢’ sEas - [ 4V 6aV
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o Lm—vﬂm~L¢'§"S-LW’W )
{6)and (7) t_ngettmpmm'tb:ﬁrmn's theorem.

Deduction from Green's Theorem :
Deduction L. :

" Let¢, ¢ be the velocity potentials of two liquid motions taking place within S. Thm\?’# 0=
Wandhmncgmslhnmmyw]ﬂa

. O
I,¢Ed5*js* E;ds

) S

But = E is the normal velocity inwards andp‘usﬂrw impulsiye pressure at any paint on the

smaciincy il el peosiacs vilooiy poliicit i frowirees Hames ¢13 shavi i if @rwte iniotioelbie-
motions inside S by means of two different impulsive pressures on the boundary, then the work done by
the firstin acting through ﬂiedlqslmu:nanpmdnmdbyﬂmmmdmmthuqml to the wu'kdmnnjrme
mdmmg&rwmﬂwd:qﬂmmmmmbyﬂmﬁm :

Deduction IL
Let ¢’ =constant (=k, say). Then V' =0 =% everywhere. If ¢ be the velocity potential of a
liquid motion within 5, then by Green's theorem, we have

jk%dsunm f%dss-u 2)
5 s

Since %:-' is the normal velocity cutwards, %:—ds mplﬂenuth:ﬂuwaﬂosstp&unifﬁm.
_ M@}mm&nmﬂﬂwmsumm the quantity of a liquid inside 5 remains constant.
Deduction 11

Let ¢ = ¢’ and let ¢ be the velocity potential of 2 liquid motion within S. Then V¢ = 0 and hence
Green's theorem gives :
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[@avel =~ o3Las

) (20, (20 by - (o2
« 3G Eptas @
Let q be the velocity and p be the density of the liquid, then (3) reduces to
1 roag o1 1o |
zﬂlq dv zp!anﬂ‘ (4)
Chaﬂyth:LH.Suf{4}mp|ﬁmlsﬂ1:kimﬁc:mgyTufﬂmliqui!:lwiﬂﬁn5.I-I;emﬁ}radmm

N T
T Z@hm (5)

Now péis the impulsive pressure that would set up the motion instantaneously from rest, and -% isthe

inward normal velocity at the surface. Hence (5) shows that the kinetic energy set up by impulses, ina
symmﬁngf.msrmwt.isﬂmsmnufﬂnpruductxnfmhimpdmmdhﬂﬁtwwlodtyoﬁtspﬁnmf
application. From (5), we also find that the kinetic energy of a given mass of liquid moving
mﬂumljrihasimpl}'mnmdeﬂ region depends only on the motion of its boundaries.

Suppose on the boundary % =0. Then (4) reduces to !qid"' - Siﬁce'q’ispmirim (6)
impljesﬁutq:ﬂwwywhunHmmﬁ:tk;uidisurgtﬁm.acydicmwﬁma]nnjmishnpmﬂblem
a liquid bounded by fixed rigid boundary.

Kinetic Energy of Infinite Liquid :

Ebm:hrmnﬂimummnthmnmmgmmumﬂly,ﬂmatmﬁmmmﬂhwmhdmﬂyby
amhdﬂn'fmeSandextﬂ'nallybylhrgemfmeS’ Let ¢ be the single-valued velocity potential. Then
from deduction ITl of above, the kinetic energy T of the liquid contained into the region bounded by S and
§'is given by

1 o 1 0 o '
= —— —_—d5—-— -
y zp[=¢an zpfs‘%nﬁ sl
Sirmdwreinnuﬂmintoﬂ:regimaﬁﬁsss,ﬂnequaﬁmufmnﬁnuitywkﬁﬁxfmm
o
J’ands+‘[f —=ds'=0 a2}
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1
Multiplying (2) by EC,amtant. and subtracting from (1), we get

«-Lof @-0Ras-Lo[ 4-0Ras'=0
= zpjs{¢ O5-ds 5[ (0-C)5-dS'=0 ...3)

_ % P
Since for the solid boundary S, !En"ds =0 it follows from (2) that L.P%ds =0,ie.,

I, 505" is independent of §' Let ¢ C at infinity and let the surface ' be enlarged indefinitely inall

directions. Then the second integral in (3) vanishes and hence the required kinetic energy of infinite hquad.
is given by

1 9@
T=-2pf(0=C)7 -ds

: 1 .0 ol 0 o
ie, T=-gpfeslds [ ]‘sén-ds-i}] o)

Remark :
For the motion of liquid to exist, T must not vanish. Hence all internall boundaries must not be at

sminhnumenu-grﬂwmm
'Ihe.lrmmnmalnmumufahqmdmcupymgas:mplymmmdmpmhulmshmwm
any other motion consistent with the same normal velocity of the boundary.
Proof:
Let T, be the kinetic energy, §, the fluid velocity of the actual irrotational motion with a velocity
potential ¢. Then
q,=-v¢ il B¥
Let T, be the kinetic energy, , the fluid velocity of any other possible state of motion consistent
with the same normal velocity of the boundary S.
Continuity equations for the above two motions give
V.3, =0and V.§, =0 i
Let # denote the unit normal at a point of S. then using the fact that the boundary has the same
normal velocity in both motions, we have '
fi-g, =i-q, - ' )

L oy
Now, T=-3pf,a’dV=2pf 3 aV
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and T=+;—pj,,q=’qv =20f,a.'av
T,-T, =30l (@' -3 v
= 20f, {2.@; -3+ ﬁz -3 Jav
=ii‘.[1...‘_i.1-'{ﬁ:‘ﬁ:lﬂv+%ﬂf,ﬁ;-ﬁ.}‘d‘u’. '

=-pf, (V6)- @, -§,)dV +%pj, @, -3V @)

Using()]
But v'[(“ﬁ!“ﬁl ))]"ﬂ?i(ﬁ:"‘ﬁl)]*‘ﬁﬂ'{ﬁ:"ﬁj} 2
=v-(§,-3,)  [Using)
[, V9)-@, -3)dV = [, V0@, -GNV

o Isﬁ*ﬁ: —fl'.}ﬂS[bwam'chm]

=0 [Using(3)] nl8)
Making use of (5), (4) reducesto
T-t=gpf,@-at v ®

Since RH.S. of (6) is non-negative, we have T,-T, 2 0,ie., T, <T,. Hence the result.
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Motion of Cylinders

mglaﬂm:r(:yﬁnder
To determine the motion of a circular cylinder mmrmg inan u;ﬁmre mass of the liguid at rést
at infinity, with ve!ocu}-Ufu:.kedlmcm of x-axis.
mﬁﬂummﬂ¢mmﬂﬂﬁydrpmbmmmm%hamﬁmfdmm
considerations :
(i) ¢ satisfies the Laplace's equation V¢ = l}ateverypummfthehqmd.lnpolarcomdmatemn
two dimensions V¢ =0 takes the form
a'¢ 134} ]&’¢
= R i e
Welmnwltut{l}hasnﬂuﬁomut‘dmfmn
. ~ r"cosnB, rsinnd,
where n is any integer, positive or negative. Hume,tiwsumnfmynumbemfmmufﬁwﬁaﬂn
A rcosn®, B r'sinn, is also a solution of (1),
(il) Normal velocity at any point of the cylinder
= velocity of the liquid at that point in that direction

R § b

ie. -%=Umﬂ. whenr=a ik

(i) Since the liquid is at rest at infinity, velocity must be zero there,

o 1 9¢ :
-—— — — at = og
Thos, =2 0, and e r B}
The above considerations suggest that we must assume the following suitable form of ¢.
¢=Armsﬂ+%msﬁ ...... 4)

0 B
e i B

From (4), ar ‘[4“'Ii T;)Wﬁ sinslk X

Putting r=a in (5) and using (3), we get
Umsﬂﬂ-{ Hﬂz]cmﬂ or A—%:-U {ﬁ}

lengr—ﬂ m{S}andusmg(S] we get
0=-Acosf sothat A=0.
Il'm{ﬁ}gim B = Ua®. Hence, (4) reduces to
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¢=UT“1:6:H ....... ')

It may be noted that (7) also satisfies the second condition given by (3). Hence (7) gives the required -
velocity potential. '

v 1%
- : ar rob _ wpel)
Ua® - :
ha_r.z-ﬁ-—:inﬂ, by (7) and {E}.
; Ua®
Integrating; (eglecting constof intogration) W = ~——$in8, e ©
which gives the stream function of the motion. The complex potential w( = +iy) is given by
w=u_“l[mﬂ_i;jng}'.y_£¢“ =”_"tl _________ - (10)
r r z

where z=x + iy =r(cos0 + isinB) =re®. : :
Note 1 : From (7) and (9), we find that the velocity potential and stream function are the same as for a wo
dimensional doublet of strength Ua® on the axis of the cylinder in an infinite mass of liquid.
Note 2: The stream lines are given by = const. i.e by

Ua? Ua? '

————gin@=——— or crsin@=r’
r ¢

. H 2
ie. x*+y'-cy=0 or: it gl -] &
y —c¥ Y 2 2

which are circles all touching x-axis at the origin and having the center [ﬂ *;]

Liquid streaming past a fixed Circular Cylinder :

Let the cylinder be at rest and let the liquid flow past the cylinder with velocity Uin the negative -
direction of x-axis. This motion may be deduced from that of the previous article by imposing a velocity -
U paralle] to the x-axis on both the cylinder and the liquid. The cylinder is then reduced to rest and we must
add to the velocity potential a term Us (i.e. Ur cos8) to account for the additional velocity; consequently
aterm Ur sinf must be added to . Thus, we have

b= L{r + %)mﬂ, Y= L{r —‘—:}inﬂ ....... {1
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: . _
and W=+ iqr=U(roq¢ﬁ+irsinB}l-UTl{mB-isin 0)

" ' '
Note 11 I-lnm.ﬂ:equﬁm[""—r“]m 8=const represents the stream lines relative tothe cylinder.

_ mddﬁsismwmmucyﬁndﬁb:mﬁmumm
Note 2 : The velocity distribution at any point z=ae® on the cylinder is given by

q= % when z=ae"
: y L1
=|u-5-| when z=ae®, by @)
Ua’ '
_=| U-oom =| U-ue™ |=| U[|1-™* | =] U|| 1-cos20+isin26 |

n
The maximum value of  occurs where sinf = 1 i.e., 9= > - Thus, we have

q,, =2| U|=twice the velocity of free stream. : _
Stagnation points (or critical pﬁnﬁ]mﬂmq:ﬂin,ﬁnﬂ:ﬂu, =00rB=m.

Note 3:
‘We now determine pressure on the boundary of the cylinder. Let T be the pressure at infinity and

U be free stream velocity at infinity. Then Bernouti’s equation gives

p+%pq’ = constant =H+P%U=

o p-T -%pﬂ’[l—-isin’ﬁ} Y3). - @)

Wehmw&utahqﬁdhm;blem:ustainamgaﬁwpmm.mmﬂmhﬁim
mtwimmmmMaﬂwmmumﬂmpmiﬁumwm.wm&npmm
pgivmbf{l}bemqmmgaﬁve,&nﬂmbtaaksdnwﬂandcavihﬂmmcuﬂ-ﬂemhpm
be positive, we must have
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ﬂ+%pll=(l ~4sin?0)>0 at B:-g
ke, n-—épul::-u or U2 <AL
2 v, 39
[211
Thus,if U> Jp +Cavitation occurs.
Exsrcise :
A circular cylinder is placed in a uniform stream, find the forces acting on the cylinder.
Solution :

We know that the complex potential for the undisturbed motionis givenby w={u-iv)z, Using
Milne-Thomson’s circle theorem (for statement see next page), the complex potential for the present

problem is
‘ I‘J
w={u—liv)z+(u "'_i""{ +;-]

dw - a’ . . ; o 1
E=u-w-(u+iv{-;;] e _ : : B
Hﬁnmmdmmhmdduﬁxudcmqﬁnd&hemﬁbnmmﬂ

| and a couple of moment N about the origin of co-ordinates, then by Blasius’ thuorwu{fummntu
next page) we have

:
X =i¥ i {( ] dz -—ip}'{ (u=iv)- (u+1\r{ :: ]] dz'=|;|

.lothlt X=0andY=0
' 1. (dw )
Also N =Real part of ~—Ep£z[E] dz
2
=real part of —-pfz{u—w (u+w)~—}

=real part of —%p{—-z(u’w*")a’}:ni =0

X=Y=N=0, showing ﬂutnﬁﬂiﬂafmmam:phactsuﬁmcylindu
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wﬂmmmm

Lﬁﬂz}hcdtmnpbxpmmdfmaﬂnwhunngmnpdbmnﬂmmdmmntﬂmcmm
" singularities of flow within the circle | z| =a. Ttnu.lnuﬁdumngﬂwaﬂidmmﬂarcy]mh‘h]*amm&t
" flow, the new complex potential is given by :

w =f{z]+f(f:—] for |zfza

‘Statement of Blasius Theorem
Inamnd}rmdmmuu!mﬂmnnnfanumnprmbhﬂmd under noexternal forces

given by the complex potential w = f(z), if the pressure thrust on the fixed cylinder of any sl'npe are -

represented by a force (X,Y) and a couple of moment Maboutﬂie mglnofcmrdlmtﬁ.ﬂm

o 1 fawY 3 1 (dw
X—IY—Elpi[a&-;—] dz, M R:alpartnf{ gfJ!z[":I;)r.lz},_
where p is the fluid density and integrals are taken round the contour ¢ of the cylinder.

Circulation about a Circular Cylinder :
Letk be the constant circulation about the cylinder. Then the suitable form of ¢ may be obtained
by equating to k the circulation round a circle ufrad:usr Thus, we have

(2Pt - 3

a0 P
ko
so that ] {21:]

Since ¢ and Y are conjugate functions, we have

Y= & logr .
2n :

Thus the complex potential due to the circulation about a circular cylinder is given by
; kb ik ik .
= W= —e—p— = — +i0
w=o+iy h+luhgr 2ﬂ‘_i{lugr i8)
Ths W= = 1051. -
e Jasz=ret.

Strunﬁngandﬁrtuhﬂmnhout a fixed Circular Cylinder
We know Mdnmmplupommalw due to the circulation of strength k about the cylinder is

givenby
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ik
W =[ ;—n ]lnsz W |

Again, the complex potential w, for streaming pasta fixed circularcylinder of radius a, with velocity
U, in the negative direction of x-axis is given by '

1
w2=UI+[H:—] " e 2

Hence the complex potential w(= ¢ + iy) to the combined effects at any point z=rei®is given
a’) ik :
w=w,+wt=l{z+?]+ﬁlﬂgz ...... {3)
o A o a’ s ik :
or ¢+ﬂ|l=U[’rmﬂ+lmn9+—[msﬂ-1smﬁ}:|+-i-ﬂogr+iﬂ}
r n
. a? - kB
so that ¢—L{T+TJWSB—‘2—“

2

a k
_{1 - lsin®+—1
and W T. : ]3111 +2u08f.

vl

Simcl!lcvducil}fwiliheuﬂymngenﬁal:tﬂwhound:yafﬂucylim,(' ]"u and hence
the magnitude of the velocity q is given by
19¢ g k :
) q=|-‘;ﬁ I =|2UEIHB+E| )

If there were no circulation (k = 0) there would be points of zero velocity on the cylinder at 0 =0
andD=m l-hw. in the presence of circulation, the stagnation (or critical) points are given by g=0, i.e.

rn(5)

- B Ay
- 4nUa
" and such points exist when _
| k| <4nUa ()

ol Remark :
From the above discussion, it follows thai any point on the circumference might be made a critical

point by a suitable choice of the ratio %.'I‘Iﬂlflﬂhmployedintheﬂmmgnfurqfnﬂl.
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We now determine ﬂnhptﬁmatpoinmofﬁ cylinder. 'I'tmplﬁsumphgimbynnrﬁmlli‘s
theorem

- | .
E - F{ﬂ—?f B (7

Let IT be the pressure at infinity. Thenp = IMandq=U, sothat

In 1 Im. 1
—=Fy-=-U* Fity=—+-=01"
: (t) 5 or F(t) p+2U ..... (8)

Using (8), {T}rqﬁm to

p p 2 2

p=ﬂ+l 1:.1‘—l 2Us:inu|5+'L i 9)
3 2 =
HK.YbethcmmmBuf&wustmﬂwcyHndur,wem
in iz 4
X'-lpm&(adﬂ}, _ Y =-psin®-(adf) .....(10)

Using (9), (10) reduces to (after simplification)
X=0,Y=pkU N T (11) _ :
showing that the cylinder experiences an upward lift. This effect may be attributed to circulation

phenomenon.

Equations of Motion of a Circular Cylinder :

A circular cylinder is moving in a liquid at ré;l at infinity. To calculate the forces acting on
the cylinder owing 10 the pressure of the fluid. .

Let U, V be the components of velocity of the cylinder when the centre of the cross-section O is
(% f—"u}' Then, we have :

! U:i. :
and V=¥, | e (1) )
Let  z,=X,+iy, |
and z-zu=m" el 2)

where r denotes the distances from the axis of the cylinder.
On the surface of the cylinder r =a, we must have
b Normal velocity of the liquid = Normal velocity of the cylinder

ie. atr=a, —%sﬂmﬂﬁ- Vsin® P )

Since liquid is at rest at infinity, so 85




_Q=ﬂ PO vene{d)

or
Eeeping (3) and (4) in mind, we take
¢-(Ar+1:—]wﬂ'+[(?r+‘~?)ﬂiﬂﬂ ...... ®)
Y B DY), '
E:[ﬁ-a—z ]GMH-I'[C—F ]SII‘IB ..... . .{5} ¥
Using (6), (3) reduces to
_( A_;l:li, ]mﬂ*[ C_a.E’ )sin{-]_:l]cosﬂ+ Vsin®
il %-h:..u-m%—(::v N ®)
. Again, using (6), (4) reduces to
" ~Acos0-Csind=0
50 that A=0andC=0 L. (9)
From (8) and (9), '
B==aU, D=aV ee(10)
Using (9) and (10), (5) reducesto :
a? ' :
¢_(T}UWH+VMB} ...... (11)
oy __1%
e g
N2 using+Veosd)
©oor r

3 Integrating q;x;(a?'}-UsinB+Vmﬂ} w12
Hmpeﬂ)eonmhxpmma]mgwm by

-y

€ w=d+iy = -';:[U(mﬂ-'-isinB}+W(qosﬂ-isinﬂ}}

2_ =il
=22 _(U+iv)
T




2
ol (U +iV)

Thes, ) vek13)
oaw _ a’(U+iV) .a’(U +i":"} 2,y
z-2, (z-2z,)
T By 3 % 2 :
_a i‘i‘:w s {i"i::? By = kg +ijp=U +iV]

F 1 o
or %+i~a?:—=fl_—[ﬂ+ iV)(cos@—isinB)

2
+ 2= (U +iV)?(cos20-isin 20), by (2)
T

F ; |
{E =-‘—{ﬂmu+\?m‘nn}+‘—z[m’ -V2%)cos20
r r

+2UVsin20] n14)
The velocity q is given by help of (13). Thus, we have

3 U+iVv
(z—-12,)°

at(Ur+ V)
e L%,

qz .'|=|-d--“—'r =|=8
dz

Omitting the external forces, the pressure at any pointis given by Bernoulli’s equation, namely,
Poppy+ -1
- Ff{t:|+iat zq wwessnl{ 16)

Using (14) and (15), (16) reduces to

%z F{t}+%(ﬁmﬁ+\?sin 0)+ %—{(U* -V*)cos 20

&
+2U\Fninzﬂ]--;~:7{l11 +Vi) ... (17)

Letp, be the pressure at (a, 0) on the boundary of the cylinder. Then g, is given by puttingr=a in
(17). Thus, we have
p, = pF(t) + pa(Ucos 0+ Vsin 8) +pl(U? = v*)cos 26

+zwm2ﬂ]-%{u’-v’) ‘ on(18)
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Iﬂxln:tYhﬁﬂum of forces on the cylinder due to fluid thrusts. Then, we have

X--Tp,mﬂ-_lﬂ Y=-1'p, sin@-add (19)
Us:iug{l&),{lii}gim

X= :”U 2 R
‘Fl£ ©0s" 8d0, on simplification

= —ma2pl = MU e TelT | G A20)
where M’ = %a% = the mass of the liquid displaced by the cylinder of unit lesigth.
Similarty, '
Y = —ma%pV = -MV o @1)

Corollary:  Toshow that the effect of the pressence of the liquid is to reduce the extraneous forces on
theratios - p: 0+ p where u.pmthedaﬁﬁuofﬂ::'cylindemﬂliqmd respectively.

muﬂumd&uqﬁmlnmitlmgth and X', Y’ be the mnpmenunﬂh:m

(external) forces on the cylinder if there were no liquid.
Letf, be the acceleration of the extraneous forces in x-direction. Then, due to presence of liquid

the resultant force in x-direction
=ma'of - ma’pf,
-ﬂ{n:{}f:} = -E-:-Ex‘
o o
The the equation of motion in x-direction is of the form

Mﬂ=-M*U+F:—"x*

oo  (M+M)U -f‘-'-;—"x’

M : u‘*p r]
v T
M+M' o
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&mﬂmeﬁaﬁtnfﬁep‘mufmﬂiqujdia toreduce the extenal forces inthe ratioo - p: o+ p.

Two Coaxial Cylinders (Problems of initaial motion) :

To determine the velocity potential and stream function at any point of a liquid contained
between two coaxial cylinders of radii a and b {a < b) when the cyﬁﬁdﬂs are moved suddenly
parallel to themselves in directions at right angles with velocities U and V respectively.

Let ¢ be the velocity potential and y be the current function at any point (r, 8 ) in the liquid. Here
the boundary conditions for the velocity potential ¢ are : ’

() when r=a, —?{-numa'

(ii) when r=b, —g?i-=VsinB
T

Moreover, ¢ must satisfy he Laplac's equation V¢ = 0 at every point of the liquid. In polar
* coordinate the Laplac's equation takes the form

Yo 1%, 1a‘¢
E‘- rar r 00°
Since, (1) has solutions of the form reosnf, rsinnf, where nis any integer, (positive or negative)
hence, the sum of any number of terms of the form -
. Agrcosnd, Brsinn@, isalsoasolution of (1).
The above considerations suggest that we must assume the following suitable form of ¢.

=0 )

¢=(Ar+%] cmB+[Cr +]-3-) L 2
50 that _ .
% _(,_B). _D)q
E_(p. rl]cosﬁ+(c r,)smﬂ' ....... (3
_ Using the boundary conditions (i) and (ii), (3) gives
_Umaf(ﬁ-%]mﬂﬁr[c—%]sinﬁ A
7 B D
~Vsinh = (A-FJMB+[C+IJ ]xmﬂ {5)
Since (4)and (5.}muﬂ hold for all values of 8, we have
A~y C-2=0
a a
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A-5=0, C--,?ﬁ"“
An L g LSV o W p et
So, |
R
Nowsince 30 =1 2¢.,(6)gives

_ . 8 3 [r—b—:Jﬁma— Dy (r—ﬂ]s'mﬂ

00 b’-a’ r b* —a’ .
. a’U , h: btv a: £
& Ys v [r—T)sin'B+ T (l’ —T]ﬂﬁﬂﬁ (T

Note : Equation (6) and (7) represents the muﬁmalﬂzpimtnntwhm the cylinders are coaxial. Thus they
give the initial motion. - :

‘Exercise 1.: | _

The space between two infinitely long coaxial cylinder of radii a and b respectively is filled with
hxnopmlkyidufd:migpmdhmﬁuﬂymwdu&ﬁvﬂmiwumﬁm&uhrmﬂwmmw
mﬂbeingI:l.:pl:ﬁmd.Shnwlluuhammltamimpuisiv_epressmﬂanulmgihtofuﬁhmcyliﬂais

|
m;th‘ +a

U.
b:_al

Solution :
In reference to the above discussion of problem of initial motion, here we have V=0. Also, the
houndary conditions become
(i) when r=a, —%?: =UcosB

(ii) when r=b, -%‘E:ﬂ' (as V=0)

Moreover, ¢ must satisfy he Laplac's equation V*¢ = 0 at every point of the liquid, which in polar
ooordinate takes the form




129,10

o
ar=+rar ¥ i
We assume the following suitable form of ¢.
¢ =[Ar +£) cmﬁ‘+(Cr +%] sin© sl 1)
r
~ sothat
=T B D i
> =[A -F) @B +(C—F].ﬂnﬂ ....... (2)
Using the boundary conditions (i) and (ii), (2) gives : .
-UcosO= [A-a—]cmﬁ+[c-%]sinﬂ ~(3)
n=[ﬁ-%)mﬂ+(c+§l]ﬂnﬁ (4)
Sm(i}andmmustholdfoullvalmufﬁ.whnm
Ua? I.Ja:]:!'l .
Ao B Calh B

(calculations exactly similar to the earlier case)
So, from (1) : '

; IU ht
¢_b=—l ( +T)COSE
But we know that the imﬁn]siyrepmml.re atany point is pd. (see the equation of motion under impulsive
forces). Hence impulsive pressure p, at any point P(a, 6) of the inner cylinder is given by

=pd atr=a

Ua® b
Sp =P b —at [a +:] cos@

b® +a’
a

Hence, the total impulsive pressure on the cylinder of length ¢ is given by

‘cos0B

o py =pUas

,b‘+n b2+n

Iuﬂﬂ bdeé _npa U

Im
{p,m&ﬂ.adﬂf fpUa oy

Note:In wﬂxingtiwmpmimfar total impulsive pressure the following figure'should be considered,
where it is seen that the components p,sin6 of p, cancel each other.
21




"Exercise 2. :

The space between two infinitely long coaxial cylinders of radii a and b respectively is filled with
" homogeneous liquid of density p and is suddenly moves with velocity V perpendicular tothea . the outer
one being kept fixed. Show that the resultant implusive pressure on unit length of the inner cylinder is

1 bz'l'll!
bl _az
Solution :Exactly similar to the earlier problem. Note that here £ = 1.
Exercise 3. : . :
ﬁnh&iﬁcyﬁnduufmdiusauﬂdmﬁ!yuismmmhﬂhyaﬁmdmmﬁcylmhnfmdhﬁ
b and the the intervening space is filled with liquid of density p. Prove that the impulse per unit length
necessary to start the inner cylinder with velocity V is

npa V.

2 ‘
S —{erow’-o-pa’ .

Solution :As in Exercise 2 above, the total impulsive pressure on the cylinder of unit length is

W.meimmlunwdndmnmﬂ: inner cylinder with a velocity V
' = (mass of the cylinder)x V=na’gV
Hence the total impulse per unit length to move the inner cylinder with velocity V

h! T 2
na’oV +npa’ = :, V= bia" {[n+p}b’ ~(o-p)a’ }V

Exercise 4. :
A circular cylinder is fixed across a stream of velocity U with acirculation k round the cylinder.

: ' k
Show that the maximu velocity in the liquid is 2U+[m),whmaisﬂmmdiusnfﬂucylindm
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Unit-3

Irrotational Motion in Three-Dimensions (Motion of a Sphere}
Stokes’s Stream Function

Introduction :
We propose to study irrotational motion in three-dimensions with a particular reference to the
motion of a sphere. We shall consider certain special forms of solution of the equation

¢ 2% 9*
e a},? a: ;! S .(1) (Laplac's equation)

which, in spherical polar co-ordinates (r, 6, w) reduces to

a‘q: 296 1 3% , cotd P 1 9%
+ -—+ =0 ..
a T-E‘:'l'-l-r2 20 r? 90 r’sin’fow’ @
When there is symmetry about a line (say, z-axis), ¢ is independent of ® and hence (2)
reduces to '

a¢ 2&4; 134: cotf d¢ _
Brz Tor 1‘«':|'B1 1'2 ;| o S

Inthe case of motion of a sphere the velocity potential is known to have the form fir)cos8. Sd:snmung '
& =f(r)cosBin (3), we have :

"
( 3_f+3.‘!5]¢nsa— f{:] cosf - Q-O:Bf(r} =0

ol rdr r r
that d_lf.+.g£_2_f ﬁ
2 dr? rdr ¢?
or z‘“’1»21-5"’-—21%:.3
dr® - dr

. :
which is homogeneous differential equation. As usual, its solution is (r) = Ar+ — -Hencea solution of
(k)] ofﬁwfumf{r}cmﬁmayhcuknnas

¢=[ Ar+£:]cusﬂ _ .......{41
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Motion of a sphere through an infinite mass of a liquid at rest at infinity :

Take the origin at the centre of the sphere and the axis of z in the direction of motion. Let the
sphere move with velocity U along the z-axis. To determine the velocity potential ¢ that will satisfy the
given boundary conditions, we have the following considerations : '

(i) ¢ satisfies the Laplace’s equation

.20, 1 9’9 _ cot0 ¢
o tor Poel 1 00
wherein we have used the fact that
there is symmetry of flow about z-axis.
(if) Boundary condition at the surface of the sphere r = a.mml:ﬁ
Normal velocity at any point of the sphere :
' - =velocity of the liquid at that point in that direction

=0...(1)

i, —§= Ucos®, whenr=a O
(i) Since the liquid is at rest at infinity, we must have
—.g. =0, atr=c0 ; .[3} ' _‘-.

The above considerations (i) and (ji) suggest that ¢ must be of the form f(r)cos6 and hence it may

be assumed as 1’."[“"‘_%]‘:‘9 NSO L s (4)
- From (4),
2B
—%3 -{A—T]mﬂ eenl(5)
Putting r == in (5) and using (3), we get 0 = Acosf sothatA=0 ... (6)

Putting r =2 in (5) and using (2) and (6), we get

Umﬂ:[gi)cmﬁ
.a

ot B=3Ua’ )

) :
Thus o—-Ua’% SR T ®)

which determines the velocity potential for the flow. :
We now determine the equations of lines (stream lines) of flow. The differential equation of the
lines of flow at the Whm&qﬂmismwuﬂaﬁn is given by
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dr _ rdd
9% o
gr rdd
dr - & *
or Ut’ Un . using (8}
T 2r
T sin B

logr=2logsinB+loge or  r=csin®,
which is the equation of the lines of flow.

Hquidstmming pastn fixed sphere : .

Lt.'.tL‘heSPImbeal:rcstand]ett]whqmdﬂt}wpasttlwcyhndmmthvchmtyl]mﬂmmpmw :
direction of z-axis. This motion may be deduced from that of the previous article by imposing a velocity -
Upam]klmllmzmxisunbothﬂmsphwemdthe]iquid.msphmisﬂmmduwdmmstmwcnnm
add to the velocity potential a term Urcos8 to account for the additional velocity. Thus

T .
f-—u13¢:sB+UIBﬂS'B=U(r+§F)GDEE ______ (1)
To determine the lines of flow relative to the sphere.
Now the stream lines are given by
dr _rd9 ;
ﬁ ﬂ " vl
dr rdd
dr _ rd®
o al 5 3
o Y cosB Ul 1+— |[sinB
r r
2t +at dr 3 . 1
-2c0t0d0 = e e
* rP-atr [r3-a3 r
Integiati

- 2logsin® = log(r* - 2°) - logr - loge
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. Cga . W 1.2 13 |2
e, Sin“0=——3 or L E{l 3 7C @

(2) gives the lines of flow relative to the sphere.

Exercise 1. :

mmmamﬁmammmmmumammh
infinite fluid. the acceleration of a particle of the fluid at (r, 0) is

Superimpose a velocity - U both to the sphere and the liquid. This reduces the sphere to rest and
the velocity potential of the flow is gives by [see the case of liquid streaming past a fixed sphere]

33
‘?"(”?]‘“H ----- M

; 10¢ A kP '
=-;ﬁ ‘_{I+—£:§']Slﬂﬂ . e 3)

Again, from (2), we have

3 X
fnu[l-i; 5in 09— U2 cos
a

a® V. s 3 ;o8 p
nL’Ll——J S|nEH+TU2 l—r_:l M-B.b}'tzi

T T
A

Cimdyfu'apcim[r.B},ﬂ)cvelucﬁyisaﬁyalmgﬂndﬁgcﬁmufmmmﬂrmﬁmwill
also be only alongrsothat § = g.
=7 only {at(r,.0)}

_3da vl 1 a"
o i e frmn{?-}mma 8=0

96




Exercise 2. :
Aninfinite ocean of an incompressible perfect liquid of density p is stresming past a fixed spherical

obstacle of radius a. The velocity is uniform and equal to U except in so far as it is distributed by the sphere

and the pressure in the liquid at a great distance from the obstacics is 1. Show that the thrust on that haif of
. u?

the sphere on wheih the liquid impinges is ™| TT-PT= |,

Solution : mmmdumﬂumwmmmmw
U in the negative direction of z-axis is given by '

ol P
o (ELA{ L

(BL {5 el e

anbcth:mlmiqmmywiﬂoﬂhobuuﬂydﬂusplmrntmmhm

2 2 ' '
qﬂ:[('f?‘] +['%%” -V o)

hmdymﬁmhahmuﬂmﬂhmﬁmuﬁrpm&mﬁ':m.
is given by :
P

E
P+2q C T (3)
Butp=T1,q=Uatinfinity. So (3) gives

n, 1., ' -

—f = = ;
p+2 c ; v d)

" Subtracting (4) from (3), we obtain

T e e

P .“-}EPU 2pq - ...._»-.{5)

Using (2), the pressure p’ at any point P on the surface of the spherer =ais givenby -
g * 97 '




: L s : e AL
=[T+- -| = pU 0 i

Hence the required thrust on that half of the sphere on which the liquid impings

= [ (p"cos8)2masin 0-2d0
(1]

=2ﬂ’f[l'l +%pU= —%pl]’ sin’ﬂ]sin Ocos6d6
o : :

Ay
]

m=[n_p£.’.]

‘Note :In writing the expression for the required thrust following figure should be considered, where it is
seen that the components p'sin of p’cancel each other.

Psinf) -|"_
a-m
' e asind
e
ﬂ.: ! i
4 === Thickness of the section= af8
Peos FT |
PlsinB

‘Exercise 3 ; : _
A sphere of radius a is moving with constant velocity U through an infinie liquid at rest atinfinity. If
P, be the pressure at infinity, show that the pressure at any point of the surface of the sphere, the radius to
which point makes an angle B with the direction of motion is given by
P=Po +—;-puz[1-§sinza].

Solution :  Exactly similar to the previous problem.

I i
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Equaﬁmd‘MoﬂonnhSphu

_ ‘Ihlmllmmgmnﬂnnmmuft!nrpﬂmmdﬂmmsofzmthcdmctiannfmm Let the
wmmmwm&mmmmﬁmtmuthmdumum Then as discussed
earlier in the case of '"Motien of a sphere through an infinite mass of a liquid at rest at infinity’,

vedocity potential of the motion is given by < P(a, 8, )
u
W 3
B~ s : _
: 3 Y

a{p Wa? ;
wpe [ —— ;]

o or r i o X

Let P(a, 6, w) be the spherical polar co-ordinates of any point on meumufmc sphere. Then

elementary surface arca dS at P is ad0.asinBdem. Again the value of ¢{

' 3
EREEES
--lw’.noé‘a

2

As, the kinetic energy T, of the liquidis given by
o-Lonedd,
T, =-3elle5 dS
integrated over the surfiace. Using (1), we obtain

T,= _—%p T i [ —%W'am‘ 6 }l‘ sin 8d0dw)
wall Bl =

w pa’[im‘ &sinﬂdax[’fdm]]

M'-iupa’

3

% ] at Pis given by

o)

P )

is the of the liquid displaced by the sphere, & being the density of the liquid. Let o be the density of the
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sphere and M be the mass of the sphere so that

M= i;-m’ i e (4)

: .
and K.E. of the sphere = T, =EW’. ...... (5)

Let T be the total kinetic energy of the liquid and the sphere.

1 1.0
Then, T=;_[M+5M ]W’.bymmdm.

Let Z be the external force parallel to the z-axis (i.e. in the direction of motion of the sphere). Then

from the principle of energy, we have
Rate of increase of total K.E. = rate at which work is being done

a1 G TN
i Z12 Mr=M =ZW
S E ety

l '] = ] dW
or ( 2 )WW where W &
e MW:Z--;-M"W' )

Let Z' be the external force on the sphere when no liquid is present. Then. from Hydrostaical
* ‘considerations, there exists a relation between Z and Z' of the form -

_[(e-p)
Z [—"-*u 12‘ e T)

From (6) and (7), we have -

v+ laew o =0 Lelw[Eeol
‘MW-rzM’W[ = ]2‘,;,, [M+2M]W[ 3 ]Z‘

o MVET—17 . o~ Dy®ad@)
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or MW = ﬂ-!P z
o+ ,ip ...... (8)

'(8) shows that the whole effect of the presence of the liquid is to reduce the external force in the
ratio =P 0+ EP.
Remark 1.

When liguid is absent (sumatM"=ﬂ}. (6) reduces to
MW = y 4 ; ' eer9)

it 1 .
Comparing (9) with (6), we find that the presence of liquid offers resistance of amount EMW o

the motion of the sphere.

Remark 2, : - ;

When U, V, W are the components of velocity of the centre of the sphere and X', Y, Z'are the
components of the external force on the sphere in absence of liquid, then equations of motion of the sphere
are of the form

MU=SPx T
H%p ' erne(10)

Mw=-""P 7

Pressure Distribution on a Sphere :
To show that at npmmmasphﬂtmvmgﬂml@mmﬁmmhqmd the pressure is given by the
formula

P=Po _ ! ¢ 050, + = v?(9cos? 0-5)
PR 8

where v is the velocity, f the accelleration of the sphere, and 6,0, amthcanglcshutwemﬂnmduanddw
direction of v, frespectively, and p, is the pressure at infinity.
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Proof : : _ -
Let the co-ordinates of the centre C of the moving sphere reffered to fixed axes be (x,, ¥, 2,) and:

ket
ko=Uyg=Vidg=W ... (1) ,
Let(x, y, z) be the co-ordinates of any ol
 pointPinthe liquid.
Let8, 8, be the anggls between CPand . o

the direction of v, f respectively. .
; Let CP =r. Then, we have
P=x-xf+ @ -y  + @Y @) '

Let £, m, n be the direction cosines of CP, then

XXy T o % i |
4 = m e n. - imes )
Ao V=U4+VieW? L e “)
' vcosO = resolved part of v along CP :
=U{+Vm+Wn z
) Ll TR T G LS T S )
il r r
and  fcosO, =resloved partof falong CP = (Jf + Vm+ Wn
P | o SRRt TR ) wree(6)

r r 3
Then from the previous discussion on ‘motion of a sphere through an infinite mass of liquid at
rest at infinity’ the velocity potential at a fixed point of space (x, y, z) is given by :

-¢=Fvcmﬂ
a’ :
or ¢-F[U{x—xu}+‘u’{}'— Yo)+ W(z-2,)] el T)
From (2),
2:%:2{:—;,,}
; &Hx_l i . ;
‘w g o T St SN (8)
' Differentiating (7) partially w.r.t. ‘x' we get
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3 3
= %iﬂ-;:‘ ;[U{: Xg)+V(y— Fo}“‘W{: zg))

=3y T RIVesO, by (Sand ® |

smwﬁmm;mpuﬁmyw.t yandz, we get
3 3
-—v----?'!—-{y —~Y¥q)vecos

3 1
ST -

ST

-:—{U’+v‘+w‘]—-:—vmﬁm! Iu}"'""f!' J"n)

" ' * e :
+W(z—z411+%v’ cos? B((x —x) + (¥~ ¥p)’ +(z~-2,)°]

o, [ &
= - Vo 04 o vicos', by (2)and (5)
4 '_'-:I : 1 2 v ARy L Tmod
=3 t3es’e) ned®)

From(2),

rg=-{x-x.,:-i.—'{r-rn:~srn{z*zom

_ =—U{x—xa}—V{y-yu}'—W{z—z,;] 1)
Diﬂuunﬁ_niumpuﬁallywu T, weget
3
%l! ;—[U{x :¢]+V(y 3u]+ﬁf(z Zg)— {Ux;,+Uy.,+Uin}
3
' ‘%:";“%[U{x"lu}+V{}'*!’u}'|7W{Z-IuH
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-.‘l[f;'nue'] -(U*+V? +W’]}+£[U{1 -X,)
| a_' " zrg. o

+V(y-yo)+ WEz-2zo), by (1), (6)and (10)
a’ 7.3 22 .
-;{ﬁ'“ﬂ'. -y )+;’—Er vicos“ B) ’ by{i}
l" 1 2 1
--Zr—mm'}-v +3v*cos”® B) e H)

Let Pbe the posential function due to external ft:lm'l'hm ﬂ:epmreumypummd:lup.ud is
mwmgmw

3 ﬁqﬂ 1 T 4P=
. a¢+z" +P .l.-"{t}
Atisfinity r=os, pup, and 0 JE =0 andq=0from (11). Hence (12) gives (0= 22 +P 50

(12) reduces to

+3cos2 0)

=2 (frcos, ~ v +3v? cos

2r

- 3}
-E-f—aw!-,{-mﬁ --—(4'-r’+t ]+ v cos* 9(41- n"’],,_;u}}
m:-lhtlﬂLMmemﬂwmfmbfﬂ:m-isgimby
P_Po = Lafos8, + 2vi(9c0s?0-5) e 14)
p 2 8

Corollary 1. :

When sphere moves uniforsaly, i.c., when f =0, pressure at point on the surface of the sphere r=
ais given by [putting f=0in (14)]

!’*Tﬂr..i‘.'ﬂ{ym*a-s} (15

P | ,[ (1+c0826) _ ]
or -_&-p I' 9——1 5
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p-p, _ 1 '
or T°=Ev2(9mzu-n werns(16)

Corollary 2. : resultant thrust when there is no acceleration :
In this case pressure p is given by (15), i.e.,

1 : .
P=Fo+EF\'1[9W29—1] 1)

So, the resultant thrust on the sphere
=—Ipmﬂds

= ~| pcos©(ad8) (2nasin 0)

=-2u’?[ p,,-+%v’p(9m"ﬁ—5} ]siu Ocos6db =0
1]
which is in conformity with D’ Alembertt's paradox.
D'Alembert's Paradox :
A body inoving with uniform velocity thiough an infinite liquid, otherwise at rest, will experience no
‘resistance at all. This resultis knownas D'Alembert’s Paradox.

Corollary 3. Resultant thrustwhmthereislmdenﬂm
When fis nmmdumlnntﬂrmtdlnm&upmmlibe

- —Tp%af c0s 6, 2ma sin 0,ad0,
| .
= —ma’pf | cos’ 0, 5in,d0,
[

2 4 1
=—Zmadfo=——
an P 2M’f

e [4) 3. o
whete M =[5}m P =mass of the liquid displaced.

Exrecise 1:
Prove that at a point on the sphere moving through an infinite hquuddwpmureugimby the
formala

f—p-"h%nfmal +%v2(9m523—5)

where v is the velocity, f the acceleration of the sphere, and 8, 8, are the angles between the radius and the
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 direction of v, f respectively, and p, is the hydrostatic pressure.
Solution : :
Promduinmcprnvhusdimussimundﬂmmpdingmmmmnsm

upto equation (12). If.;:‘ﬂ islﬁch'uuuﬁcptmm,i.e.. when there is no motion sothatg=0, % =0 and

p=p, Then (12) gives F(t) = ?I—f-+P A

Hence, we get the required formula from equation (14).

Exercise 2: :
A solid sphere is moving through a frictionless liquid. Prove that when the sphere is inmotion with

mﬂﬁmvelocityv,’thepm;mnﬂnpmufiumrfmwmmmimmmmhawimu

direction of motion is increased an account of the motion by the amount,

k .
Epv’{?ﬁmﬂﬂ—l} ‘where p is the density of the liquid.

Solution :
MIMMWMMMMMWmtSMm

equation (16). - * '
Exercise 3: -
A solid sphere is moving through a friétionless liquid. Compare the velocities of sfip of the liquid
pastitatdifferentparts of itssurface.
Solution : _ ¥ W

: MIMMWWWMMWWHIMW
uqulﬁmm,ﬂow.ﬂ:ewlocityufslipatanypoint{a.ﬂlmlhemfmnfﬂusphem

% LB
- ...-?2 = -I-'a—ivsmﬂ =—1-vsinﬂ,
r oo - r2r P

* Concentric Sphere (Problem of Initial Motion) :
A sphere of radius a is surrounded by a concentric sphere of radius b, the space berween
them being filled with liquid at rest. The inner sphere is given a velocity U and outer sphere a
velocity V in the same direction. To determine the initial motion of the liquid.
T} O be the common centre and § be the velocity potential of the initial motion. Let Uand Vbe
in the direction of initial lie OA as shown in the figure. Then to determine ¢ we have the following
" considerations :
(i) ¢ satisfies the Laplace’s equation
2o, 200,100 0B g

P AT M B
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wluehw:hnvemed_dmeﬂctﬂ:ﬂﬁuei:

(if) ¢ satisfies the followin boundary
conditions : '
__.=Ucmﬂ_whmr=a ...... (2)
m _%:Vmﬂ,whmr=h ...... (3)

Tlnabwalnmsiduaﬁms{l}m (2) suggest that ¢ must be of the from f(r)cosd and hence itma
be assumed as _ .

¢={ ﬁr+r—Bf]W-BB ...... (4)
3 2B
Using boundary conditions (2) and (3), (5) gives
. 2B - . m '
Umﬂ:-[ﬁ—:r Jcmﬂm —ﬁ‘!";l'i"zu S (]
. 2B
and vmﬂ=—[a—b—,]mﬂm-ﬁ+-2§‘—"" )
Solving (6) and (7) for A and B, we get
Ua® - Vb? (U-V)a'b® .
As—no e P
h! —a3 ﬂ.m 2{&3—&3}

Therefore, at the istant of starting the motion, the velocity potential is given by
Ua® - Vb? (U-V)a'b’ cosh I
=—h-r_—;,—'rmsﬂ+ 2 -a)
Corollary : .
: A sphere of radius a is surrounded by a concentric spherical shell of radius b, the space between
is filled with liquid. If the sphere be moving with velocity U, to show that

- Ua? b’ : g
b= bz_na[l‘-l'?]@ﬁt

Also, to discuss the motion so produced:

¢ e 8)

" .1:1
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Since the outer sphere is atrest, V= =0 and hence (8) reduces to the desired result.
Let I be the impulse necessary mprodmeﬂmvelocltyUmﬂmmwsplmeymnmplenf

mmhﬂe
I1=MU+[[@cosedS ek A)
where @ = (pb),., is the impulsive pressure of the liquid at a pointon the sphere. Hence, we have

: Unpf'

- = w L“'Za‘ ]cos&

v 2 v 1 a
I ®eosas =] L [a 2';, ]casﬂ cos® 2masin® add
l

" 2rpUa’(2a® +b?)
3(b* -a*)

_ 1MU(2a’ +b%)
2 pP-at
where M =mass of the liquid displaced by the sphere

.,..[3}

So from (A) and (B), we have

1M*U{za‘-‘+h3
Let b —» oo, then we have ;

3
2| 2 |+1
. 2a%+b’
lim = lim =1
b—rﬂb!—aj [ H.'t
]." F

Thus, if the outer sphere becomes infinitely large (i.e., b— <), the impulse required to give a
sphere in unbounded liquid, a velocity Uis

1=MU+imu=[ M+im U
2 il e

b
stnwingﬁutit:ffecﬁvelyimﬂ:emmummpmtyanmm;”.
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We also notice that the impulse required to impart a velocity U is the same when the sphere isina
mass of liquid at rest at infinity or is surrounded by a fixed spherical envelope of a very large radius.

Exercise 1:

hqmdofdenmty p fills the space between a solid sphmnofrndms a and density o and a fixed
concentric spherical envelope of radius b. Prove that the work done by an impulse which starts the solid
sphere with velocity Uis -

3 a

2a® +b°
na’U? (Zﬂ'+b—3p]
Solution :
J_Fu in corollary of discussion of 'Concentric Sphere (Problem of Initial Motion)' , the total
impulse I s given by
1=MU +[[®cosbdS
2 32a3+h3

But”fﬁmﬂﬂd%=§ e i by{'B}oftl'nepmwmdmusnnn

: s
and M =massof inner solid =( % ]m’ﬂ

I= 2cl+ =g |

2ma’U3 [, 23’ +b°
3 L b’ -a

Hence the work done by impulse I
=1 = (mean of the initial and final velocities)

=]Ix

' 1,13
0+U 1, _m'U'( ~ 2a'+b )
2

=aU 3 L“ P I

Motion symmetrical About an Axis, the Lines of Motion being in planes Passing Through
the Axis : Stokes’s Stream Function :

When the motion is the same in every plane through a given line, called the axis, ﬂm-mauu‘nsmllnd
mmmm.hhammmmfumphmumfmnﬂwpmamummuwsﬂm
; mvingwiﬂmuifmwlodtyinnﬂuidatmﬂ,ltmnmﬁmnfamﬁdufmmluﬁmmwinginﬂwdimﬁmnf

the axis of revolution etc. Such motions give rise to some analogies with the two-dimensional case; for
example a stream function can be defined for such motions as illustrated below.

'I'Inaquaﬁmofmﬁnuit}rincyﬁnth'hlwmﬁumfcrﬂmmpfhmpm&ﬂblcﬂﬁdi&
13‘Ia+a‘1 -0

= weel(1)

al.'{ r}
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‘Fﬂmﬂmnﬁﬁmi:mmmﬁcﬂ about z-axis, q, = ﬂmﬂhﬂmu]mdmlo

daq
g

a_tll":lr]‘*“

Now, htxmhenkmmﬂnanmfuymmymplmnfmumlﬂﬁ:l,! (y? +2%) J
denote the distance from the x-axis. Let u, v denote components of velocity in the directions of x and &

vdy“mwplwmgruﬂzbyﬁmdxmpecﬂwlymﬂrqﬂmsq,mdq.bywndumvdy
in (2), we have

TR 50

d d

A = e (=T
or mfﬁv} Ex( u) (3)
But (3) is the condition that

ﬁvdi-ﬁudﬁs_

may be an exact differential, dy, say.
Thus = Bvdx — Bud® = dy

Bvdx - Bud® = aq’d:+g;ﬂ )
=1V 1oy
so that u 3 7% and v “ ol A e (5)
The function y defined by (5) is known as Stokes’s stream function.
The strem lines are given by '
& _do :
u or Wvdx -udd =0
or  dy=0,using(4)
Integrating,

y=constant, which represents the stream lines.

Remark: .
Stokes’s stream function ¥ represents the strem lines y = constant in an analogous way tothe
stream function in two-dimesional flow as défined easlier. But the existence of Stokes’s stream function
does not depend upon the existence of the velocity potential ¢, i.c., the Stokes’s stream function exists
even If the motion is not irrotational which is not true in the case of two-dimensional stream
function defined earfier.

hhmﬂfﬂm’sﬁm: |
2n times the difference of the values of Stokes’s stream function at two points in the meridian
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plane is equal to the flow across the annular surface obtained by the revolution round the axis of
curve joining the points. : '
Proof : : _

Let AB be an arc of a curve which when rotated about the axis (x-axis) will describe an annular

surface. Let P be a point in AB, ds an elementary arc at P. Let © be the inclination of ds to the axis.
Then velocity across the elementds

=vcosD - usind

Jldwdx 13yds 13y
Snds BBt B WV

Flow across the annular surface

B
= [(vcos0—usin 0)2nHds
* .

- 22| LV :
2 =" Bds (using (1)

- 2:1@ =2n (¥, =y,) whichproves the required result.
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Unit4 .
Vortex Motion (Rectangular Vortices)

Introduction: :

Ifis known that all possible motions of an ideal liquid can be subdivided into two classes; vortex
free irrotational or potenitial flows, whose characteristics can be derived from a velocity potential §(x, . 0.
and vortex of rotational motions for which this is not the case. Rotational motions differ from potential
ﬂumnﬂlhuﬂwmapplm.aﬂpnud&mfﬂwmndunhmpmuﬁhmnmm“mwm
mummnﬂmwmmhmwd,wmwdeﬁmmkfzmpmdm
l!mutmmlymmmwl\ungmumlmmmy In the present chapter we wish to discuss the
ﬂwyofmuﬁmalorvm'mﬁm.” '

Helmholtz’s Vorticity Theorems, Properties of Vortex Tube :

(1) The product of the cross section and vorticity (or angular velocity) at any point on a
wmxﬁtwumhcmmdmthzﬁanﬂfomHMwhmthebodyﬁmumcmmwarm
and the pressure is a single-valued function of density only.

Let £ be the vorticity vector and let  be the angular velocity vector. Then we have

Q=curlg andalse Q=20 = .. (D)

Laﬁ&,.ﬁs,hmmufavmmmmnl,nibeﬂwumtnmm!:mdwumhm
m“mmmmmmmwasmmmmﬁmofmwmu )
and

AS = total surface area clement = 8S, + 85 + 58S,
AV = total volume which AS contains.

Then J‘“'ms".].ﬂ'ﬂﬂ‘fnﬂ _____ @
Since V- Q = V- curlq = 0. Hence (2) gives

[§-QdS+ [ §-QdS+ [ 7-QdS=0 )

& & R TR s e
Simaﬂismmﬁalw&:mwednufamufmwmb&i-n=uatmhpoint&'i.l—lnum
- (3)reduces to ' '
| [ 7-QdS=~ | -QdS

5 &5,

[Q-dS= | Q-dS
S S § )

,Lm**‘h,;j""“ ' . nid5)
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Thus, to first order of approximation, (4) and (5) give
Q38s,=035S,  ad ©3S,=08s, eerr{6)
Equanon(ﬁ)ﬂmw;&mﬂﬁs or znﬁSmmmmovemvmymuonﬁs of the vortex tube. lts
vﬂm:shmwnuﬂmﬂrmgthdthﬂnrh:hhe.hvmmbcwhmemgm“umty is called a unit
vortex tube. '
(2) Vortex lines and tubes cannot originate or terminate at internal points in a fluid.
LﬂSEmrchmdmfmmﬁinhgamlumq\thchnm

[Q-dS=[ 7-QdS=[ V-QdV=0
5 3 v

which shows that the total strength of vortex tubes emerging from S must be equal to that entering S.
Hence, vortex lines and tubes cannot begin or and at any point within the liquid. They must either form
closed curves or have theig extremities on the boundary of the liquid.

' (3) Vortex lines move along with the liquid {i.e., they are composed of the same elements of -
the liquid) provided that body forces are conservative and the pressure is a siugl'e-mlued function
of density.

Let C be a closed circuit uthmdparbclesmdl:tﬂhumnpmsurfw:a with C as rim. Then the
circulation I"is constant in the moving circuit C by Kelvin's circulation theorem. Thus we have

"I'=[g-df=[ curlg-dS=] Q-dS (by Stoke's Theorem)
c 5 3

so that £ £2-dS=constant _ visssssl T)

since I"is constant. Thos for a surface S moving with the fluid (7) holds. The L.ELS. of (7) represents the
total strength of vortex tubes passing through S. This shows that the vortex tubes move with the fluid. By
taking § — 0, it follows that the vortex lines move with the liquid.

Exercise :
: Prove that the necessary and sufficient bondition that the vortex lines may be at right angles tothe -
stream lines are

_ [ % % %
u,v,w a'x'ay’{}z
 where 1, ¢ are function of x, ¥, z, t.
OR
Find the necessary and sufficient condition that vortex lines may be at right angles to the stream
lines.
Solution :
s . dz
Suumlimm—=iy*=— : ekl
: u v W _
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dx _dy dz

mﬂvmlimmn_l‘a'g_: (2)
(1)and (2) will be at right angles, if ;

uQ +vQ +w, =0 SR R AR 3
ow dv du ow dv du

e Oy % &Gz PTE Ty W

Using (4), (3) may be re-writien as

(FEHERE S

which uummmm“mm&mm +vdy+wdzmybcnpufcmhffumml

" S0 we may write
td.t+vdy:l-wdz=pd¢
u[ﬂxdlfﬂydyi-ﬂzh]
VN N
. o e ho-
Rectilinear Vortices :

Vortex lines being straight and parallel, all vortex tubes are cylindrical, with generators perpendicular
toth:plmofmﬁun.hhvorumm known as rectilinear vortices.

Deﬂvﬂhndnhdtypﬂmﬂﬂrumfumﬂmvdwﬂxmpommm
potential due to a rectilinear vortex filament :

Consider a retilinear vortex with its axis parallel fo the axis of z. The motion being similar in all
phmmﬂdm:y-plun.mhwmmlymmnmtmw 0. Moreover uand v are independent

ofz,ie.,

N _

—_—=() —=0

| % and % — )
IfQ,.Q,Q bethe vorticity components, then

dv du

n‘=u.n,=umﬂ;=3;-*a; el
..anﬁ:eqmﬁmmﬂimnfﬂwm

dx

_“ﬂ.i.ﬁ.,m-lﬂyﬂu ------- (3}

u ¥
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ov
so that 5 - Y e

Equation (4) shows that vdx - udy must be perfect differential, dy (say). Thus

L P
vdx —udy = =" dx + == dy
sothat ..=_%"5|:. and v-% _® eeeel(5)
Then the lines of flow are given by dy =0, i.e, ¥ =constant. Hence \y is the strem function. Using
(5).(2) gives
Q = a" gy, W re6)
Thus the strem function  satisfies '
'w o
a* a;‘; ﬂ..mﬂtw-ﬁlumﬁ ...... (TA)
=), outside the filament . dTB) "
IﬂP{:B]hemypummlﬂihﬂumﬁ]mmtﬂmﬂtmmdeﬂ:vmmmmm] :
the velocity potential ¢ exists such that :
v __1%
S veren(8)
mmmﬁmvmmemm(mmmgﬁﬂ}mmmuﬁM}
vy iy, 1y g S
or? + : aﬁ: 0 )
Tlmbeingsynumyahmrr.dwa'ig;in.w'mustbeinézpmﬂentafﬁandm(?}mdmm .
B‘IF
-——=0
ra'r
1df dv)_
i ;Efrdr) .
Integrating
L (10).  Iniegrting (10),
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y=clogr. G |

Now (8)and (10) give
810 L
r T30 so that o=-c0 ... (12)

If w(= ¢+ i) be the complex potential outside the filament, the we have
w =-cB+ic logr=ic(logr+i0) =iclog(re™) = iclogz:
Letk be the circulation in the circut embracing the vortex.

i "'.[ L, ] Ve .:Tdﬂ =2Mc, ' by (l12)

° r o
k
L=—
Hence, we have
k L ik
B =—|lopr ==1] ;
¢ 2“91 y o og and“’ e OEZ L. (13)

Here k is called the strength of the vortex.
If there be a rectilinear vortex of strength k at z (= x, +iy,), then

ik g x
w=—1 =
2 oglz—2g4) T (14)

We now determine velocity components due to a rectilinear vortex of strength k at A (z,). Let P(x,
¥) be any point in the fluid. Then, if , be the distance between A (z,) and P(z), then we have
Fo= ()X + (-3

k
and W =Ehgr'

ﬂ=—ﬂ=—ﬂﬁ=_iy“h
ay &Qw Zn'r, My
.k ¥=Ye
T eni(15)

v___&qiﬂr k x—x,z_lf_x-iu
and o or,odx 2mr, r,° 2n r%

q—-ul'u +vi=

J{{x xul +(y-yo) }-m A7

which gives velocity at P(x, y).
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Remark 1. :

k
Some writes define K=Eastlwmngmnfthemnex,ﬁmdingly,ﬂwtake '

¢=-K8, w=Klogr, w=iKlogz, \g=iKlag{z—z,]

wak ol aiiiX. gel o _ {18)
T i} T,
] ] [}

However, we shall not use these results in the present discussion unless otherwise stated..
Remark 2. : The case of several rectilinear vortices :

Let there be a number of vortices of strength k , k,, k,, ... situated at z , ,, Z,, ... Then the complex
potential is given by ! : :

ik ik ik
w =+2—;lug[z—z,}+iiing{z- IzHE’iﬂE&-Iﬂ T

. .
" - I L
i, W MEk. og(z-z,) sl L9

Here vortices of strength k , k,, k,, ... are situted at (%, ¥, (s ¥)s (X3, ¥3), .. Henee, using (15)
and (16), the velocity components u and v due to these vortices are given by

1 o¥=Y¥a | g X—X%q
=e—F =—2X
u o T:' and VY 2 T: ...... (207
where B =x-xV+(y-y) n=123,.. wine21)

Let k_ be the strength of a vortex situated at (x,, ¥, .)- Then we omit the term containing k_
while finding the velocity of that vortex. Thus the motion of the mth situated at (x_, v, ) is given by

. 1 b o | 1 %o =%y
=———-E:k == _=h =——Ek
%, =—2_Xk, g Vo e o § cenne(22)
where m#n and P _=(x_-x)+(y,- 70 (23)
Using (22), we have
5 l' r- —yl —
gkn_l_=—5§ }l_',k_k.—r;-—-—-ﬂ ______ {‘24]

since m, n carnbcinmmlmngﬁduﬂ the denominator is positive.
Similaly, ~ ZK.¥.=0 _ e 25)
Since k  is independent of t, integration of (24) and (25) yield

Tk x =constant and Ik v =constant serere{ 26)
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Tk _x Y > LT
I= m*™m - m< m
Also, Tk !" 3k, e 2n

Using (26), (27) show that X,¥ are constants, Hence if k;, k, k,, - be supposed to be the
masses situated at z , 2., Z,, ..., then their centre of gravity is fixed throughout the motion. This point is
known as the centre of vortices. Thus if there be several mwmmlnnthl manner
that their centre is stationary.

Remark 3. Single vortex in the field of several vortices : _

“To show that a single rectilinear vortex in an unlimited mass of liquid remains stationary,
and when such a voriex is in the presence of other vortives it has tendency mmveqfim{fbwm
motion through the liquid is entirely due to the vortices caused by the other vortices.”
~ Proof: _

Thvnlmofsmmﬁlnpﬁm W at any point inside of a circular vortex tube is given by

. dy 1dy
2&=F+-'ﬂ+

r dr
1d( dy 4 ) g
= rdr(&]zr' = dr[rdr] e

=%£rz+¢‘]f.\gr+¢1 I R n
velocity at right angles to the radius vector

dy c -
-E-:;r‘l'; o s {2]

Since the velocity at the origin is finite, ¢ musthcmMﬂ] gives

3

Mngthﬂﬂnwhcilyﬂdunﬁginmcwaﬁngbm must vanish. It follows that a vortex filament
(vortex) induces no velocity at its centre. Thus, if a vortex is in the presence of other vortices it
has no tendency to move of itself but its motion through the liquid will be caused by the other
vortices, :

TwVﬁuﬂhmﬁs
Case I : When the filaments are in the same sense :

Letus consider two rectilinear vortices of strength k, and k. at A, (z=z,) and A (z = zIJ'Ihc:n
mmmmmmu
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- w=%hﬁ:—zl}+%log{:-t1} -

However, vortices situated at A, and A, would start moving due to the presence of each other. Let
nl,vlbnﬂnmcﬁpumuufﬂuvehﬁtyql of A, which due to A, alone. Then, we have

dw __ik_, 1 :
+( E]]“ mz -z, ~(2)

. 1 ik,
u, -iv, = Ez—z
I

s K, - ks, .
ﬂ|=|'_11 iv'l_hiﬁ‘H_l MAAD (3)
similarfy,
: ik, 1
“:‘“’:"’Hzi_z. N 4)
and ‘Iz"‘—"'k']'_ : : eninel D)
D 2n(AA,)
- From(2) and (4),
u —ivy __uy-ivy
k,. k,
ie., k,{u,-ivﬂ-kﬁu,-iv,]:ﬂ
ie, (klu'l"'k:"'l)'i{klvl'rk:\':}:u
50 that kln,+k1u,='l]_md kv, +kv,=0 = e (6)

Since k, +k, #0, (6) shows thata point G, the centroid of masses k,, k, atz, and z,, moving with
velocities (3, v,) (1, v,) is atrest. Hence the line A, A, Totates aboat G. Since G is C. G. of k, and k we
have

k.AG=k.AC
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AG _AG_AG+AG_ AA,

= k,, k, k,+ky + Kk +k,
AG= k, AA AGs= k, AA, )
so that I .k|+kz [ 1) 3 ku +k1 [l R

Re-writing (3), we have

_KAA, Ky +k,

= —=A,G-0 '
q k, +K, 2W(AA,) e e (8)
k,k, ; kA A,
W= —— A G:.—i’_ s
where Zum.ﬁz)‘ and I k, +k, (9

The angular velocity of A, is wabout G. Similarly, we may show that the angular velocity of A, is @
about G. Hence the line A A, revolves about G with uniform angular velocity w.

Asaparticularnm.lc-tklzkj;:k and A A,=2a. Then, wehave

k k k
q,=—— q, =Iﬂ_.n and m=-‘i;£?

and the stream function is given by

k k .k
.=_I +.-._l =—| T
Vg BTy B T o og(ri)

wherer,=A P, r,=r,PandP isany point in the fluid. The stream lines are given by
W =constant, i.e., r,;r,=constant.

Case I1. : when the filaments are in the opposite sense : _

Letk, andk, be of opposite signs. Then G will notliein between A, and A, Howeves, ik, >k, then
Gwilllicon A,A, producedandifk, >k , it will lieon A, A, produced. As before, it can be shown that the in
A A, revolves about G with uniform velocity w. :

Vortex Pair :

Two vortex filaments of strengths
k and - k form a vortex pair,

P(x,y)

Let us consider two rectilinear
vortices of strengths k and - k
atA(z=z)and A (z=2). _
Then complex potential at any point P(x, y) due to stationary system is
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ik ik -
w=é‘-h3(:-:.]—-z:bg(z-=,} e ])

However, the vortices situated at A, and A, would start moving due to the presence of each other.
Letu,, v, be the components of the velocity q, of A, which is due to A, alone. Then, we have

i LB YL T
'Y 222, dz J|. 2xz,~z, -2

q, =|u, ~iv I- k = k |
U 2wz, -z,] 2m(AA,) set3)
Similarly, |
1
uy =iv, '_Ez,- . wimdll)
and q“z:m,;,j g ol (5)
Lt q,=q,=q (say) Sl ol AP (6)

Thus, the velocity g, of A, due o A, is qand perpendicular o A A, Similarly, the velocity q, of
A, dueto A, isq and perpendicular o A A, in the same sense as that of A, Hence the vortices situated at
A, and A, move in the same direction perpendicular to A A, with uniform velocity q. However, the line
mmﬁrwﬂabﬂwﬂmgmﬂndmmdmm

Let w=é+iy, z=(x,y), z.’f‘-ph) and zﬂ'[xi'?!}’
Then (1) gives ' :

. ik : ) ik Vi
¢+iy --i-n_lugt[: -:,]+|{y-y,}l—-2;lﬂs[{1 =-%X)+i(y=y,)]
Equating imaginary parts of both sides, we get

i dy g st i B Lo Ay Lo T
fc 21:zk’s[{ﬂt X)) +(y-y)'] 211:.21:_15[{:': X)) +(y-y,)]

ik ik, r
ox w=1;{hsr.‘*—lnsr:1=§ <L

P

wherer,=AP °  and r,=AP

T
The statements are given by y = constant, i.e., ;:‘ =constant which clearly form a system of
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coaxial circles having A, and A, as their limiting points.
Mntiun of any Vortex :

' When there are any number of vortices in an infinite liquid, we can find the motion of any one of
ﬂmultd@uﬂsnﬂtm:wcﬂbutmoﬂ:m hence to find the motion we have to mﬂ:mfmmthesum

fumumufthcs}mmfwmmthﬂmmdsmm
Lettherebea numbu of vortices of strengths k , k., ky; ... situated atz, Z,, Z,, -.. re.specl:ivel}r.
whm.-z_zx_Hy".'ﬂmﬂ:emmplmpmenﬁnl of the system at any outside point is

w:ﬁ‘ﬂk. log(z—2,)

or ++iw=51—Ek.lusﬂx-x.}+i{r-r.l]'
= :

i ¢+iw=;—ﬂﬂ.[§los{{x-x.}=+{y—y.j‘hiﬂn""—’h}

X=X

vz {x-x) +-v)' )
The stream function y' at the vortex (x,, ¥ ) is given by
k, : k
\r’=25{{x-x.l’ +(¥~¥.\. }-ﬁ{{x-xm}‘ﬂr—r..lz }

1f % be the stream function for the motion of vortex (x , y, ), we have
(L) & (W
9y, dy )0 - ox, | & ),

by equating the components of velocity of the vortex (x,, ¥,).
Suppose there is a single vortex k at (x,, y,) in front of a fixed wall taken as y=0.

We have to introduce the image - k at (x,, - y,) and the stream function of the system is

k. 3 1 } : ’
v=olog{x-x)" +(y-y) }*%‘03{(*"‘-}1”‘-'”02]

s k 2
v =—Elﬂg{[l—l|} +{J"+'yi}z}

ay, 3’}' o, yuy, RLa=m) 0Nl v

y=¥
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4"4.'!’;1 dmy,
o (o) [ _mw |
- Eﬂ(ﬂaﬁl-hw. 4n[x-x.}2+{r+3'|}1 :'::: B
k
I‘='Ehﬂ’1

Hence the path ofﬂmmxisthqsmﬂim‘fmﬂmvm. i.e.,y,=constant.

Kirchhoff Vortex Theorem : General System of Vortex Filament :
If (r,, 0), (t,, 6,), ..., (r,, 6,) be the polar co-ordinates at any time t of a system of rectilinear
vortices of strength K, K., ... K, then

'EK,:(,:&,'EKJ,_:B. ?__':K_r:=c. | gx,r:é_w

where A, B, C, D are constants and 6, =TF'

Proof :
The complex potential w due to n vortex filaments of strengths K_at the points z =x_+iy,=
r(cosB, +isinf ) is given by
=32 ioga-1,)
w=Y—Llogz-z
pel 28 =

Hence, the velocity at any point of the fluid, not occupied by any vortex is given by .

dw n I'KP
u-ly=-—=-3 ————
pe12m(z—2,)

Since the velocity (u,, v,) of vortex K is produced by the remaining other vortices (because any
particular vortex cannot move solely on its own account),

u’-—iﬂ"' =[ —%] ﬁ[_i_z'i; IUS{I—Z‘}]‘
e,

1, : =

. iK,
p u, ~ivy = -Epm i (.”

Multi plying (1) by K, and summing up fromp = 1 to p=n, we obtain
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iK'{u ~iv,)=-% Z—-i— 0
p=l ’ == pal 1’?2‘5{3 _z} (2}

iK K,
M&xﬁi&mmkﬂ.&mmmﬂwm cancel in pairs, for example (z, - 2,) cancels.

iK K,
(z'q _zp}
Mﬂmmmﬂ}ﬁm

and there are no terms in K, ete.

Integrating (3),
E'K'lr=¢'i and El(pyp:B.
where A and B are constants of integration.
Agniu.mﬂﬁﬂyhg{l}byl%gmﬂsumﬁningﬁunp:ltUpzzn.wn:obmin '
KKz,

P}E,Iilcp_z.,".tu,,. —ivy) =~ E- z 2z, 2,

K (x, +iy,Xo, —iv,)m— § § SEoL
X 1 u 1\' = — e
o p=l i Fp 'Z'Ep-l q#p Zp""z

o SK I, +Y,¥p) —ilxyv, - ypu,))= = EK K, 4)
p=l n

K,K.z, KKz

mmﬂnﬁmhhmmnmkﬂ.s ﬂ::s;mufpmrsoftcnmmhns{z " }imd @, -12,)
P

reduces to Kqu and there are no terms in K’F.
Equating real and imaginary parts, (4) gives
ZK'{x'u' + y’vp} =0 )]

1
and ZK (x,v, *F_P“P-“':EEKPKQ =constant =D, say ..(6)

dx, d}rp
 Rewriting(S),wehave  ZKp 2%y —E+2y, - =0
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d. a2 2.
or | EKFE{IP‘FFP}-G

% .
« B0 | geser]
Integrating;
IK s =C, whereCisconstant ofintegration.
From (6),
dy dx
K| x, —Lt-y —L |=D
l( ] dt F d-[- .u...{?:l
[
But, F_P=““BP [ =recosf, y =rsin@
Xp ) Xp =T F08% Y51 v]
 Differentiating both sides w.r.t, ‘t', we get
dy, ~dx,
e T E e 90
x: ] m i
or x-d-y-lhy —L =x'sec’0 0 =129 [+ x =rcosd
& A s i T ) : 0080,
& (7)canbere-writtenas ZK, 126, =D.

Exercise : :
' {a) When an infinite liquid contains two parallel, equal and opposite rectililinear vortices at a distance
2a, prove that the streamlines relative to the vortex are given by the'equation,

x? +(y~a)?

y
+Li=¢
x! {}'Iajz a

ﬁwoﬁginheingﬂwnﬁddlepuimnfﬁnjﬁm“ﬁchismkcnftruﬁafy.
(b) Show that for a vortex pair the relative streamlines are given by

(%) 2 ) o,

where 2a is the distance between the vortices and r,, r, are the distances of any bnin:fmmtl;mn.
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Solution : Part (a) : .
" Let there be two rectilinear vortices of strength k and - kat A (z =0 +ia) and A,(z = 0 - ia)
mmvely.ﬁusalﬁzmhmgmbungﬂumdﬂepmmufﬁ,hzmdruisbeinguhnuhngm@u
shown in figure.

P(x,y)

=]

& A.(0,-2)
v _
Im ¥ . . » . " ® Lr k
Here we ve.ammpmrmdhemﬂmpmrmllm with a uniform velocity _mmﬁ: or K
_ pépmﬁmhhhﬁmﬁ,h,fm.,nﬂgﬂnx&ﬂs}ﬁdmnﬁtﬂtﬂm@hﬂrﬂnﬁmmﬂnm

k
wematmavdmtymmapmnmequalmdoppmt:hmmW—ofnmumufﬂ:':

vortex pair. Accordingly, we add a term 7 to the complex potential of the vortex pair. Note that

K% A gl ol M. 8

dz| 4ma 4ma’
and hence the term added is justified. So, for the case under consideration, the complex potential is given
by

. ik ik > kz
w u ik loa(z = i)« X log(x + i) + o=
T ol L o

Equating the imaginary parts, we have
=K logix® + (5 —i*))- = loglx’ 14 KL

_ v 4.’:103[: +(y-a’)] 4wlﬂslx +(y+a H+4z;
_ R x*+(y-a) .y "
T v"h[ x‘+{y+a}’+a """ ) &
Hence the required relative streamlines are given by

W = constant
ie. lugm ==

X +(3,r+a] a
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Part(b):
Asin part (a), doupto(1). Létr, = A Pandr,= A Psothitr?, =x>+(y -a)and r*, =x*+ (y +

a)’. s
Putting these in (1) of part (a), we obtain
IOl g 0 P
\F—M[losr: +l]— m[lﬂsn 5 e 2)
Hence the relative streamlines are given by
' =constant
: B {
T k{(%)+bﬁ[t]}=mumt
Exercise 2 : : o

An infinite liquid contains two parallel, equal and opposite rectilinear vortex filaments at a distance .
2a. Show that the paths of the fluid particles relative to the vortices can be represented by the equation
" ! " ¥
r1+a: Za:musﬂ_brmﬂ:mmt‘ _
r°+a“+2arcos® i

Solution : . ;
To obtain the desired result, modify solution of Exercise 1(a) as follows :
~ Letthe vortex pair lic along x-axis in place of y-axis. Then interchanging x and y, we obtain

k Y +(x-a) x
=—| lop—2——--— —
v 21| og + ]

y +(x+a)" - a

g
hgx’+y‘+a’+1ax a @

. k
or "If—ﬁ

[ x*+y?+a’-2ax x]

Let x=rcos®, y=rsind.Then(l),inpolarcoordinates, takes the form

‘F'i Vg r* +a’ ~2arcos®  rcosd
LA - r’+a’'-2arcos® a (2)
Hence, the relative streamlines are given by
W = const
: r' +a' —2arcosB  rcos®
or + = const

1
o8 r+a’ —2arcosB a

ma:

Hnrﬁﬁmmﬂ&m_smphkmmmicaﬂymgﬁédm generators of a circular
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¢ylinder of radius a in an infinite liquid, prove that the vortices will move round the cylinder uniformly in
2.2

tame (n-Dk’

Solution :
Let A A A, be the circle of radius a.

Suppose that n rectilinear vortices each AY

of strength k be situated at points :

' Tsm

x: =uT, m=0,1 2..n-1

dmmmmmmﬂu
to these n vortices is given by :

)

=;—f‘ﬂ-1_nsﬁ;{z¥-ne_'7"]=%m(=‘ -2')

Now, the fluid velocity q at any point out of all the n vortices is given by

l dw| ik nz' | kn| 2" |
q-— =
| [2xz' -] Zﬂlz -a"|

Again the velocity induced at A (= ), by others is given by the complex potential

and find the velocity of any part of the liquid.

2n
ik " —a"
-2_:!—'10‘ (z—a)

or wn—log(z"'+z"’l+ 4za™ +2™)

dw’ - ik (n=Dz**+(n=-2)z"" +..+a"*
dz 2n z"'+z"%a+..+za"" +a™

so that

() ik @-D+@-2+.+241__ikn-1)
Tz s X na - . 4ma

" f_aw’) __ik(n-1)
fo T ( dz],_ 4ma
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k(n-1)

sothat u,=0 and v, = o
Hq.mﬂqahﬂmendiﬂmdumvwsﬂdudtycmnpmtsufﬁmvdndtymz=mﬁ=nmm

kin-1)
4na

Due to symmetry of the problem, it follows that each vortex move with the same transverse velocity

g =0 and q,=

k{n -1}
b= Hm:ethcmqumumnTuglmby
__2m _ 8r'a’
k(n-1) (m-Dk
4ma

hmgenrn\’mmamtmmum
Ta:howmm:mgsdavamxﬁhmmtmapimcmwﬁwh#upamlklumeqm:md
appmmmﬂaﬁtmnwarmqnﬁcdfmge in the plane. -

Proof :

munmmmumsummgﬂ: c B
kand - k be situated at A (z=z ) and
A,{z=z,}rﬁpac&vdy.'lhmmphx
potential due to the vortices at any point - : ' i
P(z) is given by | A, 7 -\ |
: " 5

ik ik
W =Elo3(=—zl}-£1ﬂs(=-zﬂ

¢+i\lf=;—;[leg{r,e“‘}-lng{rje"*]]' & N, Wbl (N
wherer, =|z-z,|. 6,=arg(z-2), 1,=|z-z,| 6,=arg(z-2,).
Eqﬂﬂinsimaginwm{l}sifu
K0
b - ean2)

Let ABCD be a plane bisecting A A, at right angles and let P be any point on it. Thenr, =r,0nP
so that y = 0 from (2). Thus there would be no flow acrosss the plane AB. Hence, the motion would
remain unchanged if the plane were made a rigid barrier. This proves the required result.

" Remark :
A, A, =2a. Then the uniform velocity of vortex filament A, parallel nﬂ:&plmnﬁﬂ[hdmedbyﬂ}

isgivenby
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ko K

T30 W -
miﬁz- 4ma

nz, -2z,

2]

...(3) Moreover the velocily

: _ A _ .
midway A, and A, due to both the vortices is ;.m&mmﬂhﬂ:#ﬂm

fourth of the vedocity of the Bquid at the boundary.

lmqeol’?nrluinaQu.ndrm
‘The image system of vortex of strength k, mhepunm{x, y)in xy-plam with respect to quadrant
XOY consists of

(iya vortex of strength - k at B(- x, y)
(ii) a vortex of strength - k at C(x, - y)
(iii) a vortex of strength kat D(- x,- ¥)
, The vdmtyﬂhmaﬂymmﬂuﬁtmmmdhmmmmmmﬂhgudmk
&wa-wmm.M'}mummﬁpﬁmmmmme
components of velocity at A are (fig. next page) given by

dr _kcos® ksin@ _ kcos@ _ ksin®
dt  dny dnx  4nrsin®  dmrcosB® .

- k(cos® 8~sin’6)
2nrsin 20

(1)

1)

(48 k ksin® keos® k  ksin® _ kcos®
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1dr
Ondividing (1)by 2), - 35 =220

Integrating it, logr =—logsin26 + loge i.c., msin20=c
Transforming into cartesian, it becomes (using x =rcos@, y =rsin6)
2rsinBcos@=c  or  4r'cos’Bsin®® = c’r
ie, 4(rcosB)(rsinf) =c’r . Taws s .
N T
ie, dxly?=ci(x*+y?) or x_’+F=c_f'*
Vortex inside an infinite circular cylinder :

Let the vortex of strength K be situated at A(OA = f}mndslhumrmla‘cylmdﬂofmamlh
axis parallel to the axis of the cylinder. Let a vortex of strength - KhMat&wmﬂlswtm
pumtofﬁmmwmﬂncmlwmhmd&wcykndummat

OB.OA=a®

=0B.f=a%

2
=>un-=3r—.

The circle is one of the co-axial symnhwmgﬁandﬂ ashtmmgpmnts aad so it is a stream line.
‘The velocity of A

K _ K £ K 2 LA
“2mAB 2n(OB-0A) '2{.3 ] 2n(a® -£%)

—=f
f
which is perpendicular to OA . B also has the above mentioned velocity so that OAB will not remaina
straight line at the next instant. But if A describes 4 circle about O with the above velocity, then atevery
instant the circle will be a stream line, the positions of B, of course, changing from instant to instant.

Vortex outside a circular cylineder :
" Letthe vortex of strength K be situated at A(OA = ﬂmtsldeﬂmmmulnrcyluﬂu'ufndm:mm '_
axis parallel to the axis of the cylinder. Let a vortex of strength - - K be placed at B, where B is the inverse
pdntofﬁﬁmmmmccmh:mﬁmufﬂmcyﬁndumdm

OB.OA=a’

= 0B.f=a? | m
: kex/ K Ak
=OB=£ TR Y
T ;

Then the circle ﬂlhamimmmmml:mdutoﬂmvmm m:lA will dr.-.scnl:ea
circle with velocity
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__k _ K Lo oK o K
2RAB  2m(OA —OB) 2'{ az'] 2n(f? —a?)

e
f

But the introduction of a vortex - K at B gives a circulation - K about the cylinder and let the
circulation ahmﬂﬂnnylinduheﬂ’.ﬂwcirculaﬁm-K:boutuncylindummhmevmﬂmn be
annuled by putting a vortex K to O and therefore to get the final circulation K’ about the cylinder, we must
put an additional vortex K’ at O.

Thus we have a vortex Kat A, - Kat B, K + K'at O. Hence, Hmv:lmityqfhdmtmheabow

K+K° K _K+K'_ K
210A 2mAB 2nf 2mn(AB-OB)
K

_K+K'

— =
.2 PR 5
K+K’ Kf

= onf _Em(f’ —a%) m_i&dﬁcﬁbmanimlnwiﬂlmlxvducim
Image of a vortex outside a circular cylinder :

To show that the image system of a vortex k outside the circular cylinder. consists of a
vortex of strength = k at the inverse point and a vortex of strength k at the cenire. '
Let us determine the image of a vortex ﬁlarmnmfs&engthkplamdatﬁ{z:c > a) with respecttoa
circular cylinder | z| = a with O as centre. Let B be the inverse point of A with respect to|z| =a so that

2 |
OB=——=2
OA ¢

In absence of | z| = a, the complex o

pumuﬂaiumyﬁdntdummxﬂhis

givenby | 1 k
1 il i
_211 log(z ~c) + ’ k’

: When the circular cylinder | z| =2
is inserted in the fluid, the modified complex
potential by Milne-Thomson's circle theorem
isgivenby
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F]
w--a-log{z c}—-—-]n{—;—c)
=.-i.E.[gs{1-c]_E _E .zui
2n - n z c
=-i—j§— log(z —c) - . z-i +logz — log(—<)
2n _ ' c

; ik
On adding the constant term ( ;_:: )505("5] to the above value, the complex potential takes the

ik ik a ik
w-?lqg(z c}—«z;[z—?]+glngz veenenl(1) |

Putting w = ¢ + iy, z=ae"® forany puintmlz|=’naﬁoquat‘mg imaginary parts, (1) gives y =
0. Thus there would be no flow across the boundary | z | = a. Hence the motion would remain unchanged
ifmgcylwmbmmm|31=smmmgﬁmﬂ.ﬁmmmmummsmmm

Renurkl.
Cmnplexpumnualw'mdumduA by a vortex - kaIBmdnvmkﬂﬂmgwenby

a!

P ik ; ___E' _a" | ik
w w-ﬁlog{z—c}" hh{z c]+zﬂlngz

=..._|u ————

1 W

which gives the velocity of the vortex A with which it moves round the cylinder.
Remark 2.:

Since the term iklogz denotes the circulation round the cylinder, the result of the-above image
system may be restated as under :

The image system of a vortex k outside the circular cylinder consists of a vortex of strength
- k at the inverse point and a circulation of strength k round the cylinder.
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Remark 3. :

Proceeding as above, we can a]&ushuwthnlﬂwinmgesysmda vortex - k outside the
circular cylinder consists of a vortex of strength k at the inverse paint and a vortex of strength - k
:#thecemm

Imgenflvnrtuhrideadrnﬂlrcylindar
To show that the image of a vortex inside a circular cylinder woﬂtdbeaneqrnm' and opposite

vmnmtﬁeinvmepamt.
mmunwmmmgdmvmﬁmwkmh[z-z }m:l kalB{z-z,}
Then the complex potentiality any point is given by
ik .
w-ﬁlﬂsﬁ-zﬂ-%ﬂ-hﬁz—m :
+k . g T R
A e & ) @-
o b+iy=_—log(re 1*5-@:@3,} pAY _

‘F=—"108'L wlﬁ-er =lz-z, Lr,=|z-z,|

s o
Hence the streamlines are given by § =constant, i.c., ;l""':.whibhwprmmsafmﬁlyufon-

axial circles with A and B as limiting points. Moreover, the motion is unsteady and hence stremlines goon
changing and following the vortices which move through the liquid. However, if a particular circle of the
family of co-axial circle be repleced by a similar rigid boundary and held fixed, thenit follows that the
image of a vortex inside a circular cylinder would be an equal and opposite vortex at the inverse point.

2

Let O be the centre of the cylinder, Let OA =c. Then, if B is the inverse point A, OB = %m
aiis the radius of the circular cylinder. The vortex at A will move round the circular cylinder with velocity
givenby

K =. k =. k = kc
27AB  27(OB~-c) 2;{'1 ] 2n(a® ~c?)

q=

c

Let w be the angular velocity of vortex at A. Then
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Exercise 1 :

Aninfinitely long line vortex of strength m, parallel to the axis of z, is situased in an infinite liquid
bounded by a rigid wall in the plane y = 0. Prove that, if there be no field of force, the surfaces of equal
pressure are given by : : _ .

((x - 8P+ (y - b H(x - 2)* + (y + b} =c{(y* + b)) - (x - a)’},
where (a, b) are the co-ordinates of the vortex, and ¢ is a parametric constant. -

Solution : . X AY

The image of the vortex of strength m at m

A(a, b) is a vortex of strength - m at f*"‘” .
B(a, - b). The two vortices at A and | | W“"”

B form a vortex pair with line joining _ .

them perpendicular to x-axis and ° /r, oF 2
AB = 2b, Hence these vortices move '

| : Vo
pnﬂlelto:—uiméﬂ:wdudtya. ™

' m
The above system of vortices can be brought torest by superimposing a velocity
Ihnmmmpmuofvehﬁtyquapuimﬁx, y) are given by

h_ﬂ[,,-_b_m]_ m

rl2 r; 4nb

v "m| x-a x-a
_— — —
| R o

q==l2+‘h"’ . : !

m? [ (x—2)% +(y=b)? _ (x—2)* +(y+b)’
3 = +
4n’ X r

: 3
' bl i 13 | 4b

_2x-a)?+y*-b? Ll[ y=b "y+b]+ 1 ]

m 1,1 2a-a+y?ov?}
; .

1 y-b_y+b & 1 : .
+b[ 2 2 ] w0 e (1)
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Since the system of vortices has been reduced to rest, the motion may be regarded as steady and

hence in the absence of external field of force the pressure at any point (by Bernouilli's equation) is given

¢E+—l-|‘.]z =constant

p 2 _ .

Hence the surface of equal pressure are given by p =constant. Using (2), the surfaces of equal
pressure are given by q? = constant, i.e., by ;

HL+_1__2{(x—ajz+3,z,bz}

% .B e
11 y~b y+b 1
+ ———-t—— |=constant =—
b I.I:! rj: ] c!{m}rl

o “[i':z"'f:.?—z{l“l}z-zﬂ'z—b:]

+%{r§ -5)-( +r,’l'}=_ 2 (3)
Bt r£=(x-aP+(-bh B=(x-aP+y+b] ...
80 that I"z - r'i = 4yb. SR ]
Using (4) and (5), (3) becomes
cf(y* +b) - (x - a)’] = [(x - a)* + (y - b H{(x - a)* +(y + b)*}.
Exercise 2:

A vortex pair is siuated within a cylindér. Show that it will remain at rest if the distance of either
from the centre is given by (/5 — 3 J2 4 » Where ais the radius of the cylinder.

Solution :

Let a vortex pair be sinated at A, B
where OA = 0B =r. Let A’ and B' be the
inverse points of A and B respectively
‘with regard to the circular cylinder so that

2 ;
DA’#E;— = OB’. The vortex will remain at restif its velocity due to other three vortices be zeroi.e.,

k 1 1 1
m[u' na*n’n] .
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or L ! + 1 0
al 2r a?
—w= —4T
r o
r r 1
or + i)
al-r? al+4r?

Vortex Rows : :

Wheri a body maoves slowly through a liquid, rows of vortices are often generated in its wake.
When these vortices are stable, then they can be photographed. In the next articles we wish to consider
infinite systems of paralle] rectilinear vortices in two dimensional flow.

Infinite Number of Parallel Vortices of the Same Strength in one Row :
To show that the motion due to a set of line vortices of strength k at points z = na(n = 0, I,
2,3, ...) is given by the relation '

ik , T
0=—] sin—,
2n b a
Also to get velocity components and streamlines. .
Proof :

Let there be (2n + 1) vortices of strength k each situated at the point (0,0), (+a, 0)(£2a, 0),
(3a,0), ..., (na, 0). The complex potential of these (2n + 1) vortices at any point z is given by

Wy, = -;-k;[logz+lng{:-a]+lug{z+a}+log(z-m
+log(z+28) +... +... +... + log(z - na) + log(z + na))

= ;—::log[z(z’ - 8%}z - 2%a%)(z? - 3%?) ... (2 - n’alz]]

gfz{e5 s
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k k k ﬁk\ k ' k k
g

: nmmmiumqnn.ns.uf{l}bdugmmi:mayunegmdfmugmmofmﬂeu
pnﬁnﬁﬂ.ﬂumﬂgmplexpﬂmﬁﬂgivmby-ﬂ}mybummmH .

5 ik] = '1 1 1_‘ 32 . -21
oaa =g T | e ] O

Mahngn—}nmﬂ}.ﬂ:nounplcxpmndwufdwmmsymnfvmupumﬁz-nﬂn-
0,1, 2.3. ., 0a) is given by

A
By 0= e[l-—-—I 2,21 3] ...... @

Putting ﬁ=-a- ie., §=-m{4}.mgﬂ

(SHEN 5 )Ar

; ik :
Using (5), (3) becomes w =[ 'ﬁ]luﬁn{i—’] ...... 6
Il..ctumdvbuﬂu: vehcitymmunanypointufdwﬂuidmw:dhy any vortex
filament. Then, we have g '
In-i1|.|f=*-ﬂ==—-'i-liﬁiﬂl%l""‘llllE | [using (6)]
~dz 2a a

ME{K +iy}sinEEx -iy)
a a

2 a sinftxﬂy}sin;-;x —iy)
a
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Since the motion of the vortex at the origin'is due to other vortices only, the velocity q, of vortex at
the origin is given by :

ten 2| Epogein® - X o,
2n a n T

J z| feo - o0)
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[By L Hospital's rule}]
= _i w0 2
T | [on evaluating the above
indeterminate from us usual]

=0. :
Hence the vortex at origin is at rest. Similarly, it can be shown that the remaining vortices are
ﬂmﬂmmﬂﬂnﬂ&lﬂﬂnmﬂnmlnduwmwhdtjmmdf.
We now determine streamlines. From (6), we get

y ik L ;

¢+ﬁw=ﬂiﬂsnn{:(x +w.‘l} ...... 9)
.. ik R E :

p—iy= Z—“bgmn{:{x—w}} L))

Subtracting (10) from (9), we have

2iy 2%[ logsin{gtx +iy) }+lngsin{§[x =iy) }]

or '4r=-£~lug sin{E{xH_v} }sin{ﬂ[x —iy}}]
® | a a

4 | 2 a a

' k 2 2mx

or b S mhjy—-mﬁ-—") ...... (1)
n a a

mmﬁ&ngﬂmimlwmtmmmuimdwwmmmgimhy W =constant,

ie., m—z?—m%x—=cmmt il 12)
‘When y is very large, the second term on L.H.S. of (12) may be omitted. Then the resulting
streamlines are given by '
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mah?:mﬂnt,mmMFﬁcmstmL

showing that at a great diatance from the row of vortices the streamlines are parallel to the row.

Two Infinite Rows of Parallel Rectilinear Vortices :

Let there be two infinite rows of vortices, one above the other at a distance b, the upper one
having vortices each of strength k and lower one each of strength - k, one vortex of the upper row being
exactly above each of the lower row. Taking the upper row as x-axis and y-axis passing through the centre
ufmwnfﬂmmmmufsmmhkmhmaxﬂwpumu{ﬂ 0), (+a, 0), (2, 0), ... and those of strength
- k each are at the points '

(0, -b), (4a, -b), (2, - b}, ...
The complex potential of the entire system (using the result of just concluded discussion) is given

by
W f%iugsin?——%lagsingtzﬁhj ...... (0
_ YA
k k
() R
SLUBEA T
k k
N LN
5 A )

Let u and v be the velocity components at any point of the fluid not occupied by any vortex
filament. Then

u=iv =—d'—1|"\‘= -E IE+EWI*—{E+II}]
dz 2a a 2n

The velocity of the vortex at the origin is given by

: d[ik, . mz ik
“u"‘“’n={“d—z“|:g'ﬂﬂﬁm?—‘2—£lﬂgz
.~—‘5tugsin5(z+ih}“
2n a. b
u,;,—l\rc,:-i —cot-—-—l——cul]'lz{zﬁb}
2n| a a 2z a i)
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so that _uina-cmh—. v, =a,
- [k nb
showing that the vortex system moves parallel to itself with velocity | 5 cot =

Knrmm\"nrtﬂﬂtuet

5 " Letthere be two parallel rows of vortices of equal butupposmmngﬂlpindmm:hamdm
each vortex in one row is opposite to the point midway between two vortices of the other row. Accordingly.
let vortices of strength k each be situated at the points (0,0), (£a, 0), (12a,0) i

k k. ) ) k
e B e PO i G e W
O OO

k *x . %

and the vortices of strength - k each be situated at the points

( £2a,-b }[ t3a-b }

The complex potential of the entire system is given by
W= %h}g n?-%lngmng{ z+ ;ahb] —)

If u and v be the velocity components at any point of the fluid not occupied by any vortex filamert,
then

dw ik ik | -
- =-—=—~——~cm—+— ot —a+ib
u-iv e PO E[Z+ZP+] ]__{2}

Since the motion of the vortex at the originis due toother vortices only, the velocity of vortex at the
originis givenby

u, —iv, =A[-{--}og ?-Elog; —;lngsm-z[ :+%a+ih]Hm
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i . e :

sothat Yo '( 'z‘;]m"{ a ) and v, =0, showing that the entire system would move parallel toitself
o X ®»

w:.dumﬂfmﬂmty[ h]mh{ - ]

Remark : - - :
A Karman vortex street is often realized when a flat plate moves broadside through a liquid.
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Appendix:

Throughout the material we dealt with cartesian, cylindrical and spherical polar coordinate systems
which are part of general orthogonal coordinate system. Once we find out a mathematical formula in
orthogonal system from its vector form, it is very easy to deduce the comesponding formulas in the cartesian,
cylindrical and spherical polar coordinate systems simply by changing the scale factors and the corresponding
coordinates and the unit vectors. So, it is advantageous to remember the expressions for some of the
formulas in the orthogonal system. Below, we mention some of them. Generally we take (A, 1, V) to be the

coordinates., (&,,&,,é,) the unitunit vectors and (h,, h ,, h, ) the scale factors in the orthogonal system.

Coordinate system coordinates  unit vectors scale factors

cartesian (x.¥:2) @3B h=Lhy=Lh,=1
cylindrical (r0.2) (76,k) h, =Lh, =r.h, =1
spherical (r.0.9) G.6,4) h,=Lh, =r,h, =rsin®

Expressionfor df and ds in orthogonal system:
dF=hgdi+hg,du+hédv,  ds?=h*(dA)? +h,’(dw)? +h,’ @)’
Gradient in Orthogonal system:

€ 00 € 09 & 0¢
Vo=—L i e s e et
B M B, by OV
Divergence in Orthogonal system:
VF= i i{I:n.h F}+i{h hF}+i{th]'whﬂe ?=fFF E)
hlhzhla‘l 270301 m!li a\rlll 1853153
Curl in Orthogonal system:
C et
XF= hlhlh! a E . ; where F=(F‘,F=,F3}
I.II 1 hIF! _hJFJ-
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Laplacian in Orthogonal system:

o=V vpa—l [ 2( By 3) 3 (b, d0) 3 (b 3o
V'e=vve h,h,h, {a:n.[ h, 31]+ap[ h, au]+av[ h, au]}

Exercise:
From Kinematics of Fluids in motion:
Thnpuﬂclesuhﬂnddmowwmmﬁmﬂy in space with mgu‘dtuaﬁmdmmﬂmﬂw
mmdmmn
L
a: ﬂr
2. A mass of fluid moves in such a way lhatuchpa.tﬁchdmn’ilmadmlcin one plane about a fixed
axis; show that the equation of continuity is

%
x

—(T l-l) =0 where uis the velocity at distancer.

4 :
*i{’”} =0 where ® isthe angular velocity of a particle whose azimuthal angle is 9 at

dmet.
3. If wis the area of cross-section of a stream filament prove that the equation of continuity is

%{Pﬁ)‘*%m =0, where 3 is an element of arc of the filament in the direction of flow and q is
the speed. _

4. A mass of fluid is in motion 5o that the lines of motion lic on the surface of co-exial cylinders. Show
that the equation of continuity s

%?-+%%(ﬁn}+%tpﬂ =0, where mvmthcwknitypahmdimdm and parallel 0 z.

5. Air, obeying Boyle's Law, is in motion in a uniform tube of small cross section, prove thatif rbe the
density and v the velocity at a distance x from a fixed point at time t, then

4 ki a!-

o= b )

6. If the lines of motion are curves on the surface of cones having their vertices at the origin and the axis
of z for common axis, prove that the equation of continuity is

o 9 ZDumsmﬂa
T

+ {pu}+ {p-m). =0,
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where u and w are the velocity components in the direction in whichrand ¢ increases.
7. If every particle moves on the surface of a sphere prove that the equation of continuity is

W c0sd L d ’
armsﬂ+aﬁ{pmum'ﬁ}+a¢(mfmﬁ}_ 0,

p being the density, 8, the latitude and longitude of any element, and , o’ the angular velocities of
dmulunmuuhuuuhmﬂia@nﬂempmhvcly
&' u==-= 25}'3 s, ¥ =MI W= y
Show that W (x=+}r’}2 | X2 +y?
are the velocity components of a possible liquid motion. Is this motion irrotational.
9. Show that a fluid of constant density can have a velocity g givenby

-_[ 2ye_ fxl-y'k ir]

e Gy 77

10.Ifthe whcityof:nilmlwsibleﬂuidalﬂnpohﬂ{x,y,z} isgivenby

{31:. 3yz 3° —r’)

y* x° 3

r T r

0
G:f . Alsodetermine the

prove that the liquid motion is possible and that the velocity potential is

stream lipes.
11. Show that if the velocity potential of an irrotational fluid motion is equal to

, _
Al? +y" +2?J2ztan" L, thelines of flow will beon the series of surfaces

2 1
x*+yl+zt =ci(x? +y?)?

From Equation of Motion:

1. An infinite mass of homogeneous incompressible fluids is at rest subject to a uniform pressure [1and

contains a spherical cavity of radius a, filled with a gas at pressure mI ; prove that if the inertia of the

gas be neglected, and Boyle's law be supposed to to hold throughout the ensuing motion, the radius of

the sphere will oscillate between the valwsaimdm.w]m_-:nis determined by the equation 1+3m log
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h 3 2
n-n=0, If m be nearly equal to 1, the time of an oscillation will be m,ﬂ—r';', P being the density of

the fluid. .

2. A centre of force attracting inversely as the square of the distance is at the centie of a spherical cavity
wm&nmmﬁﬁmmmdmbhﬁﬁi&mmmwmchatm iﬁ_ﬂnin: distarmisl'[;mdis
such that the work done by this pressure m'nunitamatl'n'uugh a unit of length is one-half the work
dooe by the attractive force on & unit volume of the ﬂmdﬁmnmﬁmtymﬁmmualbmuuhrynfdwnmr
prove that the time filling up the cavity will be

3} %

. E 2 2 i
(&)

abeing the initial radius of the cavity, and p the density of the fluid.

Motions in two dimensions and Sources and Sinks:

1. ldamﬂngavm:hhputmﬂa,mdfnmmfnmbm ﬁndﬁwmnchnm&mtﬂx.}rlhﬂsbmﬂdhca
pombl:syshunofmmhmhtbemdymmmu]mmmmdmmms

2. hmﬁmmdmmﬂmmg:f&wmhrmmmfmﬂtllmm

- =1, then wy= Alogw(n +1}+J(h‘+1))+ﬂ

a+l I.'fII

J.Iwmuumhufmsmmmplawdathpuim(-n,n}.{mﬂ}mdaﬂnkufsmgmh at the
origin. Show that the stream lines are the curves

(x=+y’r =a?(x? —y? +Axy), “where A is avariable parameter. Show also'that the fluid

4 2ma? L _
spwdatun}riloimiu-”r . wherer,, r,, 1, are the distances of the points from the sources and sink.
1273 :

4. In the case of the two dimensional fluid motion produced by a source of strength m placed at a point
S outside a rigid circular disc of radius a whose centre is O, show that the velocity of slip of the fluid in
contact with the disc is greatest at the points where the lines joining S to the ends of the diameter at right
angles o OS meet the circle, prove thatits magnitude at these points is
| 2m0S
(08* -a%)
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'l. Answer any tivo parts : S5x2=10
fa) MM&:MM

f l’ -
nikit“if[(b] +(E]] >
is a possible form for the boundary
.m;{lﬁwﬂ#myﬂmt
{3) In the steady motion of homogeneous
liquid, if the surfaces f; = a, and f =0,
define streamlines, prove that the most
general values of the. velocity compo-
nents U, v, W are

rul._r,:u?-g!-—?-. Fifi. f 17{*;_{'?1

Wy, f)
Flh. fal5=E

where F is any arbitrary function.
{¢ Prove that if
dv du ﬂn_ﬂ‘__u_.r
(-2

; m;,ummmﬂum
¢ then Ade+pdy+vds is a perfect
and the density i» conatant.
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6 Atw-dummmdmmunﬂfihqmd
given by the complex potential w i3

given by l#-hl[z- —;} Determine the
function of the motion. 4
Or
Find the compiex potential for a two-
* dimensional source of strength m placed
at the origin.
) Answer any two parts : 8x2=16

f) In incompressible motion of two-
dimhension, prove that

: e

(& {3 ~ave
where ‘g=Fl § being the fuid
velocity.

fij When a rigid boundary is in

the form of the circle
h+¢]"+{y-4ui=#§a:, there i:_ a
liquid motioa -due to a doublet of
strength p at the point (0, 3a), with
its axis ‘slong the axis of y. Show
m:mm-mu&m#mw
I - T &

G-3a7 4y N TaG-sar

{iii) The . .space between fwo infinitely
‘long cosxisl cylinders of radii @ and
b respectively is filled with homo-
gefivous liquid of density p and the
innér cylinder is suddenly moved .
with velocity U pérpendicular to the
axis, the outer one being kept fiked,
Shiow that the resultant impulsive
pmuummungthlu[thtm )
cylinder is xpa? -;1-“:*]1’-

-q%
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7. Answer any Guo parts : Sx2=10 °
fa) 1If the external fortes are conservative
and the density is a function of pressure
only, prove that

i(é]..[é.%]a

dt) p £

_ where 8 = ¥x. _

{®) Pro?ettntﬂlenmmmd!uiﬁdm_t :
condition that the vortex lines mey be at
ri'g!,ﬂ angles to the streamlines is - :

=y 2 ¥ '
'ﬂ, Hi “! H’[axi ay1 as]

wh&uuisnﬁmﬂnnlnndth;mmiun

of x, y, zand _ . : .
(¢ Show thai the motion due to & set of
vortices of strength k at points

g

= nirfn -'Qt 1,2, hw by
lati ‘ .
bt

w= Fiogain( %)

{d) Find the vorticity'in the spherical polar
. coardinates (r, 8, 4§ for the welocity

components
g, = [1 --’%—)mﬂ

e 4]

e ] ain B
q. !_.-[ 2?
Gy =0

2010
MATHEMATICS
Paper : 304

Full Marks ;: 80
Time : 3 hours

mmhwwmmm
Jor the questions
:msyﬂ-_hun
{ CONTINUUM MECHANICS AND
HYDRODYNAMICS |
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.[Mumhnli
{ Marks : 40 )
8. Answer any two parts : | S5¥2=10

fa) ' A mass of fluid is in motion o that the
lines of motion He on the surface of

. coaxial cytinders, slow that the equation
ufcmtinmtyh

123

i.r rod hu] 21
muummmmmﬂ
perpendicular and parallel to z-axis.

&) Prove that, if
du fdv du du_dw
A= P i [iﬂr a_y']* Fre 3:)

and i, v are two similar expressions,
then Adr+pdy+vdz is a perfect
differential, if the forces are conservative
and the density is constant.

a9 mmmmdmdﬂ

with ususl meanings of the Hﬂbﬂ‘-

6. fa) Show that the velocity potential ¢ and
the stream function w. satisfy Laplace's
equation. 4

_.&. T a
What amrangement of sources and
sinks will give rise to the function
w'.lal[:-f;.]? Also, obtain the
stream function for the flow.

() Answer any fwo parts : 8x2=16
i In two-dimensionsl irrotational fiuid
motion, show that if the streamlines
are confocal ellipses
. T__:r - 1
a® +A +&

then '.._Ah.m~r*\’ﬂ +M+B
and the velocity at any point is
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nbdn;mnradiusdi:li cylinder,

i} An infinite ocean of an incom-
pmblepe:ﬁutﬁqmdd’dmﬂyp

is streaming past a fixed spherical
obstacle of radius a The velocity is
uniform and equal to U except in so
ﬁruﬁhﬁaﬁhmdhytbclphﬂe
m:lthzwmmhuhr_uqmd-t-
great distance is py..Show that the

thrust on that half of the sphere on
which the liquid impinges is
5 U!
(%)
7. Answer any ﬂwm'l.l 5x2=10

fa) In an incompressible fluid, the vorticity

at cvery peint is constant in magnitude
and direction, show that the components
of velocity u, v, w are salutions of
h;ﬂmhuqunmn
equal and opposite rectilinear wvortex
flaments at a distance 2a Show that
the paths of the fluid particles relative to
the vortices can be represented by the
equation

2,2

:f-..+n 'Mm“+rm"-m1

r? +a® +2arcosé @
Q is the middle point of the join which is
taken as x-axis.

() Wi, 8} fra. 0. - be polar coordinates
at time ¢ of & system of rettilinear-
;ﬂm of strengtha k), k,, -+, prove

Ekr? = constant and zn?i..%zm,
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