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Unit- 1 )
Divisibility and the Primes

Introduction : S

An algorithm is a stép by step process, complete in a finite number of steps, for solving a given
problem: By the division algorithm, we mean that process with which the student became familiar
in arithmetic. Divisors, muhplﬁauiprmmdmmpmnembusmmcptsﬂuthawhm
known and studied at least since the time of Euclid, about 350.BC.

The idea of prime numbers is very simple. Among all the positive integers 1, 2, 3, 4, ..
cunﬁndthatmmzmtﬁgmhaveml}'twopommdiﬂmmdﬂmuﬂtﬂhwcmmﬂmntwn

positive divisors, except the integer 1, which has just one positive divisor, namely itself. A positive
mtqg_a'whlch_mgtutarthnn 1 and has only two positive divisors 1 and itself is called a prime
number. An integer which is greater than 1, but is not a prime, is called a composite number.

numbér. ; :

Definition 1.1.: An integer bis divisible by an integer a(# 0) if there is an integer x such that b=ax.
‘ a|bmeans "b is divisible by a”. and aJb means "b is not divisible by a". | 0 if a 0. ais called
proper divisor of bifa|band 0 <a<b. '
Theorem 1.2.:
(1)a|b=>a|bc forany integer c.
(Z)a|banda|c=>a|bx+cyforanyxandy.
(3)a|bandb|c=>a|c. .
(4 ajbandbja=>a=%b..
(5)alb,a>0,b>0=3ash.
. (6)ifm=0,a|b &> ma|mb.
" (1) 2] b =5 b=ax for some integerx, 4
" =be=a(xc)=bc=ay  y=xcisaninteger
=>a|be. _
" (2)a|b=>b=ax for some integerx.
, nlc:&ctayﬁrmmr
E, Nuw bu+ov =((ax)u + @)y)v
' _=a(vutyv)
S albutev-




Proof of the remaining left ds exercise.
. alb=>b=ax

Note 1: : _
(1)abandb=0=>1a|<|b]
(2)ajb=-a|b,anda|-b.
(3)2]0;1|a,anda|a (a20) .
@ajl=a=%1. |
{s}a|c,md=-ah|e¢—

Algorithm:
Annlgnnﬂnnmnmﬂhmmﬂcalmeﬂmdwhmhuﬁequmﬂyusﬂtonbumnmuegﬂ}

Prime factorisation method. -
(2) Principle of induction.

A.13.The Division Algorithm(Enclid): - .
Gwcanymmgaunndbmﬂu}n':lumquemmgnrsqandrs.t.b=aq+r  0Sr<a.
Ifafbthen0<r<aandifa|b,r= {I 3

Proof: Consider the A.P.

...... :b-3a,b- Za,l:- a,b, h+a,b+2:,b+3&, .. extending indefinitely in both direction.,
Infact S= {b-na|ne Z} ' : ' |
Consider the subset S, = {b - nn1ne z.,b nazn}
_Clearly S, # 0.
'I'hen b}rwcllcrdmngpmperty(\'c’{}l’}s husalmstmcmberaayrzﬂ
r=b-qafoesomeqe z.
b=aq-!~r.

A.Uniquenessof gandr:

Suppose if possible, b= aq. +r.
Weclaimr=r,.

- Suppuser{r,.
0<r<r <a
=0sr,-r<a _
and 0=(q,-q)a+(r,-1)
=(q-g)a=r,-r. :




=a|r-r
=a-|5r-rwhchu:mndimm.
S S 1
Sirvilerly,

r4r

%k B
| .quqr et | .
'I'Iimqmdrmunique.

B.mviﬂoumrithuingemﬂMm. _ -
Given integers aand bwitha =0, Elmwglmqmdrmmﬂ
b=qa+r,0<Sr<|al.
Proef: lfn?O,byDWmmA]amﬁmAﬂ mtcgu:sqmdr suchlhai g
b-ql+;.ﬂ5r*=q5{ai.
Ifa<0,-a>0. : '
So b=q(-a)+r,where0Sr<-a
b=ag+r 0<r<|al
_'Ihn b=ag+r  0Osr<|al

Exercise 1. :

' Fmdthcmmumtmdmmmduwhl -2,61 and- STaredmdedh}r .
Anms: I=(70+1

: whmllsdiﬂdedby Trmmnder—lmdqunhnent——ﬂ

Enrcluz :
a(a’+2)
ShuwﬂmtTlsanmteguforaZZ _
Solution : We take a and 3. Then by division algorithm a=3:;,3q+i,_3q+ 2.

a{a='+'z} 39(0a’ +2) _

._Ifn=3q,_ﬂm§ 3 3 {qq +2)
; 2 ; 2
o n[a_3+2}=.{34+1}(q¢.13+6q+l-4_-2)
; '={5q+l} {Sq.’+2q+l}.
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| -Ifa-?.q'-i-z,lﬂm

I.a{a:‘.‘.z}. (3q+2) ('Flz 4 121-'.|r4+2) ..

3 r T 3
=(3q+2) (3¢’ +4q+12). '
+2 :
Thus is all cases, N Juanmtegcr
El_.:el"ciu:!“. ' i
. Square of an i m;ens either 4k, ordk + 1.
T:}rmnmlf -
‘Exercise 4. : 3 :
Shuwthunointegwinﬂ:emqmll,]ll,ﬂll,lllll, ...... is a perfect square.

' 11L.1= 3+{111 ma} 4k+3
e
m places
X mlll Imhntwmglmmdrm*hlebﬂ)
hmmbuupufeasqumlﬂ”nuefﬁuﬁmdkorkﬂ

o O P

Baeak s
. Squlrznfmnddmngﬂ'uofﬂufmmskﬂ
Try yourself .
Exercise 6. :
Fﬂqnzi,%ﬂ{nﬂlﬂ*'l)ilmm
Exercise 7.:
_ Pmﬂntmﬂuuqmw 999, 9999, 99999,. s mmu:unpuﬁactm
Eurthel.
il t-—sllh+stthunl s |at+bs.

E:ﬂtht!. 8
' :(n+lln+2}ulmnlqﬂenf3




Exercise 10.:

Ifk>1, ﬂ1mk‘+k+lmnntnpﬂfectmm
+ Try yourself.
1.4, Definition : Ifaandhhegwenmt:gmxwﬂatlmstmofﬂmndﬂhmfmmﬂ The greatest
cummund:mmn(ged}nfamdbdmumdbygﬂa,h]mdrmmm

(i)d|aandd|b. '

(ii)ifc|aandc|bthen c<d.

The ged of integers a ;a, . a_nmmmmm:mmmgumnhmmﬂfmuf'
tl{u«mmta:gv::rIt13«1-‘=nscnrt|=|dI:r:,'gc:ml(a,,agI oA ) '

If ged(a,a,...,a )=, then a;a, .. ,amcaﬂedmntlaﬂyr!llﬁvﬂy]!ﬂle _

Hmhpmrnfmmgmqmdn&mthemumlahvelypnmthmnﬂemapa, ,a-re '
called pairwise relatively prime.

' MMMMWMMM

The converse is not true.

For e.g. ged(16, 10, 15) = 1.

. 16,10, 15 are mutually relatively prime.

Bmgcduﬁ 10)=2. :

' 16, 10, 15mm¢pwumrelauvclyprm

1.5. Theorem : Given integers a and b not both are zero, then there exists integers x and y such that
et  ged(a,b)=ax+by. _ : '
'Prﬂ-uftlx.tS={at:_+bv|au+bv}0;u,vmi:ﬁt:§ém}
" Sz : '
Sﬁppo;.;eaatﬂ,
Ifa}{j thena=a.1+b.0>0.
Ifa<0,then-a= a{-l}+bﬂ}l} *
By virtue of well ordering property (i.e. emjrnmmptysuofpmmvcmmbmhmﬂﬂmst
number) the set S has a least number say d.
So 3 integeru and v'such that d=au+bv>0. -
We can show that d = ged(a, b).
Wehavetoshow - (i)dja,d|b
- (ii)c|a,cib=>csd
(i) By division algorithm 3 integers q and r such that




aﬂqd+r,ﬂ£r-cd..
Ifdfathenr>0.
So r=a-qd=a-gau+bv)=a(l - qu)- b(qv) > 0.
Hencere Sandr>d (" dmﬂleiuaﬂmemb&r]whmhmnmﬁcur{d.

Thusd]a.
- Similarly,d|b. .
(ii) Suppose ¢ | a, ¢ | band ¢ 2 0.
Toshowc Sd. ' _
n]amdclh::-clm+hw=d=c5d. -
Hence ged(a, b) =d=au+bv.

Thusgod(a,h)canb:emmedasax+bywhunundrmmm

Tlustration :

: - ged(6,15)=3.
§= {6u+15v|6u+15v>0, u,vmmmgu‘s}
= {6.1 +15.1. 6.0+ 15. 1, 6(- 1)+15 1,6(-2)+ 15.1, ...}
= {21, 15, 9, 3 ..}

where 3 is the least.

- ged(6, 15) =3 =6(-2) + 15.1. '

Note : M:Immuofﬂmnnﬂhpbnfii ;

-1.6. Corollary: Ifaandbmg_iﬁmimegusmtﬁuﬂam, then the sefT--; {n+ﬁy|x,ymwu}
is precisely the set of all multiples of d = god(a, b). :
Proof: d = ged(a, b) ' .

=d|aandd|b

=&d|n+byfunllnﬂ@gu:xmdy

Thus every member of T is a multiple of d. cuﬂ:euﬂnhnddmybumu d-n+by
fommhhmp-x.mﬂy.,mﬂntmymlnpknfduofﬂnm
nd#‘n(axo+byn)
- =a(oxy) +b(ny,). N
Hence nd is a linear combination of a and b, and by definition it lies in T.
Hence the result. |




1.7. Theorem: Given any integers b , b,,... ,I: not all zero, there exists X, X,, ..., X suchthat

ged(b,,b,,...,b, )= Eb-‘x, _
Proof: Let :
Sn{ibixilxiez,ihix‘}ﬂ}_
i=l =l -
. ButS#¢.
Suppose b, # 0 and b, > 0.
Then b,=0b, +.. .+0b,_,+1b,+0b,,+...+0b,
€S (vb>0) .
Ifb,<0,-b=0b, +...+0b,_, +(- b +0b +..+0b
€S (:-b>0) '
SoS=¢. Bywcllmdmngpmpeﬂyﬂhaulustmmbnmd.wccm : i
d=ged(b,, by, ..., b) fs * Jike i
(i) Toshowd|b,i=1,2,..,n . &
By definition of S,d=bx, +...+bx, (x, € 2) i L e
B BRCTEL s SR L
l35=°=a:;d+rwl:s.-:nu:¢:rs:r«r.::L- By T 2
=:-r=.b.-qd ' I
. =b-q(bx,+. +bx) -
=-gxbgxb, + .+ (L-qgx)b F ﬂ-wb
: lfdrb O<rsore S.
r<d,r € S contradicts that d is the smallest member of S.
d|b (1<isn)
(i) Letc>0andc|b,i=1,2,..,n
Toshowc=d.

clb, = cl‘j,x b,=d

iml

=3 d = n¢ ((c>0,d>0) wheren € £)
=C.




Ths d =%h_x., =ged(b,,by,...,b, ).

Theorem 1.8.: Ifaandbminmgcrs,hbcingmnm,mmu}&cmuniqu:imcgcrsqmdrsuch
that ' ;
a=gb+r

1, 1
. where . |bj = r<z [b] (least absolute remainder)

Proof: by Euclid's Division Algorathim, 3 unique integers q, and r, such that
a=qb+r,where0<r <|b|.

1
fO0=<r, %S bl, thenputq=q, andr=r,.

q,+1if b>0

|
—|b| < =
Ifzf | <1, <|b], thenput 9 {q,—lifb-:‘:ﬂ

andr=r,-|bl.

: i Lo

Then a=qb+r,whm_—z'lhf5f{5|b|. _
The uniquness of q and r follows from the uniquness of q,andr,.

Theorem 1.9.: Leta and b be integers, not both zero, then a and b are relatively prime (i.e. (a,b)=1)
iff Jintegersaandy suchthat | =ax+by. ~ | -
Proof: Suppose a and b are relatively prime.
=> ged(a, b) =1 _
= ax + by =1, where x, y are two integers.
Conversely suppose, 1 =ax +by forsomex,ye z.
then to show that ged(a, b) = 1. _
Suppose ged(a, b) =d and d is a positive integer.
=d|aandd|b
:-dlax+by¥ l,forsnmrx.ye.z_
=d=1. |
i.e. ged(a, b)=1.
| aaudhar;rclaﬁwlypdme‘

10




- . ab
l.lﬂ.lehry:Ifgud{a,h)-dthenW‘{E,E)*—‘l.
Proof . god(a b)=d.

= d|a,andd|b..
a b =
#Eanda-mtwontegus
Now ged(a,b)=d
=» 3 integers x and y such that d = ax + by.

a b
e s

:a-god[-z—,%)-ll_ | :

. 1.11: Corollary: Ifa | c and b| c with ged(a, b) = 1 then'ab | c.
Proof: . a|candbjc '
=c=ar,c=bsforr,se Z
ged(a,b)=1=sax+by=1
=c=cax+chy
= ¢ = absx + abry
. =sc=ab(sx+ry)
=>ab|c.
1.12. Theorem: e & ;
- ())For any +ve integer m, (ma, mb)=m(a, b)
(ii) For integers a, b, ¢, k, (a + bk, b) = (a,b)
 (@)fa=bmdm)then(a,m)=(b,m).
' Proof:
' (i) let d= god(a, b) |
. To show that md = ged(ma, mb)
| d=goda,b)
=d|aandd|b
= md | ma and md | mb.
Againletc>('and c|ma, c | mb.
To show ¢ <md. |

11




Now  d=ged(a,b)
=d=ax+by (x,ye Z)
* Againc|ma,c|mb.
= ¢ | max + mby =md
ﬁﬂﬂnl‘ld..
md = ged(ma, mb)
= m(a, b) = (ma, mb)
Proofs of (ii) and (iii) are left as exercise.
1.13. Euclid Lemma: Ifa | bc with (a,b) =1 thena| .

Proof: albc=>bc=arnre z,
and (a,b)=1=1=ax+by
=t'§=cax+chy’
= cax + ary
= a(cx +ry)
i igle ' _
1.13. Theorem: Let a, b be integers not both zero. For a+ve integer d, d = (a, b) iff
(i)d|a,d|b ;

. (ii)whenc|a,c|bthenc|d.
Proof: Letd = ged(a, b). '
Thend|a,andd|b.
Ao d=ax+by,x,yez
cla,clb=clax+by=d.
Conversély, suppose (i) and (ii) holl.
By(i),d|aandd|b.
 Suppose ¢ is common positive divisorofaandb.
Toshowc<d. '
By(i, ¢ |d _
=» d = cp where p is a positive integer
= CcSp. .
d=gcd(a, b).

12




1.14. Theorem: Ifd| aandd|bandd> 0, then

sa{% > )= et

Proct: dja,d[b= %EZ,EE z

| by - BY
dpd(: d) Ed(dd dd] [~ Iﬂﬂ,h}={.mﬂ.lﬂ1b]]

: = ged(a, b) -
ab _ '
snd(-&- E)""Sﬁl( h) ,

1.15. Theorem: If (2, m) = (b, m)=1 lhun (ab, m) =- 1.
Try yourself. :

| l.lﬁ.Tltorem Forany x,

; - (@b)=(b,a)=(s,-b)= (a.h+ax}
Try yourself
Exercise: show that ((a, b), c) = {a,{b,c)}
Try yourself.

Ihﬂndgndqftmuumbcﬁ:_

1.16. The Enclidean Algorithm: Given integers band ¢ and c> 0, repeated applications of Division

Algorithm we have the following series,
: b=cq, +T1, O0<r <c
c=rg,+r 0<r,<r,
I, =0q+T, 0<r,<r,

=1, g+ O<r<r,
I ltrjqit!.+u k
'I'husrjﬂiﬂnstmmmninderisthegndufbmdc.

13




Mustration: To find gcd(12378, 3054)
12378 = 3054 x 4 + 162
3054 =162 x 18+ 138
162=138x1+24 °

138=24x5+18
24=18%1+6
- 18=6x3.
" god(12378, 3054) = 6.
6=24-18x1 -
=24-(138-24x5)x1.
=6x24-138
=6(162-138x1)- 138
=6x162-7x138
"=6x 162 - 7(3054 - 162 x 18)
= 132X 162 - 7 x 3054 1
© =132 x (12378 - 4 x 3054) - 7 x 3054
=132 X 12378 + (- 535) X 3054.

Exercise 1: Prove that 4 /' n* + 2 for any integern.
Emrdle'l:'lfhcpmdnﬁtqfn consecutive integers is divisible by n.
Exercise3: [fx-yis eventhen 4 | n?- y* where x,y € Z.

Ez'mhed:._ShnwthatnE Z
(D2|0*-n (i) 6|n’-n
(iii) 30 |n*-n (ijr}ﬂinl—lifnisndd.

Exercise 5: If x and'y are odd, then x2+ y* is even but not divisible by y.

Exercise 6: Prove or disprove,
(i)a’|c’*=a|c

i) If b|a*- 1 thenb | a*- 1

14




(iii) If b|a?+ | thenb|a*+ 1.

Exercise 7: Ifn 22 and k is an +ve integer,
() (n-1)|n*-1 S
(ii)(n-1P|n*-1iffn-1|k

Exercise 8: If (a, b) = (a, c) then (a, b) = (a, b, ¢)
Proof: To show (a, b)=(a, b,c) letd=(a,b)=(a, c).
‘d[a,d|bandd|c.
‘Suppose k |3,k |band k| c.
k|s,k|b=>k<dasd=(sb)
. Therefored=(a, b, c)

Ezer;:lse!l: If(a,b) =1 then (a%, ab, b®) = 1.
Proof: Given (3, b) = 1 to show (a’, ab, ) = 1.
. i (a,b)=1¢ 1 =ax + by for some integer x and y.
&> 1 =x%a’ + b’y* + 2abxy
= 1 = (a?, ab, b?).

* Exercise 10: If 2* - lis a prime number then show that k is also a prime number.
Solution: Let k be a composite number. then k = ab where a, b are integers with 1 <a<k, and -
1 <b<k Thentheintegern=1-+2+...+ 201 is greater than 1. As a sum of geometric series, we
o :
2*)* -1
n_=(2'}—1

e, 25-1-(2*- Do '

Sincea> 1 we get, 2*- 1>1. hence 2*- 1 is a composite number.

We thus get, if 2% - 1 is a prime number, then kiis also a prime number.

-Exercise 11: True or false? For any n >12% +1 isaprirﬁe.
Ans: False, Euler showed that 1735 = 2%’ 4 | isnotaprime.

Exercise 12: If (a, b) = 1 show that (a +b, a - b) is either 1 or 2.

15




Exercise 13: show thatifad-bc=1,then(a+b,c+d)=1.

-Exercise 14: show thatifa + b0, (a,b) =1 and p is an 0dd prime, then
' ] . a® +b° :
. {ﬂ‘f‘b, a+b )=_10rp.

Eurciulﬁ:lf(a,b)ﬂl,then(a+b,a_3-ah+b‘}=lnr3.

Defination 1.17. Least Common Multiple (LCM): Thﬂ!mnoftwumtegmaandhdmdby[a,
b] is the +ve integer m satisfying, :

(i)a|jm,b|m

(i) Ifa|c,b}cwithc>0thenm <c. :

Similarly lcm of a, a, ..., a_is denoted by [a, a, ...,a_]. e.g. [-12,30] = 60. -
Note: a|{ab| andb || ab | and so [a, b] <|ab .

1.18. Theorem: If m > 0 then [ma, mb] = m[a, b] and [a, -b] = [a, b].
ﬁunf[ma,mbjmmulﬂphufhnﬁmmdmbmdsmtmmu]nphufm.
Let [ma, mb] = mh,.
Let[a, b]=h, To showh =h, .
[a,b]=h,=>alh,b|h,
=> am | mh,, bm | mh,
= mh, S mh, (" [ma, mb] =mh,)
=h, <h,.
~ am|mh, and bm | mh, as [ma, mb] =mh,
=a|handb|h,
= [a,b]<h,.
=h<h,
b =h, Hence [ma, mb] =m[a, b).

- 2nd part:

Let [a,- b] =k, and [a,b] =k,
Now [a-b]=k =alk,-b|k
':aik,,blkr_

16




= [a b] sk,

_ =k, <k,
A - [ab]=k,
=>a|k andb|k,
=ajkand-b|k,
=[a,-b] =k,
=k <k. Thus k, =k, ic.[a,-b]=[a,b].
1.19. Theorem: [a, b] (a,b) =| ab|.
- Proof:
Casel: Whena=>0,b>0.
Put d=(a, b).

"Leta=drandb=d- -
S e ol . g
Tnﬁhnw[ﬂ,b]=?‘—'.'m (-a=0,b=0).

mz.E-[bésa' ]
' almmdblm_.
Letcbeany positive integer such thata |cand b |c.
Letc=au=bv. 5 :
Weknnw&atdfu+'byform_mgmxmdy‘_

gl {..m_ah]
m - &b BE

_ S(ax -|-b3r} “
ab

e{s)
b a
=ux + vy, which is an integer.

c=mfux +vy).

=mj|c.

m=[a,b]
ab
=
(a,b)

=[a,b]

17




=5 (a,b)[a,b]'= ab =|ab] ~a>0,b>0.
Casell : Whena>0,b<0. .
(a, b)[a, b} =(a, - b)[a, - b}
=a(-b)=|ab|
Similarly it is true when a <0, b <0,

Definition 1.20. Prime Number: An integer p> 1 is called a prime number or simply a prime ifits
only divisorsare 1 andp.

An integer greater then 1 which is not a prime is called composite number.

1 is neither prime nor composite.

Theoerm 1.21.: li'p:sapnmeandphbd:.plaurplb
Proof: Letpbeaprimeandp|abandp { a.
We have to show p | b.
pfa=(p,a)=1.
= 1=px +ay (x,ye 2)
= b = bpx + bay
=bpx+pky (. plab)
=p(bx +ky)
@ plb.
Proved.

Corollary 1: [fp is a prime andp|aga,..a thenp|a, for somek, where 1 <ksn. '
Proof: We prove it by the method of induction. This is proved forn=2.
Supposeplaa,..a _ =p|a forsomelsisk-1.
st Plag,. 8,
=pl(aa,..a)a
=plaa,.aorpla
=plaorp|a forsomel<isk-1.
=pla,1<isk. _ Hence proved.

Corollary 2:Ifp,q,,q,, ...,q, are all primes and p | q,qz...% then p=q, for éumek,- where 0 <k

18




511..
Proof: Plq,q,-q,
=plq, forsomek, | <k<n
= p =q,, since g, has only two factors 1 and q,.

1.22. Fundamental Theorem of Arithmatic: Every positive integern > 1 can be expressed as a
product of prime; this representation is unique apart from the order in which the factors occur,
Proof: The inhegerﬁ is either prime or composite. If n is a prime, there is nothing to prove.

Suppose n is a composite. Then 3 an integer d such thatd|nand | <d<n. .

By well ordering property the set of divisors of n has the smallest member say p, . then p, must
be a prime. Otherwise p, has a divisior q such that 1 *’;q{pl,Th!:nq?l p, and p,|n=> q| o, which
contradicts the choice of p, as a smallest positive divisor of n not equal to L.

-, We canwriten=p .., ‘vhere p, is a prime, 1 <n <n. .

If n, happens to be prime then we have the required representation. If not proceeding as
above we have a prime p, such thatn, =p,i..

Thusn=ppn,1<n,<n,

Ifn, ié'prhne it is not required to go further. Otherwise, ther is a prime p, such thatn,=p,n..

Hencen=pppn, 1<n <n,

The decreasing sequence n>n, >n, ...> 1 can't continue indefinitely. So, after a finite number
of steps o, isa prime, say p,.

This leads to the prime factorization,

n=p,p,p, - P,
Uniqueness: Lgtussuppmematﬂ:ciﬁtegerncgnberepmcnwdas product of primes in two ways,
says, ‘

D=PPp,-P,=q4,..q  (r<s) |
where p, and q, are primes written is increasing magnitudes so that p, < p,S..Spandq =q,<..

24,

Now P1ag,-q,
=Pp,=9q29q,
P29,

Smillarty q,|PPy-P,
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o qk " I:'j 2 P,
P, =4,
Cancelling the common factor we have,
PPy P, =, . G,
We repeat the pruc.ess to get, p, =q, and agai.n cancelling the common factor we get,
Py P, =q Q.
and continue the process. _
Ifr<sthenwehave, 1 =q_, ;qc-lrl"‘qs which is absurd since g > 1.
Hencer=s. ' ' .
P, =9sP;=0q,-P,=q=L
n=pp,..p,=q4,-. 9 withp, =q;
making the two factors identical. )
Coroliary: Any positive integer n> | can be written uniquely in a Canonical form n = p " p,**...p " .
' Where k, is +ve integer and each p, is aprimewithp, <p,<..<p,
Proof: By the fundamental theorem of Arithmatic we have n=p p, .. p, where p's are primes.

Several of the primes which appear in factorization may be repeated. By collecting like
primes and repalcing them by simple factor we get the Canonical form n =p “p,"...p." .
Exercise: Show that every integer has atleast one prime factor.

Proof: Suppose n be any intcger; then either n is prime or n is composite.
' Ifnis prime, then there is nothing to-prove. _ _

Suppose n is composite. Then 3 integer d such that d | n. By well ordering property, the set of .
dwisutsufn.hasmesmaﬂestnmuberp,, Then p, must be a prime otherwise p, has divisors q such that
l<q<p, ; e A

~ Thengq|p, andp, | n=> q|n, which contradicts the choice of p, asa smallest positive divisor
of nnotequalto 1. :

Thus we can write n =p,n,, where p, is a prime.

Thus every integer has at_]ahstunapﬁmc factor.

1.23. Theorem: There is a infinity of primes.
Proof: Suppose there are finite no of primes oD asa Bt

- Now we have to construct a new prime.
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Consider k=pp,..p,* 1,.

This shows that when k is divided by the primes, p,, p,. ..., P, the remainder is 1. So kis not
divisible by the primes p,, p,. ..., p,. We know that every integer must have a prime factor. So there
miist exists a prime other then these n primes or k itselfis a prime. hence the no of primes cannot be
finite.

1.24. 'fhenrem: There are arbitrary gaps between primes.
or Given a'posiﬁvc integer k, there are k consecutive integers none of which is a prime.
Proef: Let k be a positive integer. ,
Consider lk+1+2,]k+1+3,. [k+1+k[k+1+k+1,
Every one of these is a composite because, j divides lk+1+jif 2sjsk+1.
So there are k consecutive composite numbers. |
Hence there are arbltmry gaps between primes.

1.25. Theorem: If p_is the nth prime then p_ < 2% . There are atleastn+ | primes less than 2°.
Prml':[.etusﬁrst&eethatpﬂﬂEplpz...pn+l*ipn';+L |
. Lct.m-= p,p,--p,* |, misnotdivisibleby p,, P, --s P,
Som is either a prime or divisible by a prime p, + 1 between p, and m.
8. P, <P, SM '
ie. P, SPP, Pyt
<pP.-P,t1
=patl.
Now we prove by inductionthat p_ < Ll
 Forp=1p,=2=2""=2..
Assumen> | andlﬂ:atl:.hemﬂthulds for all integers upto n. then

*' 41

Doy SPiP;Pa+1<227 2702

3427 gt
= 2' 242+ _+1 _!_1

- |
=2 41
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=271 41

Y L Y Ea)

- 2_22"-4
=2¥
Soby induction, p_ < 2%,

Cnmliary: There are atleastn + 1 primes less then 22",
Proof: Clearly p < p, <p, <..< Py <Py S27.

_ Thus there are atleastn + 1 primes less then 22",

1.26. Theorem: there are infinite no primes of the form 4n + 3.
Proof: Suppose there exists on the finite no of primes of the form 4n + 3. Call these q,,q,, ..., q,.
-~ Consider the positive integer,
0, =49,q,.q,-1
=4(9,q,-q, - 1) +3 ]
Letn,=rr,...r be its prime factorization.
Sinccnuisanaddintegerrtaezforall k.
Sor,=4n+1,4n+3.
o ﬁ]l;kcann‘tbeofﬂacfmm4n+I,sinaepm&ucmfnmormmcintegersafthefumutn+lis
of the form 4n + 1. '
| Soatleastoner, say}. is of the form 4n + 3.
r,|n,andr | 4q,q,..q,.
=:~'ri |(49,9,-.q,-1) = 1.
Which is absurd since r, > 2.
So the assumption is wrong. Thf:l‘ﬂ must be infinite prime of the form 4n + 3.
Exercise 1; If p is a prime and a and b are positive integers'such that p | a and p|a+b thenp|b.

Exercise 2: If x and y are integers(odd) then x? + y* cannot be a perfect square.

Exercise 3: Prove that any two integers if both not equal to zero have a unique ged.
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Exercise 4: Show that the product of two consecutive integers can never be a square.

1
Exercise 5: Forn 2 | prove that E n(n+1)(2n+1) is an integer.

Exercise 6: If a, b, ¢ are any three integers such that (a, ¢) = 1 and (b, ¢) = 1', then show that (ab, c)
=]

Exercise 7: Prove that 19 is not a divisor of 4n® + 4 for any integern.

Summary
¢ Any non-zero integer has only a finite nﬁnﬁcr of divisors.
¢ Any common divisor of “a’ and ‘b’ is a divisor of their greatest common divisor (a, b).
e A common multiple of “a’ and ‘b’ is a multiple of the least common mul.ﬁple [a, b].
¢ A necessary and sufficient condition for [a, 'b] =abis(a,b)=1.
e Ifa b>0, then [a, b] (a, b) = ab.
o The infinite set of integers al,. @, ...y & , .... 2ls0 has the greatest common divisor (a,, a,,
- !
¢ The greatest common divisor of two numbers is always unique.
¢ The least common multiple of two numbers is always unique.

' A positive integer which is greater than 1 and has only two positive divisors | and itself is
called a prime number.

¢ A mumber (> 1) which is not prime, is called composite number.

* For any integer n (> 1), there are n consecutive composite numbers,

e The sequence of primes does not come to an end, i.e. number of primes is mfinite.
e If p is prime, and p | ab then then plaorplb.

¢ 2 is only even number, which is prime.

e If(a, b) = 1, then there are infinitely many primes of the form aq + b.

e If a and b are two odd integers, then a’ + b? cannot be a perfect square.

¢ Fundamental theorem of arithmetic states ﬂmt,wezypusitive integer n > l.mnbee:qused
as a product of primes, this reprm:ntauon is unique apart from the nnier in which the
factors occur.
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Unit - 2
Congruences

Introduction :

The theory of congruences was introduced by carl Friedrich Gauss (1777-1855), one of the
greatest mathematician of all times. Gauss contributed to the theory of numbers in many outstanding
ways, including the basic idea of this unit. Although Pierre de Fermat (1601-1665) has earlier
studied number theory in a somewhat systematic way, Gauss was first to develop the subject as a
brapch of mathematics, rather than just a scattered collection of interesting problems. In this book

- “Disquisitioner Arithmatic™ written at age 24, Gauss introduced the theory of congruences, which
gained ready acceptance as a fundamental tool for the study of number theory.

Definition 2.1. : Letn be a fixed positive integer. Two integers a and b are said to be cungmence_ _
mndulnnsymbnhsedb}ra b(rodn)ifn|a-b.ie,a-b= nk,t‘ursumemtegerk
eg. 3=24(mod 7)
-31=11(mod 7)
-15=-64(mod 7)
: whennfa htheuwcsa}rthata:smcungmenttohmodulonand-ﬂmcasewcwmeaﬁ:(modn)
For example, 25 £ 12(mod 7), since 7§ (25 - - 12).
Moess: .. . |
« (i) 1|a-bso a=b(mod 1) forall integersaand b.
(n) Two integers are congruent modulo 2 when they are both even or both odd.
(111) Given an integer a let q and r be its quotient and remainder on division by n. So that
a=qntr
" =njq-r
= q=r(mod a). _
(iv) Ew:ry integer is congruent modulo n to exactly one of the values of 0,1,2,...,n- 1.
Let a be any integer. Then :
a=qn-+r, O0<r<n.
ﬁﬂér(modﬁ} forr=0,1,2,...n-1
Theset {0, 1,2, ..., n- 1} is called the set of least positive residues modulo n.
For example, forn=35, {0, 1, 2, 3, 4} is the set of residues mm:tuloi
100 =0(mod 5)
111 = 1(mod 5)
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Definition 2.2. : A collection of nintegersa,, a,, ..., 3, is said to forma complete set of residue
modulo n if every integer is congruent modulo n to one and only one of the a,'s.

Theorem 2.1. : For arbitrary integers a and b, a =b(mod n) iffa and b leave the same non-negative
remainder when divided by n.
Proof : Suppose a=b(mod n)
_ =a=b+im (for some integerk)  ....(1)
Let rbe the remainder when a isdividedbyn. i.e.,
a=qﬁ+r,
Now ()= E=a—1¢n
=gn+r-kn
={g-kn+r
Soremainder is r when b is divided by n.
Conversely suppose
a=gn+r
h=gn+r.
; a-b=_{q1-q1)ﬂ

=nla-b _ :
= a = b(mod n) Proved.
.Theorem2.2.: ° |
(i) a=a(modnn).
(ii) a=b(mod n) = b=a(mod n).
(iii) If a=b(mod n), b= c(mod n) then a=c{modn).
(iv) a = b(mod n) and ¢ = d(mod n) then
) a+c=b+d(modn)
and ac=bd(modn).
{v) a=b{mod n) then
ac =bec(mod n).
(vi) a=b(mod n) then
a*=b%modn), Vk=1.
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@ a-a=0.

nja-a
; a=a(modn).

i) _ a= b(mod n).

nja-b
#n!b a
=§bna{modn)

(iii) a=b(modn) and b= ¢(mod n)
n|a-bandn|b-c.
n|{a-b)+(b-c)
nja-c. '
$Ic(mddn).

@) ; a=b(mdnjmdc-d(modq)
nja- hmdnic -d

=a- b-qlnmdc d-qnnfnrq,.qaez

Now (a+c)-(b+d)=(a- b}+[:: -d)

In+%n
=(q;+ q)n.
n|@+c)-(b+d)
‘ a-;-c.-b'l*d(mndn).

and  ac-bd=ac-bc+be-bd
= c(a-b) +bic-d)
=cq,n+bgn
=n(2q,+bq,).
ﬁln'r.-'b:t
ac = bd(mod n).
a=b(mod n)

nja-b
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a-b=ng, forqez
" Now ac - be=c(a - b)
: i
- n|ac-be.
ac =be(mod n).
()  Given a=b(modn),
n|la-b.
a*=b*(mod n) is clearly true fork=1.
Suppose a* =bmod n).
T Ao a=b(mod n).
‘ By (i¥) a a*=b b(mod )
=a“+'=u"+'*{l.1mdn}.

Hence by induction, a*&b(modn) Vk21

Exercise : Show that 41 | 22 - 1.
Proof:  2°=-9(mod 41)
= (2°Y' =81 (mod 41)
= 2 = (81)(mod 41)
Ao 812= 1(mod41)
© 2®= |(mod 41)
=41{2%-1. |
Exercise : Find the remainder when |1 +[2 +[3+..499 +]100 is divided by 12.
Ans: |4=24=0(mod 12) and '
fork 24, k= |-_1(55.7....._..k)
= O(mod 12)
|1+|g+|§+._,.-4139-- 142 + 64 0+.. 40 (mod 12)

= 9(mod 12)
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Thus when [1+2+..4/100 is divided by 12 rremainderis 9.

i . n
Theorem 2.3. : If ca=cb(mod n) then 2 = h[mod EJ where d = ged(c, n).

Proof : We can write,
ca-cb=nk forsome integerk
Now d=gcd(c,n)
=#d|caﬁdd|;n
= c=drand n=ds.
* Substituting the value of c and n in (i),
dra-drb=dsk
=>r(a-b)=sk
=»s|r(a-b)and ged(r,s) = 1.
=s|a-b  (byEuclid'slemma).
a=b(mods)
atb[modg)
d ’
Corollary :
(1 . Ifged(c,n)=1,then
ca=cb{modn) = a= b(modn).

Corollary:

(1)

(i1) If ca = cb(mod p) and p f'c, where p is a prime :‘nm:iher, then a = b{mod p).

Ifpfc= ged(p,c)=1."
ca =cb(mod p) = a = b{mod p).
Linear Diophantine Equation :

Any equation m one or more unknowns which is to be solved in the integers is called Diophantine

_ equation. The simplest form of Diophantine equation is,

ax+by=c

wherea, b, ¢ mgwen integers and a, b not zero. (x,, y,) is called a solution ufthiseqlmﬁnnif

ax, + by, =c.
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Theorem : A linear diophantine equation ax + by = ¢ has a solution iff d | c where d =gcd(a, b).
I£ (x, ,) is any particular sohution of this equation, then ll other solutions are given by
x='1u+[§]tand}'=)’o—[%]t, for varing integer t..
Proof : Suppose ax + by = ¢ has a solution (x,, y,)
d =ged(a, b)
a=dr,b=ds.
Now ax,+by,=c
==~.drx¢+d5yn=c
= d(rx, +sy,)=c¢
=d|e.
* Conversely suppose d | c, then ¢ =dt for somet.
d=gcd(a, b) ;
= Jintegers x, and y, such that d=ax, +by,.
= dt=axt+byt
= c=alxt) +b(yb.
 ax+by=chas asolution (xgt, y,$)
2ndpart: :
Suppuée(xn,yq)isasﬂhﬁmofax+by=cﬂ1cn
Jmpbyeel
Let (x, ) be any other solution of ax + by = c then
ax’' +by =c. '
Now - a(x,-x)=b(y - y,).
= dr(x, - x) =ds(y’ - y,)

= 1(x,-X) = s(y - ¥,) | (1)
= s|1(- x,+x)

=s|(-x,+x) (. ged(r, s)=1)
=-x,+x'=st

=Hl;":¥ +[£]t : L
| e _ | | wend®)
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Also (i) =>r|s(y,-y)with ged(r,s)=1.
ar[?ﬁ'f
DY,-¥Y =1t

ﬁf'ﬂy;-rt

u-(3)

From (*) and (**) we get the required resault.

Example : Solve 172 + 20y = 1000.

Ais: 172=8%20+12
20=1%x12+8
12=1x8+4
B=2x4

Thus ged(172, 20) =4 and 4] 100,
Thus the equation 172x + 20y = 1000 has a solution.
Now 4=12-1Xx8 | '
=12-1(20-1X 12)
=2X12-20
=2X(172-8%20)-20
=2X172+(17)% 20
w1000 =500 X 172 + (- 4250) X 20
< %, =500andy,=- 4250 is a solution.

General solutions are, _ _
x;xp»[k)t i y:,h_[i]t
d d
=500 + 5t =-4250- 43t
For positive solution
200 + 5t>0 and -425(!'*43!}(].
t>-100 t«:—ii-;g-—--%%
-~ t=-99
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X = 500 + 5(- 99) = 500 - 495 = 5

y = - 4250 - 43(- 99) = 7.

(5, 7) s the only positive solution.
Exercise : Solve 5x + 3y =52 in positive integer.
Ans : (8, 4), (5,9), 2, 14).

Exercise : Solve 12x+ 501y =1.
Try yourself. " ;
The equation 12x+ 501y = 1 has no solution.

Exercise : Solve 10x - Ty =17.
Try yourself.
There are infinite no of positive solutions.

Theorem2.4.: Let P(X) = 1éﬂc_;x"_ beapub;nmﬁqlﬁmuﬁmufxwiﬁ: integral co-efficient ¢,
Ifazb(mﬁd n), then p(a)= pfb}{mod n). | |
Proof: . a!b(mpdn} '
' =» a*=b(mod n) where 0 Sk Sm.

= ¢ a*=c,b(mod n)

= $¢,a* = T c,b* (modn)

k=0 k=0
= p(a) = p(b)(mod n).

mnzﬁp{x}hawﬁﬂmw co-efficient thenaisa solution of the congruence
p(x) =0(mod n) ifp{a}itﬂ(md n).

Corollary : If a is a solution of p(x) = D{mdn]audulh(modn]ﬂmnblsa]snasnhhmof
p(x) =0(mod n).
Proof : By theorem 4.4, p(a) =p(b)}(mod n).
So  p(a)=0(modn)
= p(b) =0(mod )
ais a:uhﬁm:hisnmhﬁon.

31




Theorem 2.5.: If N=a_ 10°%a, 107!+ _ 4n 1ﬂ+anbcdac1malexpﬂnsmnufﬂmposmvcmtcg¢r
N,0<a <10andietS= SR ER '
Thenq|Niffq|S.
Try yourself :

Theorem 2.6.: LetN=a_10n+a [0+ . .+2,10+4a, be decimal expansion of the positive
integer N, ﬂﬂalﬁlﬂandlct,T Tl T W e

Then 11 |Niff 11| T,
“Try yourself.

l.mur('.‘nngmmt
_ Aomgmufﬂmeﬁxmu=b(mndn)mcaihdahmrmng:mmemdbyasolutmofnw
mﬂmanmtegerxﬁmchﬂmtunﬁb{mod n).
X, 15 a solution of axnb(mudn]
_==r axomb(mndn)
=>n|ax;-b
Sax-b-nk
=b=ax - nk
" So finding solution of ax =b(mod n) is equivalent to find solution of the equation ax - nk=b.
.Twusnh.lﬁmisofnzb{mndn]miakmtabcnqualifthcymmngmmtmndnaiﬂwughﬂley
are not equal is usual sense. For example, the solution 3 and - 9 are equal solution of 3x = 9(mod 12)
since 3:=- 9(mod 12) when we refer to the number of solutions of ax = b{mod n), we mean the number
of in congruent solutions.

Theorem : The linear congruence ax = b(mod n) has a solution iffd = ged(a, n) | b.

Ifd| b then it has d mutually incongruent solutions of modulo n.
Proof : The equation has a solution iff d = ged(a, x) | b and if (x4 ¥,) is a solution of it then other
solutions are

\II
)

s

x:x{,+(
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a
and F=?q_(E)t for some choice of't.

Ammgﬁmvmmmmgﬁsmsf}rmg the first of these formula consider those that occur when
ttakes values t=0, 1,2, ..., d- I. |

x=xﬂ,xu+§,xﬂ+32,..., 7 %
we claim that these integers are in congruent modulo n, while all other such integers are incongruent to
some one of them. ; ' .

If it happened that,

]{n+§tl i_xu+§tz[m0d n),0=st, st, sd-1,

n
Then gtn !Etzi""ndn}

=t =t (modd)
= d|t, - t,, which is impossible.

n n(d-1) .
soxn,x0+E,.i,,xu+ -3 are incogruent solutions.

n .
It remains to show that any other solution Xo + [ 4 ]t is congruent modulo n to one of the
above d incongruent sohutions.
By division algorithm t=qd+r, where0<r < d- .

n n
Hence X, fa‘l=?€u+—[qd+l‘}

T
L )
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=X, +—(modn)
where 0<r<d-l.

: n ' ; .
Soany solution X, + Et is congruent to one of the incongruent solutions.

Corollary : If gcd(a, x) = | then ax =b(mod n) has a unique solution modulo n.

Exercise 1. : Solve 18x =30(mod 42). -

Ans: d=gcd(18,42)=6 :

and _ 6] 30.
So 3 6 incongruent solution of 18x =30(mod 42).
By inspection x, =4 is a solution of 18x"= 30(mod 42).
Required incongruent solution are,

4,4+£,4 -‘E ®x24+ £x34+4—2-x44+£x5
6 6 6 6 6

x=4, 11, 18, 25, 32, 3%(mod 42).
Chinese Remainder Theorem:

Theorem : Letn,,n,,..., n be positive integers such that

ged(n, n,}- 1 wheni#j.

Then the system of linear congruences
' x=a(modn,)

x=a(modn,)

Ai=a l[mndn,} g i
has a simultaneous solution which is unique modulo the i mﬁegﬂ'sﬂu“z Ay
Proof : Westart withn=nn,...n_and write

= n —_
Nt e —.njﬂz...nt_lnkfl...ﬂ'
oy

god(o,n)=1,i=1,2, ... k-1, k+1, .1
~ ged(N,.n)=1.
Consider the congruence N, x = 1(mod n.')
According to existence theorem of ax =b(mod n). N.x = 1(mod n,) has a unique solution x,.. -
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We can prove that,
X= a"N,x.b +a,N,x,+..+4a N x,
15 asimultaneous solution of the given system.
' N,=0(modn,)ifi#k

A LT
(Since N, = ']'1_ =nng..ny Oy, .0, ).
k

LI

and aNx = gkax.‘{mﬂd n‘)_.

aNx =((mod s Ld L k-LE¥]L .ot

. .Aﬁﬂ& - X=a,N;x, +a,N,x,+..+a N x,
=a(modn,) [ Nx, = l(modn)]

X is the simultaneous solution.

- Uniqueness: g : 5

Suppose x' be any other simultaneous solution. Then

' itahl:l.l'(mndnk]. : ]
o, [X-x’

Emme ged(n, n}-} =1 we'have,
n= n,nz,,..nr'|[ x-x")

Hence X =x’(mod n).

So x'is unique modulon,n,...n,

Hence proved.

Exercise : Solve
| X=2{mod 3)
Xx=3(mod 5)
_ x=2(mod 7)
Solution : Letn=3x§x 7.
| 'N,=35,N,=21,n,= 15
We consider the linear congruences,
35x = l{mod 3) which has solution X, =2 -

35




21x = 1(mod 5) which has solutionx, =1
15x = 1{mod 7) which has solution x, = 1
Lt x= allel +a,Nx, + a,Nx,
=70x, + 63x, + 30x,
=190+63+30
= 23_3, ;
233 modulo(3 x 5 x 7= 105) is the required solutioL
LE., . % =233(mod 105)
=23(mod 105).
Exercise : Solve 17x =9(mod 276).
Try yourself
. % =33 {(mod 2‘}'6]; 18 solution.

Question : Find all the integers wﬁchhavemmdm 1 or2 when divided by each of 3,4, 5.

Squﬂun_:Wehavctushow,I
x =a (mod 3)
x=a,(mod4) -
x=a(mod5).
We have to consider eight cases,
a'I-' a'.t ai
A 1. 1 | 1
B 1 2 1
C 1 1 2
D 1 2 2
3 1 g
F 2 2 1
- G 2 1 o 1
H 2 2 2

g CmA:%mafafa,:_l.
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The equation are

x=1(mod 3)
x= 1(mod 4)
x=1(mod 5).
Letn=3>=4x5i
N,=4x5=20,N,=3x5=15N,=3x4=12.

Consider
20x = 1(mod 3) of which x, =2is solution
15x = 1(mod 5)of which x,=11is s;oluﬁon
12x = 1(mod 7) of which x, =1 is solution
Let x= aNx, +aNx, +aNx
=40+ 45+ 36
= 121.
Thus, 3 =121(mod 60)
= 1(mod 60).
Ist solution set, £=60k + 1} = {1, 61, 121,..}.
Similarly, we can solve for the cases B, C, D, E, F, G, H.
Fermat's Little Theorem : Ifp is a prime and p{ athena® = 1{mod p).
Proof : Consider the first (p - 1) positive multiples of a. i.¢., the integers a,2a, 3a, ...(p - 1)a.
None of these numbers is corigruent modulo p to any other, nor is any to zero.

 Indeed, ifit happend that,
ﬁEm(dep}, l<s<r<p-1 _
= r=s(mod p) S ( ged(p,a)=1)
=plr-s
whichis not possible. :
These numbersa,2a 3a, ..., {(p- l}?are congruent modulopto 1,2, 3,..., (p-1) takenin same

order. :
'So  a2a3a.(p-1a=123..(p- 1) modp)
= a"|p=1=p-1 (mod p)

=™ =1(mod p) (“-'scd{iﬁ-l’}“);
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. Corollary : If p isa prime then a* =a(mod p), for any integera.
Proof : If p|a, then p | a* and hence s

| P I'a" -a

=2 =a(mod p). -
- IfpYa, then by Fermat's Little Theorem

' a*'= [(mod p) |
=sa® = a(mod p)(multiplying by a)

T.l_msinall cases, a*=a(mod p).

Hence Proved.

Question : Varify that 5% =4(mod 11).
Ans : By Fermat's Littlr Theorm,
519 5111 = [(mod 11)
= 5% = |(mod 11)
=> 5% = 5%mod 11) and,5* = 3(mod 11)
=5 5% = 3%mod l.I} and 3*=4(mod 11)
= 5%= 4(mod 11).
Note : methc-;nrullm'y.ifa"ﬁ{mod p) for same 4, then p is a composite.

Question : Show that 117 isnotprimei
Solution : It can be shown that,
21 #2(mod 117) |
2117 = QTX 1645 = (JTYI6 ¢ 25,
2'=128 = 11(mod 117)
= (27)"%= 11"(mod 117)
= 2" = 11 x 2%(mod 117)
= (121)* x 2%(mod 117)
=4* x 2%(mod 117)
=2(mod 117)
= (2" (mod 117)
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= (128)(mod 117)’
=11°(mod 117)
=121 x 11(mod 117)
=4 x 11(mod 117)
#2(mod 117)

Thus 2" 2(mod 117).

Ti:isshanﬂaax1i?ismtapﬁm.

Lm:lfpandqare&ixﬁnctpﬁﬁcmchﬂmt
af = a(mod q)
a'=a(mod p)
' Thena®=a(modpq).
Proof : We have # = a(inod p) for any integer a.
Repalcing a by a’,
2= amod p)
=a(mod p)
pla™-a.
Similarly, q | a™-a ;
Thus pq|a™-a v (@=L
; ST a”=a{mn& P9)- ;
Note : The converse of Fermat's Little theorem is false. By Fermat's Little Theorem, -
. pisprime = a* ! = 1(mod p) ifp/a. '
We show, 2! = | (mod 341) but 341 is not a prime.
In fact 341 = 11 x 31, e
20=1024=31x33+1.
2'°=1(mod 31) and 2 = 1(mod 11)
= 2! =2(mod 31) = 2" = 3(mod 11)
2 =2 x (219
=2 x 1(mod 11)
241 = 21152 = )(mod 11 x 31)
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= 2 = |(mod 341)
= 2%'=1(mod 341)
and 341} 2, but 241 is not prime.

Wilsoni's Theorem : If p is a prime then |p — 1= ~1 (mod p).
Proof : Proof is trivial forp=2 andp=3. '
Let us take p > 3. Let a be any afthtpﬂs.itiw: integers 1,2,3,...,p- 1.
We consider the congruence ' i
ax = 1(mod p).
Since ged(a, p) = 1 this congruence has a unique solution modulo p. there is a unique integer a’
such that 1 <&’ <p- 1 satisfying ' '
- a@'=1(mod p).
Since p is prime,
a=a'(mod p) iffa=1(mod p) m‘aEp-'l(n_md p):
- a?=1(mod p) is equivalent to,
(a-1)a+ 1)=0(mod p).
So, either |
a-1=0(mod p) or  a+1=0modp)
~=> a=0(mod p) =>a =p - 1(mod p).
If we omite the number 1 and p- 1 the effect is to group the remaining integers 2, 3, ..., p- 2
into pairs a and a’ where a # a' such that

aa' = I(mod p).

-
when these PT congruences are multiplied together and the factors rearranged, we get,

2.3.4..(p-1)=1(mod p) |
=51.2..(p- 1)=p- L(mod p) =~ 1(mod p)
=:-lp_-—‘li—l (mod p).

Converse of Wilson's Theorem is also true: If |p—1=~1(mod n) then n is a prime.
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Pron!f 1fn is not a prime, ttrnnhﬁadmmd,l{d{n.
dsn-1=d|n=1
Giventhat - nfjp~1+1"
' and  djn=dn=1+1
a(ja=1+1)-(lo=1)
=a
;d-l,wmmadimlﬁ ,
'fh:sniu-ip:imc.
__ Application::
Theunm mmwﬁ+lﬁlxmdp}whutpmmoddmhﬂa.ﬁnhﬁm'iﬂ'p
=1(mod4). | i
Proof : : Let a be a solution of n? + 1 = 0(mod p)-
o a*=-Lmodp).
: 'Bymdgmﬂmp-atkﬂumna j
-Pq.ttp#4k+3
pr--lk-l-Swehnw,

(DT =)™ =1
- . ByRamats Thoorem.
1=2"'(mod p)

. =
=(a’) ? (modp)

'[-‘1)';_l (mod p)
. m- I(modp). -
L pi2
ﬂptlmpumoﬁm.
Ths p=4k+1.
. 4lp-1
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p=l(modd). = .
Nowforﬂmnppositndimctim,midermem’
p-1-12.E2R2L =20~ =
Wehawﬂxmm
p-l=- 1(mod p)
. p-i--Z{modp}_
41
Rearranging the factors produces, |
lp-1= 1,{-132(-_21..,%—'![ - FT_I- ] (mod p)

a3 .
"E—z—(m P).

. 10 . w3
=7 (12.251 ) aodp

By_mm-smmbu-l(mod p).

R [IL‘) (modp)

; Iqumume&mtpisofﬂlefurmdk+ l,then (_,1)!-:-_' "=1 Imhgmwm ﬂ:eﬁmgmmne,

o .
_1;[(55—1}!] (modp) .
Thus meqtmdrauccongmmcc n?+1=0(mod p) hasa solution [ PT_I )'
Hence proved. : ' -
Quelﬂnn'Fmdtheremmnderwhmln+143wdrﬂdedb}rll
Ans: %havemﬁndxmhﬂmt ' :
27 + 14’ = x(mod 11)
Now 14=3(mod 11)
= 14 =3P (mod 11)
= 14=S5mod1l) - - . L )

-
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And  2°=1(mod 11)
= 2™ = I(mod 11)
= 27 = 8(mod 11) '- | (i),
From (i) and (i),
27+ 14° = 13(mod 11)
=27+ 14 = 2(mod 11).
| the remainder when 27 + 14° is divided by 11 is 2.
Prpblem : State true or false : o
' ‘ For any two relatively prime integersa and n, a**'='l (mod n)-
Ans'; This statement is not true as '
| 3+-1235=27 w3 (mod 4).
a 3“e3(modd).
Thus (3, 4)=1.
But 3" ¥ 1(mod 4).

"+ If|n=-1(mod n), thennmustbe a prinse.
Ans: The statement isnot true. .
For . |am-bmod )
ot
il

alf|a+t)-ln
P | S
' =n:_t=l,ﬂ:|i1:his.mtprinlaé.
* 1.Ifpis a prime and #?=bYmod p) then prove thatp|a-+borp|a-b.
- 2.8clve  2x=3(mod5) |
4x =2(mod 6)
3x = 2(mod 7).
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3. Ifa=b(mod m) and a =b(mod n) and k = [m , n] then prove thata = b(mu-dk}; .
Proof:Given a=b(modm)
; m|a-b'=a-b=mk,.
a=b(mod n)
nla-b=pa-b=nk,
-4. Solve 17x =9(mod 276).
5. Find a number x such that
x=3(mod 11)
x= 5(mod 19)
x = 10{mod 29)
6. Find the least positive number x satisfying,
2 = x(mod 7).
7. Solve 111x = 75(mod 321).
8. Find all the integers that give the remainders 1, 2, 3 when divided by 3, 4, 5 respectively.

S ; .
. Anmtnga a' maandwbemugmmtmmuﬂmmmgabmodnlun,numyﬁmdpmm
integer if n1 a —b. It is written as a = b (modn).

e All usual algebraic law hold for congruence. _
& azb(mudn)'ifandml}r'if‘a‘and‘h'ha\rethesamemmaindmwiﬂ:mqmcttun,
. ﬁncxpmssionofth:'furmaxeb(modn},a#piscaﬂedalinmmgmmm__

o The linear congruence ax = b (modn) has solution if and only ifdib whgr:d=gcd (a,
m).

e A system of linear congruence x =a, (mod n,) is solvable if and only if (n, n)} divides (a, -
— a_]

o Fermat’s little theorem states that “If p is a prime and p X a; then 2! = 1 (mod p).
¢ Ifp is prime, then a” = a (mod p) for any integer a. '
« If pand q are distinct primes such that a* = a (mod q) :111«1_:1;“l =3 (modp), thena™=a
(mod pq)-
e Wilson’s theorem states that “If p is a prime then (P — 1)! =—1 (mod p).
HEN
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_ Unit3
Quadratic Resides

Introduction :

The subject of primitive roots is more powerful and interesting subject. In this unit, we discuss
-problcmssuchasmcexistmwofprimitivemots,huwmﬁnd_them,memnsu'uctimofreduced
_residice systems, the indices and so on. The problem of solving such a congruence as

"xX*=a(modp),pta.. (1)

If{l)haasuhnim,ﬂ:enais&xwaiudumfsomamuam@cudiﬁdpdbyp.ﬁmfm:we
say that a is a quadratic residue of p. Otherwise a is called a quadratic non-residue of p. In this
unit we shall discuss the quadratic congruence and quadratic reciprocity law :

Primitive roots
Let m be a positive integer and (a, m) = 1. If order of a(mod m) is ¢(m) then a is called a
primitive root of m. _
' Forexample 3 andS5 are primitive roots of 7
| 3 is primitive root of 4.

Question : :
: Does every positive integer has a primitive root?
We can show that the integers 2, 4, p?, 2p" where p is any 0dd prime and n 2 1, have primitive
roots and these arc the only integers with primitive roots. 3

'Theurem-: :
Ifais a primitive rootof o, then a, 4%, ., a# is a redhuced set of residues (hod n).
Proof:
: 'Since (a, n) = 1 we get(a, n) =1 foralli 2 1. Thus each of the integers in the set
_ SR 1y - :
is relatively prime ton. Next we show that the integers in the set(1) are mutually incongruent (mod n).
Let 1 <i<j<é(n). '
Then a'=al(modn) .
= @ '=1(mod n)
= aisoforder<j-1(modn) -
=¢(m)<j-1
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which is impossible. Thus the set (1) consists of §{(n) mutl.ml.ly incogruent integers (mod n) each of
which is relatively prime to n. Hence (1) is a reduced set of residues (mod 1).

Theorem :
Ifn is a primifive root, then it has exactly $(¢(n)) of them.
Proof: ; '

. Swmcﬂma'isapﬁmiﬁvemmfn.m {a, &, ..., 2%} isamﬂwdwtnt_‘miduﬁ{mud
n). Thusﬂ:cmmbemfprimiﬁvemﬂsufnisﬂmmnnbaufmgash {a, u‘,m,a'.""‘} which are
' pnnmwermlsofn. | |

Nextweprweﬂ:efolluwmglmnm,
Lemma :

Ifmahmgubhasmﬂ&kmm:hn,mdh}aﬂﬁ;hhumd&(—hﬁ‘—) modulon.

Proof of the lemma : :
Letd = (h, k). Then we may write h=h,d, k =k, where (b, k)= 1.
Clearly p* ! = 6™ = * ) =1 (modn)
Now:fh*humdurmmhhn,ther{k‘ Dnﬂmuthurhnnd.mbhumdarkmmhllon.

from the fact that

b"n(b‘)'-l{modn)
-chet,k]h.r
Thusk,d|h,dr
ie.k Ibrorkjr (v (n,k)=1)
Because k,, r are positive, we getr=k..
Hence order of b* (modn) .

Invmofﬂrlamwgu, ﬁradu, order of ' (mod n) = ﬂ, :p(n)} M#mnm

motofn:fmdmiylf{:,ib{n)] L. Smﬂ:u:mﬂﬂn}]whmuﬁmﬂnsﬂ {1,2,....4(n)} such that
(1,¢(n}}=l we get Memﬂﬁn}}prmmwmmufnmﬂrsﬂ {a, &, ..., a%}, '[lmounpl:lnslhe
proof.
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Lemmal:
pr:snpnm:andd}p lthenﬂmconvm-gmcexd lzﬂ{mdp}hsmﬂydmgtm
roots, and &(d) of these roots have order d (mod p).
i i
Since d | (p - 1) we have,
X1 -1=(x*- DAX)
 where fx)=xr-t+xel- ¥4 Fxi+1
Now by Formats Theorem, the congruence :
x1-1=0(modp) : k(D)
has p - 1 in congruent roots. Ifa is one of them then |
(@ 1)f{a) =0 (mod p).
Cm&equ:ntlymﬂaera‘ IIO(mndp}nrf{a}!ﬂ(mndp}
“+ Thuseachofthep- luwotgmentrmaf{lhsmﬂ:ﬂamt!f

x-1=0(modp) = eem 2)
drarud_tnﬂbﬂmngmemc _ I, '
f{x) =0 (modp) X L |

Smuﬂx)mapulynmalufdegp 1- dmthleadmgcoefﬁcuntl (3) has atmostp - 1-d
Wmmmmmm&mmmmdmgmmm

 Next let ¥(d) denote the number of integers k, 1 Sk<p-1, thathavem‘derd(mndp) Then
‘P(d}mmenqmbm'nfmutsofﬂmmgmm(Z}thmhavcurdﬂd(mudp) Since each integer -
between 1 to p - 1 has order d for some divisor d of p - 1, we get ' :

=]1= .
p -:?;'- :P{d} R (4)
On the other hand,
p=l= ‘E_ 9 wern(5)

Tupmveﬂmthmremweﬁrstpmvcﬁ]ﬂ‘-l’{d}sq)(d}

Given an arbitrary divisior d of p - 1, there are two possibilities; e1ther we have '¥(d)=0on,
¥(d) > 0. I ¥(d) =0, then we clearly have ‘¥(d) < ¢(d). Suppose now that ‘F(d) > 0. Let a be any
integer of order d (mod p). Then ais a solution of the congruence '

x¢-1=0(modp) R ) bt
 Wegeta, a%;..,,a" ' are solutions of (2) and are mutually incongruent, since a has order d
(mod p).
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Thus a, 2%, ..., a* ' are all the incongruent roots of (2). Now since a' has order (_i%j,a"has_

order diff (i, d) = 1. Since there are §(d) many values of i in the set {1, 2, ...,d- 1} with (i, d)=1 we
. setthere are ¢(d) many integers inthe set {2, #,..., %'} which have order d (modp).

e, 'I'hmsimwsthat‘}'(d}:-l}ﬂrn‘}'{d)=¢{d) mmmmmw(d)sqdmwﬁmm
and (5) we have,

d) =
‘%_]‘P'I) dE_| o(d) | werni(6).

_ Since (d) < ¢(d) for each positive divisor of p - 1 we must get ¥(d) = (d) for each positive
‘divisorof p - 1'so that the equality (6) is valid. Hence the result follows. -

Corollory : - _ ;
[fpisapﬁmn,ﬂmﬂmemexmﬂyﬂp&)ﬁmguﬂ;ﬁniﬁvemnfp.
. - (First we prove the lemms - Iandthmputd=p-l)wegetﬂmem¢(p-'l)rmtwf
xP-! - 1 =0 (mod p)
wmchhweordupd!{){p){mndp) 'I'lmsﬂ:lmmﬁp l]pmmuvermlnfp.

Question : _
For an odd prime p, varify that the sum
"+22+ 3+ _+(p-1)r= O(mod p) i p-1fn
Sy : -l(modp) £  p-1jn
If(p-1)|nthenfor I<r<p-1weget.

= | (mod p).

' {p—1) times
p——
Ths s p2v430 4 +{p )" =1+1+..+1 (mod p)

=p- 1'(modp)
_ =- 1 (mod p).
~ Let(p- 1) faand a be any primitive root of p.
“Then{l,a,#, .., 8%} is areduced set of residues (mod p). because{1,2,...p - 1} is a reduced set
of residues (modpp), we get 1°, a", a%..a%-2* are congruent (mod p) to the integers 1%, 2, ., (p - 1)°
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. in some order. ;
Thus 1°+2°+ . +(p-1P=1+a"+a®+. . +af "

alr-ie _1

(mod p).

S.j_m:: W l{mndp] andp 2 lfﬂ- ali]{modp} ie, pra.' =1. HDWE‘.'FBIa(P-I.‘Jn?
I(modp)ie.p|a%-"- 1. Thus -

PI'{:h_II (mod p)

2l _q

=S— = O(mod p)
a - . :

= 1"+24 .. +(p-1)P=0(modp)if(@-fn.

.-Lﬂnllll
prmanuddpnm:,thmapnnnhvcmotrnfpmﬂsm:hthﬂf ‘ﬂ(mudp’]
Proof: -
Let a be any primitive root of p. Hﬂ"t{mdpﬁ&u%nﬁnuhdbyhhgrwnmﬁt
' 'mu:rrcua.putr-l+p.51nur-a{mndp).nsalsuammmvcmofp Applying Binomial
Theorem we have, '
!'"ﬁ(a+p?" :
=gt !+ (p- 1)pe i+ pN
IMHESPMWW}'.
= o+ (p - 1)pa*"(mod p?).
" But we have assumed that 2> = 1(mod p?).
Hencer*'=1-pa*-Xmodp?). -
Since a is a primitive root of p, (a, p) = 1 andsopfa*-%. Hmucpar-faeo(mdpﬁ.
Consequently ' #1 (mod p?). This proved the result. :
Cmm: I :
[fpisnddpri:mandifrisaprimiﬁwmomfp.li:mciﬂnrmrﬁpisapﬁmiﬁvemqtﬂf

P
Proof :
Let a be any primitive root of p.
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Since order of a(mod p) is p - I, we get,
a*= l(mod p*) = a*= I(mod p) = p- 1 | k.
Thus order of a(mod p?) is a multiple of p - 1. Since order of a(mod p?) is a divisor of
o) =pp- ). |
Wegetnrdernfa{mudpz]mmtherp lorp(p-1).
anIct&bethepnmhwmomfpuutufrandﬁpfwwhwh
a*' #1 (mod p?).
Then order of a(mod p?) is p(p - 1) = ¢(p?) i.e. auapnmitwemntofp’
Lemma?2: :
Lctpbeanoddpnmnandrbeapnmﬂvemomfpmchﬂmﬂ ‘ﬂ(mudp’} Then for each
positive integerk 2 2.
7" %1 (mod p¥).
Proof: . '
We prove the lemma by induction on k.

By hypothesis, the assertion holds fork=2. Letusmml:lmnmmfurmkzzmd
show that if it is true fork + 1.

Since (r, P 1) = (r, p¥) = 1.
By Euler's Theorem we get,

) ot )
Thus there is an integer a such that
| T et <adl)
whmpkhb&imﬁmhmthﬁiss‘ﬂkjﬂﬂ“w“““mSidm"fmwm
70D = (14+-ap* )

= 1 + ap* (mod p**').
Since pfa we get,

#7760 21 (mod pt*Y).
- This shows that the result holds for k + 1 and thus by induction the proof is complete.

Theorem : .
Ifp is an odd prime and k 2 1, there exists a primitive root of p*.
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Bécmé;iismnddpﬂm,phasapﬁmjﬁw root r such that r*-! #1(mod p?).
Then for each positive integerk 22, '

P"'[P.-H =] (mod p¥) S i |

Wepmvethatrmapnmmwmmofp‘ foreachk21. Letnbcﬂmncrderofr{mdp").
.Thmnmd:wdc,

o =p* ’(p*'l_)-
Since r has order p - 1(mod p) and because
= 1(mod p*) = 1* = 1(mod p).
ngct,p-ltn.Thﬁsn-p"(p-l},
 where0Sm<k-1.lfm<k-1,then
LS n|p*X(p- 1) and therefore -
oo =l(modpY)

' Mm(l} Hence n=p*-(p- 1) and r is a primitive root of p*.

There are primifive roots of 2p*, where p is an odd prime and k2 1.
 Letrbea primitive oot of p*. We can assume thatris 0dd, for if not, thear+ p*is odd and is
_ n‘ﬁlh;rnmtwemotnfp" Now rbeing odd -' |
.2 =@ p)=1.
Ldnbctimordnrufr(mode"} thenn | ¢(2p") = ¢(p“}
- Also * = 1(mod 2p*)
=rs=l(modpY),
' -H:dhereﬁunm-mﬂuufa{mndﬁ)dwﬂmm%mhdeﬂntn=¢ip“}-¢{2p‘)mdmmrma
primitive root of 2p*.

Exercise : ;
3 is a primitive root of all numbers of the form 2.5*.
'%mmsmm)-zmwmmiymemz-m
Now since,
2512 16 #1 (mod 25)
and  3%!'=6%1(mod 25)
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ZMSmMWmmmﬁﬁmdeﬂfaﬂmmﬂ* k21.Since3isanodd -
primitive root of 5, 3 is a primitive root of all integers of the form 2.5 k> 1.

2, 4 have primitive roots (i.e., 1 mdi!}wemnﬂiuv:ﬂwﬁol]ovnng.
Ifnis any of the integers 2, 4, p*, 2p* where p is an odd prime and k I, then n has primitive

roots.
Lemma3: | _
If'a is an odd integer, then fork =3
a?* =1(mod 2Y).
Pl_"m!'.:

Ifk=3thmmngnmbecmmea’:l{mod3},whmhumlym(fw 11-31-51 -
l?’tl{nmdﬂ))mmeﬂﬂﬂhcmmhuefmﬂumbgerkEBM, o

= 1(mod 2¥).
Thus g2 =1 +b2"fui:m¢inmgqh. .
m llII—I =&1¥‘1)‘
' =(1+b29
=L+ Lh+pian
=1+ 2%+ (b + 2.2 1)
= 1{mod 2**")
This shows that the assertion is true fork + 1.
Bynﬁmmemsuitﬁ:ﬂmrs.
Theorem:
| For k2 3, the integer 2 has no primitive roots.
Proof : ; :
Letnbe any integer with(a, 2¥)= 1.
Thus a is odd and therefore we have,
a?" = 1(mod 2% (ask=3).
Since ¢(2%) =2+ theabovcmu]tshnwsmatnrderufa{mud?)mless thmtb{Z")
~ Hence a is not primitive root of 2,
If(m,n]=1wherémbzmdnbzﬂ:mdieinte_gumnhasmpﬁmiﬁwmum. :
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Proof: . ;

Letabeanyinmgn'ﬁxﬁhich{;,mn}=l._

Then (a, m) =(a,n)= 1.

S Letd=(¢{(m),$(n)). Sincem>2,n>2, ﬂm},ﬂn)mbuﬂmpenandmﬂefmdzzm
':ﬂm)=md,¢(n} n]d.Nawb]rElﬂmﬂ:eorem.wchavt,

B Gt 8% = | (mod m)
-and therefore: '

-""‘= "")“-ﬂmudm} . Calel n

m N .H-(‘ﬂ-}]‘l ll{mod m} .
" Thus from the fact that (m, )= 1, webave, ' (BT ARy
' a"'"ll{md mo} 3ol E (1. '

Since ¢(mn}=¢(m]¢{n} =m1n]d-" > min,:l.
: Fm{l]wcsuﬂmmhnfn(mdnm}mmﬂ:mﬁm}. Hmecaumtnptmtmmof_

; meﬂre:bum'l‘hmrmwe]nveﬂnﬂlowing:
. Ifnisa positive integer having primitives roots then n must be one of the integers.
2,4,p%, 2p* wherepisan odd prime and k2 1. '
_ Ifnisapowerof2, then in view of Theorem (3) nis cither 2 ork. _
Ifnhuameﬂ:mmcodﬂmﬁcmrﬂmnmbecmmedasn=n, r?Z,sb-i
(r, s) =1 and therefore n has no primitive root.

- Now let o= 2%’ where p is odd prime and k 20,12 ¢£. Ifk}Ithm(Z“,p') 1, 2>2,
ﬂ}Zmﬂmnh&smprmnﬁvcrmtThusk Oorl.
Question : ' "

- Show that : :

[jlfprmpn1{m0d4}ﬂ1manmg:rglsammmmntnfplﬂ'-gualmammremot
(ii}ifp:i_l:nep-3{mod4},1hmmﬁltcg=rgisaprimjﬁvcmofpiﬁ'-ghahmd&'

1 ¢- 1Ymodpy.
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Solution :
(i) Letp=4k + 1. Let g be a primitive root of p. Thmghnsmdullk(modp}.
Suppose - g has order h(mod p). Ifh < 2k, then
g=C1)"-g*
= (- g™ = I(mod(p)). ; '
andﬂ}er&ﬁ}mghaaord:rsmf-&(mndp)nmmmSmcenrdﬂuf-g(mdp)thﬂdﬁp 1
=4kwemh1dcﬂnt ghaaordermlhcr4kor2k{mudp} Bl.mf ghnsdeZk(mn&p},ﬂ:m
= (B)“'HMP} Fi
which cannot be true. Hence - -ghasorder 4k =p- I(mudp}andm guapnmmvemotofp.
Cmmsdy:f—guammmutofp,byﬂrsmmmmt:=-{-g)mammuf

. .p. This proves (i)..

(u}l.ﬂp=4k+3andgbe:pmnmwmutufp nsmmc;mofuf{i)whaw ghasorder :
ﬂﬂ:lurp-- ~4k+2m'l{p Iy=2k+1.

Huwomdn-ﬂnalgﬂ:mw
 m-1mO@odp) L (D)
Smpnam{'}hmdymm ie,x=1(modp)and n=- l(mudp). Hmvn'.
{g"+l)’ 1=gr1. llO{modp} that is , g™*" is a root of (i). %ﬁmfmchwc, _
; . 8"”-1{@&#},“ g2*"'=- I(mod p).
b 'Ilnﬁntmennntmn,bammghuuﬂ:dkﬂ[mdp}.hg’"‘l l{mndp).
- Consequently, -
. {_s}lfl_t(_ l)ﬁﬂs&d‘l'.
‘= (- 1)- 1)Xmod p)
. = 1(mod p).

_ mﬁmh.gmmnn-%@-ntmm

5 mewlylu ghm:urderz(p l}==2k+1

B &Wshﬂsml:rh(modp}ﬂm
(-gP=b*=I(modp). : 5
m:phm{lk+l]d:vﬂuﬁ.mdm2k+1bem.gudd(2k+1}[h.5mh#¢(p)-4k+l
We must have his cither 2k + 1 or 4k +2.
ifh=2k+1, then
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Rt =)

= (- 1(1)}(mod p)

= - 1{mod p).
which is a contradiction, since - g has order 2k + 1(mod p). hence g has order 4k +2=p- 1(modp)
and so g is a primitive root of p. '

Exercise : : _ ) : :
: Ifthe integer m > 2 has a primitive root, and if x,, X,, ..., x, where n=¢(m), is a reduced set of
residues(mod m), show that

[Ix, =—I(mod m)_

- b=l G

Theery of indices
Definition : ' :
Let “r’ be a primitive root of . If (a, n) = 1, then the smallest positive integer k such that
a =t (modn) is called the index of ‘a” relative to r. It is denoted by ind®.
Note : ' :
a=r" (modn) [~k = ind’] "
eg : We know 2 is a primitive root of 11.
2! = 2 (mod 11) :
22 = 4 (mod 11)
2 = 8 (mod 11)
2*= 16 =5 (mod 11)
25 = 10 (mod 11)
26 = 9 (mod 11)
27 = 7 (mod 11)
2% = 3 (mod 11)
© 29= 6 (mod 11)
2% = | (mod 11)
Table of indices :

s 4 1 .{2] a] 441 sle] 2] 84 9% 110
i | 1001 8] 2 49| 73] 6 |5
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iy Rt
If a = b (modn), then ind? = ind} (mod ¢(n))
where r is a primitive root of n.
r is a primitive root of n.
"a=r™ (modn) ) -
b=r"" (modn) _
" a=b(modn) & r™ =™ (modn)
- «ind] =ind} (mod¢(n)):
Theorem : -} :
- Kris apmmtm: root nfn,then
(@) ind ab) ind} +ind} (mod ¢(n))
(i) ind?" = k(ind?) (mod ¢(n))
(il) ind’ =0 (mod $(n)) and

o ind":l(m:dﬂn})
Proof : -

. B)'daﬁmhm, atr"""'(modn}—r(l)
, b-r"’*{mdn}—r(!}

s ab-r"*‘“{mdu}—:(.’r}
'Fmﬁlil}mdﬂ}. : '

ab = r* ' (mod n)
 =>ab=r™ +ind r*(modn)
=5 ™" & ™ 4+ind r*(modn) -
using (3). :
_ md“""-r:ﬂ-mdr (mod ¢(n))
@)Bfm I
Ais © a = r™* (modn)
: =a*-(r“’)k(mndn)
51 A _;a.‘-r““?'(mdn}—i(_li
g a* =™ (modn) - (2) -
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From (1) and (i], _
1'*“":”~II = r"“:(mnﬂn)

= ind" =k ind* (mod ¢(n))

()
e {mod n)
=1’ =r"" (modn)
| = ind! = 0 (mod ¢(n))
Again,
r=r"" (modn)
=r' =r™ (modn)
=% ind; = 1{mod ¢(n))
Exercise : :
Find the remainders when 3%.5" is divided by 11.
Solution :
Let a be the remainder, then

3% 515 = a(mod 11)
= indr(3*.5") =ind’ (mod 10) , where
r is a primitive root of 11.
= ind” +ind”" =ind*(mod10)
= 25(ind?) +15(ind}) = ind} (mod 10) - (1)
We know 2 is a primitive rot of 11.
We construct the table of indices as follows :

s " Lu'd2 ratagsie]lris e
ind} | 10 1 8 2 L4 lof2)a]eqs
from (1)

25(ind2)+15(ind}) = ind (mod 10)

=5 25x8+15x4 = ind}(mod 10)

=5 260 = ind; (mod 10)

= 0 =ind;(mod 10)

=a=1

. required remainderis 1. -
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Exercise :

Solve the followmng congruences :
3x* =5 (mod-11)

Solution : :
We know 2 is a primitive root of 11. We construct the following table of indices ;
g - 1. 2013 4} s| e} 7] gf 9ol
] w0 b szl et brlia]ce s
Given congruence is

3x* = 5 (mod 11)

= ind, (3x*) = ind} (mod 10)

= ind} +ind} =ind}(mod10)

= ind; +4ind} = ind}(mod 10)

= 8+4ind? = 4(mod 10)

= 4ind} = —4(mod 10)

=5 4ind’ = 6(mod 10)

{[+(4,10) =2, we have 2 incongruent solutions]}
= ind} =4, 9 (mod 10) N

= x =5, 6 are the required solution. _

Theorem : The congruence x* = a (modn) has a solution iff d hﬁ:whmﬂ={h¢(;)}
and r is a primitive root of n.

Proof : Given congruence is xt = a (modn) — (1)

Given, r is a primitive root of n.

From (1), x* = a (modn)

& ind, (x*) = ind* (mod §(n))
& k ind. x = ind* (mod ﬂﬂ])

< ky = ind! (mod Mn}),whmy ind;
We know a linear congruence ax = b (modn) has a solution iff (a, m} | b.

" Thusky =ind* (mod ¢(n)) has a solution 1ﬁ‘{k, ®(n)) 4| ind; .

Theorem : Lctnheanmwgerhamgnmmmwmm‘r'andl:t[a,n}=l Then the
congruence x* = a(modn}whﬁtedﬂfk,ﬂn)}
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If it has a solution then there are exactly d incongruent solutions modn.
Proof :
miIﬂ = 1(mod n)
d
& md,(aﬂa‘ﬂ] = ind’ (mod $(m)
ﬁﬂf)— ind! =0 (mod ¢(n})
e d| ind} .
By the previous theorem, x* = a(modn) has a solution iff d| ind}

Thus x* = a(modn) has a solution iff 8 ﬂf

< ¢(n)

=1 (modn)
We assume i* = a(modn) has a solution. -
Then we get as the previous theorem,
k ind* = ind! (mod ¢(n))
= ky =ind} (mod ¢(n)), y =ind;
Since xt = a (modn) has a solution, so
ky =ind* (mod ¢(n)) has a solution.
~ Since d =(k, ¢{(n)), so ky = ind} (mod ¢(n)) has exactly d incongruent solution, mod
q:{n}. : :
— x* = a (modn) has d incongruent solutions modn.
Exercise : x* = 10(mod 11). Examine whether the congruence is solvable or not.

Solution : Herea= 10, k=8, n = 11.
And (a,n) =1

o(n) = 10, (8, 10) = 2 and %‘_st

Then -
10 = 10 (mod 11) = -1 (mod 11)

= 10° ==1(mod11)
= m?%‘-]-arl (mod11)

= The congruence has no solution.
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~ Corollary :

‘ ; 3 | .
x* = a (mod p) has a solution iﬂ"&PTEi (mod p), where p is a prime.
Exercise :

If p is an odd prime, then prove that x? = =1 (mod p) is solvable iff p = 1 (mod 4)

Solution :
Given p is an odd prime.
Now x* = -1 (mod p) has a solution iff

p-! L
DG o-p=! @modp,2=02,p-1)

ﬁ{—[]%lﬁl (mod p)
Now, '

(-1)" =tif =2 =1 even

=-1if 2 ISDdd-.
If{-l:l'g‘;—ﬂ—l; then — 1 = 1 (mod p)
= p | 2, a contradiction as p is an odd prime.

So, (=1) f—;—l =1 (mod p) holds

= p=4k+1
& p=1(mod 4)

Exercise : Show that x* = -1 (mod p) is solvable
< p=1(mod8)

Exercise : Find the index of 5 relative to each of the primitive root of 11.

Solution :
We find the primitive roots of 11.
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We know, 2 is a primitive root of 11.
2% is a primitive root of 11 iff (k, 10) = 1.
iffk=13729.
2" = 8 (mod 11) = -3 (med 11)
26 = 9 (mod 11) = -2 (mod 11)
2" = —4 (mod 11) = 7 (mod 11)
2’ = 6 (mod 11)
The primitive roots of 11 are 2, 8, 7,6,ie.2,6,7,8
To find ind;,indi,indi,andind:
Let ind}= k. Then 5 = 2* (mod 11)
~k=4as5=2(mod11)
" ind) =4
Let ind} =k. Then 5=6"(mod 11)
= k=6as 5=6" (mod 11)

sindl =6

&
Let ind} =k. Then 5 = 7* (mod 11)
. = k=2as 5=7 (mod 11)
- indS =2

Let ind}=k. Then 5 = 8* (mod 11)
=k=3as 5=8' (mod 11)

-ind} =3,

Exercise : Assume is a primitive root of an odd prime p. Then establish the following :

._'l_
® r‘:'2 =1 (mod p) holds.

(i If ¢ is any other primitive root of p, then rr’ is not a primitive root of p.
@) If the integer ¢* is such that ry’ =1 (mod p), then ¢+ is a primitive root of p. .

Solution :
(i) ris a primitive root of p.
= Orderof ismod pis(p)=p - 1.
Now, (7! = (mod p)

-l P'll_ fi "
i =1 (mod p), as p is odd, p — 1 1s even.

S '
:[rf——\% —~1=0(mod p)
2 4
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= [rr;—d'] [r%l +l] =0 (mod p)

=]

=l [F

i
s Bitherp| £ 2 1, thenr =1 (mod p), which contradicts the fact that is a

primitive root of p.
-1
Thus — p| r2 +1

== r%!-a—l (mod p)
(@ risa primitive root of p.-
= £ w1 (modp), by )
Also, ¢+ is another primitive root of p.
50, — I'Ezl} =—1 (mod p), by (1)

ot ]
Thus, ¢ % /7 =) (modp)

i Tt 2
= ()7 =1 (modp)
= orderof m"modp<p~1
= rr’is not a primitive root of p.
@) Let k be the order of ;* mod p.
Thenk | o(p)
- Given, " =1 (mod p)
= (") =1 (mod p)
= r* =1 (mod p) [‘.'.r'=1(mnd p}]
=4pk.
Thus k = ¢(p)
=5 order of 1’ mod p is ¢(p)
= r’ is a primitive root of p.
Exercise : Using the theory ufpnm;twemotspmvethat“ﬂsmsﬂmorm.
Solution : Wﬂmsﬁ:mm
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ifpis'aprimethcn

@ - 1)! = -1 (mod p)

If p = 2, then the result is obvious.

Let p be an odd prime. Thenphasapnmm\remcrtls
= The integers r, I°, ... . ™' are congruent mod p to 1, 2, ..., p— 1 in some order.
Thus, r . 2 . Pyeey 7' 1,2, .oy (p — 1) (mod p)
phtzed.Hp-1) (P_ I)E (‘lﬂﬂd P)

. (-Dp :

=r ? =(p-1)!(modp)— (1)

Since r is a primitive rootof p,

(p-1

e :
r 2 ==l(modp)

=1
=r ? =-1(modp)

(p=1)*

=r ! =-1(modp)—(2)
From (1) and (2), we get (p — 1)! = -1 (mod p)

Exercise : [fpmap:mﬂ:enshuwﬂmmauﬂheﬂp ljmmhvemm:s
congruent mod p to (—1)*"

Solution : Igtrbeapnmitivcmﬂtofp
Now, p has (p)) = (p - 1) primitive roofs. -
Also, rk is a primitive root of p if (k, (p)) = 1. i.e. {k,p—l]=l

Let, ral, ra2, ra3, .. ra(p—l)benllth«:prmhvemotsufp.sf[m,p—l}=l|=12
(P-l}

Product of the primitive roots
=%, 0% (mod p)
= r" =g %" (mod p)

i r%'{rlmp-“ Gt

! 1 (p-1ip-1)
' at + alfu.-ﬂ“‘_u = E

= (~1)**" (mod p) [ "4 =—1(mod p}]
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Euler’s Criteria : )

We consider a quadratic congruence of the form

ax? + bx + ¢ = 0 (mod p), p odd prime and p X a. — (1)

Since p is odd, (2, p) = 1

= (4, p) =L

Also,pXa=(a,pl=1

So, (4,p) = 1, (a, p) = |

= (4a,p) = 1.

Then (1) is equivalent to

4a (ax? + bx + ¢} = 0 (mod p)

+> 4a’x? + 4abx + 4ac = 0 (mod p)

& (2ax + b)? = b? — 4ac (mod p)

<y =d (mod p) = (2)

where y=2ax+b

" d=b2 - dac.

If x = x, (mod p) is a solution of (1),

then y = 2ax, + b (mod p) is a solution of (2).

Conversely if y = y, is a solution of (2), then

2ax = y, — b (mod p) can be solved to find a solution of (1).

Thus the problem of finding a solution of congruence (1), is equivalent to solving a
quadratic congruence y* = d (mod p) and a linear congruence of the form 2ax = k (mod p), k
=y~ N

_If, x = X is a solution of the congruence _
x' = a (mod p), then p — x, is another solution of the congruence.
Both x, and p — x are incongruent mod p. For if x, = p — x, (mod p), then
. 2x, = p (mod p) ;
= 2x, =0 (mod p)
= X, = 0 (mod p), which is not possible.

Exercise : Solve x? + 7x + 10 = 0 (mod 11).
Soluation : :
Here x* + 7x + 10 = 0 (mod 11)
& 4x? +28x + 40 =0 (mod 11)
< (2x + 7P = 9 (mod 11)
¢y =9 (mod 11), where y =2x + 7
< y=1%3 (mod 11)
‘e y=3(mod 11) or y = -3 (mod 11)
. - y =8 (mod 11)

64




Now, .

y=2x+7 = 2x+ 7=y (mod I1)

y=3(mod 11) = 2x + 7 =3 (mod 11)
= 2x = —4 (mod 11)
= x =2 (mod 11)
=x=9(mod 11)

y =8 (mod 11) = 2x + 7 = 8 (mod 11)
= 2x =1 (mod 11)
= 2x = -10 (mod 11)
= x = -5 (mod 11)
:xuﬁ(modll}

_Thusﬂ:a:sulununsare :

x =6, 9 (mod 11)

Definition : )

Let p be an odd prime and (a, p) = 1. Then a is called a quadratic residue of p, if the
congruence x = a (mod p) has a solution-and a is called a quadratic no-residue of pif x* =a,
{mod p) has no solution.

Considerp=7

.We choose asfaef{l,?2,3,4,S5, 6}

I’!=1(mod 7) = 1= 6 (mod 7)

22=4(mod7) = 2= 5 (mod 7)

3'=2(mod 7) = 3'= 4 (mod 7)

4* =2 (mod 7)

12= 1 = 6*(mod 7)

2’ = 4 = 5 (mod 7)

¥ =2=4"(mod 7)

. 1, 4,2 are quadratic residues of . and 3, 5,6 are qua:lmuc nnn-reslducs of 7.

Exercise : Find all quadratic residues of 11.
Solution : We choose a s.t
ae{l,2,3,4,56,78,9,10}
Now, _
=1 =10*(mod 11)
=4 =9 (mod 11)
3 =9 =8 (mod 11)
4 =5=7(mod I1)
5 =3=6(mod11)"
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. The quadratic residues of 11 are 1, 4,9, 5,3
and quadratic non-residues of 11 are 2, 3, 5, 6, 7, 8, 10

Theorem (Euler’s Criteria) :

Let p be an odd prime and (a, p) = 1.
The a is a quadratic residue of p.

if and only if ,"7 _ | (modp)

Proof : Let a be a quadratic residue of p

= The congreuence x* = a (mod p) has a solution.
Let x, be a solution of the congruence.

Then xi -t:l (mod p) .

Since, (a, p) = 1, (x;, p)=1=(x,,p) =1
Pt |

Now, x'7 =(x2) ? (modp)

=

=a7 =x (modp)
= 1 (mod p), by Fermat’s Theorem.

B2 -
=a ? =1(modp)

1
Conversely, aL:-" =1 (mod p)

We show ‘a’ is a quadratic residue of p.

Since p is a prime, p has a primitive root.

Letp be a primitive root of p.

Then a = * (mod p), for some k, where 1 SkSp- L.

 .aal ) el
Thus a2 =(r*) 7 (modp)

-1
=1mr*T (mod p)

k(p-1)
=» rn_Ez:‘ =1(modp)

Since t is a primitive root of p, its order mod p is §(p) =p - Ls

k(p-1)
M| e
4 2

=2|k

66




= k = 2m for some integer ‘m’.
a=r{modp) = a=r"(modp)
= (P a(modp) .

Thus r™ is a solution of x* = a (mod p)
=» ‘a’ is a quadratic residue of p.

. Corollary p is an odd prime and (a, b) = 1.
Then ‘a’ is a quadratic non-pesidue of p iff ,% _ _; (mod p)
: Proof : Assume, al’_;.t_ =-] {mﬂd p)

p-1
=>a 2 #1(mod p)
=» ‘a’ is a quadratic none residue of p.
Conversely let, ‘a’ is a quadratic non-residue of p.
Bl : ' X
- =a? #l(modp)
Since, (a, p) = 1, by Fermat’s theorem,
a*! = 1 (mod p) ; :

2t =]
=b[a z -l}[a : +l]=ﬂ(mndp}

' el

=a? +1=0(modp)
- _E_‘.‘ :
]

=t

=a? =-I(modp)

Note :

(HIf‘a’isa quadrgﬁc residue of p, then a is not a primitive root of p.

(ii) If *a’ is a quadratic non-residue of p, then a is a primitive root of p.
Exercise : Show that 3 is a quadratic residue of 23 but a non-residue of 31.

Solution : Here, p = 23. .= e S 0
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3’ = 27 (mod 23) = 4 (mod 23)

3% = 16 (mod 23) = —7 (mod 23)

3 = 28 (mod 23) = -5 (mod 23)

3" = 45 (mod 23) = -22 (mod 23)
. = 1 (mod 23)

<3 is a quadratic residue of 23.

Theorem : There are exactly P_E'] quadratic residues and E'i“' quadratic non-residues

of p. ' . ' . ' .
Proof : Let ‘R’ be the number of quadratic residues of p. and ‘“No’ be the number of

.quadratic non-residues of p. 5 :

A RFN,=p—1- (1)

; -1

Bye Euler’s critoria, a is a quadratic residue of p iff apT = 1 (mod p)
iﬂ'asaﬁsﬁmth:w .

p-1

2

= ] (mod p) -

: -1
iff a is a solution uf:r.pT-'l =0 (mod p)

. p~1 - p-1
Since x T—l =0 (mod p) has atmost -

-1
solution, so R, < F—z'— - (2)

& i
Similarly, No "—2- -03)

From (1), (2) and (3), we get

R, el

2.

Bl

R R
Legendre’s Symbols :

mebemaddpﬁmem&{a,p)= l.m:egendms,ml [-:;] is defined by




(g] o | .
P ifpla

=1 if a quadratic residue of p
=- 1 if a is quadratic non residue of p.

ﬁm:
{i} [%]’ai{l—ll {md P}
G-
|3 p) \p)
| (i) 3= b(mod p}::.[i],-:[ﬁ |
: . P P
Pmnf
- a‘ \ . "
® [;]=ﬂ(hsrd=ﬁnmm}whmta.p)=1
But a.liu’*“ =+l(mod p) By Eulers criterion.
‘Ihus'[%)zailr“{:_md P

(i) ifais q.r. and bisq.c, thenab is also q.r. and hence
a b ab '
—|=]l=|— —i=1

(p] (_F]M[Pl )
G-
=== l==]-
pApr) \p

Ifaisqr,bisqnrthenqorabisqnr




GREREOR

r i
eome(2)
'\p P \ P .

Similarly, we can saw in the other cases.
(iii)a=b (mod p)
. aisgr=bisqr. -

=}

r! 3 # s
(iv) [;]_ =1 always for r* is always q.t. of p.

{ 1 (H.'l'j “‘\
. I,p)=- —_— =] -
® o & . P ) (PJ ;

(FEIE-GH-6)

' 1
Exercise : If p is an odd prime, show that E. [%] =0,

Solution :
a
for one half [E)=l

a:ﬂﬁ::rulherha]f[%] =-1,

£(3)-e.
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Theorem :
Let (a, p)= 1. If p= 1 (mod 4) then - a is q.r. mod p iff a is q.r. mod p.
Ifp=3(mod4) then-aisq.oriffaisq.r.

Proof : '

[ a]-(_a};(prx {e I}E{p-n -{D-ll
P

(=1 Eu»-n(a]
=(-1) 5

a

-1(;]_ w7 p=l(modd)

{36
| =-—|=| =
P P
Thus-aisq.riffaisq.r

1 ) :
If p=3 (mod 4) then E(p- 1)=2k+1

© Ot G

#("n"]=—[£]. .Thns-aisq.n.r.iﬂ'aislq.r,
P P
Corollary :
. Hp=1(mod4)then-1isqu.
p=3(mod4)then- 1l isq.nr.
Gauss Lemma: E
Let p be an odd prime and (a, p) = 1.

: . | .
Let p denote the mnnbu'ofmwgm in the sequence a, 2a, 3a, ’E (p- 1)a ...(1), whose least

'pwuwmmdmmodpmmtcrthan 2 ﬂ:m[ p] D",
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Proof :
Letay, o, ..., &, be those aiong the least positive remainder of the numbers in (1) which are

i :
e, o,..... 00 B, B,..... ﬁn“?h-h ...... E{pgl}u(modp)

%Ep—ll (mod p)

a)l
-[;] E{p—ll (mod p) (2)

ui::-zEzap—ujﬂE_

2

: . AL
Now the numbersp- o, p - ml,p-a",ﬁl,ﬂz, ..., B, all occur among 1, 2, ..., PT

Moreover, p-o kB {mo& p)-

For p- &, =P, (mod p).
= o, + B, =0 (mod p)
::{11+pql+ﬂj+pqznﬂ(mndp}

=>as+at=0 (mod p) (155_!5%_])
[+ ©,p,are remainders when the numbers of the form ka are divided by p]
' =pla(s+t) '
=plt+sas(ap)=1

which is impossible.
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=(p-a) - (®-)B, - Bltﬁind p)
=(-a)..¢o)p, .. B, (modp)
; =)o .. of, .. B (mdp)
* Putting in (i) and cancelling c; 's and fb,’s we get,
Z = (=D* 3
5wt

Since (i‘] =%l and (- 1r=:'t1'andp_is odd it follows that

. [%] =(—1)‘.. |

. _ (2 g
. Exercise : Show that ; =(-D*
Solatlon:
20,2227
a . Tkl 5 2.
Clearly ju = the numbers of the type 2x such
—<2x<p.
i
ie.  R<x<l | S A
e, 4{1-:2 (A)
Letp=8k+8,8=1,3,5,7.

Case 1 : When §= 1, then (A) becomes,
g SN
4 -

ie k+1<xs4k.
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p.-4k—{2k+l}.+l=2k.
;| A
(p] .{ ) .{ )

=]

#a
=D

Case Il : When § = 3, then (A) becomes,
8k +3 8k +3 '

<X < 3

4 _ 2%
=::r2'l|:+i-r.::w.-:;'tl]|:+2
e 2

Sk +1SxSAk+1

A pEEk+1)-@Qk+1)+1=2%4+1
OIS ) e B ) aad O

(g

.P i
. =_14
et 1
==D*
Similaﬂywhcpﬁ?ljﬂmlnve

B
AP

Note : [fﬁ_#ﬂk+r-th7m

ri-1

-1
T{l_mﬂ]'

2 -

"'E L a8k 3k 4
0 if r=1
‘Pl |1 ifr=3

and 8 3 if r=5
0 if r=7
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gl {"T", | if r=17 ie. p=I(mod 8)
Hence D * =D =11 ¢ r=35 ie. p=7(mod §)

m:smwma:ifp-_:ﬂ(mq&smmzi;q;
p=13(mod 8) then2is q.n.x.

Exm:nmai&.mmﬁmhwzhq.r.uﬂmmwh;chitisq.n:.

]

Theorem :

'ﬂ-lﬁ

It‘.(fl-p]_- lthm[ ] (..1) H H

Proof :

1 ; wr
- Ifwedividejabyp,j=1,2, .., E(p- l}wtuhumljl-pq+rwhmﬂfr<p.

- B

.ja-[g]p+r, ‘. X
' LP :
. D -(r-n . :
Thus. 12 .'F' [ ]p-rf, u,+f|!. it 1)
% P et : |
' Inthcpmufofﬂmiﬂlm,nhwmﬂnthm P Oty ooy P O B oo By
i n i
m]mmmbm-l,z, ..... "3 l)nmm
26-9

S E ]=1+2+ +—-(p 1]
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- ,)+(p a) ot @-) BBt

—w+2ﬁ f'.ﬂi ..;...{z} :
(1)-(2)gives |
so-0 2 . ;s
(a-D'% ;=p{ z [J-p‘-]*u’a-zgui La®)
Now a=1(mod2)andp = 1(mod?2)
=>a- 1 = 0(mod 2)
So, (3) becomes,

%IF'-I.] .ja
o=h Z [‘;]'.*‘ +0 (mod2)

L ==K (mod2)

L | =|=pn+24LeZ

3 » ‘ l'u--11
{E ]_ (——1}" _{_IJI.H-H =(-]) = [ ]

§ Quadratic Reciprocality Law :
. If pand q are distinct odd prime numbers then

[E][g_] E. nill-lHq ]
-AQ/\P

mmummmqmﬁmmmmmu}; (%.,ﬂ J( ﬂ.g— J,

Proof:
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a.tui[]—;‘-%).Ldﬂmmemgimwiﬁﬁnﬂ:isrmmgle,nmimhﬂngmyufﬂmbdnﬂmgﬁnm.
.'Ihcgmemlplmeufamkistomuntthcnmnbnufhtﬁéepoints{dlat'is,ﬂ;:poinﬁwhﬁcmﬂtdi-
- nates are integers) inside R in two different ways. Since p and q are both odd, the lattice points in R
(-1 (g-1)

l=ms—2—
g e . 2

mns:smfllpomts(n,m},whumlﬁﬂﬂ ; the number of such points is

p—-1gq-1

* Now the diagonal D from (0, “}"“(2 g)mmmr [ ] ecpnva]emiypy=

qx. Since ged(p, Q) = 1, none of the lattice points inside R will lie on D. For p must divide the x
coordinate of any lattice point on the line py = gx, and g must divide its y coordinate; there are no such
points in R. Suppose that T, denotes the portion of R which is below the diagonal D, and T, the portion
* above. By what we have just seen, it sufffices to count the lattice points inside each of these traingles.

The number of integers in the interval ﬂ“}"‘*? T

]mfmlsks@zu

and[
o kq . " . ; :
there are precisely ? lallice points in T, directly above the point (k, 0) and below D; in other -

words,[yingnutheverﬁmlliucsegmemﬁum(k,ﬂ)m(kr%).itfnﬂnwsd]atﬂ:gmmlanm&of :
lattice points contained in T, is |
-1

t14]

~Asimilar calculation, with the role of p and q interchanged, shows that the number of lattice
points within T, is
@

£[2]

This accounts for all of the lattice points R, so that

77




This time has come for Gauss’ Lemma to do its duty :

(g)(a]={_l}ﬁfl_(_,,?[ﬂ:~J

/AP

L pig
.=(=D? 2~ .
This proof of the Quadratic reciprocity mumm
- Animmediate consequence of this is

:.(:'.Iu'nlaqu: :

' Ifpand qare distinct odd primes, then
(E](E _[1. if p=l(mod 4) or qm1 (mod 4)
q/\p) -1 if pmqm3 (mod 4)

oy st 10
Exerecise : Find (I—]

- ()

. (iji‘z%(ﬂ-i] ..
o e L

=256 (mod 17)
= l(mod 17) :

5 Lit-nksn( 17
| {l—?)-(—l)f g ](?J BYQR Law].
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B

= 4 (mod 5)
t-l(mlﬂﬂ

10y
[”]-I (—1}--1
Exercise : Find all primes for which (- 3)isa q.r.
(—’)-’-[**1)(3]
P pAp)
. GO D
= (=D (=D (%)
8 J :
~&)
-[-;-}l_r mr(3),r=12
Ifr=1,then
[‘%)'(‘%]"‘ a -3isqrifp=mod3)
Ifr=2, then. | .
3) (2
{';] [3]'2 (mod3)

= 2(mod 3)

H‘L—'
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=[-—1] = =]

P

‘ -3isqunr. ifpm2(3).
Ans:p=1(3). '
EIm:Fi"ﬂ“ﬂPﬂﬁHfdrwhiuhS isaq.r.

(-cr()

-0 (%)

5
-4
f.(i),p = r{S},r =1234

1
}'[% ]' 2" (mod )
= 2¥(mod 5)
. = - I(mod 5)
Sisqnr ifpm2(mod5).

w3

Siakifp_- 1(9).
o i 1 1
(G

52 . .
=§’; [+ . 5=2(3)]
ie.  Sisq.or ifp=3(mod5).

o

rf':'--z;[




e

5'is q.r. if p= 4(mod 5)
Sisqrifp=1, 4(mod 5).
i.e.p=+ I(mod5).

Q.R. for composite Modulus : '
~ Jacobi’s Symbeol :

Let(P, Q) =1 and Q is an odd positive integer with prime decomposition Q = _l:!pi"' _Then
P
jacobi’s symbol {6] is defined as,

(i) (%}-—-I VYPeZ

ol & -

() is called a Legender’s symbol.
Remark :

P
{6) =0if (P, Q)= 1, from definition of Legendre’s symbol.

Proof': ) _
If (P,Q)= 1, let q be a common factor of P and Q).

(g] =0 by definition of Legendre’s symbol.

o ) o . 5 -
ut q 15 a factor o Q . Hence Q) =1,

Pruptrty..r -

3
(i) [6] has nalways the value 1 or - 1 (follows from definition).
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P\.
(i) (P, Q)= 1 and Pis a q.r. of Q then {EJ =1,

Proof :
If x? = P(Q) has a root, then foreachi=1,2,3, .., 1.
The algebric congruence x* = P(p ) has a root.

P
Consequently [P }= lfori=1,2,3,...,r1

Remark :
Converse of (ii) is not true.

P
ie. if[a]“l,l‘mndnutbea.q.n

-The-uri.-m: .
IfQ,, Q,, P, P, are odd positive integers then

o(3)&)-(2) of2)2)()

TR (R PP*) (P
(iii) If P =P, {mﬂdQ},ﬂl&n (a]] =(?;~) (i) (P.Q=1= [—a-r]=(6]
—(Q—-I} _(qi )
e =12 Z1)8
(v}[ Q] (-1) _ {vi]{q] -1
{Vii)lffP,Q}=landPisanoddinl:cger
| m‘“[;)[q) ("'ﬁ" e (Resiprocality Law)
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Proof :

La-n
Y . -2
“[ Q] o

Thus resultis true for Q=1.Let Q> 1.
Q=PP,, ....., P, where P are odd are not necessarily distinct.

(-0

The result will be proved if we can show that,

EE{P--I}—-{Q—I}——{P Pyes P, =) (mod 2) ... *)

(*) will be proved by induction.
Suppose (*) istrue forr-1.

e F1@-D=1@P.k D) modd)

: e 1
nt B (i—nsgiw.-—_nw;(r,—n

NFH-'

. 1
= %{p]pz ....... P -D*5@-1) **)

PP, ....P, - 1)p,- 1)=0(mod 4)
=PP, ... P-PP,...P_ -P +1=0(mod4)
= (PP, ...P -1)-(PP,...P,-1)+(P,-1)=0(mod 4)

= =(PP,... P, - 1)- (PP, P- 1)+ (P, - 1) =0 (mod 2)




(**) becomes,

r] 1
.,-.EEEF" -)= E[P,P;l veeeies P, =1) (mod 2)

| '
=3(Q- 1) (mod 2)

Hence the result follows by induction.
Proof: .
T
i) [%LH*‘“ !

The Theorem will be proved if we can show that,

._E-'E(Pii "1)=-S—(Q1 ~1) =§_(Pi’ ...... P}? —1) {modz}.

~ This will be proved by method of induction.

The result hold for r=1. Assume it is true forr - 1.
7 LAORET SR
L=

T E{P,*......Pﬁ—l) | e *?)

ie

= (e R o1 et (R -1 Jmod s)

A
Ifae Zisodd, then '

a’=1(mod 8) = a’- 1 =0 (mod 8).
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Pp?...P_2-1)P2-1)=0(mod4)
= (Pp;} ... P,_2-1)- (PP} ... P} - 1) +(P? - 1) =0 (mod 4)

1 1  —_—
#E(Pizpf ...... B Se g{Pf-i}!g{PtP ...... 2 = 1) (mod 8)
Then (A) gives
mE[Pl —1]_ (P-....P" ~1) (mod 8).
Hence the result follows.

Proof :
(viii) (P, Q) = 1 and P is also a positive odd then

2ot

If each of P and Q is equal to 1, then the result is immediate (L.H.S=RH.S=1)
LetP=qq,..q, Q=PP. .0
®,Q=1=p#q Vij

oty i3 oo
(RI)-HRE).

-1 ﬁ‘i_t)ﬁ(ﬁl’_:J
=k k=l P fiR rslqj

z:l:-—{q, I}-—!i;lJ ]

=(=1)

i- (4, |}E—[!J n {‘}

= ( 1}-.-12 ..... ¥

E-zl-{P,. ~1) +~%{P. Py......P, = 1) (mod2)
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and the corresponding result for p=q,q, ... q, yields that the R H.S. of (*) i nqualm{m”?" Dyt

P 3 p=1g-1
[6) [%J =(-1)* *  Hence Proved.
Exercise : Show that the congruence x*=15 (mod 1093) has no solution.

Solution :
We have to show that 15 is q.n.r. (mod 1093)

e (sop5)=-1

(-
) [ 0o
D
@) (B ()
B (=)

15isaq.n.r. mod 1093,

x*= 15 (1093) has no solution.
Exercise : Show that the congruence x? + 23 = 0 (mod 59) has solution.
Ans : We have to show that - 23 is q.n.r. mod 59.
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1-159-1
=(-1)7 2 [:‘E]

59
13 T
il (E] (+  59=13 (mod 23))
13=123-1 23 -
»(=1." 3 (E]

-5 ~(6ls)
13 W3l

E[ES]
=(=1)-(=1) 2 ? (1—:]
'__(2)
N
13-l
=(-D(-n?? [g]
Y
==(-l}[§ ]= -1)-1D=1

=23 is q.r. mod 59.
x?+23 =0 (mod 59) has solution.

e (313
Calculate : 313
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; 13131 7=1313-1
o7 7 (Pent s (2

k
If the integer ‘b’ has order k modulo n and h > 0 then b* has order m modulo n.

If n is a primitive root, then it has exactly ¢(g(n)) of them.

If p is an odd prime and ¥ = 1, there exists a primitive root of p*.

If n is any of the integers 2, 4, p*, 2p*, where p is an odd prime and k 2 1, then n has
primutive roots. -

For k 2 3, the integers 2* has no primitive roots.

If a is a primitive root of n, then a, a2, ..., a® is a reduced set of residues mod n.

If the congruence x? = a (mod p) is solvable then it has exactly two solutions, where p is
an odd prime.

Let p be an odd prime and (a, p) = 1. Th:na:scalledaquadratm residue ofpafthe
congruence x* = a (mod p) has a solution and a is call:d guadratic non-residue of p if x*
= a (mod p) has no solution.

Euler’s criteria states that “Let p be an odd prime and (a, p) = 1. Then a is a quadratic

-1
residue of p if and only if a PT = | (mod p).

-1 ) : -1 =
There are exactly PT quadratic residues and pT quadratic non-residues of p.

a
Let p be an odd prime and (a, p) = 1. The Legendre’s symbol [;] is defined by

a
; =0ifpla

1 if a is a quadratic residue of p. j
= —| if a is a quadratic non-residue of p.
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: LUnit -
Arithmetic Functions and some Diphantine Equations

Introduction : .

A function, whose domain is the set of natural numbers is called a number theoretic function.
These types of functions having special importance in the theory of nymbers. In this unit, we shall
discuss some important number theoretic function with their important properties. Historically, a
problem which has received a good deal of attention has been that of representing numbers as sums
of squares. In this unit, we first find necessary and sufficient conditions that a positive integer be
representable as the sum of two squares and as the sum of four squares. Gt

Number Theoretic Functions : Any function with domain of definition as the set of positive integers’
is said to be Number Theoretic Function.

FunctionsT,0and ¢ : Gwcn any positive integern,

‘l.‘(n) the number of positive divisors ofn.

O(n)= sum of the positive divisors of n. _

1,2,3,4,6, 12 are positive divisors of n= 12.

s iy

O(n)=28.
If p is prime,

(p) =2

- o(p)=1+p. _

E F(X) = sum of values of f{d) when d runs through positive disors of n.
120)= £(1) + £(2) + £(5) + £(4) + £(10) + £(20)

CHn)=1x1

din

o(n) =£d

Theorem:If n=p ™ ch ...p," is prime factorization of n > 1, then the positive divisors of n are
precisely those integers of the form d = p “p,*...p * where, '
0<a <k,0<a<k,.,0<a <k,
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Note that the divisord = 1 is obtained when a, =a,=..=a =0 andn itself occures when a, "kp a,
=k, .., 8, =k Suppose that dis a pon trivial divisor of n. Thenn = dd, with d> 1 and d@'> 1. Express
both d and d' as product of primes, d = q q,...q, and - d'=tt,..t where q,and t are
l-'l'=:I:'|kl[“.lkl'*'ll:'rkl =q.lq2‘"q!t‘.t1”*tu ; :
are two prime factorization of . By the uniqueness of prime factorization each prime q, must be one of
the p.. Collecting the equal primes into a single integer power we get, -
d=q,9;..9,=p,"p,"...p,"
where the possibility that a = 0 is allowed.
Conversely every number d = p,"p," ...p," (0<a, Sk, ) miust be a divisor of n.

o= ptkl ch '_“P;I'
¢ =(P:"P-_a'*.,.p,'t )(Plil—-,pzkr’a '"prl’_.' )
= dd’
d|n

Theorem: n=p “p,"...p " isthe prime factorization ofn> 1, then

(8) Tx) = (k, + 1)k, + 1) ... (k +1)

[-b} ﬂ_{xj_= P‘Ltlﬂ -1 ‘ pjk;-l i ; k. +l -1
. pl-l pl_l Pr_i 3

Proof:

(a) The positive divisorsof n=p,*p,* ...p * are precisely those integers which can be
expressas d=p “p,"..p " where 0<a, <k,. _

There are (k, + 1) choices for the exponent a,, (k, + 1) choices of a,, and soon ... (k_ + 1)
chﬁic:s.fura,, ' : '

- Hence there are (k, + 1)(k, + 1) ... (k,+ 1) possible divisors of n.
Hence T(n) = (k, + 1)(k, + 1) ... (k + 1), '
(b) In order to evaluate o(n), we consider the product,

(14p, +p, +.4p" )(14+p, + Pl 4, J-(14p, +p, +.4p, )
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eachp-osil:i'w.rcdivimrsufnappmrmm-:eandonlymasawrm-inthccxpansiundfﬂ:ispmduct.ln
other words, this product is equal to sum of the divisors of .

Hence

o(n) =[ 1+p, +p, +.4p," )[ 1+p, +p, +. 4P, ){ L+p, +p, +.4p," )
Plk-l-h'l _'_1 : pzk]H _1 . P‘rk'ﬂ _l
P -1 P, -1 p.-1"

=

Example :
T(180) = 7(2? x 3? x 5)
| =2+ 1)2+1X1+1)
= 18.
2’—1_:3"—1_5’-1
2-1 3-1 5-1"
=7x13x6
= 546,
Definition : A number theoretic function fis said to be multiplicative if
~ F(m,n)=fm)f{(n)
whenm{ergad{m,n)=l.
Note : : _
(1)Ifn,,n, .., n, arerelatively prime, fora multiplicative function,
fin n,..n)=fin )f(n,)..f{n).
@1fn=p"p,". p then
fm)=£(p" ) p:" ).-£(p." ). |
(3) For a multiplicative function f#0, f{1) = 1. ’
f#0 so 3 x such that e
fix)#0.
fix)=f{x1)
. =f)f1)
= fl1)=1 (- f(x) 20).

o(n) =
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Theorem : The functions & and T are multiplicative.
Prrof: Letm, ne€ £ such that ged(m, n)=1.
(a) To prove G(mn) =G(m) G(n) and T(am) = H(m) T(n).
Ifm=1, 6(mn)=0(n)
. =0o(n)o(m) (" 6(m)=0(1)= 1 by definition)
andifm= 1, T(mn) =T(n) . ' |
| =11
=1(n) T(m)
- result also holds whenn= 1.
Supposem>1,n>1 _
m=p,“p,"..p* and  gedm,n)=1
and n=gqq,"...q* =» ged(p, q) = 1.
Tm)=(k + 1)k, +1)..(k+1)
@) =G, + DG, + 1) G, + 1)

mn =p,“p,"...p,"q,"q," ..q.*

*(on) = (k, + 1)k, + 1) ... (k, + DG, + DG, + D) ... G,+ 1)
=T{m}‘;:(n). :

kol k o+ o et 1 B+l o |
o(mn) = 1 p q "
p-1 p-1 gq-1 gq-I
=0(m)c(n).
Thus & and T are multiplicative.

‘Lemma : If ged(m, n) = 1, then the set of positive divisors of mn consists of all products d.d,, where
d,|n,d, | mand ged(d,, d) = 1 and these products are all distinct.
Letm>1,n>1and
m=p,"p,"...p,"
n=gq,"q,"...q,

- are respective prime factorization of m and n and p, and q; are all distinct primes.

&

mn =p,"p,"...p,q,"q," ...q,"
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divisors of mn are,
d=P."p,"‘..;p,"q["',..q,"‘ 0<a, <k,
0<b, < j
=d d, wherd |mandd,|n.
Also ged(d,,d,) = 1.

Theorem : If f is multiplicative function and F is defined by

F(ﬂ}=£f(d}
then F is also multiplication.
Proof : Let m and n be relatively prime.
Thus
F(mn)= ¥ f(d) .
dimn
e %‘mf{d,dz ) (By usinng above leamma when (d ,d,}=1)
':;-El—:'f{di Nd.)
:[ n}lj-f{d] ])[ Enf{ d, ]] = F(m) F(n).
Thus F is also multiplicative. '
Note :

wn)=%1

din

But fid)= 1 is multiplicative since,

fldd)=1=11= fld,)f(d,).
Tin};}f{d}ismuil' fcative

=5%d o Soedti v
c_(n}. % and f{d) =d is multiplicative.
o 1s multiplicative.

Inversion Formula

The Mobius Inversion Formula
Definition : For a positive integer n define i by,
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lif n=1
i(n) =4 0 if p’|n for some primep
(=1)" if n=p,p,...p, where p, are distinct primes
Exercise : wn=1 . . w4y=1 .
HG30)=p(2.3.5) =(- 1)’ =-1.

Theorem : Mobius function | is multiplicative.
Proof : Let m and n be distinct primes. To show
H(mn) = u(m)p(n).
If p*| m or p*(n) then p? | mn.
Then in this case p{mn) =0 = p(m)L(n).
In this case the theorem is proved.
* Letus assume that m and n are square free integers.
Suppose m=pp,..p,
and n=gqgq,..q,
where p, and q, are distinct primes.

Thei '
K(mn) =W(p,p,---p,9,9,-- q,), where p, and q; are distinct
as ged(m,n)=1
G
=(C1¢1y
= [(m)(n).

Hence Mobius function is multiplicative.

Theorem : For each positive integern 2 1

lif n=1
Eu{d}_{ﬂifnﬂ
where d runs through all divisors of n.
Proof:
Casel:  n=1,
ﬁﬂ-(d} = :ﬁhﬂ(d) =u()=1.
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Casell:  Letn>[.Put F(M=ZK(d)
Ifn=p*then F(W) = ZK(d)
= (1) + p(p) + PEA) + ... + 1(PY

=1+(C-1)+0+..+0
=0.

f(p*)=0.
Case Il : Suppose n=p,"p," _..p," anyintegerand ged(p,".p;" ) =Li#j.
L k '
(= (p"p,"..p,")
=u(p. Ju(p," )--u(p." )

=0.0..0
=0.

n
2 (4=

dim

lifn=1
Oifn>1"

Tlmuu{l\lubht Inversion Formuls) : Let F and fbe two Number Theoretic funcﬁmsmﬁmdby
the function

F(n) =L f(d)
_ pre
Then _ _
f(n) = zu{d)i{ %)-Zu[ —“]Ftd}. -
din am \ d
W:ans Eﬂfdﬂ{ % ]md dzh!-‘[ % ]F{d) are the same, because as d runs over all divisors

n
ﬂfn,aaisonmumaﬂdiﬁmafn.

Now zu{d)r_[g]
din

- Euf&{gftc)]
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- [z'ufd}f{c}]
din I__JE 3

It can be verified thatd | n and GI% iffc|nand d1':".

’ "1

Eu(d)f{':)

kdl-

-
_%M

y
( \
fZu(d) | = T1(0) - g(n).

\ w .

f(n)= :‘Ef{ﬂ)

"
gt

= f(n) = :?”(‘”’( E")

3 [ Zu(d}f{c)}
djio | 10 ;

d

- E u( Df(e) + Ell(l}f{':) + Eu(S} f(c) + Z u(10)f(c)

= B +62)+ £5) +10) +PR)RD)+K5))
+ PSR +F2)] + R1). p(10)
= R1)[I(1) + P(2)+1(5) + R(10)] + 21 + (S)]
- - +RS)(L) + P + K10) (1)
= 1) Zu(@) + FT A+ FO LI + F1OT ()
=0+0+0+f10).1
=f{10).
Application :
6) "= Z1= T, @) =1

Bymmﬁmmuh,
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n
I-Eu[ﬁ}c{d).

| iy O(@ = 2.d =3 f(d) where fid)=d.

dja

f(n)=n= EQ[EJGML
din d

We bave scen thatif F(%) = X £(4) ang fis multiplication then F s also multiplicative.

‘We prove two converse. _
Theorem : IfF is multiplicativeand F(?) = 2 f(d) then fisalso multiplicative.
Pmuf:L&tmandnberelativelyprimes,Anydjvisardafmn.mnbewrﬂtmasd=d.diwhmdiIm,
d,|nand(d,d)=1. -

‘By the inversion formula,

f(mn) I'dEm w(d) i?)

- {mu
—"%-’“‘p( o )F[ d, d, }

=d§ﬂp{d;)u{ﬂ=jf["?]{i]

i

e Z)rr(z)

‘= f(m)f(n). _ Hr:_m;e Proved.

Euler’s Phi-Function ¢ (n) : Forn 2 1 let ¢(n) denote the number nfpasiﬁve integers not exceeding
n, and relatively prime fo n.
For example $(30)=8. Infact 1,7, 11, 13,17, 19, 23, 29 are relatively prime to 30.
o(1)=1 »2)=1
®3)=2
&(p) =p - |, where p is a prime.

Theorem : If p is a prime and k > 0, then

927




pt)=pt - =p(1-1 ]
: P
Proof : There are p* ! integers between 1 and p* divisible by pnamely,
P> 2p, 3p, 4p, .. PP |
These are the integers not relatively prime to p*.
Numbers of integers not relatively prime to p* is p*-". So the number of integers less then p*
and relatively prime to p* is, '
o) =p*-p*!

{4

Exercise:  §(3%)=3%-3"""
=81-27
T =54,

Lemma : Given integersa, b, c
ged(a, be) = 1 iff ged(a, b)=1 and ged(a, ¢) = 1.
Proof:Let  gcd(a, be)=1 : '
and put d = gcd(a, b).
d|a,d|b=>d|ad]|bc
= d < geda; be)= 1
=d=1.
ged(a, b)=1.
Similarly ged(a,c)=1.
Cunversé]y_let ged(a,b) =1, ged(a, )= 1..
Suppose ged(a, bc)=d, > 1.
Thus d, must have a prime factor p.
Sop|be (- p|d, andd, |bc).
Sop|borb|c.
Ifp| b then by virtue of p|a
ged(a, b) = p > 1, a contradiction to(a, b) = 1.
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Similarly, p|c leads to a contradiction
S0 god(a,be)=1.

Theorem : ¢ is a multiplicative function.
Proof : Let m and n be relatively prime. To show that ¢(mn) = ¢(m)d(n).

Lemma: ged(a, be) = 1 iff ged(a, b) = 1, ged(a, ¢) = 1.
Thi$ meansr is relatively prime to mn iff r is relatively prime tom and n.

Case I : Suppose m = 1, then .
O(mn)=0(n) = 1.0() =¢(1)o(n) = pm)d(m) - (- &) =1).

Similar is the case forn=1.

Case I1 :.mb l,n>1:

We arrange the integers 1, 2, ...mn as follows

| : 2 m
m+1 m+2 -
2m+.l 2m+2 3m
{(n-1m+1 {(n-1ym+2 om

We know that ¢{mn) is equal to the number of entries in the above array which are relatively
prime to mn and by virtue of the lemma this is the same as the number of integers which are relatively
prnime tu both t-n and n. . :

Since ged(qm + r, m) = ged(r, m)

The number in the r* column are relatively prime to m iff r itselfis relatively prime tom.

Therefore only ¢(m) colmns contain integers relatively prime to m. We have to show that in
such colmn there are ¢(n) elements are relatively prime to n. Then there will be ¢{m)d(n) elements in
the array which are relatively prime to both m and n, i.c., relatively prime to mn.

Suppnsé ged(r, m) = 1. The entries in the ' colmn are,

{r,mrr, 2mtr,.(n-Lm+ 1}
There are n elements in the column and no two are cogruent modulo n.

Indeed if km + r=jm + r(mod n) where 0 <k <j<n.
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Then hnsjﬁmodn}
=3 k = j(mod n) as gcd(m, n) = 1.
=1|k-j. :
which is ;:I.Dt possibleasO<k<j<n.
Thus the number in the r* column are congruent modulonto 0, 1,2, 3, ...(n- 1) in sorne order.
But if s = t(mod n) then ged(s, n) = 1 <> ged(t, m) = 1.
But there are §(n) element in 0, 1, 2,...(n - 1) which are relatively prime ton. So there are ¢(n)
elements in ther® column which are relatively prime ton. _5 .
e So in §(m) columns ¢{m)d{n) _clmmls are relatively prime to bothmand o.
By the lemma §(mn) = ¢(m)n). '

Theorem : Ifn> | has prime factorization
5 n*_,I:'P]tiplkl...p'tr m

o =(p" -9, )(ps" -0 J( P -0 )

et et

Proof : :
o) =¢( p," p,"..p.")
=¢o(p" )o(p.")-o(p.")
(as ng(p,t',pjt"}——— 1 and ¢ is multiplicative)
‘= ( F":llll _pjh_l ){.Pzt’ 'sz’di }( Prkr “Prhr-t )
A Ih h':h." rt: I_L ][1__.,1_}[1_-1_ ]
.P_p’p[p].pz P
-t
} pl Pz pr
Exercise : Compute §(360).

Ans: ¢(360)= ¢(2'.32.5)
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safo---)

=3ﬁu.l..2ﬂi = g§,

23 D
Exercise: Forn> 2, ¢(n) is an even integer.
Ans:
Caeel:Ifn=2%then '

Om)=§(2") -

N o zk.-t_'zt-l
=2%-4(2. 1)
_ =2%', whichiseven.
In general if 2* is a factor of n, then
¢{n)=¢(2‘g,k' ,.,pr"=) .
=¢(2" )¢(p,"p,"-p." ],whichis even.
Case Il : If n be any integer such that |

n= -p[hpzt: '"P[h' and Pi ;tz,

' 1 1 g

=p 1-— |[1-— L.J1-= ] =
Then #(®) D[ P J( P’z] [ Pr)
_nm—'lm—l_”p,-i

v e B B

N S t,{Pl_l}[Pz'_l)"-{pr_l}
=P P2 P ;
PiPy-P:

=p,57'p, " p, (b, = 1)(p2 ~ 1), -1)-

Butp, - 1 is even number ifp.l'r- 2.

Thus p,"~'p,“™...p,%(p, =1)(p, =1)--(p, —1)is aneveninteger.

¢(n) is an even integer.
Euler's Theorem : If n is a positive integer and ged(a, n) = 1, then a**! = 1(mod n).

- Lemma : Letn>1and ged(a,n)=1. :
Ifa,a,..a,, are positive integers less then n and relatively prime ton then a'ai,_a.a,, o
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are congruent modulotoa,, a,, ...a,, in some order.
Proof of the Lemma : We can show that no two elements of aa , aa,, ...aa,  are congrugnt modulo
n. For if
aa = aaj[mud n)
then a Ea{mud.n) (*~ (a,n) =-l)
which isnot possible since a, and a are less thenn.
Since ged(a, n} =] foralliand ged{a,n)=1 we have
g:d(aal, n)=1.
Foreach aa is rclativcljr.prime to n.
Fora parn'cu.lar element aa. There exists a unoque fixed element b. 0<b <n for which
aa =b(mod n)
gcd{h,_ n)=gcd(aa,n)=1.
Sob must be one of the integers, a,a,, ..a__ . Hn:ﬁ: aa,, aa,, ..aa,  are congruent toa,a,
(mod n) in some order. r9
Thus the lm is proved.

By the lemma,

ﬁ:]

aa =a '(modn)

aa,=a (modn).

aa, . = a '(mod n)
wherea ',a,',...,a 'arenothing buta ,a,,..a ) taken in some order.

oﬂmm.m
*o(a,, a,,.. l”“}}E a' az' ...a (modn)
=a aw{mod nj
ged(a,n)=1 foreachi
= ged(a, a,.4,,,n)=1.

Hence by cancellation law,

a*" = ] (mod n).
Corollary : When n = p, a prime a%? =g?"! = 1(mod p) which is Fermat's Little Theorem.
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Exercise : Find the last two digits in decimal representation of 32,
Ans : We have to find the least number such that
~ 3¥=r(mod 100).
By Euler's theorem
3*0% = | (mod 100)
and  §(100) = §(2* x 5%)

-1 )

1905
= 40.
Thus 3= I(mod 100)
=» (3) = 1(mod 100)
= 3% = 1(mod 100).
346 = 3240316 & 3'6(mod 100)
= 3% = (81)(mod 100)
= (- 9)(mod 100)
=(361)(mod 100)
=(61)*(mod 100)
=21(mod 100)
So, last two digits are 2and 1.

Theorem (Gauss) : For each positive integern=1 2~ Eq’{d) the sum being extended over all

positive divisior of n.
Proof: Ifn=1
Lo(d)=20(d)=0¢(1)=1

djn dfi
Letn > 1. Consider number theoritic function,
F(n) = £(d)

din

Multiplicity of § implies multiplicity of .
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k

Let n=pp,"..p".

F(o) = F(p," ) F( p," ) (p," ) (D)
Hp'* )= Zo@)

a0+ 5(p,)+o{n o 4(p, )

"=14(p, -1)+p, —p,+.+p." -p,

kg -

k,

=pr -
Thus from (1),

F(n)=p,"p,"...p."
= 3o(m)=n_
djn =
i ’ : i ’ 1.
Thenrem:an-‘-‘*1ﬂ1=sumufﬂ1cintcgmhssthannmdr¢lnﬁvelyplm;0nis§ﬂ¢(ﬂ).
Proof : To show
Tk =0 06(a)

gedik n)=l
ifk<a

Leta,,a,,..a,, be the positive integers relatively prime ton are less than n.

Also ged(k,n)=1=>ged(n-k,n)=1.

San-a;,n-a;,....n-am

Let S=a1+a:+,_..+a‘m

aqd S=(n-a)+ {n-az)+..,+{n-a"{_})
=nof(n)-(a,+a,+ ... +a,)

= 1i(n) - S

are also relatively prime to n.

=h5=~;—n?[n)_

' d
Theorem : For any integern, ¢(ﬂ}=ﬂ=ﬁﬁ'}}%l.
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Proof : We have F(®) = “}lﬂn}l

By Mobius inversion formula,
| Hn)=EF[E]u{d}
djn d

o S .
_'.?I':. @

- av WMA)
=Ed

Deduction : Ifn = p,"p,":...p * provethat,

-Mn}mnn{l-i]_
- R P

" Proof : Consider the product,

p= I“Ih[uﬂ)#u{ = }+--*+"[:Lh ]},

’Il pi
" Multiplying this out we obtain sum of terms of the form,

up(p,* J(p,* )--u(p,*)

Py

. l’-( P|“|'P2n!'"Pru' )
= @ u’---'p,a'

AR P

105




Fermat's Last Theorem :

The Diophantine equation x*+y*=(n > 3) has no positive solutions. This problem known as
Fermat's Last Theorem, was attracted from every concievable stand point by the best mathematician
of the last 350 years. Many interesting results have been established, but the theorem could never be
proved till 1993, .

E.Kumer(1810-1 893.) made the greatest advances towards a solution. instead of confinding
himselfto the field of rational numbers he extended his concept of number theory to include the alge-
braic numbers (these complex numbers which are roots of polynomials with rational co-efficients). In
1843 he submitted what he thought was a proof, but Dirichlet pointed out a flaw in the argument.
Kumer had assumed that the factorization into primes is unique in a certain subring of the algebraic
numbers where, in fact, this factorization is not unique, because this assumption is essential but proof
was not valid.

Kumcr returned to the problem and by using the ﬁ:cﬁr},r ofideals, he was able to solve parts nf ;
his proofand to establish very general condition for the insolvability of the Fermat’s Theorem. Most of
the progress made on the problem in the last century. With the use of high speed electronic computer
it was possible to check Kumers criterian for larger exponents. Tl the year 1967 it was found that the
Diphantine equation x" + y° = z" has no positive solution if 3 <n < 25, 000. 1

However we can fairly safe in assuming that Fermat's never had a valid proof.

The Theorem was written in 1637, where Pierre de fermat was studying an ancient greek test
on number theory called Arithmetica by Diofantus. At that time he came across the famus Pythagorian
equation x* + y? = 2. When Fermat saw this he noted that for any exponent greater than 2, the
equation could not have solutions in whole numbers. He also wrote in lattice that he had discovered his
own wonderful proof, but that the margin was too small to contain it. No such proof has even been
found. fermat made many such marginal questions and over the centuries they were all answered

except this one, the Fermat's last theorem. . '

The solution of Fermat's last theorem was :stabhshod hy Andrew Wile of an:.atunﬂ Univer-
sity in 1993. He first came across Fermat's pmblem at the age of 10 years in a library in cambridge,
England, where he grew up. He vowed that he would solve the problem one day. Even after he had
presented a result, a small but crucial error was found and this led further investigation. Again there
seem to be no solution. But there was one— *“Wiles called this last insight, the miost important moment
of my working life. It was so indescribably beautiful, it was so simple for all and elegent and I just donot
believe™

Did fermat really complete his own proofin 17* century, undoubtly the same will continue for
look his evidence he did, but itis highly unlikely. Wiles made use of newly developed mathematics of
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19* and 20® century that did not exist in Fermat’s time.

; The Diophantive equation x*+y*=22 ... *)
has infinite solutions.
Forif(a, b, ¢) is a solution then (ka, kb, kc) is also a solution foreach ke Z
Theorem : '

I (a, b, c) is a solution of (*) and (a, b) = d then (b, ¢) = (c, a) =d.
Proof : -
a'+b*=ctand(a, b)=d.
dlad|b=d&|& & |
=d|a+b -
= d?|c?
=d]|ec.
d|ad]e.
d<(a, c).
Suppose (a,c) =d..
d |ad e
d?aL d? | @ =d?| ¢ -a? = b
=d,|b.
d lad |b=d |d
=(a,c)|d.
d=(a,c)
Similarly d = (b, ¢).
-~ " (b,c)=(c, a)=d. Hence proved.
Definition :
If(a, b, c) is a solution of x? + y? = z? such that (a, b, ¢} = |, then (a, b, c) is called primitive
Solution. j :
' We are interested in primitive solutions of
: X+ yt =zt Ay ng *)
i.e. these integers x, y and z such that (x, y) = (v, 2) = (z,x) = 1.
How many solutions of (*) are there so that these are relatively prime.
Lemmal:
If (x, y, z) 1s a primitive solution of (*) then one of x and y is even and the other is odd.
Proof :
Since (x,y)=1, both x and y cannot be even.
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Ifboth of them are odd then x? and v? are also odd and so x? + y? = z¥is even. This impliesz
is even. _ :
Nowxisodd =sx= 1 or3(mod 4)
=x*=1l(mod 4) .
Similarly y is odd = y* = 1(mod 4)
2+ vy = 2(mod 4)
= 72 =2(mod 4).
Butzbeing even say z=2m. -
. (Cm)=2(modd)
= 4m* = 2(mod 4) and 4m? = 0(mod 4)
= 2 =((mod 4), which is not true.
Sox and y both cannot be odd. -
Therefore one of x and y is even and other is odd.
Note : In our discussion from now onwards we shall assume x is'odd and y is even.

Lemma2:
If (x,y, Z) is & primitive solution of (*) then ( %ﬁ,ﬁ? ]:: 1.

Proof:

Z-X Z+X o
' S“PPU“(T;T )-—E;

'I‘heuﬂ|3_%1 mgl_z._.;_i_

s, ﬂlz‘%f“*;%ﬂs |z.

and é'—z;x ‘—z;x.#g | x.

- glz.glx i g<l (v (zx=1)
g=1 -
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Lemma3:
- H(x,y)=1and xy =&, then each of x and y is also a square.

Proof: ;T
Suppose X = PPyeeeenPy
¥ =9,G, v dg
whﬁrcnntneocssanlyp aui.m:h:|J s are distinct.
P\Pywrrs Pod G - 4y = & and (p,, q) = 1 since (x, }r) 1.

Soeachofp,p, .....p, and qq, ...... q, must be a square. Hence x and y are also squares.

Question : _
X+yp=2 . . . ™)
If(x,y, z}is'a_prim.'iﬁwsulutimuf {(*), x is even, then }'=25t,i=s’-t2, z=s2+t, where s
and tare positive integers satisfying the following three conditions. ' ‘
(s, 0)=1
ii)s>t _
.(i11) one of s and t is even and the other is odd. (i.e. s and t are of opposite parity).
Proof: _ '
Let(x,v, z) be primitive solution of (*).
xX+yl=gz
:-)ﬂ Z2-x=(z+x)z- x)

~(3)-()05%)

Z+X Z=X )=
Bylunmai( T 2_] 1

So, by lemma 3, === z+x =85 aud%l=tz.ﬂearlys>t.

Solving we get, z+x=28* z-x=28
,z=g?+tandx =g - .
Soy‘=4s‘t’andy=;st.
If s and t both are odd or both are even then so z and x both are even.
But(z,x)= L' '
s and t are of opposite parity.
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(s,t)=1.
If(s,t)=d>1,thend|zand d|x, a contradiction.
Conversely, suppose 3 s, t such that
(s,t)=1,s>tand s and t are opposite parity.
To prove z=s?+12, y = 2st, x = 5* - t* is a primitive solution of (*).
If(x, y) =d then (v, 2) = (z, x) = d, since (x, y, z) is a solution of (*).
Let (2st, s* - /) = d then (2st, 52 + %) = (*+ £, §? - t9) = d.
Buts>t,(s,t)=1and h
s,.tamnfoppmiteparityimpiimd=l. _ -
Since an infinite of such choice of s and t are possible so it follows that x* +y?=2? has infinite

number of primitive solutions,  *
Theorém :

The diophantine equation x* +y* =2 cansns(*)

has no positive solution.

Proof :

Suppose (*) has a positiye solution (x,, y,, ,). _
Then xﬂ; + 3"; ol zﬂz

= 6P +OP=z

(x,% y,%. z,) is a solution of x? +y? =22,
By the preceding result 3 s, t such that s > t and
' X, = §7-thy2=2st,z =s*+ .
SO\ig'e get, x }+ti =g, '
Again by the preceding result, 3 a, b € Nsuch thata>b such that

xﬂ=al-l§’,t=2&bands=az+bz
On substituting,

Y, =2st

= 2(a’ + b*)2ab.

2
:{g] (a2 +b? b,
Since, (a,b) =1, we have

(a2 + b, a)=1=(a+ b, b).

So each of a, b and a* + b? is a perfect square.
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So a=al,b=bS2
s=a'+bl=g]
Then -sZ=a*+b*=a'+b}
(a,b,s,)is ag;in a solution of ).
wheres Ss<s’+t=z, -
(X ¥y Z,) isa solution = (a,, by, 5,) isa solution such that 5 €,
We see that if a positive solution (x,, y,, z,) exist there must exist another positive solution (a,,
by, s,), where s, < z . It follows from the method of descent that no positive solution of (*) can exist.
Therefore x*+ y* = 2* has no positive solution. ‘ .
Corollory : '
x*+y*=z*has no positive solution. .
Note : Method of descent :
 Let 3 apositive integer n with a certain property such that 3 a smaller positive integer that has
the same property. Such n cannot exist because if it does, we obtain an infinite decreasing sequence
positive integers having the same specific property whichs clearly impossible.
“Two sqiures problem :
To find those positive integers which can be expressed as sum of two squares.
LemmaA: ..

Ifaaﬁdbcmbe“ﬁtten#mnfmosqumsrhcnthcpmductahcana]subcwrittasa

sum of two squares.
Proof:
Lt a=p’+q*
b=+

ab = p'r? + p’s’ + g’ + g’
= (pry + (qsy¥ + 2pr.qs + (ps)* + (qr)* - 2ps. qr

=(pr + gs)* + (ps - qr)*.
LemmaB:

(a,p)=1=x=ay (modp) has a solution (x,, y,) mhmat
0<|x,|< Jp and 0<|y,|</p
Letm=[\f];I.
Consider the set of numbers,
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l+a,1+2a,....1+(m+1a
2+a,2+2a,...2+(m+1)a
(m+1)+a,(m+1)+2a, ... (m+ 1)+ (m+ Da.
This set contains (m + 1) numbers (not necessarily distinct).
Since(m+1)*>p (+ m+1>Jp)
Le. at least two of the numbers (say) x, +y,a and x, +y,a must lie inthe same residue class (modulo p)
wherex #x, ory#y,. -
(x, *+y,a) - (x, +y,3) = 0 (mod p)
= (x,-%) +(y,-y,)a=0(mod p)
=X, -X,=(y,-y,)a(modp) wreni(1)
Since one of x, - X, and y, - y, is not zero therefore neither of them is zero.
L 0<xx Y,y Sm ] |

L 0<|x,-x,]Sm< p.
Sirmilarly 0<|y,-y,|Sm< Jp.

ad  plix;-x|
PSx,-x|Sm

pE<mamdm< JE ie.m?<p.

ﬁfﬁpﬂm. ' whichisacmnadicﬁm
Ifwe let KgmK, - X,
Y. "¥Y Y,
'I'henwe_gct,fmm{l}'
| X, =Y,a(modp).
witho<|x,[< p,0<|y,1< -

Definition :

If the congruence x* = a(mod m) has a solution then a is said to be a quadratic residue(R)
mod m. If there is nﬁ solution then a is said to be a quadratic non residue (N) mod (m).
Recall : |

-lisgrmodpiffp=1(mod4)

-lisq.n.r. mod p iff p=3 (mod 4).
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Theorem :
- The odd prime number p can be written as a sum of two squares iff p= 1 (mod 4) (i.e. pis of the
form4n+ 1).
Prﬁﬁf:_ :
Letp=a’+b*(Toprove p= 1 (mod 4)).
pis prime p #0.
Agamprhfunfp]b p|aalso.
plb=p?|b*
pla=p’|a
Pla+ b =p:
_=p‘|‘p,impm'hla,-
pfb. .
@.b)=1.
- 3x,.Y, € Zsuch that px, + by, = 1.
= by, = 1 - px, = 1 (mod p).
- = (by,’ =1 (mod p). _ y
Thusyp=ye'+b) o
= (y,8) +(y,b) = (y,8) + 1 (mod p).
= (y,8)* + 1 =0 (mod p).
= (y,8)* = - 1 (mod p).
-iiuqr[modp). '
p=1(mod4).
Cﬂﬂmlyletpnllmdd-)
I&P-4ﬂ+lnEH
Toprovep=a®+b?,
p= 1 (mod 4), - 1 is a q.r. (mod p).
Haez'mchﬂiat_ g=-1(modp)
iy = @+1s0(modp) - ... *)
Now obviousely (a,p)=1  (* .pf1)
and by one preceding lemma, 3%, y, € zsuch that
0<|x|< yp.0<ly,l<p
ﬁhgmxu-n}"'[mndp}
© Multiplying (*) by y,”.
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¥,X(a? + 1) =y 8 + y,’ = 0 (mod p).
= xu’+y52-0(mudp}. :
=xityl=kp (somek € N).

"o 0<|x,|< fp and0<|y,l<p. .

e x’<pandyl<p.
& kpExity<2p.
=k<2andke z*
"kl
: R Xt+ylep.
Theorem : -
Let N be a positive integer of the form mk (K s square frec). Then N can be written as a sum -
' ofmmuiﬁkhmmp:iﬁnmofﬂ:ﬁnm#hﬂ.
Proof: : :
i has no peime factor of the firrm 4n +3, then it has prime factor of the form 4n=1. Sobythe
'WMkmmmﬂ:mde{m}kmf+E
N =’k =m*(a’ +b?) = (ma)’ + (mb)’.
Cnnvuselysuppma mk=N=a’+b?, m;nnvekdncmm:ﬁmaﬂhcformdn+

Lct(a..b)"d
Thend |aandd|Db.
” =»d?|a’and d* | b~
=d|a+bP=wk .
=& |m? ; (v kissquare free)

' 1
-_4'%1?=1 Nsay.

€
m’k _ N _
d* 4
dladlb.
=a=da,b=dv (a,b)=1
N a?+b? (a¥ (b} s xik
Pt AT | i
= =te(6) )
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mm%_ummk %=n”+h"_
'a”+h"2:ﬂ'{ﬁod_k) TR g
I:Hpbcmoddpriufefactﬂrofk.
1+ b2=0(modp) een(*%) |
@, b)=1, umcofa’andb’{sa]ra’)umlamlyptmmp,
Let (a, p)=1. -
* So3¢,¢ € Zsuch that
ca’+cp=1
= ca’= | (mod p)
, =>(ct’)’=1(mﬂdpl
Fm(tt}
{¢°’)’+(°W'ﬂ(mnd¥l
= (cb)*=- 1 (mod p)
x*=- 1 (mod p) has a sohition.
-lisagr(modp). . '
= p= 1 (mod 4).
- So, a factor of k is of the form 4n + 1. -
Lemma : : .
Ifa and b can be written as a sum of four squares so can the product. -
' Suppme_aaﬁdhmhewﬁﬁmua—mnfﬁn&m '
Let a=x’+11‘+x,1¥x‘ '
b=yl+yl+yl+yl
ab=(x,’ +x,’)w.‘.+ ¥+ &} +x:)fy,‘+¥.‘)+(xf+x.’l(n‘+vz’)
+{x.’+a’lr,’+?.ﬁ
- -(mr.+w1+w,+w.}‘+(x.n SR AL N

(XY, - %Y, F X3, - KV P + (XY, Xy, + X, - xy,)
Notation : :

Wecall -
_ (a,b)=(c,d) (mod m)
if a = c(mod m) and b =d (mod m).
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Lemma : : :

A set of ordered pairs of infegers, containing more than m? elements must have two elements
that are congruent mod m. |
Proof : : _ _
- Bach ordered pair of integers is congruent (mod m) to one of the following m? ordered pairs

(1,2, (1,2) e (1, m) e

@ 1,2,2)..... 2, m)

@, 1), (m,2).....(m, m) |
HaﬁmMmemmulmmmemmthMmmm
of the ordered pairs in the above list. Obviously these two ordered pairs are congruent mod .
Lemma: : _ g . :

Leta, b, ¢, d be given integers and p be a prime. Then the system of congruences

ax + by - z= 0 (mod p) ' '
cx+d;-r-u:n{modpj.

l;asnuntiﬁalsnhﬁonxwya,zo,i;ysmhﬂmmhmbu"mﬁﬂmhﬁm is less then ,/p in absolute

value (i.e: [ %, | < P, 1Y, 1< VP, 121 < VB, 8, 1< p)-
Proof: '
Define 'a=m(x,y.z,u}=ﬂ+b?-z
P=P(x,y,zu)=cx+dy-u
where x, y, z, u are independent variables.
A.?:x,}r,z,u vary over the domain,

{0,1,2, ccom-1,m=[vp] }

we obtain (m + 1)* values of ot and (m + 1)* values of B (not necessarily distinct).
Thus we have (m + 1)* values of ordered pairs (o, B) with (ct, B) corresponding to the same
va]uenfx,y,z,u;

Smnc[\[];] =m,(m+lr}pzmdhenpeitfullowsﬁmnmmpreﬁmlslemmaﬂmaﬂnaHMO .

ordered pairs (c,, B ) and (o, B,) have cnrréspnnding component that are congruent modp? and
therefore congruent mod p. '

o, =ax, +by -z =o, =ax, +by,-z(p)
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ﬁ =cx, +dy, -u !ﬂ:thl +dy, - u:(p}
a(X, - X,) +b(y, - ¥,) - (z, - 2,) = 0 (mod p)
(%, - x,) +d(y, - y,) - (4, - u,) =0 (mod p)

i[i:n‘.,,["i]l:u.'ut:l(l:n:1 ﬂ}mpondtudiﬂ‘erenl:valuesufx,}r,?,uﬂleastoneafﬁle
numbers x, - X,, y, - ¥pZ,-2andu - u, is notzero.
If we recall range of values for x, y, z, uweseethatx -x,,y, - yz, l z,and 1, ullesa

_ﬂmnfmabsnl‘utcval]m

1% %, h1%, =¥, b 12 -2, v, -w, [sm< fp.

Ifwe now let X, =X, - X, ¥, =¥, - V2, =2, - 2,8, =1, - 1,
", We get,ax, + by, - z, =0 (mod p)
where | X, 1< Jp.1%,1< Jp. 121 < Jpilu < Jp-
X, + dy, - u,=0 (mod p)
prisannddp;hnz,ﬂmnﬂ:r:_:xiﬂsintegma,h,mmhﬂmgub*--l{mﬁp],
Proof: :
Consider the following two sets

A 2
B={—ﬂ‘—l‘ -1 12 2212 -(Kml) ;11}

obiviously the elements of A are incongruent mod p.
Alsq the elements of B are incongruent mod p. >
Since the union of A and B contains more then p-elements at least two numbers in the union are
congruent mod one of these numbers, say a* must be in A and the other say - b?- 1 must be in B and
they are congruent mod p _ i
ie. a’=-b’- 1 (modp)
=a’+b*=-1 (modp) Hence Proved.
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Theorem :

Forany p(>2) mp=x1+x,2+x2+x2is solvable with x,, X, x,, x, which are notall divisible
B)'p andl <m<p.
Proef:

Consider the sets of %(P_H]' numbers.

S, q:{ﬂ’.l’;f,..,,..,(-‘p;—l) }andﬂmsetof %(P*'l_}. nmhéri._

8, ={-u‘-1,—1= _1-2? ~1,...,-[PT’1'T -1}
xiay? (modp) = p| (x- YN +Y). ;
We see that no two numbers of S, mmmmdlﬂupmdnhnmtwumunhumfs are
" congruent modulo pi.e. they are incongruent to each other (mod p) in pairs. Now there are (p + 1)
mﬂmm&ﬂmhﬁmﬂmhmm&pmmmmm“m :
chﬂcﬂummb&x‘ofslismgmemmqhhpwmmm-ytluf_sz. %

Hmhtmmxndnyqdamhily less than % suchthat -

© xm-y-1(modp)
=x+y+1 :B(modo)
=pz1+f+l*+n‘-mp-

(usxs" ',nsys"'z‘]

15&::&15%{;’43%1)

5]
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p=1 =1
XS+—,yS—
K
11 3
S—| =p*-p+=
27 '”2]
Py &
~| =p*+1.
HE ]
{'l'—pz .. . =72
p ¢ - p>2)
. <p-
Thus with the condition. 1< m < p we have obtained integers to satisfy x,+x,* + x,?
+x,2=mp. '
e s _ For every prime p, p=x,7+x,? + x,2 +x 2 is solvable.
Proof : ' e

For p=2, this is obvious as 2= 12+ P+ 0*+ (7,

Therefore let p>2. But by the preceding theorem we know that there is multiple of p such that mp
=x24+x2+x2+x2 is solvable with x,, x,, X,, X, notall divisible by p.

Now we shall prove that the least such multiple of p is p itself.

Let Mp be the least such multiple of p.

Case () : M be even.
: Then Mp=x?+x7+x?+x? isalso even.
Hmenhn . (D x,, %, x,,x, are all even.
Gallodd.
(iii) two are even and two are odd.
lfexaﬁﬂytwodfthcx‘sﬂéﬂmmmmﬁmeminsuchawayﬂmxl,gmmmdxp
x,are odd. , '
T’hnﬂx1+x,,x,-x1,)g'+_:g‘,xz-x‘arca1]=v¢nandso

1 2 1 - 1
X, +X, [xl—xq (x,+x4] X-x) _1
[ 2 )+ 2 J+ 3 J U2 )T
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when the four terms on the LHS are integers.
These squares are not all divisible by p, since x , X,, X,, X, ar¢ notall divisible by p.
This result contradict our assumption that M is the least. Hence M must be odd.

Case (b) : M is odd.
~ Since M is odd, we must have 3 <M <p.
 For 1 $i<4, letus now choose numbers b, by, by, b, such thaty, =x, -b,M, y,=x,-bM,
Y, =%,-bM,y,=x, -bM. |

which gives y, = x (mod M).
with condition -? <Yy, s Ei:l

¥ +yl+yy +ypmxd+at+ x4+ xk (mod M) :
=0(modM) ~ [x?+x7+x7+x}=Mp]
L iyReyeyieyieMa | e A).
. 0<Mn=y} +yl+y} + L P

w2 -
54(M_1] <M?
2 3

ie O0<Mn<M

=0sn<M. )
Forn=0,wehavey,=y,=y,=y,=0 (from (A))
mdxgsx:'!x,ﬁx‘-D(M}_ : (~  y=x(modM)). -
Mp=x1‘+x?1+x_,1+x‘ilﬂ{hl’]
ie.  p=0(M)whichisnotpossiblesince3<M<p.
Thereforen>0and0<n<M.. N

Now Menp=(xI+x1+x +xy ¥ +y1+y)
| n(xlyl+LJ'2+11j'1+14?4}1+(x:¥:'11y1+w4”x§:}.:
S SR SRS SA SRS T e 2
=z?+z?+z?+z}(say) SR ) |
Now z =Ixy =Ix?=0(modM)
[ y=x(modM)]
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_Simi];,arl}rz:-z!:z‘lﬁ{mndm.
Ao xy,-xy, =xx -xx =0 (mod M).
; we can take ;
zi=MtI,z..;=Mtz,zl=_=Mtrz‘_=Mt‘.
wm=wngw§1+mz+m‘i
=mp=t+t¥+t?+t withO<n<M.
This shows that M is not least if M > 1.
Hence M= | and the theorem is established.
Lagranges theorem ;
Evuypmmmgumamufﬁmrm(mﬂwdmphﬂnmeqm
; n=x1+x=’+xf+x’msoi~ublefnrﬂuyn20}
Proof :
' wﬁm&ﬂmﬁwhﬁmmmmhmuforn,n,urhmw:i_tism_hn,mdﬁ,.
By the last theorem it is true when nis prime.
Nawlﬂtn==p,p1 p, not all distinct primes. -
Subythﬂpmcndmmk,ﬂnﬂ:mrmmestﬂbﬁm
© Summary
» 'Aﬁmmummuﬂnmufmﬁmﬂmnednmmﬁm
. 'rin):sﬂumhernfpumvedmmnfnmhndmglmdn '
. a{n):sh:mnfpom\wdmsmnfn.

. Amh:ﬂ:euﬁcﬁmchm'i‘mmdhbcmhpbnﬂmfﬂm] ﬂm}!{n}.nﬂmwpd
(m,n) = 1.

. Tmt_lubodlmqnﬂt;phmwﬁm, _
. ’I'heﬂnbimﬁ.mimp(n}ismltﬁaﬁmﬁm

. IfF(n}unmhxphmfmcmu,mdF(n) qnf(d). ﬂ:enfmalsnmuhphm

' 2 E:hsﬁmhmﬁn}ud:ﬁnedumembuofpmwmmwmm'n'm
“exceeding ‘n’.
. ¢mn)=n-1 lfmdnnly_ifnisp;rime.
® mhnmniuphm"' ive function.

d
.. meymtegu'n,ﬂn)-n qn"i )

] If(a,h,c)munlunmofxuy‘ z’suéhﬂmtgcd(a,b,c}=l,ﬂ:ien(u,b,c)iscaﬂed
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primitive solution.

) If{x,y,z}uapnm;hvesuhmonﬁfx’+f 2, Xis even, theny = 2st, x =8’ -}, z=
4+, whcmsandtarcpommmmmmfjmgﬂxﬁuﬂuwmgmndm
(D=1
(i) x > t.

(iii) one of s and t is even and the other is odd.

o The diophantine equation X* + y* = 2 has no positive solution.

. Theuddprmenumber‘p'unbewnttennsamnftwouqumlﬂ'pll(mnd4}(m.
p is of the form 4n + 1).

. LﬂNbcapoamvemtegorofthuformnﬂt(kmsqamﬁu) Tthmh:wnt&nas
a sum of two squares iff k has no prime factor of the form 4n + 3.

e Foranyp(>2), mp=x2+x2+x2+x] maolvnblemthxl,xz,xpx‘whichmmt
all divisible by pand 1 Sm <p. .

. Fmevaypnmcp,.p-x=+x1’+x_f+z is solvable.
. mmmmmmmmm&mm

Q(1992) : State true or false :
Fmaposmvem&gak,ﬂmrmﬂmstﬁk}mmgﬂmmﬁemk+l k+2,..,2
Ans: Suppnsethmmﬂk}+lp:mammgth:mmgmk+l k+2,.. ik.Butmchoka k
+2,. Zklscbngn.lﬂﬂttﬂsmﬂfl 2, ...k modulo k. Andthusﬁmnreﬂk}+lnumbﬁsm
relatively prime to k among 1,2, ... , k, which is not possible. : .
' The:rl:furcfurapusmwmmgﬁk,ﬂmmmatmnstﬂk}prmammgﬂnmgusk+1 k+

2, .5 2k
Q{lmj : What can you cunsiderahomﬂicmulﬁpﬁcm of %? _
Ans: Let F(n) =220
and (m,n)=1
Now F{l:m:i:l=M
. . mmn
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m)$(n)
mn

¢<_
m

\-r‘

'Ffm]F(n) !

WF{H}=ﬂﬂlmm
Q(m:} Evaluate Iu(ln)
ok Eu(lﬂ]

SR S PO
=)+ L2+ BR3) + PRI oo
=)+ p2)+ R23) + Y26 + ..
=1+ +(2P+0 v o we)=0,ifp*|n
.=1-1+1 : :
=1, :
Q(1993) : State true of false :
Fornzz.q(n)ual-uyum ;
Am Fthuwhenntz.ﬁn)-m}-l whu:bunuﬁr.n.

| -'uam; ﬂmmw-mmwnmﬂuﬂn}-iz |
@:mnnﬂ-nm- 2‘[1—5J =2=32..
 §(64)=32. -
Qs thembeof ot prin e of o g, et TN =2,

 Here p denotes the Mobius fuction.
Ans: Gmkuumdmmﬁcmﬂfumwn,

=P “p
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Now M@= I{OFR@HMEOI+.+ e )]
= T1( WOk Ge,)).
.=ﬁu+u.
-l -
=2t
Q Fmd‘t(lﬂﬂ}mdd{lﬂﬁ)
_Anps: we have _
) | 180 =22 '3’ 5
i{:h:uw_i'fnsp bip,h - P ,pmﬁmmlﬂgzlm

o)=(k, + 1)k +1)..(k+1)

ky+l w 1

d{ﬁ] - P;‘“ =1 Ps prk,ﬂ .__1 i
;-1 py-l Pl

Now -s(lsn} =(2+1](1+1){1+1}
. -l!

F-1.8-1
1

Gﬂm_n | 5-1

=1
I 3-
=7.13. ﬁ
_ = 596.
Q(1996) : Varify that '

tn)= ':(n+1}andt{n)£24_fnrn=3655
Ans: n=3655=5%x17x43

(n) = (1 +'1)(_1 FI14T)

=E_ ;
n+1=3656=2".(457)
tn+1)=3+1)1+1)
=g .
o(n) =1(n + 1) when n =3655.
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Again’ 2./n =2./3655 -
' =2 x 60.45
‘ =12091
% "n)<2/p forn=3655.
Q(1996) : Find j1(30) and u(72).
Ans: . 30=2.3.5
HGO)=(-1P=-1
N=2.3
y W72)=0as3|72.
Q (1997) : Find 7(59319) and 6(59319).
Ans: 59319=3. 13"
L (59319 =G +1)3+1)
- =16
' 3113 -1
a(ﬂalg}ur-m.
!-4DX238_D
= 95200, .
Q(1997): Fm&mmnfmmmmmmmlymmm.'
' Ans : We have to find ¢(3600).
: 3600=2.32 .5

om-efe -4

Q(1997): Letnbe anmtega‘? I Thmﬂrﬁ:llowmghald.
(i]'r[n}lsuddﬁmsapmfmtsqum
(if) o(n) is odd <= n is a perfect square or twice a perfect square.

[u}ﬂﬂznt(}

Proof:
Letn = P,t'ﬁ;k"---p,h' , p, being distinct primes and integers k21
{l}weknuwﬂm,
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() = (k, + Ik, + 1) ...k, +1)
(n) is odd & (k, + 1)k, + 1) ... (k, + 1) is odd
; %kﬁlisuddvi-l,l,.“,:.'
‘ekiseven v i=1;2, .t
Supposek,=2m,i=1,2,.. ,rThm

n= p I.l pll-: 'prl-.

—(p,") [p:") (p. )’ whichiisa perfect square.
(i) Also ' '
pi -1 pi =1 p -1
p-1 p-1 7 p-l

; kyel .
‘o(n) =

=(1+p,+ ...+l‘-",“l )(1+ ikl AP" ) (14p +. 4R )
s ofn)is ndﬁ ﬁr(l-l-p, +...+i" "N l'-l;p,-l'-...-l-P;'* ).( 14p,+.4P%) is odd

o 1+p+. -t-l"l unddv i=1,2,.,t

ﬁhumymf-nplmnddmdlfmp,uyp,-zthmk,uwm vi=23,.,r
&k =2m forsomeintegerm, v i=1,2,..,1 ‘
K= Zq‘fnrmwm,vl-z,?a. ,rndklunywzl

) '-""".(Fl P:q)

2=2%(p,..0,%)’

Now ifk, is even, then
A PRI -
n-[ZIpl-t ‘."pr"' ) ;m
ifk is odd say  =2m ! + 1, then
Ca e ' N ]
n=z(z-= . ...p,") ,

Hm_q:u(n) hoﬂﬁnﬁuﬁmmwmup&ﬁmm; %

126




(iii) we know if d is an integer such that d | n, then J an integer d' suchthat =~ n=dd".

=d'|nandd' =2
d
Thusd_ivismsdofnmi_nptin(dsg}
I 2
=>Pmdmtnfaummufn=[ﬂd] n™

or Hd'“ whﬂeﬁn}uﬂ:tmo{dwmmufn.

Nuwif‘:(n}iswm,_% iminmge{-mmun% is an integer and if t(n) is odd, n is a

“perfect square, so that, |

) R
n? =[n’]_ is again an integer. Thus.

Exercise .
Prove that

~ Q.1(93) For integers a, band ¢ if god(a?, b?) = c2, ﬂ:engcd{a,b) .
Q.I.(leammemtegm'p}ﬁmmmvemmpﬂand4p+lmmutbepnmas:mﬂtanmuscly
QJm)SmﬂJeﬂumRmnﬂq-Theomn.anmprmﬂmﬁranypommemtegﬂk,mm
find k consecutive positive integers each of which is not divisible by a square.
Q.4.(99) if p is a prime and a = b(mod p®) then prove that for all integral values of nand s,

P = p¥ (mod p**).
Q.S.(ﬂ]!fkdenumﬂmhmnbcmnfdis&mtpﬂmefacmdnposiﬂw integer n, then show that

2 p(d)e(d) = (-D*
dm

Q.6.94) Given an 0dd prime p and an integer a such thatp fathen %' _ |  (modp).

Q.?.(ﬁ) For any integern = '1, pimve that
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tn)<s2./q-
Q.8.(95) Prove that for a an even integern,
- Zdd)=0
i

* Q.9.96) If S integerst,, T,, .., T, form a reduced residue system modulo m, then prove that S = ¢(m).
_* On Congruence
Theorem :
' if,n, ..., isacomplete setof residhies (mod m) and i (s, m) = 1mdhmmymgum :
ax, +b, a:5+b, 8K +buammplutesetufmsndnes(mﬂdm)
Proof: - _
Wehaveaxi+blaxj'+h{mndm}
. =ax=ax(modm)
=x=x(modm) (v  (am)=1)
=i=jsim¢{xl,:?ﬂx_}mmﬂyw

1 _Hmui#b,i=I,L...,mmmmﬂthMM[@dm}'MHmm
follows. - J

| If (m, n)= 1 and if x,, X,, ﬂx.islwmplmsetofﬂM(mbdm}andyl,yr .Y, isa
mﬂmﬂm[mdn}&mﬂnmmm(mﬁm‘)wmwl 2,..,mj=l1, I,H.,n
ﬁutmtmn:plﬁeaunf:mdlm(mﬂm)
Proof :
We have, -
x, + my; =nx, +my, (mod mn)
=> 1x, + my, =nx; +my, (mod m)
nx, + my, = nx, + my, (mod n)
=5 nX, =nx, (mod m)my, = my, (mod n)
= x, =1, (mod m)y, =y, (mod m) since (m, n) = 1.
|==k._;=l :
Hence {nxﬁmy}umnnmﬂymngmm. Since there are mn elements in the set, the result
follows:
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Definition:
A reduced residue system or a reduced set of residues modolum is a set of integersr,, r,,
-+ T SUCh that every integer which is relatively prime to m is congruent fo exactly one of the integers.
r.. In otherwords, 4 reduced set of residues moduloe m is the subset of a complete set of residues

consisting of the integers which are relatively prime to m. Mm}mdsﬁxnmbﬁnfmtemﬁ relatively
prime to m.

Ex.1.:Ifpisaprime then {1,2,3,...,p-1} fmmsnreducedsetofrﬁiduesmo&qlup,

Ex.2.: {1,2}, {1,5} and{l » 7,9} are reduced set of residues modulo respectively 3, 6 and 10.
Note:Ifx,x,, ..., are¢(m] mtegmeax:hmrelaﬂvelypnnetumﬂmnﬂwyfnrmam&wedsemf
rBSld‘ues(mndm}

Theorem : %
'Ifxl.xz,..,,'xm}isamctmad set of residues (mod m) and if a is an integer such that (a, m) = 1,
thenax,,mg,..., axmjisﬁreduceﬁsemfrcsidues (mod m).
Proof: ' -
For eachi, we have (x, m)=1.
Since (2, m)= 1, we have (ax, m)= 1. Also
' ax, =ax, (mod m)
=x=x@modm) (v (am)=1
=i=}
Thus ax, ax,, ..., ax o 37 O(m) integers, each one of which is relatively prime to m and no
two of which are congruent modulo m.
Hence they form a reduced set of residus (mod m).

Problem : .
What is the last two digits in the ordinary decimal representation of 347
Solution :
We have, (3, 5)=1. Thus

3*= 1 (mod 5)
Also  3*=1(mod?2)
=¥F=1(mod10) +  (52)=1
- =3%=1(mod 10)
which shows that the last digit of 3% s 1
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Problem :
prisanypﬁmen&rerthm?orﬁ,pmvethatpdividcsinﬁnjﬂ}rmn}mfﬂminwgm?,%,@,
9999, ... Also p divides infinitly many of the integers 1, 11, 111, ...
Solution : ’
We have the aéL
$={9,99,999, .. }={10"-1,:n=1,2,3,..}.
Now let p be any prime other then 2 and 5.
Thenp¥10i.e. (p, 10)=1.
Ths 10°'=1(modp)
= 10*- V= | (mod p)
=pl|l0=t-V_-]1 form=1,2,..
Thus p divides 10=r--1 m=1,2,..
which is an infinity elements in S.

Again S, ={LILI11L,...}= {-;,xES}__

If p=13, then p divides all numbers of S,, whose sums of the digits are divisible by 3. As there
are infinitly many integers of this kindin S,, (i.e. 111, 111111, apdsann}pdividﬁ infinitely many

mcmbersafs1,lfp¢3thm{p.q)=l.Thuswhenwerpgx, xe S, wegetP E.Hmpdividcs :
infinitely many integersm S, .

Problem :
State true or false : _ _
For any two relatively prime integers a and n, a**' = 1 (mod n)?
Ans: ; '
False (5, 6)= 1, but 5* = 5 (mod 6).

Solution of Congruence

The number of solutions of f{x)=0 (mod m) is the number of integers in a complete set of
residues which are solutions of f{x) =0 (mod m). :
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Example :
x?+ 1=0 (mod 7) has no solutions.
x*+ 1 =0(mod 5) has two solutions.
x* - 1 =0 (mod 8) has four solutions.
Theorem :
Let f(x]-—-aﬂx'+a]x“+...+an.'lf‘au=ﬂ. 3
The degree of the congruence f{x) = 0 (mod m) is n. Ifa, =0 (mod m), then the degree of the
congruence is x - j, where j Eﬁﬂlﬁtpﬂﬁﬁ%h@gﬂﬁﬂiﬁhﬁl&lﬂ] #0 (mod m).

Theorem : h
. Thésysm of congruences
x=a(mod m)
x=b(modn) —yy

hasaspluﬁonifandnn]yif{*ﬁ,n]!b-a.
Ifthis is the case and if , is a solution then the general solution is
x =X, (mod [m, n]).
Proof : :
'Letdﬂ[m,n}andsupposem=dml,n=dﬁr
Let(!]haveasulutionxu.Thmm]a-xnandnlb—xn,Thusdla-xwdih-xﬂandthmfur:
dla-b. -
Nawletdfa-h',Wehavcx=a+nn,wh:r:tisan;.rintegerisasaluﬁonnf x=a(mod m).
'Furacoumsnhﬁanwemustﬁudtmchﬂm:
a+tm=b(mod n)
ie. mt=b-a(modn) * R ¢ &
Since d = (m, n)| b - a, (2) has a solution. Hence the system (1) has a common solution.
LetM= [m, n] and x be any common solution of ( 1).
Then x=x(modm)
X=X, (modn)
whichgivmdml=m!x-xﬂ¢dn,=n]x—xnand'therefnre
[m,n]=dm!n||x—xa_
1e. x=x (mod M)
Also if x =x_ (mod M)
Then xixﬂsa{mMﬁ}
X=X, =b (modn)

-~

Hencex = X, (mod M) is the general common solution of (1).
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Congruence of Highere Degree

The following theorem, known as Lagrange’s theorem, gives an upper bound to the number of
distinct roots of an algebric congruence of prime modutus.

Theorem : ;
Ifpisaprime and ifa =0 (mod p) then the al gebraic congruence
fix)=ax"+a x*'+..+a =0(modp) 2 A R)
has not more than n roots incongruent (mod p).
Proof: ;
We use induction on n. The result is true for algebric congruence of degree 1. Since the linear
congruence a x +a, =0 (mod p) has exactly one solution if a, #0 (mod p). Now assume that the result
holds for all congruences of degree n - 1, and consider the congruence (1) of degree n. .
Suppose that the algebraic congruence (1) has atleast n + 1 incongruent roots, namely b .
- E_+ - Then f{ib ) =0 (mod p) and consequently,
f(x) =f(x)- b)) (modp)
= ia,{x’—-hl' ]

x=0

= (x - b (x) .
where, f(x)=ax"'+(ab +a Jx"?+.. +(@ab*'+. . +a).
Ths  fix)=(x-b ) (x) (mod p).
Since fib)=0(modp)i=2,3,..,n+1
It follows that,
(b-b)f(b)=0(modp) (i=2,3,..,0+1)
But b #b, (mod p) which gives,
f(b)=0(modp)  (i=2,3,..,0+1)
This shows that f (x) =0 (mod p) is a congruence of degree n - 1 having n incongruent roots.
This contradicts the induction hypothesis. Hence the congruence (1) cannot have more then n incon-
gruent roots. The theorem thus follows by induction.
Note : The result is not true for an algebric congruence with a composite modulus. For example, x? -
x =0(mod 6) is a quadratic congruence with fourroots x=0, 1, 3, 4 (mod 6).
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Theorem :
If the algebric congruence
fix)=ax"+a_ X'+ +a =0 (mod p)
of degree n has r incongruentroots b, b,, ..., b_then
fix)=(x-b)(x-b,) ... (x - b)f(x) (mod p) :
where f(x) is a polynomial of degree n - r with integral co-efficient and hjghestco-efﬁcient a.
Proof:
As in the previous theorem we show that
' f(x) = (x - b )f,(%) (mod p) where,
f(x)=isa po]ymrmal of degreen- 1 and f{b} O(modp) foriz2. B}rﬂtesame
argument we see that, ;
f,(x) = (x- b )f,(x) (mod p), where f,(x) is a polynomial of degree n - 2 with integral
co-efficient and highest co-efficient a , and £(b)=0(modp)foriz3.
The result follows in r steps. |
The linear polynomial (x - b)(i=1,2, ...;r) are called the linear factors (mod p) of f{x). From
the theorem we see that, :
An integral polynomial f{x) has a factor (x - b) (nied p) iff fib) = 0 (mod p).

Problem :
Factorize the polynomial x* +3x + 1 (deS}
Solution :
If the complete set of residues 0, £1, 2 (mod 5), we have 1 and 2 as the roots of the
congruence x'+3x + 1 =0 (mod 5).
Thus x - 1 and x - 2 are factors of x’ + 3x + 1 (mod 5).
We have X+3x+1=(x-1)(x*+x+4)+5
X+x+4=(x-2)(x+3)+10
Thus x*+3x+1=(x - 1)(x* +x+4) (mod 5)
= (%= 1)(x - 2)(x + 3) (mod 5)
=k 1)(x-2)(x - 2) (mod )
= (x - 1)(x - 2)? (mod 5)
Problem : ;
Show that the polynomial x* +2x + 1 is irreducible (mod 3).
Solution : ' _
Ifthe mmpit.u.- set of residues 0,%1, none is a root of the congruence

133




x'+2x +1=0(mod 3).
Hence x* + 2x + 1 has no linear factor (mod 3). Butmanyfactunzahonuf x3+2x+l(mud3}
* there must be at least oné linear factor.
Hence we conclude that n’ + 2x + 1 has no factoriz;ﬁnn (mod 3).

Theorem :
I.fthepusrtwemtegum}l has mf:pnmedwmnposnmn m= 'p,“'pl ,,,,,, p,™ and if f{x)is

any polynomial in x with integral co-efficient, then
(1) the-algebriac congruence f{ix) =0 (mod m) ey

is soluble if and only if each of the algabraic congruence fix)=0 ( mod p,* )

i=L2..,r wenne(2)

issolubleand
(ii) If N(n) represent the number of solutions of the congruence f{x) =0 (mod n),

ben N =N(p N (" N(o,")

Proof:
(1) If f(b) =0 (mod m) then clearly -

f(b) = 0 ( mod p"*) (=1,2,.1)

“Hence if the congruence (1) is soluble then each of th: congruences (2) is soluble, Suppose
now that each of the congruences (2) is soluble. Let b(i= 1,2, ..., r) be integers such that

fib)=0 (mod p* ) (i=1,2,..,1).
Then by the Chinese Remainder theorem, we can find an integera such that

a=b (mod p*) (i=1,2,.,1.
Then fla)=f(b)=0(mod p,* ) (i=1,2,..,7

which implies fla) =0 (mnd m=p,"p, " .....p,* }

This shows that the congruence (1) has a solution.
(i) By Chinese Remaider Theorem, the integer a obtained in the proof part (1) is unique (mod
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m). [t follows that a different root of the congruence (1) must arise from a different set | R ] of
roots of the congruence (2). Henec all the roots of (1) will be obtained by allowingb, ... b rotake all

possible values. Since foreach i, b, can take N ( p;” ) distinct values, the result follows.

Theorem :
Ifb is aroot of the algebraic congruence
x) =0 (mod p*') (@2 2) _
: Satlsf)'ringﬂsbip“"-1,mdiff’(x)ismefommlderivaﬁveafﬂx),thcu _
(i) Iff"{b)*ﬂ(modp),ﬂ:misauniquematoff[x}=ﬂ(mﬂdp“]cmrespondjng tob;
_ {nJlff’(blzﬂ(modp},thm:arepmotsufﬁx}aﬂ[mudpﬂmpundxngmbwhmﬁb)s :
0 (mod p%) and no such root when f{b) £0 {mndp“)
Proof;
. _Ifa-p“-lt+b,th¢u

I -J

f(a) =f(b+p™'t) = £(b) + p* 't f(b) +(p='t )’ L®), +[ e & B AL

whmnlsmedegreeufﬂlepolynommlf Nawfnrwmcmmgerk,wehaVE
- fb)=kp*'.
Thas  f{a)= {tf'(b) + k}p=-! + Np**-2
where N is an integer. Since 20t - 2= + (& - 2) = or. We decide that
f{a) = (tf/(b) + K)p**" (mod p*)
Consequently  f(a) =0 (mod p*) iff
tf(b) + k=0 (mod p) S| )
(i) If £'(b) #0 (mod p), then the linear congruence
(1) in thas a unique solution say t,. Thus t, is the unique integer such that a=tp™'+bisa
solution of f{x)=0(mod p"). Hence the result fullnws
(11) Now let f'(b) = 0 (mod p). Then (i) is satisfied if dnd only Ifk=ﬂ{nmdp) but
k!ﬂ{mndp)@f{b)il}(mndp}
Thus lfbtsnutammufﬁx}aEI(modp"‘},thenfmn'ert,a=p“"t+hrisamotuff{-x)5'l}[nmd_
P%)- Ifbis aroot of f{x) = 0 (mod p®). Then k =0 (mod p) and so for each value of t, (i) is satisfied
Th&sputtﬁ:ugt—ﬁ L2,..,p- Iwegetpmcnugmentmmsa p™ ‘t+hofthccnngrumc¢f{x} 0
(modp“)cmpcndmgto the root b of f{x) =0 (mod p*-'). This proves (ii). -
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Exercise : Solve x’%!xﬁriaﬁ(mnd ) s (1)
Solution :
First we consider the congurence,
x}+ 2x+ 2=0(mod 59 .|
By inspection we find the solutions of (2) tobe x =1, 3 (mod 5). We have f'(x) #3x*+2.
Roots of (1) corresponding to root x.= 1 of(2) ';vc have, f{1)=5=5.1i.e.k=1[(f{1)#0(mod3))
: 1) =5. ; . :
Since f'(1)= 0 (mod 5)and 1 is not a root of (1) there is no root of (1) corresponding to the
root 1 -:rf.{z). .
| Roots of (i) corresponding to the root 3 of (2).
Here f(3)=35=7.5(k- 7)
£/(3)=29=- 1 (mod 5)
=0 (mod 5)..
Wesmtﬁattha‘éisalquuemﬂta =5+ 3 of (i) corresponding to the root 3 of (2), where t
is the solution of ,
-1.t+7=0(mod5)
which is t =x (mod 5). hence the only root of (1) is x = 13 (mod 25).
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