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Unit 1.

Iqtegnl transforms :
Let K(s,t) be a known function of the two variables s and t, then the integral transform F(s) of
the function f{t) is defined by an integral pf'the form

]
jm.nfnm:f:{s}
3 £
where K(s.,t) is called the kemnel of the integral transform.

The kernel and limits of integration for various integral transforms are given as follows:

* Name of the transform Kzt a b
0] Laplace transform Al . ? 0 w- |
@  Pouertomchin e wa oo
(i) Hankel ransform tJ (st) 0 -
™  Mellintransform g T

%sha!ldimussﬂw ummﬁ:ﬂms{i},{i_i}andﬁv)hlbtsmwdingchaptﬂ&

Laplace Transform method : ;

Laplace transform is essentially a mathematical tool which can beuw:llomlwsemalpmbhm
in science and engineering. This transform was first introduced by Laplace, a French mathematician, in the
year 1790. To the basic question as to why one should leam Laplace transform technique when other
techniques are available, the answer is very simple. Transforms are used to accomplish the solution of
certain problems with less effort and in a simple routine way. To illustrate, consider the problem of finding
the value of x from the equation

x'¥=3

It is an extremely tedious task to solve this problem algebraically. However, b:rmcui'!.ngmﬂlmsmd anti-
logarithms we can solve as

ali _.[in&]

1.85

With the help of any ordinary calculator, we can now compute x. Following this simple example, the
Lapiauctmnsfunnnuﬂmdmdumﬂwminnfmmdmwm{Fumna!equaummﬂwmlmmofm
algebraic equation. In fact this method has a particular advantage in finding the solution of an ordinary
differential equation with appropriate initial conditions, without first finding the general solution and then
using initial conditions for evaluating the arbitrary constants. Also, “tﬂnﬂw[.aphxmfmmtedmnm
applied toa PDE, it reduces the number of independent variables by one.

De&ﬁtion: _
i Afunction f{t) is said to be a piccewise continuous (or sectionally continuous) on a finite interval
a < t < b ifthis interval can be divided into a finite number of subintervals such that (i) f'is continuous in the
interior of these subintervals and (i) f{t) approaches finite limit as t approaches either endpoint of each of
_the subintervals from its interior.

3




Definition :
Suppose f{t) is a piecewise continuous function and if it hasan additional property that there
exists a real number ccand a finite positive number M such that

Lt|f(]e™ <M fors>a

mdth:lmuldo:snmmmwhmsiu,ﬂm such a function is said to be of exponential order o,
also written as

IfOE0E™)
Variables such as velocity and current are always finite; which means that f{f) is bounded. Thus for any

bounded function f(1),|f(t)|e™ —0 forall s>0. The order of such a function is zero.
Forillustration, let us consider the following examples:
(@) F(t)=¢*sinbt is of exponential order with the constant o=a, because
e™|f(t)|=e™esinbt]
=|$il'| bq.bﬂuﬂdﬁd it
(i) (1) =", n > 0isof exponential order, because
e | f(t)|=e™™t"
Now for any o >0, Er_tm'“t‘ =0
- Thus, IM >0, t, >0 suchthat
e™|f(f)|=e™t" <M for 1>t,
Hencet" isofcxpmmﬁalordcrwithﬂmwnstmﬂueqmlmmypmiﬁwinmgu
_ (iit) f{t}:e'! is not of exponential order because
e|f(t)] ="
and this become unbounded as t —» =, no matter what is the value of c.
Definition :
Lﬂf{t}b:nmnﬁmmmﬂsinglevﬂmdﬁmcﬁmofﬂwmlmbletdeﬁmdiuuﬂh O<t<ao

and is of exponential order. Then the Laplace transform of f{t)is defined as a fumction F(s) denoted by the
integral :

L@ }=Fe) = fe™ fdt
o

over that range of values of s for which the integral exists. Here, s is a parameter, real or complex.
Obviously L{f{)} is a function of s. Thus
L{f(1) }=F(s)
f(y=L"{FGs) }
where Lis the operator which transforms f{t)into F(s), called Laplace transform operator, and L

I is the inverse Laplace transform operator.
Now we are in a position to verify the following important result.




Theorem 1:

If fit) is piecewise continuous in the range > 0and is of exponential order ¢, then the Laplace
transform F(s) of f{t) exists forall s > a.
Proof ; From the definition of Laplace transform

-

L{f(t}]uj f(dt = _[e"' f[t}dt+Ie f(t)dt

- II + IZ
Since f{t) is piecewise continuous on any finite interval 0<t<T, |, exists, whereas

1, ]< f|c:“ f()|at
T

But f{t) is a function of exponential order, therefore
|£(t)] < Me™ for o real

ch’-?': k—u £(0) [ < Me oM
Thus

- ~{e-a)T
It I=I¢"H"Mdt = ._I"E.‘f...,__..._‘ s>a
: s—a
Inolhmwds,gmbcmadcasmui]aswe!ikepmﬁdedT is large enough, and therefore L exists.
Hence L{f{t)}exists for s > ot

Transform of some elementary functions :
Example : Find the Laplace transform of

(i) e (i) cosat (i)
Solution :

0) L{:‘-}= T:"c" dt= Ic il

0 0

=l

== = ,s>a
5—a §—a

@

Lfosat}= j e " cosatdt
°

=Re a]Eej" ™ m]
=ReallL§* ]

s+ia
=Re
“[51+nt:|




(ifi) Using the definition of Laplace transform of *, where n is a positive integer, we have
Lf J= fe=eran
[i]
e*Y nf% b
=} t" — —{t"e™dt
el
.n- a-l -#
=Z[t'e™at
e
(integrating by parts)

Hence L§* }= -EL'E"*}. Similarly, we can prove that

Lg')= H_;_l Lg2}
L 22g)
L} 20

L{t =;-12-

-1'a=2 21 ! : ;
= S =mechcmbccxpmmdhﬁwmﬂm:ﬁmm

sl'l'l

T -Li’}=‘ls!'“s 5 ss’
_(_

Li' }= | n:[l} . Thus we can immediately generate the following table of transforms:
a s

Table 1: Table of Laplace transforms

© | W W | f9
¥ t
i
0 ; 0 " I %
| f
1 { -1 g s
| s |  s?+a?
F : -I— m-sa"_ I $
3 |  s—a | s*+al
M G sinhat | e
¢ | 5+a | g’ —a® ¥
| 1 |
1 |




Properties of Laplace transform :
We present a few important properties of Laplace transforms in the following theorems which will
enable us to find the Laplace transform of a combination of functions whose transforms areknown. .

Theorem 2 : ( Linearity property) If ¢, and ¢, are any two constants and if F (s) and F.(s) are the
Laplace transforms respectively of f,(t) and £(1), then
LEfO+ef,0 )= L} oL}
d =¢,F(s)+c,F(s)

Proof : {Left to the reader)

Theorem 3 : (Shifting property): If a ﬁumﬁmismdﬁpliadbye‘,&mkm&fnnnofﬂmm&lauis obtained
by replacing s by s-a in the transform of the original function. That is if L{f{t)}=F(s), then L{e* f{t)}=F(s-
a.) :

Proof : (left to reader)
Theorem 4 : (Multiplication by powers of t); If
L{f()}=F(s), then

L] L] d.
LE f0) )= =D =
=(-1)"F"(s)
) wh:rcn=Li,3,..,
Proof : From the definition of Laplace trandform

Fis)

F(s) =L{f{t}}=je'“ f(t)dt

Hence %F{s}ziue'“ f{t]dt] _

Interchanging the operation of differentiation and integration for which we assume that the necessary
conditions are satisfied, and since there are two variables s and t, we use the notation of partial differentiation
and obtain

oo A9
EF{”‘;,[as{‘ F(O it
=—Ic“t1f(t]

[}

=-L{f()}

d
LEf©}=--Fs)
By repeated application of the above result, it can be shown that

L§* f)}=-1y° ;s_ F(s) = (<1 F*'(s)

7.




Theorem 5 (Differention property) : If L{f{t)}=F(s) then
Lit-:{[}}= S.F{SJ e s-—!r(ﬂ] & Sﬂf’{ﬂ'} _____s[.-u-.‘h {0}_f1-4lm}
Proof : From the definition of Laplace transform, we have

Lfm}= T:“f’{t}dt
]
s "*'[3" f{t}I +5T¢"' f(t)de
a.
(integrating by parts)
=-f (U)H]e" f(tydt
=-f(0)+sL{f(t)}
= sF(s) - f(0)
Similarly, it can be shown that
LE@}=sLE 0}

= s§F(s) = (O }-1'(0)
= g?F(s)—sf(0) - f'(0)

LE“(0)}=s"F(s) - s’ (0) ~sf'(0)— *(0)
Thus, in general,
LE® )} s"Fis) - s*£(0) =5 *1(0) - s “(0) - “(0)
This property is very useful for solving differential equation.

Example : Find the Laplace transform of

(i) e*cosbt (i)e™t®  (iii) t’e”

Solution : :
(i) Using the shifting property

LE cmbt}—s +h‘1L_.{‘_.-' (s— a]!+h’
(i) Using the shiffing property

1 1
L{=""}=;'.1.'TL =(—s%'}.7.

=Ha-a)
(iii) Using the differentiation property
B e o S
Ahmﬁvelylmaglhehﬂmgpoputy

L{:“t*}——{

sa[sa]"

i—i=a} I:S- "} .




Theorem 6 (Initial value theorem) : If {t) and f'(t) are Laplace transformable and F(s) is the Laplace
transform of {0), then the behaviour of f{t) in the neighbourhood of t=0 corresponds to the behaviour of
F(s) in the neighbourhood of s=ee . ’

Mathematically, Lt f(1) = Lt sF(s)
Proof: '
From the property of derivative, we have
L) }=sF(s)-f(0) -

je"f'{:)d: = sF(s)~f(0)
0
Taking the limit as s — = on both sides, we get
| e*£(1)dt = Lt sf(s)— Lt £(0)
s ol o § .

Since s is independent of t, we can take the limit before integrating the left hand side of the above

L ]e“‘f’{ Ddt= T[E.t_ e f '[t]}:ll =0
o o

]__;t-sF[s}- .l_..thf(ﬂ} =0
=» Lt sR(s)=f(0) = Lt f(t)

ce the result. For example, let f(t) be a polynomial of degree n of the form
f()=a,+a,t+a,t" +-+a,t"

Its Laplace transform is

_ a, 2a nla,
F{s]=?-+;}+~;;1+---+-ﬁ :

)
a 2a,. nla
s B L e

o LtsR(s)=a,=£(0)

tsinu | - |
Example:  Prove that L{JT““} -

a

Solution:  Let fm=f$"“ then f{ﬂ)=u,'f‘{t}=i‘-:-t~
L]




tf(t)=sint
. 1
=Lif'0)= oo
", P i
A =
=-a “_’}_s’n

d 1
#-E{sﬂs}-rmﬂ:E

:’%{’H’]}:*fil ‘ .
Integrating sF(u}=—u;1"s+c
Lt sF(s) = Lt () =0
Therefore
' Lt sK(s)=0=—Lt{tan™ J+C

n
s C==
gvm 2

Hence &F(S}=E—tln" =tnn"£

41

=2 F[s}=lt.ln
5 5

Theorem 7 (Final value theorem) : If £(t) and f'(t) arc Laplace transformable and F(s) is the Laplace
transform of f{t), then the behaviour of f{f) in the neighbourhood of t = e corresponds to the behaviour of

sF(s)in the neighbourhood of s =0. Mathematically Lt f(t)= LtsF(s)
Proof : From the property of derivative, we have
' L' (1) }=sF(s) - £(0)
ie. [ef'(t)dt =sF(s)~f(0)
1]
Taking the limit as s — (on both sides of the above equation, we have
Lfe rma=LeFe-L0

RTINS, _ i
Bu [Lte f{z]dt—!f[t]d:

{0y

=l£1Hf(t}—f{ﬂ} OrehA B 13 |
10 :




Using this result in the above equation, we get
.]:.tﬂsF[s}v’I:tﬂf[ﬂ] - tl_.:l-f(t‘_l-f{ﬂ}
ﬁﬂﬂﬂ: ‘I_.if{t}

Example :
feosu | _In(s’ +1)
e L}
Proof: Let f{t}=]m:“du
o
' cost o
ftt}:"’""{" i
:&tf'{t}:—-cqst . e T
= LE () }=—Lfcost} ;
d 5
=g B ) ory
d 8 '
e BT
Mngsﬁs}z%in{s’ﬂhc
By final value theorem
LtsF(s)= Lt f(1)=0
sothat
=0 =Lt Lings? givingc=0
: 'I._..tasF[s}-ﬂ ;]:‘t.nzl"“ +1)4c 'EIVIDE
Hence,
5 sHs}:%ln(s’+t]
:per - Ia? 1)
~HE)= o
Theorem 8 (Division by ) : IfL{f(t)} = F(s) then
t ]

Proof : From the definition of Laplace transform

LIf()}=F(s) = [e ()t
-}
.hmaﬁngthubweuqunﬁonmrmpectm s between the limits s to <o , we get

11




]:Hs]ds = T[ie“"f {t)dt]da

L0

-Ir{:{je*m]m (by changing the order of int egration)

iz

:I—Idt
t

1)
t
f(t)

Nﬂt:happiyingdﬁsmk,mﬂnﬂd&m:ﬁﬂ.sm Tmyhum'mfnﬁmwm (=0,it

"‘ﬂ‘—-l

nnjrnntbemahhlf—{lls not integrable, then its Lqﬂammfmndmmtm For example, at

t
t=0, the function '?-T—-dumnothavemmﬁmtcdmunmty while the fiinction —}mmmﬁulc

i ity
Example : Find the Laplace Transform of
sin at l—cost

(i)

(i)
" Solution :

(i}%mL{smu}tﬁ?. Using theorem (8), we have

L sinal}=" I i a5 -n_:lt___ s —_—
{ t ;[s‘-l-n’ o R al, 2 . Ty
(ii) Weknow L Usingtbmmm{ﬂ},we!lavt

s+l

L;.Ei} " I(i_ szs+i }k

= :lns—%lnﬁ’ +l]] s

&

| B4R,

12




—_— .. cosalt
Enwk:Findthzl@mmformuf (1 Slﬂ(\/l-) (HJT
Sowution :

(i). Using series
e AL,
B S .
»r 5 7
Then the Laplace transform is
EELE
L{mﬁ}= 2;_,— ZE+ 23- 234-
s 3st Ss?  Ols?
&) &)
2 F]
=l@ T 2’:‘ » 1? +
251 2%s . 3

(ii) Let f(t) =sin/t . Then f (l)=ﬂ:—_ffﬂi=ﬂ. Hence

L&'[t}}::_-;—L{Ei?J—;}

; . |
a2y, ﬂ =sF(s}‘f(D}=£,t-=T,[Hm F(s) = L{f()}]
2 | +ft i
cm’E} Jn

1
=5 T =_,,£_¢T {usin g theorem 5)
; r

13




Transform of Bessel's function :
Bessel's fumction arises mmmmlmmqudmdm It is therefore
useful to find the Laplace transform of Bessel functions of the first kind. . '

Emiu:F'mdﬂigLaplmu'amfurmnf D10 @l .-
Solution :
(i) lehedpﬁniﬁc&waﬁsdﬁnm“?pﬂe
{ ]} [
b }:rf|n+r+] 2]

Forn—{l_,wehavg

t] s {4 ti
L(y=1-——+ -
o(®) 22 22x4? 2 x4a?x6?
Thus
12 4 6!
L{[g {l}} o

= - + -
s 228" 21x4%xs’ 2 w4 w6 s’

1l 171y 131} 1x3xs(1Y
wfl e e g | ol | sy
s| 2is 2x4(s 2x4x6|s° | ...

@ LY, 0}=- —L{Ju( 1}-——-[ 2 o ] (1+s=ﬁ

Transform of dirac dclu function :
ﬁmmmﬂwmmnmdmmmmmawwﬁmﬂﬂmﬂxmﬁm:}mﬁx

nshnﬂdm:e{mmll}rmumc}hmwnmuummmfome Thus we have a function which is non-zero

in a very short interval. The dirac deita function may be thought of as a generalisation of this concept.
Consider the function having the following property:

, |tbe
- €1
Thu =|—dt=1
3 _jha,u;-m _[nd[

Let f{t) be any function which is integrable in the interval (~¢, £) . Then using the mean-value
theorem of integral calculus, we have ; '

_If(t}ﬁ,{t]dt:%if{t}dt: f(E), ~e<k<e

14




L]

Thus we :myregard ansn limiting !i.mhmapprmlwdhy §,(t)ase—=0, ie.

ﬁfl] Ltﬁ(r.] 5 T
Asg—0, wchaw,thu:lnuan T
L i
e if 1=0 - —E
E‘[t:':.l:t.u‘ﬁ‘m:{ntf t=0 ; 1 2 :
r T
[&wat=1 L -€ 0 €

This limiting function &(t) thus defined is known as Dirac delta function or the unit impulse function. Its
profile is depicted. Dirac originally called itan nnpmp:rfi:mmasthﬂum mmﬂmmm:
properties. In fact we can observe that \

1= Iﬁ{t}dtn Lt fs,md: =H}u=b

Obviously, this contradiction nnphes that B{t}mmhnﬁ.umn
in the ordinary sense.

One useful property of Dirac delta function : ;
Let f{t) be any continuous function. Then :

IS(I —a)f(t)dt =f(a)

Proof : :

1 :
8,(t~a)= = a<t<a+e
0 elsewhere

ﬂﬁqmmmofmﬂmmmm
: Iﬁl{t—fl}F(t)dx=%Tf{t}dl=f(a+ﬂt}. 0<6<I
Han;dngﬂaeﬁnﬁlasa—}:},mnhain .
T&t-aﬁ{t}a=f(a}
Emw:?mm@mﬂmfmofmmmﬁ-ﬁm
M:Fmﬁmmﬁummm
‘ T&t-a}f{:ﬂt:f{l}

In particular, if f(t) =™, then

15




Lﬁ(t-:l}}n Ic"ﬁ(t-a}df:c". a>0
i @

Transform of a periedic function :

A function f{t} is called periodic with period T, if f{t + T)=f{t) for all values of t and T>0. For -
example, the trigonometric function sint and cost are periodic function of period 2 x. :

Theorem 9 : Iff{t) is a periodic function with period T, then
Lf®}= #,-I&'mm |
Proef: meﬂ:td@ﬁniﬁul:oﬁapln transform, we have
Lfm}= Iu*‘f(m = }:*‘fmm + Ie-ﬂrnm _
o o T

If we substitute t =1 + T in the second integral on the right hand side and write dt = du, we get

s )
LE®)= [e=f(0dt+ [e ™ u+THdu

]

e"‘f{l}dt-rc"rjc"f{u)du
L]

e*f()ydt+e"LEWm}

Lt B b

b
_ Rearranging, we get L‘Em}"l—_zﬁfr‘m}d?
[}

Example : Find the Laplace transform of
: L, 05t<s2
f{ty=
s {vl, 2<t<4

f(t+4)=£(1)
Solution : In this problem, f{t) is a periodic function of period 4; we therefore have

&
LEO} = [t
i 0

1 [z 4 )
= j e*f(1)dt +je-"ru:.m]
Lo 2

2 4
- jc*.1m+jc*{~|;d:]
N 2 1

-2
R ]
1-e™| s s s

16




Inverse Transform

So far we have discussed various properties of the Laplace transform and studied the
Laplace transform of some simple functions. However, if the Laplace transform technique is to
be useful in applications, we have to consider the reverse problem too, i.c. we have to find the
original function f{tywhen we know its Laplace transform F(s). Thus if

| L{f(t)}=F(s) |

then f(f)=L"F(s)}.

In other words, the inﬁrcm Laplace transform of a given function F(s) is that function
f(1) whose Laplace transform is F(s). It can be established that f(t) is unique. Here L is
known as inverse Laplace transform operator. From the elementary definition and from the
result obtained, thus in finding the inverse Laplace transform which are Laplace transform of
some elementary E‘mmimuasijnﬂnfollnwing table:

|

i 'Ihbleh Table of inverse Laplace transform
F(s) ECH F(s) i) _F(3) 0]
f - a . a ;
0 0 i ST _4 smhat. st sinat
1 S S
s 1 E-. B g cosh at ST +al cosat
l ) . l ‘l tlﬁt &
S-a % ‘V1+§? 1 s-a 2
_ S
1 . 3 1 1 h
S+a e a+sh  HI0 S +1 :
k] 3 1
e* 2 . ot
— t — —=singft] SRS sinat
§? . g ool B

In most of the problems we have considered earlier, L{{{t)} isa simple rational function. The linearity
property holds true even in the case of inverse transform. That is, if F (s) and F(s) are the Laplace
transform of f (1) and £(1),, and C, and C, are any two constants, then

L{C,F,(8) + C,F,(s)}=C,L*{F,(s)}+C,L{F (s)}
By expressing L{f{1)} as partial functions, we should be able to recognise them as the transform

of some known function; with the help of which we can write down the inverse transform. Similarly, shifting -
property.is a.'lsn useful in constructing the inverse transform of some functions, which is stated in the

17




following theorem:
Theorem 10 : If L{f(1)}=F(s) then
L'F(s + a)=e* L {F(s)}
: (proofiis left to reader)
Example : Obmunmupmwﬁfmmof
4s® ~35+5
(s+1Xs" -2s+2)°

Solution : Using partial fraction expression, we can write

4s® -3s+5 el W Bs+C
(s+INs*—25+2) s+1 s =2s+2
whence we can find that
a=2p=%c-1
5 5 5
The given expression can now be written as
4’-3s+5 12 1 8 » 1 1

I —25+2) S5+l SG-D+I 5(-1 +°

FE e

i " .
e s o) b eeeld,
(s+1Xs*=28+2)] ' 5§ s+1)] 5 |(s=D*+1

} oo 1
- _L (PP 0 e A
% ia : L7 5 {(;—l}’ﬂ’}

=Ee"+§—¢‘r‘{—i+l}+l='L"{ . 1}
5 5 s5+1] 5 st +1

(by using shifting property)

12 , .8 2] & 1 1
=gl =g L L—l{ } +—g"si
il [ {sz +_1}"." - o] I ideol

12
5

= e"+Ec'[msl+sint]+le‘aint
.5 5
Theorem 11 : If f{t) is a piecewise continuous function and satisfies the condition of exponential order ot

fit
such that H’% exists, then for =

L 9l tf[x}d:r.
|
5 a

18




Proof: Let

g(t) = | (x)dx, then

i}
g(0) =0 and g'(1) = (). Also

L{g"()} = sL{g(t)} - g(0) = sL{g(1)}
= _L{f(t}]=sL{g{t)} '

Therefore L{g(0) = >

e {8

This result can be generalized to show that

sI

L“{F{“’}ﬁ [ffya®
Theorem 12: (change of sca]n: property): If

L™ (E(s)) = (1) then L™ {Rs)} = %f[i]

: _ (proofiis left to the reader)

Convolution theorem (Faltung theorem) : ;
We ofien come across functions which are not transform of some known function, but then, they

can possibly be expressed as a product of two functions, each of which is the transform of a known

function. Thizs we may be able to write the given function as F(s)G(s), where F(s)and G(s) are known to

be transform of the function f{t) and g(t), respectively. :

'I'Ilwrm 13 : If F(s) and G(s) are the Laplace transform of f{t) and g(t) respectively, then F(s) and G(s)
is the Laplace transform of .

f£(t—u)g(u)du
a
e, L (RS G®) = | £t - w)g(u)du
1]

This integral is called the convolution of fand g and is denoted by the symbol {*g.
Proof : From the definition of Laplace transform, we have

F(s)G(s) = [?e'“f(v}dv] []’.e"g[u}du]
a 1]
AT

= [ f(v)g(u)dvdu
. bug

=Tgtu}{fc““‘“’ ftv}dv} du
o a
Letu+v=tinthe inner integral. Then
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Hs)G(s) = T:{u}{je" e u]dl}du
-0 [ ]
Change the order of integration is shown in the figure. Then we get
F(s)G(s) = ._f {i’c" f(t=u) g{u}du}di
o ole _

u
Py
o~
>
L =0
. el >t
Figure Convolution integral

= Ie"‘ {i Hi-v) g{u}du} dt

-l{if{t—u}g{u}uﬂu]
* hence the resuit.
 Definition : We define the Laplace convolution of f{t) and g(f) by the integral
' f*g=Jf(t—u)g(u)du ,
Itcanbcvuiﬁudtmfa:dgmbeinmdmgmnummnmmjm,Lc.fandgmnomnmmﬁmmus,
f“';==Ef{t-—u}g{u}du=ig[t—n}f{u}du:g*r‘
Example : Find the Laplace inverse of

s - I
Oy Oy Wiy
Solution :

(i) Method 1.

: ;
Lr._‘t F(s)= e tlm.f(t}-‘—{ sinat

+a!’

2
(s* +a’)

d
Now, Eﬂﬂ“ - . Therefore,
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k "E. =91 5
; L{dsF{s}} IL{——o-—-{sz+'I]2}

- R | ST
= (~Iuf(1) = -2L {[sxﬂl}l}

o L_'-{‘(;:—f“ﬁ} =5 f0= %.%s'mal

a
Method 2:
We can write
(s* :a*‘_l‘l i :a‘ g :11 = F(s).G(s)
Thenf(t) = cosat, g(t) =-1-s‘mat
We have by convolution theorem

ol o8 -1 s sina(t—u)
LI{{sz +lz}:}=L [F{s}.ﬁ{s}}:lmsmq_l'idu

=li[simtmau-msnsimﬁ}cmaudu_.
ao
5 sinatfcus’ audu - Eﬂ;sinmmaﬂdu
a a a o
1 t |+ cos2au cosat ¢ .
= —§j . dl.l.—-
g S T e |
1. t sin2at) cosat i 5 oy i
A - e | - | —cos2at
asunl(2+ 4a] 43,{ - )
_ tsinat '
2a
(ii) Selution
Method 1: :
We have from (i) above that
. 5 tsinat
Lt{(s’+a1]’}= 2a =D o)
o a1 t usinau . '
— - 3 d
ot et [ gt
1 ucosau | L. : i
==l s LT L (integrating by parts)
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—-I—[-ltmu + sinm]
2al a a’

=$[sinﬂ —at cosat]

Method 2 ; '

We can write '
TN

{sl +l:}: s2+a' s +a

- =RS).G()

then f(t) =-smat glt) = -5mat
Nuwmﬁummhmﬂnum

-1 I
L {{s: +a’ }: }

i—l-sinauisina{l-u}du {
oa a '

[ ; :
TJ sinau(sin at cosau — cosat sinau)du
o

mnj{t—mzau}

sinat ! .
2a’ jsm " al p 2

du

A Tty

= #[&inu —atcosat) (simplifying)

ﬁii}Mthd.l I.aﬂ]"{ Inz then f{t) = e”L“{l}=t¢"

VS
Now, L {s'(s_+ 1)
Again

ol ]

--j[-e" - ue™ +1)du

:}=-!u="duz~c"‘+t=" +1 (integrating by parts)

C=E=l+eT (e —te” + 1)+
=te™ +2" -2+t
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| | 1
Method 2 : We can write 5:(5+|]j -5] '{5+“:

then f{t)=t,g(t) =e"t. Usingconvolution theorem

o 1 S
L I{m} =£'IIE (t—u)du

|
={(ut—u?)e™du
o

= F(s).G(s)

_ =™ +2e™ +1-2
Example : Find inverse Laplace transform of

. _l. % " Ei'_zp & 2
(i) h{h-s’] | {ii) $+:] W

: 1 st +1
Solution: (i) LetF(s)= l+;; =ln-:,-
d st 2 2s-(s1+)) 2s’ —-2¢" - 2s 2
T — = 25 = - = -
ten ds?m st +1 st : si(s* +1) s(s? +1)

T T
: {dsﬁﬂ} : {s{s’ﬂ}}

= —— =1 l
= (-Def(t)=-2L {s{s*ﬂ}}

s(s>+1)] @

L"{ .1 }:;‘sinudu= 1-cost

L) = 2(1-cost)

(i)
Let He)=hn2i2
5+1

s+1(s+D)—(5+2)

s+2  (s+1)
i

-{s+2}(s+i}

er ik % F(s) =
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Therefore

F{’} =_ {{s+l}[5+ z:u}

= (~Itf(ty=-L" {( = l‘j{s+2]}

- elea) 1
= f(y=L"{F(s)} = lL {(5+:}(5+2)}

By partial fraction we can write that
1 N R
(s+1Xs+2) s+1 s5+2

Therefore

o M b S e
(s5+1)s+2) s+1 5+2

=et—e

e-l _e—ll

~ ()=

Solution of Ordinary differential equation

The Laplace transform technique is one of the powerful tools for solving physical problems involving
ordinary differential equation (ODE), particularly initial value problems. It reduces the solution of ODE to
the solution of an algebraic equation. This method has a particular advantage in finding the solution of an
- initial value problem, without first finding the general solution and then using the given initial conditions for
m!mnngﬂum-bmrymmu

Example: Sulv: K+4i=-81; x(M=2"(0=0
Solution: Taking Laplace transform of the given ODE, we get

X~ $x(0) - x/(0) + 4 {sX—x(0)} = ~-§-

_ LX)
Using the initial conditions we get

s’ X+4sX = ——31—

5

therefore X = — -

§'(s+1)

1
=L"(X}=-8L"
andso 2 (X L {5’{s+l]}

i 1
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H L—r __E__ -ﬁ L-I L-ze-'
Simce L T2 * 1341

Therefore using convolution theorem

L—l{ 1 }=je-{1—l]l‘id.u

5!{5+ 1) o ; 2
: - -
= d
= !u e du

[uzc' ~2ue"’ +2¢“];

[tie! - 2te* +2¢' ~2]

et
2
et
2

_. = El[t1 -2t +2-2e"]

Hence the solution.
Example. Solve "
ty"+y +ty=0, y0)=1 y'(0)=0
Solution: We have
L{ty”) +L{y’} + L{ty} =0
d_ d
——L{y"}+{sY -y()}——L{y} =0
ds{r] {sY - y(0)} dshr}
ds, dy
,——15 Y —sy(0) -y (0)} +5Y—1—-—=0
== {s'Y-5y© -y’ O} +5 =
j Here L{y}=Y
R N

dp, dY
~Zly- Y=~
ds{s s}+{sY -1} =
= (5 +l]ﬁ+s&'=ﬂ
ds

Which is a first order O.D.E. Rewriting we get
: dY sds
—_— 4 =
Y &+

0
l’l:1"1'+%lt‘l{aJ +1)=Inc

c

Y=

Vst +1
Taking inverse Laplace transform we get y = cJ (1), whereJ (1) is a Bessel function of order zero.
Since y(0)=1=cJ (0)=c, the required solution s stjn{'}




dx
Example Solve i Ix =3y

%;i:y—h; x(0) =8, y(0) =3

Solistion We have by taking Laplace transform
sX - x(0)=2X-3Y or(s-2)X +3Y=8
sY-y(0)=Y-2X or2X+(s-1)Y=3

' Solving for X and Y we get (by cramer’s rule)
__8s-17 _ 8s—17 N 5
s'-3-4 (s+D(s-4) s+1 s-4

333—22_ Is-22 ='5._I
s =3-4 (s+INs—4) s+l s—4

Then x=L"(X}=5"+3" y=L"{Y}=5"~2"

Solution of partial differential equation:

A large number of problems in science and engineering involve the solution of lincar partial differcntial
equation. A function of two or more variables may also have a Laplace transform. Suppose x and tare two
independent variables, consider t as the principal variable and x as the secondary variable. When the
Laplace transform is applied with t as a variable, the PDF is reduced to an ordinary differential equation of
the t-transform V(x,s), where xis the independent variable, The general solution V(x,s) of the ODE is then
fitted to the BCs of the ariginal problem. Finally the solution u(x,)is obtained by finding the inverse
Laplace transform. Thus the Laplace transform is specially suited to solving initial boundary value problem
(IBVP) when conditions are prescribed at t=0. L

Example [fu(x,t) is a function of two variables x and t, prove that

(i) L{%} = sU(x,5) — u(x,0)

e {a’ﬁl} 3
(i) Li—5 =5 U(x,5) - su(x.0) - u,(x.0)

(iii} L{?ﬂ} . dU(x.8)
ox dx
d*'u| d*U(x,s)
) L{EF} ax

where U(x,s) = L{u(x,t)} -
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" Proof:

R0, L{a“] ]"e"—d:_ Ltje"‘.-gt—udt .

= E_[{e"uu.l}}ﬂ +8f e""u{x.l}d&]

= —u(x,0) +s§="‘u{x.na = sL{u(x,t)} - u(x,0)
" = sU(x,8) - u(x.0) i

e 5

=sL{V(x,t)} - V(x,0) (using (D)
=s{sV(x,s)-u(x,0)}-u (x,0) =5V (x,5)-su(x,0) - u (x.0)

o ‘{ax}ﬂ oae

=2 [a=K
d;{e u(x,t)dt

=ium.m'=%

; d'u o] -4 du
« (iv) L{E}*‘{E]’:Eiﬂ(hﬂ}' “=E
n_.[l,[a“[" l}}] -

dx[ L{u(x IH]
dl
g
Exsmple Solve
u_ 3%

X —5 wo=Lu(x0)=0
thhnmmuphmmfmofﬂwpmmddﬂumhd@mm&mml
we find ;

d'U
sU—ufx,0)= )

3
or %—SU‘-{L U(x,s) = L{u(x,t)}

and U(0,s) = j}

F




U(x,s}=ce ‘r+c1e i
Since u(x,t) must be bounded as x — ==, U(x,s)=L{u(x.t)} mustalso be bounded as x — == . Then we
must have ¢, =0

so that U{x.s]=u,c“";
Now V(0,5)=c,

-x43

Therefore U(x,5)= =
' By taking inverse transform we have

| —
_q-l -8 - s X
I.I{Jl.,f =L"{U(x,5)}=L {__S } m‘ft{vi'jf]

Example Solve by Laplace transform md}mdlheon:d:mmmmnnqmm

2
%{— g’-' D<x <o, t,}ﬂ
subject to
ou(0, n__A
™ kmd u(x,0)=0

Solution  Taking Laplace transform of the given PDE we get

d'v

sVi(x,s)—u(x,0) = kd’

-zt

1]
Vix,sl=c,e ‘I: +c,e X

Since u(x.t) is bounded as x — oo 50 also V(x.s), therefore we must have ¢, =0

Uix,s) = cze_‘ o

' ¢ 8t du(0,1) A dUio,s) A1
_Taking Laplace transform of W =—Emggt T=-¥';

Differentiating U(x,s) with respect to x obtained above “
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Taking inverse transform we get

o

a(x,1) = L {U(x.8)) =~ L

|2
dAlN A 5 f %,
' JE[JE JE“E.{:JE)]

Example: Using the theory of Laplace transform derive the solution of the diffusion equation
9’0 1 00
32 - K 3t Where0s<x<a,1>0and 0(0,1) = f(1)
0<x<a, t>0 and 8(0,1) = £(t).8(a,t) = 0,8(x.0,) =0.

Selutjory Taking Lplace transform of the given PDF, we get

d’0 =
=88 (x)-0(x.0)]
= “S_ 5] {X.S} using 8(x,0)
K
d’8 S = = ”
S G 8=0  where 8 (x,s)= L{ﬂ‘{l-ﬂ}
Solution is
C = F{sil eq{;l . C.= F{:ﬂ e“E‘
e VE_ Mk ALl

Now taking the Laplace transform of the conditions we get
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@ (o0.5) = L{f(1)} = F(s)
Oa,5)=0
Using these on §(x, s) obtained we get

8(os)=C,+C,
=Hs=C,+C,

and O (a,5)= C,a.E +C,qu
=&.[}u C,:‘E H‘:,e_'JE

Solving for C, and C, we get
F(s) edﬁ KH(s) c"r:_
Cl " & s " 01 i ] n
Therefore '
s
n 1 sinh{a - x),/—
B(x,5) =- f(ﬂ - |:¢“_ﬂ O -e-'HlE] =FH(s) b
g‘ kg Wk Elﬂhi;i':"
~ 8(x, 1) = L (B(x,9))
\ _ sinh(a - I)JE
IL-I Hs} k
\ 5
sinha X
;o Miscellaneous Problems
Examplel.

Evaluate (i) ifl:ﬂdt =y
: 0
Solution: (i) Let f{t) =e>e*
. I

Lif(D)}= -3 57!6 = F(s)

The given problem can be writtén as

T I wim s=0
] t

-f—{s}h}mih s=0
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e : L -
which equals Io F(s)ds [Smm. %}=!H§}d&] ‘

- ds - dﬁ ?.,—
=f——[— =8

£s+3 J;s+6
=23 igpr-nd

5+6
=In2
o

Example. Find inverse Laplace transform of
| '?\‘: —,J; ~yE ;
Me™  ((E— @— G- L 0w
s st s?
Solution: Using infinite series, we have

3
; 1 1.3 452-
Al yhil _q-1|1_ ¥s ys ¥ .
B i L e e

.= L;'{I}IwyL" {JE,+£—L" {s}- 2’31!1_-1{55 } . :

Using L™{s”} =0 for any integer p, we get

e - 1
I_‘_'{“ Hr] e ‘FTE

CEIEv
ulu-
i
#a |

)
5
+
|

b | o

l

B2 |
)
+

2 2t 2!
2iJn|
v £
i [ -1
. _
2widn :
£
s il . - g'“'; ‘l ye dn &
(ii) We can write immediately as L > =] 3
udn
i 2 T p— . t-—-}-f-— =u,ﬁ{ y ]
_Tr_t- [ e dv (setting u “1] EI

4t




i) Let F[s]=¢"’“_r;
=£Hs]= - v-!Tc"”"':

252

=5 (~DHf (1) = — L"I L "";}
21

=)= -L“‘ —y-l—c""';]
2s?

o
=n:'{ E }=%f{t)=%L"{F{s}}

Js
o
5
Y i fn
—t
Jmt
Let s
(iii) F{SJ-
¥
e S
=>dil={s)=- - F'z
. 25t s

i et Y. )t
~1 =——1 ]
= (-)tf (1) ~ l 3 l

ki |

5

. 3':“'; .:""":
St s ) =L —— +3'L' }
: : s‘ s
=5L"{ ﬂ;] 2 £(1) - r:*{"mr}
= y 5
sl ;

= 2L (F(s)) — {”I}
yL -

- e s )2 *’""“"{7]
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Exercise

L (i) Prove that l{]'w-d } "‘{’:”

i) [* =2

2. Find the Laplace transform of

u{t-i‘-’-‘.} 528
3 3

) f®)=

i . ' n
0, t<—
3
{.u} f{t} 2'-1: 0=t=1
5 : i, t> 1

3. () mX”+bX +KX=F(); X(0)=0=X’(0)
(i) Y'-tY'+Y=L Y(O0)=1 Y(0)=2
(ii) tY*+Y'+1Y=0, Y(@=1, Y'(©)=0
(iv) X" +9X =tcos2t; X(0)=0=X"(0)
(v) X"+4X' =-8t; X(0)=0=X"(0)
(vi) X"+@°X’=KsinAt; X(0)=0=X"(0)
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Unit-2
Fourier Transform Methods

Joseph Fourier, a French mathematicians, had invented amethod called Fourier ransform in 1801.
Since then it has become a powerful tool in diverse fields of science and engineering.

Fourier Integral Representations:

Definition(Dirichlet's Conditions): A function f{x)is said to have satisfied Dirichlet's conditions in the
interval(- L, L), provided f{x) in periodic, piccewise continuous and has a finite number of relative maxima
and minima in (- L, L).

Leta fnction f(x) be periodic with period 2L, .. f{x + 2L)= x), and satisfy Dirichlets condition
in the interval (- L, L). Then f{x) has a Fourier seriés representation for every x in the form

PN W RGN e |
f(x) 5 *_E_I(l.m L +b, sin T —
where 2, =%Tf(t}ms——"f‘dt 0=00 2 O i {2)
. ; =L 4
al 1 .o oot 3 . ‘
b, = L 4l_ f(t)sin L dt. n=12,.. e 03)

. Here a_,b, are called Fourier co-efficients. Fourier series representation, however, can be
extended to some non-periodic function also, provided the integral of the modulus of such a function f{t)

: J1EC0 | dt is fiite

Substituting equations (*.2) and (*.3) into Fourier series (*.1), we get

L i L
f(x) C‘ZI_L __[Lf(l}dt+ :‘":I[ %"_ij[l] c'os%cu&%dl-

1 Ty sin D= gjn BEX
+L.]E'(t] sin= sin T dl]

Noting that cos (A - B) = cos A cos B + sin A sin B, and interchanging the u:ﬂmﬂfmmnutiunand
o L 1t = on{t—x)
f(x) T + F]Lf{t]dt + L_ij{t}t:.v;,;::-;ns—-«L d .4

Further, if we assume that the function f(x)is absolutely integrable, and allowing L to tend to infinity,ie.
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NIf@dt <o
We get i%_—?f(t}dt 0

In the remaining part of the ini'mite.mm of equation (4), if we set As = f,tbceqmﬁmmdmm

X
fo0= Lt L Tro Feospase—njsae )

 ASL — ee,As — 0 implying that As is a small positive number and the points nAs are equally spaced
along the s-axis. The series under the integral can be approximated by an integral of the form (as As — 0)

IM{suvx}}ds
thus equation (5) can be writlen as
(=1 76 Jeos(t-n)kisdt =L T Trycosfoct—x)Juds

which is the Fourier integral representation of f{x).
Fourier Integral theorem:

Thoorem 1:1f fix) saisfies Dirichiets conditions or — e < x < e» andiftheintegral 1F(X)x isabsohtely
convergent, then

1
n

ey ]

da JE(t)cosa(t—x)dt = % [f(x+0)+f(x-0)]

To establish this result, the following two Lemmas are used.
Rieman-Lebesgue Lemma: If f{x) satisfies Dirichlet's conditions in the interval (a, b), then -

Lt f£(x)sin Nxdx =0

L {£(x)cos Nxdx =0

" Riemann Localization Lemma: If f{t) satisfies Dirichlet's conditions in the interval (o, a), where ais
finite, then
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Iru} SDNUgt 5 21(04) asN s
Proof: We may write
i f(t) imiﬂldt - f{ﬁl-]i :‘-i“TNlm +§ [f{n-f(m}]ﬂﬂtﬂlm =1, 41,
Since the function £(t) i:mtimmuﬁo, a), from the definition of derivative,

f(t)-f(0+)
) t

is continuousiin (0, a). By the Riemann-Lebesgue Lemmasince the integrand of I, is boundedas N — eo)
L~0a N—e :

Moo Le o8N g = 1y £eon)[SNLGy = 1t £(04) ] HON gy
N-t=p t N == o t N a u
| = (04)[HRY gy = Ef(04).
g u 2

Proof{Fourier Integral Theorem): Since the integral Ef{x}dx is absolutely convergent, E!f'[!} |dx
is finite and converges for all cLin the range (O, N). Also | cosa(t — x) | < 1, implying that the integral

wr

b

1 F(t) cosa(t-x)dt

convergent and is iuﬂt.pendmtuf o. and x. Thus, after changing the order of integration, the double
2 , :

I-E [if{t} cum{t—l}dl]dﬂ ...... (6)
can be expressed as
=] [Ef{t}mu{t—x}dﬂ]dt= Tr{t}[?'ﬂ?ﬂ—?ﬂ ]dl

Let v =t - x. then the-above integral becomes

I= ff{"+1]5—du ==[ j+?+?+? ]f{v-i- x]—si“vﬂ“du
- [ |

=LtL+L+], I A 7 *)




when N — oo, I, and I, both tend to zero in view of the Riemann-Lebesgue Lemma. Thus the only
contribution to the integral will be from the neighbourhood of v =0, Using the Ricmann Localization
lemma, we get
1, = Lt Jfv+ 0 8RNY gy 2 Zeiyy
LT ] v 2
and the second integral

e iru+'u;ii%ﬂidv=ifu—v}@-‘!dv'= 25(x-)

Incorporating these result into equationy(6) we obtain

If f{x) is a continuous function of x, then f(x H)=fix -)=1f(x) -
and equation(7) reduces to
ﬂ;:]:i-n;ch[ if{t}casu(t-x}dtjl wel8)

Ifxisapointofdiscontinuity, then  f(x) = Z[f(x+)+1(x-)]

{.¢. the integral (8) converges to the average value of the right and left hand limits. Thus the proof of the
Fourier integral theorem is complete. _
In order to bring out the analogy between Fourier series and Fourier integral theorem, we rewrite
equation(8) as ' : ; :
f[:}=-}tf Tf(t](mmcmu +sinatsinax ) didx
0 - P ; :

Ifwedefine
A{u}:% Tf(cosat dt 9) |
B(c) =i [f(tysinat dt wene10)

The above equation can also be written as

f(x) = ][ A(a)cosax + B(a)sinax Jda
B
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Sine and cosine integral represcatation:
Equation(9)gives  A(a) =% Jf(x)cosax dx
Iff(x) is an odd ﬁ.lm_lim i.e. f{-x)=-f(x), then

A@) =L;1Tf(—ﬂmm dx = %:f'f::x}i:mm dx

= -% Tf(n}msux dx = - A(a)

implying A(a) =0 and
B(a) = ﬁ f(+x)sinax dx 1)
Thus, equation (10) rerduces to
f(x) =T B(a)sin ax da

MuﬂmemwﬂmmMmB{u}uﬁ:&m&byﬂwmhﬁmﬂl} SI.I'IZI.IIEI.'I}’ 1ff{x}
. is m:vmﬁlmbon,:e f{- x)=+ f{x), then we obtain the Fourier cosine integral representation

f(x)= I A(a)cosax da

where ﬁ{u]:%?f{:]mm dx
o

Example 1.: find Fourier-integral of the function

0, x<0
f(x)= % x=0
e™, x>0
Solution: The F-integral of f{x) is given by

ﬂn)=f[ﬁ(n]mu+5{u}smux]da where A{u}:i?f{x}mmm
] —

=;E[_?_ + ]f{x}mu dx

A ey, [
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=lTe" cosax dx =1
L

n |+a
.E{u}=-?1;lf{1]sinuxdx =i1e"‘ sinax dx =it:;*
Atx=0,
to=d Tikria- Lu'el - o)

Therefore, the F-integral thus represented is justified.
Example 2.: Find the F-integral of the function f{x), where

1 <|

0 |x|>1
H:noedadun:ltﬂ.t. 'f"ai_nﬂdﬂ=£
a 0O 2z

Solution: The F-integral of f{ix) is given by f{ﬂ=1[h(u}cusux +B(a)sinax Jda

where Muﬁilffx]cmmdx =~:t—( -]:+.lj:+'{. ]f[x]cosuxdx

l 1
== [cosaxdx =
|

and ; B[u}:—l-isinm::--ﬁ Thus f(x};—gfﬁii'imsuxd;
I_. lﬁ a

MNow we can write

o B |x]<1

j“““msuxdn=3f(x}= 2

R o X0 |x|=>t
2
%. |x] <1
0 [x|>t

L}

1]




putting x = 0, ot =0 we get

5i“&49=

g

LT ]

[ S]]

Example 3.: Using F-integral representation, show that
T Sifl fw 3if) WK =Esiﬁx 0<x<n
o 1-w? 2 ' &
=0, x>n

M:Byfmnjﬂsh:mfmﬁxj.wehwe

f(x)= ?B{w} sin wx dw
]

where : B(W}=%‘jf{x}sinwxd:
9

A e W

%smumw&dﬂ ﬂg—‘ln-—-

'al"

=%( [+] _]ﬂ:x} sin wx dx =%

0 x

f(x)= I ’m“smwxdw =ZXsinx,0<x<x
1-w? 2

=0, x>

Example 4.: Show that

T d1=-~e"+x >0
1]
Solution: Let f{l}=~;~e",x >0

By fourier representation for f(x), wehave ~ f(x)= | A(A)cosAx di
& 0

where A{l]—zj f(x)cuul.xdx=—j c cosAx dx
L
1+a?
!ledl. f{x}-—: ,i1>0
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" Example 5.: Show that when f{x) is an odd function
f(x)= ETf{t}dlismmsm ux du
! Ta 0
Solution: We know .

£(x) = | [A(u)cosux + B(u)sid ux }u
! :

wher h{u)=%] f(t)cosutdt B{u):J‘;E £(t)sin ut dt

when f{x) is anndd_ﬁmcﬁm Afu)=0.

Therefore  £(x)=] B(u)sinuxdx
g 1]

T

& —

[lif{t]sinundi]sinuxdu

e

= T[Tfmammd: ]smuxdu
o Lo J

= 2? f(r)di Tsin ut sin ux du
To ]
Example 6.: show that when f{x) is an even function

f{x):%zrmmzmmcmmm'

(since f{x) is odd)

Solution: Weknow  f(x) =1 [A(u)cosux + B(u)sin ux Jdu

AsinexampleS. B (u)=0and Alu) = ﬂ f(t)cosutdt

Therefore

f(x)= %’i [ Ef{t)om utdt ]cm ux du

=

A e

Tf [t}dtTcmut cosuxdu
o Q
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Fourier transform Pairs:
" . From the Fourier Integral Theorem, we have
f{l]ﬂ;l;? Tf{t)cmu{t—rx]dldu
G -
Intnmnfdmmmphﬂpmmmalﬁmchm.ﬂncbmm
f{l]z-L? Tf(t}[ehllﬁu +e~iﬂ.l-ll }hm
2‘5 — !
=-L] Tf®)e™*dtda+] [f(t)e™ Vdida
2’:9 — 0 == d

Let o=~ ot in the second integral, then it becomes

-1 Trwe*drda= | JE@e™dtda
1] —_

s - f{x}=—2-1£1 lm}e"""'dmu C(12)
This is the exponential form of the Fourier integral theorem. Equation (12) can be rewriten as
f(x)= i [ ﬁ:f_f{t] e“'dt] 0 (13)

Thus we define the Fourier transform pair as follows:

Definition: Let f{x) be a function defined on (— o, + o) and is piecewise continuous, differentiable in each
finite interval and is absolutely integrable on (— &, o). From equation (13), if

-H“}=EIE Jf® el SR KIS (14) , -
" then we have, for all x
fix)= _-_[-F(u} e dx k1%

Here, F(o) defined by equation (14) is the Fourier transform of f{(x) and f{x) defined by equation (15) is
called the inverse Fourier ransform of F{ot) and is denoted by

F(a)=Z[ f{1)]
F(x) = 7'[ F(a)]
which constitute the Fourier transform pair.
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When f(x) s an 0dd fimction then the Fouriersine transform of fx) and itsinverse sine transform
is givenby

F,(a) = |f(t)sinatdt
o

f(x) :%EF,{u:iisin axda= 7" [F(a)]

Similarly, when [{x) is an even function, we can obtain the Fourier cosine transform and the
corresponding inverseas g '

E(a)= uffft:rmsutﬂt =7 [£(V)]

ity :ﬂﬂ (a)cosaxda= 7 - [ F ()]

Example : Find the Fourier transform of f{x) defined by

; 1 Ixl<a
f{ﬂ-{ﬂ |x|>a -

and hence évaluate o g .
sinaacosax . Tsinga

-——-—-—‘-dﬂ.,f
a o @

da

j—1

Solution: From the defination of the Fourier transform

T jax ST —il__‘h:_ 2 pler _g-iea
s g R PYRE u(_ % )

ia

Therefore

2sinaa .o

Fla) = a
Hozi;!f";am=2a a=0
3 =-=I—H3§!I_r,l_.§!. T T 1 11153,.

Now fn =L ] a2, .5,,_{0‘ s
: 1] sinm(cmuxwisinm)duz 1, |xla
o R . ﬂl I!I}ﬂ.
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Hence equating real and imaginary parts

J 0, |x]|>a

-

- Bmuacnsuxd E{ﬂ, |x|sa

’ = sinaa
Also by setting x = 0 in the above equation, we obtain |

da=n

Since the integrand is even, we can have ?sm:a dﬂ=—;-
In particular putting a = 1, we can have .j sm:a da-:_—%

Example : Find the Fourier cosine and sine transforms of e* and evaluate tha integrals

EN. e[

Solution: Given fo) = ¢~** and following the definitions of Fourier cosine and sine transforms, viz.
. E(a)= yc{f(x}]wzfixl.mudu
L Flfa;mg‘[f{xnuzr(x}smudx
we obtain : :..rt[c"‘ ]=E ™ cosaxdx
?‘[ﬂ'“ ]= I Ie'“sina;xdx
Let I, =I ™ cosaxdx, I,=_E :'“sinuxdn; hﬁﬂmllb}'mmw
b

[|=(_ —%e'“cu&u l --E e™* sinax dx =‘%-Elz '

St |

Similarly integral 1, by parts, wehave 1, =21,

solving for I, and I, from above we get
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b A,
E = — E u}_,_
Hence E.(0) s P L (

a’ +b?
Then f{x]:%?ﬂ{n)msm.du
B L]
g _u_g*' b TCOSOX L ;-
le.” Sml O o e
Similarly, it can be shown that

asinax 4. . K.
F +t:-’mIL 2

Example: Find the Fourier transform of
fix)=1-x%|x|<1
=0,|x]|>1
andl " ;! xmax;sm:m%u

X

Solution:  F(a)= D[f{x)lz_;'l (1-x? Je**dx = f‘;{ sine —acose)

Then f(x}=2— Je " da
= %1 ;%—{sinu—umsu}e'i" da
- z_lt.i f—;v{sinu'—acnsa}{mm ~isinax)da
ZL.T. —-“T{smu-ucosu){uusm ~isinox}da = f(x)

_J1=x* Ixl<l
i |x|=>1

Equating real parts we get
(sina-acosa)cosax , _ [1-x* [x]<}
;.!. o’ du-{ 0. |x]>1
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i i Efi_ o3
__h”{smu acosu_}cmuxdu: 2{I X } Ixi-:l.
0, fx|>1

-'(sh].u—amu} aa 1) 3=
[ antaa=5(1-} )4

= | acosa—sine . @4, 31

. 2 8

Since the integral is even, hence
Tacosa-sine . a4 __3x
S . A

Tocose—sina . @4 __3x
=&£ = mszdu 6

+ . Replacing o by x we get the required result.

Properties of Fourier transform: :

Theorem 2.(Linearity property): If F(a) and G(a) one the Fourier transform of f{x) and g(x)
respectively, then

Z [, f(x) +c,g(x)] = ¢, F(a) + ¢,G(ex)
F[e,F () + ¢,G{m)] = ¢, fix) + c,g(x)

wherec,,c, are contants - ~ (proofis lef to reader)
Theorem 3.(Change of Scale): If F(x) is the Fourier transform of f{x), then the Fourier transform of
* Raxyis %F[ﬁ J | (proofis left to reader)

Theorem 4.(Shifting Property): If F(o) is the Fourier transform of f{x), then Fourier transform of
fix - a)is e¢"*"F(a) - (proofis left to reader)

Theorem 5. (Dim:rmﬁatmn] If f(x) and its first (r - 1) deriva tives are cmmnuous, and ifitsr™
derivative is piecewise continuous, then

F £ ()] = (-i0d)* F[Rx)] =043

provided fand its derivatives are ab solutely integrable. In addition, we assume that f{x) and its first (¢ - 1)
_ derivatives vanishesas x — oo,
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Proof: From the definition, we have the Fourier transform of gf; as

Fl

po[ L ]I e saro@

dx
Integrating by parts, we get
-il_‘__f‘_. iax d f ml tax d. f
£ dx' € d'x' (dxr—l ]_ I (Iﬂ-}c d:l'.' =1 dx
=1 -
If we assume mﬂdx"‘ tends to zero as X — +eo, we may write the above result in the form
F(9(g) = (-iat)*F """ (@)= (i)’ F *,".?’(ﬂ.} =.....={-io)"F(o)
Hence F ‘“tu} = (<o) F (o)
and therefore F[FHx) = (-ic)' F ()

Convolution Theorem(Faltung Theorem):

[fF{u]mﬂG{u]m&eFm:mumsﬁmufﬂwﬁmmﬂx}mdg{x} then the product F(cr)
G{0i) is the Fourier transform of the nunvuhﬂnnpmdm(f"

Proof: The product £g= [f(u) g(x-u) du

is called the convolution or Faltung of the function f and g over the interval (- e, sa). Than the Fourier
transform of this convolution integral yields.

F(f*g)= el :J:f[u}g{x-u} du dx =_:|':. Te'**f(u) g(x —u) dudx

Since fand g are absolutely integrable, the order of integration can be interchanged and therefore

7 (f tg]: Tf{u{ Tg{x_u]cill i-t!cicudx ]dl.l

Letx-u=7.Thendx=dy, therefore

7 +g)= _?_f(u){v-‘“ Tgtnedy ]dn = T f(uydu [ g (y)dy . F (@) G (@)

—

_.Hmmth:ﬂwmispmvnd
Itcanbe verified that f* g=g* f.
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Parseval's Relation;

If F(a)and G{a) are complex Fourier transform of f{x) and g(x) respectively, then

() 2 TR@)G(@)da = (g0 dx

@ 2 IF@F da=Jif P ox

where bar represeats the complex conjugate.
Proof: Using the inversion formula for Fourier transform, we get

g =5 iG(u}e"'“dn
Taking conjugate Somplex of both sides wee get
Eﬁ=il; iﬁ@e'“du

if{x}s_fﬁdx = TF(x)dx {—21; fﬂ{u}e"'du}

?f{l)ﬁ e'*"dx da

—

[

I.-
b=t

Tf(x)G(a) &™* dadx

1l
| —1

L
2x
- E';iﬁ&i da [_T_f(x}:"“dx:[

=3 [G@)da {F() }= 3= IF@)G(@) da

Putting g(x) = f{x) i.c. G(a)=F (), we get

0T =L Tre @) da

= _T_If{x}I’ dx “‘z"; TIE@) [ da

g jsinfug _x
Enlllplc.shuwﬂ:u‘l' o du 2
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& — 1 |x|<a
Sﬂ.ﬂhﬂl:[.l:‘t (I}_" ﬂ' le}a

The Fourier transform of f{x} is
()= IO e de=[edx jo.  Fo)=2siR0a
Using Parseval's identity

NE P dx = fIF@F da

2 -2
mzﬂdﬂ. #h=gj smlua{h

= [duwm-l-d
-j-_-"'l:[-u M @

. 2

2
sin’ g = B

=]

Pdﬁngun-uwcgctdﬂ-d—“ Hence the integral becomes

- =3 - s 3
21sin"udo _ ma Sin"u,.. &
En o ::-'j} o du=>

Example: Find the Fourier transform of

[i‘,l ofthcﬁmchunqx,t}ussmmglhatuuﬂmﬁm[n 1) derivatives w.r.t. x vanishas x — tee,
(i) %

Solution: (1) We shall adopt the following notation:
The Fourier transform of u(x, t) w.r.t. the variable x ix defined as

Flulx, )] = Je'"*u(x,0)dx = U(a.t)

, L e =
Thmﬂrean-iﬁh‘wfmmofg—:‘is :[ l:’“] HI_%“—

Integration by parts yields

[u(x.t}:i“ ]:_ —ia ]u{x,t}g'“ dx
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If we assume Lt u(x,0)=0

{ du(x,t)

Then we find that %0 ]:"hﬂ’[u[l,t}]=—iﬂu'{m!}

; 3 :
Similarly, the Fourier transform of %;% is (im)? U (e t), assuming that both u and % tend to
Zeroas X —3 tes,

Thaus in general the Fourier transform of the n th derivative of u(x, t) is given by

7 [ _@fl;%] = (-1)" (l0)* L(a,1)

(i) Now

dU(a.t)
ot

o[ 20] ] et tend Tuc
Example(Sobution of diffusion equation): Solve the heat conduction cquation given by
- F%:%.—u{l{'ﬂ;l?ﬂ

subjeot 1o u(x, t).and w,(x, t) both — 0.as | x |3 == and u(x, 0) = f{x), - ee <x <es. ’
Solutien: Taking the Fouricr transform of the PDE, weget
kP U (e, 9= Ul |
or Ufot)+ketu (o t)=0.
Sohionis  U(e, )= Ae™e"
Now the Fourier transform of the initial condition is given by
Flu(x, 0)] = Z[fx)]
ie. Ul 0)= Flo),-=<a<e,

Using this A= F(c), hence Ule,t)=Fa)e ™"
Taking inverse transform we get u(x, =L [R@ye* e™ da

L.- —kal-lax
- _LF{u} e da
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The sbove equation suggests the use of convolution. Ifthe Fourier transform of g(x) s ¢-++*
Then g(x) willbe givenby . ;

g{l}a: i Tc-titt e da

2 ..

But, we know, iF a > 0, b is real or complex, that
i e B
]r:‘“‘mdx=3§£t:‘
- a :
e £ 1 K

iz =3 =-—1- =
Here a =kt, 2b = ia, therefore g(x) Znﬁﬂ ZJthc

Therefore using the convolution theorem, we have

- - Az-a
u(x,t)= [f(@)g(x-a)da = [f (a) ﬁ;?{‘ g -

=tx-a)’ ki g

=f.;ff{a}c & da
' Ennple:(ﬂnh.thnufwwttquaﬁun}:

Compute the displecement u(x, t) of an infinite string using the method of Fourier transfornrgiven
that the string in initially at rest that the iniﬁaldisplmmismcl}!_-w{x{f,_

Solution: Displacement of an infinite string is governed by the PDE

L

F | 2
%%:c]%},_“qx{m
andinitial conditions  u(x, 0) =f{x), - e <x <es,  ux0)=0. -
Taking the Fourier transform, wehave I S TR
7
2 i
_dﬂff'_u-c‘{i.a:-’ w(a.t) or %HIHU:&

whosesolutionis ~ U(e, t) = A cos (cait) + B sin (cot)

The Fourier transform of the initial conditions gives %’r{u{n =0,U = F(a)

i.e. (Aca sin (coet) + Beorcos (cot))t =0 implying Bea=00r B=0. Also, U(a, 0) = F(ex)
= A=F(o)
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Ths Ufe, t) = F(a) X cos (cot)
Taking its inverse Fourier transform, we obtain

u(x, t) = —21; TF(a)cos(cat)e™** da

. El__g.._ =i
ZH_J.F{E} 2 e da

=il #n+ot) + e-iuu-otl

2

. iy €
kIre

=%[2—'I TR@e ™ da + -L [F(a)e == du]

Using the result s{xln—‘—?G{n}e""m weget u(x)=L[fx+e+f(x-cn]

Ennph:[&hﬁnnufhplmmatlu}. Solve the following boundary vﬂwpmbhmmﬂ:hll’phw
y >0, discribed by

H’U a: =0, < <x<
3t ot e <x<eo,y>0 wih ulx.0)= £(x), - s0 <X <00,
uisbmm&dlsy—}ﬂ,um%bamvanishulﬂ—ru

SolmSmﬂmmmﬁmicmofvalucs,wcukcthmaponﬂmlMﬂmofﬂwPﬂEm
dnmabhxmget

(2] o[ 22] -

Sinceuand % both vanish as | x | — o=, we have

i

—u’u(mrhj_ g;lzic"‘“ dx =0

or —U@y)+ ,[Iﬂw]e“"d:]:a

dy

i
or E?T-T'ﬂ—q‘u[u.rhﬂ_
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whose solution is given by
U(a,y) = A(a)e™ +B(a)™

Since umust be bourided s y — o, U (a, y) should be bounded as y oo, implying A(c)=0
for o> 0 but if o < 0, B{o) = 0, thus forany o

U(ay) = constant (e ™)
Now the Fourier transform of the initial con dition yields
U(a,0) = F(a)

Thus using this we get F(cr) = constant.
e U@y =F@)e* = ]roeteax

Taking Fourier inverse transform, we obtain, after replacingthe dummy variable x by &, the equation

—

Rl “(l‘!}=§]-'—? [ Tftg}e.ﬂ,ch.ﬁda]ciu&l
=) T astit-ni-y
=5 [1E)% _];e"" Y da

But _EL ] oS-y g

s 2 T aelreite-n)} 1T a-aly-iiz-nr}
.'[.e ot 2x ! o o

. ¢ [ eolreite-n1} ]" _ _L[ golr-iti-n1} ]-
22| y+iE-x) | 2=x| y-i(E-x) |,
h{

WY, ]=_l._1_._
y+iE-x)  y-iG-x)) EE-xY+y

_y 7 _ f(§)dg
u(ltr}_xi{g_l}=+rz
Tﬁsmhﬁunisnweilhnm?oiﬂunwalfmmuhuﬂiavﬂidhybﬁ,

when f{x) is bounded and piecewise continuous for all real x.
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Transform of Dirac delta function:
The Dirac delta function has been defined in chapter. We may recall the shifting property of the
delta function, ie., ' :

lﬁit—nH(tH =f(a)

and then obtain its Fourier transform as 7 [5(t-23) }= | B(t-a)e'*'dt =&
whena=0, weobtain the formalresult 7 (8()] = |

That is, the Fourier transform of the Dirac delta function &(1) is constant apd equal to 1. It then
follorws that '

7 1] =5 [ e (Dda=50)

Relatiouship between Fourier transform and Leplace Transform: -

Let us define a fimction
fity=e"¢ (1), t>0
=0,1<0
Now F :f(tj}= Jf@erdt =[ ?+'£ ]t‘ (e dt
. - - /
=_§e‘“¢{t]¢l"dl =Ee"“""¢{t}dt
. =1=ﬂl¢{l}dt, (setting x -iy=5)
=L{g(1) }
Exercise

1. Show that the Fourier cosine representation of the function fx)defined by

x, 0O<x<l
f(x)=12-x, l-:x-czh
0 x>2
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27 2cosh-cos2h=1 coqpx
®op , ;
2. Using Fourier integral representation, show that

. 2 CI%IE ]cmxw Eﬁx Ixl<%
L ——dw={2 ¥
0 I—w

o Ix>3

3. Solve the integral equation
0

=ﬂ_l}l,

4. Find the Fourier transfom of

al
f(x)=e *-
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Unit-3
Linear Integral equation

Definition: An integral equation is an equation mwtmhmuﬂ:mmﬁmmanndamum
integral signs. Naturally, in such an equation there can occur uthusm:asmﬂ. For example, for ass<b,

" ast<h, the equations
b
f(s)= [ K(s,Dg(0)dt

£(8)=£()+ [ K(s, Dg(t)de

8e)= j‘ K(s,O{g())dt

mumgﬂuummmaﬂﬁrmm“mmmw
A differential equation can be replaced by an integral equation that incorporates its boundary conditions.

An integral equation is called linear if only linear operations are performed in it upon the unknown
ﬁmmﬂIﬂMMMmhmmhmmnﬂumm thisd:qst:rm:dmlm!y

linear integral equations.
Thﬁmnﬂgmualq'ptﬂfhnwuwnlnq:mmofﬁ:fom

h(s)g(s) = fti]+lj K(s, Dg(t)dt =0 (1)

m&mmmyhmm&mmm&mfhwxmmmm
gis to be determined; A is a nonzero, real or complex parameter. The function K(s,t) is called the kemel.
The following special cases of equation (1) are of main interest.

(i) Fredholm integral equations: In all Fredholm integral equations, the upper limit of integration b, say
is fixed.

(a) In the Fredholm integral equation of the first kind h(s) =0, thus
. A
£(s)+A[ k(s )g(t)dt = 0

(b) In the Fredholm integral equation of the second kind , h(s)=1;

.
g{s}=f{:}+lj K(s,0g(t)dt

() The homogeneous Fredholm integral equation of the second kind :saspmalmcnf(b}abw:
Inthwmﬁs} 0:

g(s)= lj K(s, g(t)dt

ﬂ}Vﬂm“nqumﬂhhnnuqmoﬂhnﬁm,lnmmmdmhﬁmdbﬁmdm
as above except that b= s is the variable upper limit of integration.

Equation (1) itselfis called the Carleman type integral equation. It is also called the integral equation
of the third kind.
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(i) Singular integral equations: When one or both limits of integration becomes infinite or when the
kemel approaches infinity at one or more points within the range of integration, the integral equationis
called singular. For example, the integral equation

g(s)=f(s)+ fe g0

T 1
f(s)= | ——e(t)dt, O<ac<l]
and nf e
are singular integral equations.
In this chapter, we shall not deal with singular equations.

Special kinds of Kernels:
(i) Separable or degenerate kernel : Akemel K(s,t) is called separable or degenerate ifit can be
expressed as the sum of a finite number of terms, each of which is the product of a function of s only
and a function of t only, that is .

CKis,1)= ia,(s}hb[l]

ﬂrﬂn:ﬁomg(s]mbcasmmdtobalinmi}rhﬂqnnm otherwise the number of terms in the

above relation can be reduced. '

(ii) Symmetric kernel :A complex valued function K(s.1) is called symmetric (or Hermitian) if K(s.t)
. =K(t,5), where the asterisk denotes complex conjugate. For areal kemel, K(s,0)=K(Ls).

Integral equation with separable kernels:

Reduction to a system of algebraic equations!
We have defined already that a degenerate or a separable kemnel as

K(s,t)= in.{ﬂb.(t}

where the functions a,(s), . a,(6) and the functions b (). b,(¢) are linearly independent. With sucha
kemnel, the Fredholm integral equation of the second kind

g(s)=f(s)+A[K(s,)g(1)dt  becomes

g(5)=f(©)+1 32, [b,gn)de )

i=l
hmgasﬂmﬂmmckﬁqmafmhrhzgﬂﬁsqmﬁmhmm&aﬂydmmﬂnmuofﬂu
complex parameter A and on the definition of '

C, = [b(vgd | w®)
The quantities C, are constants, although unknown. Substituting equation (3) in (2) gives
g(s)=f(5)+13 Ca,(s) ; A4
imd

and the problem reduces to finding the quantities C,
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Now we multiply both sides of (4) by b(s), b,(s), ..b,(s)and integrating to get
C, = [b ¥ (1)t + A3 Cy fax(0b, 0 -....(s.)
Using the simplified notation - '
[bif@dt=F,, [b,(ta (di=a,
where £ and a._aie known constants
Equation (5) becomes

Ci~l£*m¢;=fp-i:l~'--“- i : ,...{5} :
K=l

that is, a system of n algebraic quantities for the unknown C.. The determinant D(X) of this system is

: ]"hu —ha, o -ha,
D) = ~Aay 1-Ray - 'h:.-
—hﬂ _hll i l_h-

which is a polynomial in A of degree at most n. Moreover it is not identically zero, since, when .= 0, it
reduces to unity. ' : s
Forall values of A for which D())#0, the algebraic system (6) and thereby the integral equation
(1), has a unique solution, These values of A are called regular. On the other hand for all values of A for
which D(A) becomes equal to zero, the algebraic system (6) and with it the integral equation (1), either
.. -
insolvable or has a infinite number of solutions. Setting 1=E in equation (6), we have the eigen value

problem of matrix theory. The eigen valucs are given by the polynomial D{Ay=0. They are also the cigen
values of our infegral equation.
Example : Solve
g{s}=a+1’ﬁs:‘+slt]g(t]dt :
th:ﬁnn:Tb:Kle{s,l;msﬁs*tissepnrablemimuhsﬂ
C,=it1ﬁt)dh C1=jtg{l}m
o o

then the given equation becomes .
g(s)=s+ACs+AC,s’ ° (1)

Multiplying this equation by t*, tand integrating over (0, 1) we get i i
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1 1 1
Gt

. C==%+%‘1Ct+%mz-

The solution of these equations is readily obtained as
L 60+A
" 2401201 -7}
# 80
 240-120A - A2
Thus required solution for (1) is then
(240 — 60A)s + 80As’

2401204 - A}

C

C,

gls)=

‘Example2: Solve

g(s)=f(s)+ lI (s+t)g(Ddt
Q
and find the eigenvalues.
Solution: Here

a(s)=s a,(s)=1
b)=1 by(n)=t

 § 1 i
a,lujtdt=5. a,, = [dt=1
o

e
L 1 1 1
a,=[ttdt== ay=|tdt=—
F l 3 ! 2

I 1 '
f=ffod f=[trod
o [

Substituting these values in equation
C, =AY a,C, =f,, =12
=

we have

The determinant D(L)=0 gives
AT+ 123 -12 =0.
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Thus the eigenvalues are
h=(6+4V3)  1,=(6-443)

For these two values of A, the homogenous equation has a nontrivial solution, whereas the given
integral equation is, in general, not solvable. When A, differes from these values, the solution of the preceding

algebraic system is
c _ —12f, + A(6F, —12f,)
: A +120-12
. = =12f, +0{af, -6f,)
. A4120-12
Thus the relation ’

i
2(s)=f(s)+1Y Ca,(s)
(L]

becomes
: ;
- 6(A—2Xs+1)—12Ast -4
=f 1
g(s) .{s:n+l_'!' e
The function I'(s, t; 1)
' —2)s+t)—12Ast — 42,
A)= 5(.
ré.:k) F+120-12

is called the resolvent kernel. We have therefore succeeded in inverting the integral equation because thé
right hand side of the preceding formula is a known quantity.
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Unit-4

Method of successive approximation:
mmmmmmhmmmmmmmmﬂm
mMMhﬂthﬁmﬂmyﬁﬁpkhﬂmaﬁhﬂnfmﬁmmm
of the second kind;
g(s)=f(s)+A[K(s,g(0)dt )

We assume the function f{s) and K(s,t) are square integrable i.e.

ﬂf{s)]zrk < oo
[IKes.0f dt <o,
[Kes.f ds<o= .

As a zero order approximation to the desired function g(s), the solution g,(s),
go(8)=fis)

i< taken. This is substituted into the right hand side of equation (7) to give the first order approximation
£.(5) = () + A K(s, 0)go()dt .
ﬂﬂsﬁmﬁmwhmsdﬂimmdhmaquaﬂmmﬁdﬂsﬂnsmﬂ_appmhmﬁmﬁdamh
then repeated; the (or+1)th approximation is obtained by substituting the th approximation in the right hand
side of (7). These results the recurrence relation
£..() = F(&)+A[K(s, 08, (0 dt .
If g, (s) tends uniformly to a limit as n — e , then this limit is the required solution. To study such a
limid, let us examine the iterative procedure in detail. The first and second order approximations are
g (s)=f(s)+ 1] K(s,t)f()dt
and
51[5}=f(s}+le{s.t}t‘[t}dt+l’IK{s.t][|'K{t.x]f[:}dx}!l
“This formula can be simplified by setting
K,(s,t)= [ K(s.x)K(x,t)dx
and by changing the order of integration.
The resultis :
g:(5)=F()+A[K(s,Df () dt+ X' K G.0f(ma
gz,{s]=f{s}+1]K{s.t}f{t}dt+l‘IK,{s.t}f(i]dt+Jc"jKJ{s.l]f{t]d_t
where K;(s,t)= [ K(s, 0K, (x, 1)dx
By continuing this process, and denoting
K o (5:8)= [ K(s, 0K oy (x,)dx
mgﬂ&wnﬂiwnthmsuluﬁonofﬁmhﬂegmlmﬁmm
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£.® =1+ 32" [K 6.0f Ot

We call the expression K_(s.t) themth MMKI{&IFK{SJ}. Passing to the limitas n — ==,
we obtain the so-called Neumann series

g(s)= Lt g,(8)=f()+ El‘f!{ {s;t]f{t}dt A8)

Now, let us evaluate the resolvent kemel in terms of the iterate kemnels K_(s.t). hﬂmdbydmng
the order of integration and summation in the Neumann series, weoblain =~ .

g(s)= fl:s)+lj[zl“x {s.t}]ﬂt]dt

=f)+A[[ (LAt : A9)

where I{s,t;?-.}=2"‘l"‘x_{s.t1.
m=]

Example: Solve * 8(6)=f(s)+Afe"g(0)dt
] H
Solution : Here
K G, 0)=e""

K(a.t} [H e dx =e. s : +

Proceeding in this way, mﬁlﬂﬂﬁﬂﬂ:ﬁﬂﬂdk&mﬁhﬁnﬂmﬂﬂmﬂi@}.%ﬂnm
kernel is =

s, 0 =K(s, )1+ A+ A +--)

Hence the solution is
- __L! -1
Eiﬂ-ﬁ{ﬂd :'""“"Ie f(l}t::l.l
‘anurruilhpﬂqultiﬂ
Tlrmetﬁﬂmmkm:xapphmﬂnhﬂz%lﬂm:mmmnfﬂnmm In
fact, the formulas corresponding to equations (8) and (9) are, respectively
£6)= &)+ 34" [K . 0f e

g(s) =f(s)+ 1ji (s, A)F(Odt .
whmeﬂw itcmmdkmm] K {s.thnnsﬁﬁltwrmumfbmuh
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K, (5.0 = [K(.0K, (x,1dx
L

with K, (s.t) =K(s, 1), as before.
Enmplt:ththeNummmﬁir&nmhuhnufﬂmmmmmﬁm

g(s) = (1+3)+A[ (s - 0gD)
o o

Solution : We have
' K(s,t)=s-1
r (s—t)’
K.(s.0)= f(s—x)x-t)dx=
J(s, .} f{s xx - dx ="

N 41} —\
K,(s.0=[< ”;:‘ 9 dx=‘s;

and so on. Thus, _
- $ ¢ s g’
g{s}—I+s+l{-j+§]+l[ﬁ+§]+m
Applications to ordinary differential equations :
, Th:ﬂnuﬁesofmﬁmydiﬁnrmﬂleqmﬁmmﬁmmﬁﬂmofmmeqmﬁumhﬂw
mhﬂmfmhhhwlmdaﬁmﬁf&mﬁﬂmhm;mmwﬁ
mmmﬁ:bmﬂaymndiﬁnBMhﬂﬁdmﬂﬁhmmﬁdﬂy,mﬁmldmmmmﬂqm
Dmeibumﬁ‘yw]uﬂnrmirﬁﬁalwlmpoblmhsbmﬁmnnhtdintmmufminwgtﬂnqwﬁmﬁt
bmmpmihl_ntnmhrﬂlﬁsmbhnmsily. ,

wmm;mmﬁmﬂmmmmmmwm
differential eqmﬁunsﬁthprmm‘budiniﬁalvalm%bcginwd;m’ ssion by studying the sim ple initial
value problem. - :
y"+ A(s)y’ + B(s)y =F(s), a<ssb A 10) A
y@)=q, Y@=gq .
whm:apﬁmeinpliﬁdiffum&aﬁnq“ﬁmmmhmﬂﬂwﬁnwﬁmﬁ,ﬂ.mdFmdeﬁmd
nﬂmnthnmhthcch&ndh\tmml-assgh,
mmammwmﬁmmwMammmuwmm

is
yE) -q, =-A®)y(s)- [Be) - AG)ly6)ds, + [Rs,)ds, + A
Similarly, a second integration yields |

¥~ = [ A y(s,)ds, - | [Bs)-Atsolye))ds, s,
ha .

+ _'[ j F(s,)ds, ds, +[AG@)g, +q Js=2) .41
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With the help of the identity

]']“'T]F[s, )ds, ds, ---ds, _, ds, = I

[s-0""Foa

a3 as {ﬂ.“' I}.
the two double integrals in equation (11) can be converted to single integrals.
Hmﬂierduﬁm{t_l}takgsﬁwfmn

y(s) = q, +[A(a)q, +q, Js - a}+I(s ~t)F(dt

- [lam+s- oo -A0lywa

K. =-{A@)+G-nBm-Aw] ~(12)
ad ) =[6-0F0d+[A@)q, +q Ks-2)+q,
we have the Volterra integral equation of the second kind:
y(s) =f(s)+ [K(s, ) y()dt (13)
Boundary value problem : - .
Just as initial value problems in ordinary differential equation lead to Volterra type integral equation,
boundary value problems in ordinary differential equation lead to Fredholm type integral equations. Letus
illustrate by the problem
Y (s)+ A(s)y' +B(s)y =F(s), a<s<b ~.(14)

}"':ﬂ‘—"j"p- F(b)=}.|
When we integrate equation (14) fromato s apdmﬂmboundarycnndiﬁmr{aﬁ,,weg:t

Y (8)=C+ [Ris)ds—AG) y(s)+ AGa)y, + [[A6)-B®)]y(s)ds,

where C is a constant of integration.

A second integration similarly yields ,

¥6)-Yo =[C+A@y,ks-a)+ [s-DF(t)at
- [[A®-6-0am-Bolynd .5
The Constant C can be evaluated by seting s<bin15) and using the sscond boundary condition y(b)=y,
%1~ Yo =[C+ A@Y, Ib-2)+ [o-0ED &

- [[A®-0b-ofa'®-Bw iy dat
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CrA@Y, =Ly, - y0)- [o-0FO &
A1
- [fam-®-0w-Bolyoa] "
meeqmtion[lﬁ}mﬁ{lﬁ},wchuwﬂumhtm

¥} =y + [(s—)Ft)dt + E kyi-yo)- fo- OE@®d]
—j A -s-naw-Bolyma

+ j[':‘ “’](Am (b~ t}[A{u—B:t}]}fﬂ}ﬁ

(b
mmgqmnmmhcmumulh:FmMmmwwdamm
y®) =)+ [Kis.0y0d
povided we set

f(s)= y,+I{s+t)Ht}dl+[E‘B’u Yo -f{b-‘lﬂﬂ'ﬁ]] {17)

22 am-m-vam-Bmls<t

-a ; . ;
A[l]{:;_:-—l}-[ﬁ'([}_n(t}{{;_.,]((:::;]‘ ani (18)

For the special case when A and B are constants, a=0, b=1, and y(0) = y(1)=0, the preceding kemnel
molifiesto :

K(s,t)=

K{s.t}:{mﬂ*t}*hs' s<t

Bt(l-s)+As—A, s_:-t
Example: Reduce the nital value problem
y'(s)+Ay(s)=F(s), 0<s
y(0)=1, y(0)=0
to a Volterra integral equation.

Solution : Comparing the equation and initial conditions with (10) we have
 A(®)=0, B(s)=A.
Therefore, the relations (12) through (13) become

K(s,t) = A(t-s)
f(s)= 1+]'{s-t}F{r.]dt :
a
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and y(s) =1+ [(s - OF()dt+A[ (- ) y(t)dt
o 0

Example : Reduce the boundary value problem
' y(s)+AP(s)y=Q(s), a<s<bh
y(a)=0, y(b)=0
to a Fredholm integral equation.
Solution ; Comparing the equation and boundary conditions with the notation of (14) we have A=0,B=
AP(s), F(s) = Q(s), y,=0, ,~0. Substitution of these values in the rel;ation (17) and (18) yields

b
5—a
e !(h-t}qrt)dt

AP(r) S 20— b= ey
(b—a)

1]:“}&?_@} s>1.

() = [s ~0Q(ydt -

‘and K(s.t) =
(b-a)
Hence the integral equation is

y) =f()+ [Kis,0y(0dt.

Exercise
I.demeﬁi:gtaleqmﬁmu '.
® ¢{ﬂ=x-i(x—t}¢(t]d1 (i) ﬂa}:l«l-lj'xlﬁt}dt
% - _ :
fﬁ} W(x)=f(x)+ l‘[c"" ¢( y)dy )  Hx)=f {x}+lj=“" Ht)dy
; B 0 [}
1 1
@  W0=x+1[(x+8)¢()ds o) R =T+Af(a-3xt)p(dt
Q y o
1o i+
i)  w(x) =g +1Ix +u(t)dt i) u(x) =g* +l._[xtu{t}dl
o 9
) Hx)=sinx+ Ej'c"‘ﬂt}dt
0
2. Convert the differential equation
y7(t)=3y'(t) + 2y(t) = 4sint, y(0) = 1, y'(0) = =2
into an integral equation.
EB
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QUESTION PAPERS
2006
Paper 205 ,
(New Syllabus) .
Full Marks 80

1. fa} Define Fredholm integral aquut.lnnl.
Hence solve the equation

ulxd = £d + A Kix, uldt
when the kernel kix, ) is ds:gencfnte. 8

(b) Determine the characteristic values of
the integral equation .

u(x) = £9 + [[sinix + Quigat

- where x and t are real uamblcannd
hence solve it. T

Or
Find the  integral  equation
corresponding to the differential
equation

! ' yray +y=0
: when y0) =1 y)=0. ' ‘

2. Distinguish between Volterra and Fredholm
integral equations. What are the conditions
under which Volterra infegral equation can
be considered as particular cases of
Fredholm intcgral equation? Discuss the
method of successive approximation of the
following equation under conditions to be
A 142+7=10

u{;}-ﬂﬂ+ﬂmw

3. (@) Define Fourier transform of a function
Fi{d Hence derive the Fourier sine
transform and cosine transform of Flx
for suitable values of x. Also write down
the corresponding inverse Fourier sine
transform and cosine transforms.

. 14342=6
{b) FPind the PFourier transform of Flx,
where
1, xjka
‘"‘*"*'{n . ixl>a 4
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Or

Find the Fourier cosine representation
of the function f{x) defined by

x , Decx<=z]
fld={2-x , 1<x<2
0 , x>2

4. (o) Define inverse Laplace transform fs} of
a function F{. Hence, prove the change
of its scale property, viz.,

e 2{2) o

if
L f) =Flg ' 5
(&) Ewvaluate : | -
L_]{ . 5+1 } or L{tﬂ‘?lm.
s-1%s+2) "

f) By using the method of Laplace
transform, solve the  differential
equation:

d®x , dx
-E.I-i—i-?;-:-'l-leu
where
.Ipi-lﬁ‘ =1 6

Or

Uging the method of Laplace transform,
solve the partial differential equation
du _9%u
..a}.:-é-.x-.:-, x>0, t>0
and u §=1, ux0)=0

5. (@) What do you mean by functionals,
admissible functions,  zeroth-order
proximity and first-order proximity? In
the problems of extremals, what is the
necessity of first-order proximity? 7
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f®)

- {a)

Determine the Euler's differential
equation for the extremal of the
functional

Myt =[x u v, ¥

where F is the functions of the

arguments x & 4, y¥" and the

admissible function and its derivatives

conditions at the boundaries x; and x;.
Or

Show that the shortest distance
between two points on the surface of a
sphere is the arc of a great circle.

Find the extremal which makes the
integral

Tyl = [* fx u y)ex
stationary with the prescribed boundary
conditions y{x) =y and y(xy) =y, and
is subject to the subsidiary condition

J:’g{.;y,y'ldx-c,nmt

Find the extremal for the extremum of
Tl q-];;y" +2°? 4z’ - 42dx
subject to the constraint
Eiyrz -xy -2 Y)dx =2
where
yi0) =0 20)=0 and yll} =1, 2{lj=1
Or

If a particle of mass m is constrained to
move on a given surface Gix, y 3 =0
and if no forces act on it, then show that
it slides along a geodesic (curve of
minimum length).

* ¥ %k
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2008

MATHEMATICS
Paper : 205
{ Mathematieal Methods )
( New Syllabus )
Pull Marks : 80
Time : 3 hours

!'hsﬁyuumﬂumuwlﬂdﬂlﬂmm
Jor the gquestions

1. {a} Distinguish between Volterra -and
Fredholm integral equations. Classify the
fnlbmngmwﬁalmummdhfﬂm

solve it : 1+1+6=8

o= xeAf] (o + Y eidy
(b} Determine the characteristic values of
the i.nf.eg:rni equation
uld = £ %+ sinpc+uigde

where x and ¢t are real variables, and
hence solve it

Or

(] For what value of A, the function
$lx)=1+Ax is & solution of the

integral equation
x .]‘: e* ' p(de?

(i) Prove that the integral equation
o 1 1 x__t

#1x ,!..1&' 2e* - e'plgdt

does not have characteristic pumber

2. Write a note about the utility of converting
a differential equation mtq an inttsrnl

7




with the initial conditions yi{0) =1, ¥I0)=0.
3+7=10

3. (a) Using Fourier integral representation,
show that
n . :
I_m As mﬁ-’ld {gmx. Ixl<%
o 1-3 0, IxP% s
() Define Fourier transform of a function
_F(x}. Hence, derive the Fourier sine and
cosine transforms of Fix for suitable
values of x Also. write down the
i inverse - Fourier gine
transform and cosine transform. = 5
4. (a) Find the Laplace transform of
(k™ sin af 4

(b) Find the value of

=1 ﬂz ' } ]
(s? +4)? Eahe 4
fc) Using the method of Laplace transform,
solve the differential equation
d®x g

L Xin?x= asin nt + o)
dt’

where x{0) = %(0) =0 at t =0. 7

Or

Using the method of Laplace transform,
solve the differential equation

2
4 x_dx_ox=205in2t
dr? dt

given that x(0j=-1, x{0)=2 at t=0.

5. (o) Define admissible function for a
functional in a stationary value problem.
Find the -differential equation for
extremum value of

Tiy(a] =f o Tl uy, ydx

with the prescribed boundary m:d:ﬂanna
(to be stated) where
d’y

H-E!mdy'- —_— '
dx ~ 2+6=8
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{&} S8how that the shortest distance between
any two points on the surface of a sphere
ia the arc of a great circle. 7

6. (a) What do you mean by 9isopenmetric’
problem? Hence, maximize the functional

Ty(a)= [} yex
subject to'the side condition
1
i 1+(%] dx =L (constant)

and the boundary conditions y{0) = 0 and
y{)=0. 1+7=8

{b}) Determine the number of functions
vid, (), - of x such that the integral’

Tyl, 209, ) =[ 7 Flx 4 % - o’ 7, )dx

is an extremum with the assigned
boundary conditions at the end points. 7
= -.
Find the curve joining two given points
A, 0) and B(x;, ) so0. that a particle
moving along this curve starting from A
reaches B in the shortest time, friction
and resistance of the medium being

LA &
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2009

MATHEMATICS

Paper : 205
_:mmm;
Full Morks : 80
Time : 3 hours
1. Answer any three parts : : 5x3=15.
fo} Obtain Fredholm integral eguation of

2nd kind corresponding to @ the
boundary value problem

a2 . i
Ex‘}m”’ $0) =0, ¥l) =0

b} Solve the integral equation
o= fa+af fxt+ e olat
Also find its resolvent kernel.

fej Solve the following integral equation by
the method of successive approximation :

5x .1

fd) - Show that the homogeneous Fredholm
integral equation
o) = Af Bx-2)4(9dt

2. Answer any two parts : 5!2-1ﬁ
(a) Show that the resolvent kernel of the
integral equation
o =1+ xto(at
. is xte*/3(x® - %) and hence soive the
' equation.
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o) Using the method of successive.
approximation, sclve the integral
equation

; ﬂ:}-l+§ﬂﬂd‘
taking the initial nmmm as
$olx) =0.

() ‘With the aid of resolvent kernel, find
the solution of the inn-win; integral
equltmn

¢ = sin x+2§a"‘ d{tydt

3. Answer any fwo parts : | S5x2=10
fa) Find the Fourier transform of :
fi=1,|x|<a
=0, |xj>a ..: -
and hence evaluate®
i fnuinsa:uuds

fii) E-ms

{b) Define Fourier integral theorem and
hmahwthn:mﬂonumgmﬁm

are equivalent
;ml.;l. _GC___ Swcosaix-wduda
and ;
ST
i = e"*da["_fluje™"du
{c) Show that : o
{xcos x - sin 12 -
b "8 dxnss
4. fa) Answer any three parts : 3=3=9

{J Prove that 5’-5-‘} =tan”' ana
&

t
find L{sinﬂ]
hence ek
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fiil Find the function f(fj whose Laplace
ol
transform is lng[l +m—=]-
Y |

fii} Evaluate by wusing convolution
theorem L=
(s2 +a?)?
(i) Show that [[t%e™ sintdt=0.

(b) Using the method of Laplace transform,
solve the differential equation

@y gy o g
2 3dt+2y de

given that yi0) =3, yl0)=5. 6
or
Using the method of Laplace transform,
find the solution of
:_‘:.Q%W. Ul, 0) = 6e™*
which is bounded for x>0, t>0.

8. (a) Show that a necessary condition for the
functional

:u:q]ﬂ:ﬂx, v, y)dx
to be an extremmum is that

Eﬁ_i[a_*"] =0
dy  dxeldy’

subject to the boundary conditions
#a =y, and yb)=y, where y, and y,
are prescribed at the fixed boundary

points a and b. T

(b} Answer any hwo parts : 4x2=8
{ii Find the curves on -which the
functional
- Plwn? +12xdx
with y0)=0, ul}=1 can be
extremized.

fii} Test for an extremum the functional
TiA9) = fo by +y? - 2y°y)dx
with yi0) =1, y{l)=2.
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_m«inm txitml and fxz;hfl such
that its rotation about the axis of
abscissa gives rise to a surface of
revolution of minimum surface area.

6. (a) Find the extremal which malkes the

integral
Tyl = [F e, y, y)ax

stationary with the prescribed boundary

conditions ux))=1y and ylxg)=y,,

subject to the subsidiary condition

I::Q{-t. ¥, y)dx=C

where C is a constant. 7
fb} Answer any two parts : 4x2=8

() Find the extremals of [ fy)3dx by

bouiidary conditioris y{0) =0, yix) = 0

with the constraint [Ty?dx.
) Show that a closed curve given by
[ -y
is a functional which can be put in
the form
1<, 6] = [otx, y, %, Pt
where @ is a homegeneous function
of degree one in x and g
(i Determine the curve of length 1
which passes through the points
. 1,0) and {1, 0}, and for which the

arca between the curve and x-axis
is a maximum.

* ook
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2010
MATHEMATICS

Paper : 205
( Mathematical Methods )

Full Marks : 80
Time : 3 hours
The figures in the margin indicate full marks
for the questions
1. Answer any three parts : 5x3=15

{fa} Show that the function
¢(x) =e*[2x-(2 /3)] is a solution of the
Fredholm integral equation

000 +A[ e*~'4(9 dt = 2xe®

when A=2
b} Using the method of successive
approximation, solve the integral
equation
00x) =2x + X[ (x+ 1) 41 dit
with #g(x) =1..

fc} Show that the integral equation
o) = A[ WX t-T x el dt

does A not have real characteristic
numbers and characteristic functions.

{d} Solve the integral equation :

oty =2x~x +4fsin? x 919 dt

2. Answer any fwo parts : 5x2=10
fa) Convert the differential equation
2
Sposnefocrs
with the initial conditions yPj=1,

y'(0) = -1 into Volterra integral equation
of second kind.
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)

Use the method of successive
approximations to solve the mwgml

equation
o =0+0+ [lx-g00ar

With the aid of resolvent kernel, show
that the solution of the integral equation

2
ol =1+x2+ :li"anmdt
1+0%. .

is given by
o0 = e +x7)

3. Answer any tuvo parts : - 5x2=10

(a)

)

fe)

Find the Fourier transform of

S =1-x2 |x|s1
=0, lxj>1

and hence evaluate
-xmx—ainxmﬁdx

#3

Find the Fourier cosine and sine
trausfarm:nfe’"andhememhuh-
the integrals :

= CcosAx

Iﬂlﬂ+b2

Using the Fourier sine transform, solve
the partial differential equation
w %

_......z—.-_, x}ﬂ' f}ﬂ
at  3x?

. subject to the conditions-

O<x<l

i i . Ty ].
UR.0=0, Ux0p=17

Ulx, 1) is bounded.
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4. fa] Answer any three paris : 3#3=9
fii Show that

=gl - b‘ '
o t a

fi) Evaluate :

I: te ¥ gint dt

fii} Find :
o I |
A~

fiv) Show that

-1 23 1 ;
L {mz ...]5} -EMS 2t

(b} Using the method of Laplace transform,
solve the differential equation

..
¥+2%+5y-0
given that y0} =2 and [0} = 4. 6

Or

if the function Uix f) is defined for
a<x=sh, t>0, show that
) L{aa_f}“utgq-_umq :

2
@ L[g_tg’]-s%gx.q-smm-mm

. where ux, s = L{U{x, )}.

_ 8. (o) Define admissible function for 'a
functional in a stationary walue
problem. Find the differential equation
for extremum value of

Ty = [ 2 i 4 'y} dx
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under prescribed boundary comditions
at the boundaries x, and x, where
prime denotes differentiation with
respect to x. ' 8

{b) Answer any one part : 7
{ii Find the extremal of the functional

[Py -y +2xp ax

with yid} =0, yi=z /2)=0.
(i) Ehwthnmeamun]npluﬁmur
o1 e
I“HJ_H[&‘] }dx

is {x-h.'iﬂ +y’-h‘=

6. (a) What do you mean by isoperimetric
problem? Find the extremals of the
isoperimetric problem

=[R2
Tyl = [ 2 v de
given that
xy
: Jxoydz'c'
a constant 8
() Find the extremal of the functional
I=[ ' -y) ax

under thc conditions y(0} =0, yn)=1
and subject to the constraint

n

Joyax=1

Or

Determine the space curve x=xif)
Y=yl and z=z() to give stationary
" wvalue of the integral in the form

INLTELY

lying on the surface Gix, i 2)=0.
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