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Continuum Mechanics

Introduction:

Solid and fluid mechanics are two major subjects studied by all students of applied mathematics,
physimmmgimgrmﬁmmuymmmmmmmgmmmywmmmm
whose apprdach, orientation and notation are in general different. The modern trend is to make a
unified presentation of the ideas and general principles common to all branches of solid and fluid
mechanics under the general heading of continuum Mechanics. A good knowledge of vectors and
tensors is essential for a full appreciation of continuum mechanics. Since the Cartesion tensor formulation
is sufficient for the development of continuum mechanics atan elementary level, we have limited our
discussion of tensors to Cartesion tensors only. .

Unit I is concerned with the topic analysis of stress. Deformation and motion of continuum
are generally caused by external forces that give rise to interaction between neighbouring portions in
the interior parts of a continuurm. Such interaction are studied through the concept of stress.Unit [T is
devoted with the analysis of the geometrical changes that take place in a material body during its
motion from one configuration to the other. The tensors which serve to measure these changes will be
introduced and the related aspects will be considered in some detail in this unit. Unit II deals with the
instantaneous motion of a continuum. The field equations of cotinuum mechanics are also presented in
this unit. The last two units are devoted to the development of the governing equations of two basic
areas of continuum mechanics: linear elasticity and mechanics of nonviscous and Newtonian viscous
fuids. Unit [V deals with a class of continua called lincar elastic solid . The classical elasticity theory is
a essential part of solid mechanics and its scope is vast. We restrict ourselves to the derivation of the
governing equations of the theory and some of its immediate consequences. Some simple and standard
applications are also presented. Unit V is concerned with the equations of Fluid Mechanics. Here,also
we restrict ourselves to the derivations of the governing equations for nonviscous and Newtonian
viscous flows and their immediate consequences. Some simple and standard applications are also
discussed.

UnitL
Analysis of stress.

1.1. The continuum concept 1
The molecular nature of the structure of matter is well established.In numerous investigations of
material behaviour, however, the individual molecule is of no concern and only the behaviour of the

material as awhole is deemed important. For these cases the observed macroscopic behaviour is

3




usually explained by disregarding molecular considerations, and, instead, by assuming the material to
be continuously distributed throughout its volume and to completely fill the space it occupies. The
contimmum concept of matter is the findamental postulate of continium Mechanics. Within the limitations
for which the continuum assmnpunnmva]ﬂ,ﬂmmmcptpmwdﬁaﬁamawmtsmdymthc behaviour
of solids, liquids and gases alike.

Adoption of the continuum view point as the basis for the mathematical description of material
behaviour means the field quantities such as stress and displacement are expressed mptmwwe:
continuous functions of the spmemrdmatas and time.

1.2. Homogeneity, Isotropy, Mass-density

A homogeneous material is one having
identical properties at all points. With respect to
some property, a material is isotropic if that property
is the same in all directions at a point .A'material is
called anisotropic with respect to those properties
which are directional at a point.

The concept of density is developed from
the mass-volume ratio in th. 1eighﬁaurhmd ofa
point in the continuum. In fig 1.1. the mass in the
small element of volume AV is denoted by AM.
The average density of the material within AV is
there fore

Fig. 1.1

AM

P{:\'] =E? “.“-'1]

The density at some interior point P of the volume element AV is given mathematically in
accordance with the continuum concept by the limit,

AM _ dM
= lim (1.2

Mass-density p is a scalar quantity.

1.3. Body and surface forces

Those forces which act on all elements of volume of continuum are known as body forces.
Examples are gravity and inertia forces. These forces are represented by the symbol b, (force per unit
mass), or as p, (force per unit volume). They are related through the density by the equation.




pbi =P -++(1.3)
Those forces which act on a surface element whether it is a portion of the bounding surface of
the continuum or perhaps an arbitrary internal surface, are known as surface forces. These are denoted
by £ (force per unit area). Contact forces between bodies are types of surface force. -

1.4. Cauchy’s stress principle, The stress vector :
A material continuum occupying the region Rafr._panc,andmhjectadtnsumfmmﬁand
body forces b,, is shown in fig 1.2. '

o

Since the forces are transmitted from one portion of the continuum to another, the material within an
arbitrary volume V enclosed by the surface S interacts with the material outside of this volume. Talang
1, as the outward unit normal at point P of a small element of surface AS of S, let Af, be the resultant
force exerted across AS upon the material within V by the material outside of V. Clearly, the force
element Af will depend upon the choice of AS and upon n,. The distribution of force on AS is not
necessarily uniform.

Fig. 1.2 Fig. 1.3

The average force per unit area on AS is given by %‘fs'- . The Cauchy stress principle asserts
that this ratio %tmﬂsmad&ﬁ:ﬁm lirnit %—%asﬂappmmm zero at the point P while at the same
ﬁ:qeﬁ:emmnomﬁabmﬁhcpairﬁ?vanjshminﬁwﬁmiﬁﬂgmmﬂs.mmlﬁngw %{fam
per unit area) is called the stress vector t'¥and is shown in fig 1.3. If the moment at P were notto -

vanish in the limiting process, a couple - stress vector, shown by the double - headed arrow in fig 1.3

would also be defined at the point. Mathematically, the stress vector is defined by

o i Sl LB
t; -ﬂn_&lﬁs—dg ,,,,,, (1.4)

The stress vector arising from the action across AS at P of the material within V upon the material
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outside is the vector - tf"" . Thus by Newton’s law of aﬁﬁm and reaction,

e () 18]
The stress vector is also called traction vector.

1.5. State of stress at a point, stress tensor .

At an arbitrary point P in a continuum, Cauchy’s stress principle associates a stress vector t'¥
with each unit normal vector n,, representing the orientation of an mfinitesimal surface element having
P as an interior point. This is illustrated in fig 1.3. The totality of all possible pairs of such vectors t*
and n, at P defines the state of stress at that point. Fortunately it is not necessary to specify every pair
of stress and normal vectors to completely describe the state of stress ata given point. This may be
accomplished by giving the stress vector on each of three mutually perpendicular planes at P. Coordinate
transformation equations then serve to relate the stress vector on any other plane at the point to the
given three. ' _

Adopting planes perpendicular to the coordinate axes for the purpose of specifying the state of
stress at a point, the appropriate stress and normal vectors are showninfig 1.4.

Fig. 1.4

For convenience, the three seperate diagrams in fig 1.4 are often combined into a single schematic
representation as shown in fig 1.5
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Each of the three coordinate plane stress vectors may be written in terms of its cartesian components
" ;




8, = 18, + 18, +1{VE,

;fﬂaj =g, +tie, + &8,  eeee(L6)
ot =g e, + 1],
The nine stress vector components ,

tNag, . (1.7)
are the components of a second-order Caﬁesiuntensﬂrknuwn:;sthe sterss tensor . The matrix -
representation of the stress tensor is given by

O, On On |- Ou %n  Ou
S=lo, On oy or b,l=joy 02 ox| .18
G, Oy Oy Oy Oun On :

The stress tensor components may be displayedwi&refmmctothemm&immmamasshownh

Fig 1.6. The components perpendicular to the planes (0,,, G, 0,,) are called normal stresses. Those

acting in (tangent to) the planes(0,,5,,,0, A are called shear stresses. A stress component i

positive when it acts in the positive direction of the coordinate exes, and on a plane whose outer normal

points in one of the positive coordinate directions. The stress components shown in Fig 1.6 argall
i

-

1.6. The stress vector -stress tensor relationship.
The relationship between the stress tensor 0, ata
point P and the stress vector ;& on a plane of arbitrary
ofientation atthat point may be established through the force
qﬁhbﬁmwmﬂmbahumufamﬂmmof
the continuum, having its vertex at P. The base of the
tetrahedron is taken perpendicular to nand the three faces
are taken perpendicular to the coordinate axes as shown
onFig 1.7. Designating the area of the base ABC as ds, the s
areas of the faces are the projected areas, Fig. 1.7
ds=dsm, for face CPB
d§1=dsn= forface APC
ds,=dsn, forface @ BPA~
or, ds=dsm,. o (1.9)
The average stress vectors ¢, on the faces and £1® on the base, together with the average
body forces (including inc:ﬁafmces,ifprmt},agﬁugmth:temhadxmmshnwninmeﬁgm.
Equilibrium of forces on the tetrahedran requires that
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t;%ds — t;%'ds, —t;%ds, — t;ds, +pb;dv=0 ..(1.10)

If now the linear dimensions of the tetrahedran are reduced in a constant ratio to one another,
the body forces, being an higher order in the small dimensions, tend to zero more rapidly than the
surface forces. At the same time, the average stress vectors approach the specifie values appmpﬁat'r:
to the designated directions at P. Therefore by this limiting process and substitutions at (1.9), equation
(1.10) reduces to '

ti¥ds = t®'n ds + ti*'n,ds + t*'n ds

= t;"'n,ds S J1.11)
Thus, we have ; ;
t® =o,n,[ 0¥ =il (1.12)
In matrix form, this equation can be written explicitly
O Op Oy
[t"” t“" 1:51].__ [n,,n;,n}]' o, Gp Oy AL1Y)
“.u Gyp Oy -

lnnmmfurm(‘z IE}Bthmemmmmmms
t® =n0o, +1,0; +0,0;,

Y’ =n,0, +“1“ﬁ +0,0y
1 =n,0,, +0,0,, +n,0y, -(1.14)

1.7 Force and moment equilibrium, stress tensor symmetry.

Equilibrium of an arbitrary volume V of a continuum, subjected to a system of surface forces
and body forecs b (including inertia forces, if present) as shown in fig 1.8 requires that the resultant
forces and moment acting on the volume be zero.

Smmahmufsurﬁueandbodyfmmmmhamthcmtcmlmlmm

o)

jtf’“ds+ fpbdv=0 +(1.16)

Icr 0 ;ds + jpbidv =0

or, j(nj,rj+phi}1v=u o (L17)
(Replacing t® hyuﬂnjmd&muﬁxlgﬁwﬂ&rﬂgmmmmm]
Since the volume V is arbitrary, the integrand in (1.17) must vanish,so that
o,n;+pb, =0 .(1.18)
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~ Inthe absence of distributed momgnts or couple-siresses, the equilibrium of momeats about
Je,.*x.tmds+jcﬁx.pbtdv =0 (1.19)

mw’lm:hx. is the position vectumt‘ﬁm elements of surface and volume. Again, making the substitution
¥ =g, mdapplymgthethﬂmmnf(}aussweha\refmm (1.19)

i[eijk 3 pk}""—"'icijkxjpbkdv =0
or, Ic.ﬁ&“uﬂ+xj{-:m+phk]}dv=ﬁ'

But from equlibrium equation 0 x ; +pb, = 0 andsince X;, =5 »+ the above volume integral

rédmﬁm.
feqondv=0 - (1.20)
Since V is arbitrary therefore
ea0 5 =0 (1.21)
Eqmm{lil}repmmtsﬂmqlm i
O =04,0xn ’am“u:ﬂ;l or in all
o, =0 ..(122)
mmmummum
Inwof{l.ﬂ},mequlibnmmm(l 18) reduces to
o, +pb = (1.23)
wh.idlappﬂrinapmdﬂdﬁntmu '
do, 99, 90,
b, =0
o, T, ok,
30, 9G, 0dC
f*’_axj +f+"h‘ =0 (124
3, da, ¥
M B, B 4 pb, =0
a"l 1 31, P ’

1.8 Stress quadric of Cauchy
: Mﬂrpﬂ?mamhummmumuﬁ when referred to directions
paralled to the local Cartesion axes pL,C,L, showninfig 1.9. The equation

0,54; =k’ (aconstant)  ..(1.25)
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represents geometrically similar quadric surfaces having a common
centre at P. The plus or minus choice assures the surfaces are real. N

The position vector 7 of an arbitrary point lying on the
quadric surface has components {; = m,, where n, is the unit
numaiinﬂ:etﬁmcﬁmuf;.&tﬂxpoint?ﬂmmmlmt
o0, of the stress vector t'* has a magnitude

oy =tn, =000, (1.26)
Accordingly if the constant k? of (1 2,‘5}uisrmetwmr.]ualteu;i:Nrz the
resulting quadric

; 0,;0.8; =to,r’ w121

. 1s called the stress quadric of Cauchy. methlsdﬂﬁmmmtﬁallmﬂmrhemmde oy of the
mﬂﬁmmmmtmﬁemnﬁn:c@ntﬁmmmhmmvmr ofapomon

Cauchyssu'essquadnc,wmvm}ypmpmumaltnr’ ie Oy *:l:k/

Fl_l. L9

1.9. Principal stresses, stress invariants, stress ellipsoid.

_Atthepoin:FfurwhichmcslrmtenmrnqmponmEam L P
the equation t'® = = 0;;n; , associates with each directionn, a stress vector
t¥. Those directions for which t{* and n, are collinear as shown in Fig
1.10are called principal stress directions . For a principal stress direction

" =gn, ...(1.28)
in which o, the magnitude of the stress vector, is called a principal stress
Now,wehave o;n; =on,

i

or, Giﬂj=ﬁﬁij[1j
(o, ~o8;)n; =0 .(129)

In the three equations in (1.29), there are four unknowns, namely the three direction consines
n,and the principal stress value ¢ . ;
For solutions of (1.29) other than the trivial one n=0, the determinant of coefficients,

| 6, ~ 08, | mustvanish. Explicitly,

o,-C 'O, Oy
- a =g) .
|oy-08,|=0 or, | %u O%27C Ox O 130
' Oy On Oy =0

which upon expansion yields the cubic polynomial in a,
10




ﬂj—lzﬂz*u;ﬂ-m:-ﬂ | --{131}

where I: -ui {1-32}
I, -%{aiu._ -0,9,) -{133)
ul, =| Icr- [ .{1.34)

’ areknuwnreq:ecuvplyasﬂ\eﬁm,mmdmdmndmmanm

The three roots of (1.31), 6,103, 0,5, are the three principal stress values. Assncmtedmﬂl
each principal stress G.k,,ﬂneuapmmpnlmdmmfurwhmh&wmnmmm n'*) are
solutions of the equations

(6, ~C,8;) nf’ =0 (1.35)

The éxpanded form of (1.35) for the first principal direction, therefore
(o, - S, } o +0,n}’ +0,,0}’ =0

oy 0" +(0y -am)n‘," +a,,n‘," =0 .{1:36)

. Because the stress tensor muhndsymﬂ:prmcmnl mvahummlmdsjmmc
WMMMMMMMM l!lu] is diagonal,

[U] m }'["u]‘ o T O P 5

o Oy

in_whinhmepﬁmipnlmlumdued ie
G, >Cy >0y ' ! ; “in
+Since the principal stress directions are
coincident with the principal axes of Cauchy’s stress
quadric, the principal stress values include both
' maximum and minimum normal stress components ata
. point. In a principal stress space, i.c. a space whose
axes are in the principal stress directions and whose
coordinate unit of measure is stress (¢(*),1(, ((¥ ) as
shown in Fig 1.11,the arbitratry stress vector t{*) has
_ components

t =6,,0,,t" =00, tf =a,n, -41.38)




according to (1.12). But for the unit vector n,(n,)*+ (n,)H(n,y=1, which requires that the stress
vector t* satisfy the equation

{l::::))1 &{:::) {t:)}z - (139)

msuﬁsm,mmmmmemmﬂhmwm&:m&mcﬂm

1.10. Deviator and spherical stress tensors
If is very often useful to split stress tensor © ; mtuhmmmpunummsurs umufwhmh{ﬂr:
sphmmlorhy&nstaﬂcmtmsur)hmthcfnrm

o 0 0 |
0 0 oy &

where g, =- p="u 4 isthe mean normal stress, and the second (the deviator stress tensor ) has

O, —Oun Ty Oy S Sz B
Z,=| Oy On-—0y On  [®|%2 32 3» ] (1.41)
Ty On Oy —0y S5 8m 3y

The dmnxpuéiﬁuniscxpmsedbythcaqmﬁuus
G, =8, 00 /345, ' .(1.42)

Thcpnnmpaldlrechansufﬂmdcwatorslmssmnrs mﬂ:esameasthnseofﬂicsh'mtmw oy
Thus principal deviator stress values are . : .

5,, =0

ix) W~

" ..{1.43)
The characteristic equation for the deviator stress tensor is the cubic
S’ + I, S-1I; =0
o, $*+(S,S, +8,S;+5,S,)S~55,S;,=0 ..(1.44)

It is easily shown that the first invariant ufﬂ:edewamrsncsstcnsmmdmﬂm]iym which accounts
for the absence in (1.44).

12




Solved Problems

Exp1 The stress tensor values at a point P are given by the array

7.0 =2

T=|0 5 0

-2 0 4

_ Determine the stress (traction) vector an the plane at P whose unit normal is

n= E - i ..2..'. + _l..
oz g A vl
Determine also (a) the component perpendicular to the plane, (b) the magnitude of t  (c) the angle

between 1 and 5 .

Solution We have the relations

_ t{" =oyn,
Here,
' 7 0 -2 |
APRN T [ T
-2 0 4 2
Thus '{I'Eﬂ}=4él_ﬂ.§1_

3
() The component perpendicular to the plane is given by

S N e 44
t! ’.11=|:4¢, ——?el]{—j—:,,—ie,,iel]z?

®) The magnitude of t'® is given by

|| = ,_’16+ LY
9

(c) The angle between t'® and j is given by

t*™ A fltﬁ“Hﬁ{:Dﬁﬂ' L.e. % =5.2c0s0 -

13




ie cosB= 9..51 =094 ie.0=20""

Exp 2 Show that the Cauchy stress quadric for a state of stress represented by

I=

c o B
oo o
n o o

isﬁe]]ipsoid{themémellipsoid) when a,b,c are all of the same sign.
Solution. The equations of the Cauchy ﬂr:ssqlwhc is given by

UI;E;} =1k’

&
G, |=4k*
15s]

or, in matrix form

(= —
o T o
o o O

Eﬁ;:f;:][

(3
i'e* k&llxzfc;,]] ;! -ﬂz
LCJ-

ie. al] +bQ} +cf] =2k’

2 2 2 2
%+i+%— =:tk; i:l._heremnd' quadric.

Exp3 The stress tensor at a point P is given with respect to the axes Ox x, x, by the values

i

L I —
=B

3
o =|1
; 1

Determine the principal stress values mdli:pnnq:nldummnumdbyﬂrm Ox,X,X,-
Solution The principal stress values are given by

14




Of, Upon expansion
(0+2)(c-4)(o-1)=0
Le. a.=—2,o'=4,u=l _
Gy =4 O =1 O =2
The principal directions are givenby (g, ~0,,8;)n{® =0
Let the x; axis be the direction of 0, and let n" be the direction cosines of this axis then we have
B-4n®+nP +nd =0

20 - 4% +2n =0

20 +200 - 400 =0

Sothat n{ =2n{’ =2n{". Sincenn=1, therefore

B e g 1
o 5. a (] Iy
i —, ny =—=, n; ==
A R e
Likewise let x; be assoiciated with o . Then we have
2n{" +nf +1n§1’ =0
a® —n® +20% =0
n® +20 -nl? =0
= Selving n{? =-n{¥ =-n{"
sl = n® =_l_ , n'® =_L=ﬁfzz
and since n..!n!. therefore 1 Ji! ] ﬁ 3
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Finally, let x;be associated with G, . Thus we have

50 +0 +0 =0
n? + 20 + 20 =0
2 4200 + 242 =0

1
2® =00 =— 0% ==
gl s e T e e

Exp4.‘I‘hestnteofsu'essthmughmunﬂunﬁnuﬁmisgivenw.r.tthaurtesionaxenuxgzx}byﬂlq
armay :
Ix, X, 5%;. 0
EI=| 5x} 0 2x,
0. 2x,.90

Determine the hodyfuwmmmﬂswhmth:apﬂib(meqm mtubes-tlsﬁﬂd ﬂm'jrwhnre.

Solutions 'Ihneqm]iblmuquahomue
Oy;+pby=0

¥
‘
B
;
&
o

& ¥
u [
&

&Eg?
k5
o

+

R,
¥y

ie.

w@yggg
+
%
&

ie - 3x, +10x, +pb, =0
2+pb,=0
' : pb,=0

1 : 2 .
b, =——13x,, by =——, b; =0
VTP T T

16




-—13x,——,0
P P
12 4 0
Exp 5. Split the stress tensor dy=| 4 ¥ =&
0 -2-3

into its spherical and deviator parts and show that the first invariant of the deviator iS ZEro.
Solution: We know that
o; = GHB,]. +5;
where g, is the mean normal stress, |
08, is the spherical stress tensor

and $; is the deviator stress tensor .

Here 0O, =U%

: i
=E[ﬁli+ﬂﬂ+ﬁil}
=8
8 0 0 12-8 4 0
- (0,)=|0 8 of+| 4 9-8 -2
~ loosf|'0 -2 3-8
E 0 0 4 4 0
={0 8 0|+|4 1 =2
0 0 8 g -2 -5

And first invariant of the deviator stress tensor
§.=8, + 8,5, =4+1-5 ={}

-Exp 6 Evaluate the stress invariants for the stress tensor

17




Solution The stress invaciants are given by .
Iy =0, =0, +0,+0,, =20
1
Iy *E(Uuﬂn ‘“u‘:_"u')
=0,,0p + 0,0, +0,,0,, —6;;0,; ~0n0; — 05,0,
=36+48+48+-9=123
11, =|o,| = 216.

Example 7 _
The stress matrix of a péint p in a material is given by

K X .0
0 -x, 0
Find the stress vector of the point Q(1, 0, —1) on the surface X!+ x,7 =sy.

Solve : Here the stress vector is required in the surface (x,, x,, X)) = x? - % - x?=0.
Hence the unit normal is defined by

At Q(1, 0, 1) we get

18




Therefore from the relatiﬂﬁ

2" 'I=c:,j n,
(i, 8= (1,-1,0)
1 » 2 » *3 -J?; ' 1

i 91 = (-8

Example 8
Determine the principal stress values and principal direction for the stress sensor

Ui]-=

s s I |
A A A
s I

Solve : The principal stress values are obtained from

lﬂu—ﬂﬁh!=ﬂ
lt-& 7
i,E. T T-E 3 =ﬂ
| = T 1-b

ie.o’—401+7 =0
~o=0, 0, 3t
Let O, =31 O, =0 =0
The principal stress direction are obtained from the relation
(o, ~0,,8,) 0" =0
where n!" n!" =1, k=123

When 8=25,,, =37 then the principal direction are obtained from the equation

{-:rij -3t ﬁ,j) n{’ =0

ie. —2tn” +m’ +1m}’ =0

7o’ —2m!” + m{’ =0

o’ + m” - 2m{’ =0
Solving we get

UL ) | | R—
n, =0, =0,

19




With the help of the identify we have

m_ oo L

no=n, =n =5

When G =0,,, =0 then the principal direction are obtained from the equation

(6, -8, 8,)ni" =0 where k = 2, 3

ie. -n™ +n{” + i =0

m'* + 1}’ +nf"' =0

mgh] +ml:.t}+m‘::l -=U

Le.
(k) k) (ky
o +n05"' +n;" =0

(k)
1

oY+ 40" =0
n'* +n{’ 40}’ =0,
where k = 2, 3 which together with the identify n*'n/*’ = 1, are in sufficient to determine the 2nd
and 3rd principal direction.
Th "h:l"'[i]l th incipal
us one principal direction 1s \E +3‘i‘s£ jser\r:aso er two principal axes.
Example 9
The state of stress throughout a continuum is given with respect to the cartesian axes 0X, XX, by
the away
faxx, 5 -0
E=| 5x} 0 2x,
a " 2x, 0

Determine the stress vector at his point P(l 1, ﬁ) of the plane that is tangent 1o the cylindrical
surface '
X; + x: =4atp.

See ans. to Example 4.

Example 10
The stress tensor at a point is given as

20




With §,, unspecified. Determine 8, so that the stress vector on some plane at the point will be
zero. Give the unit normal for this traction free plane.

Solution

We have the relation

tf“:' =0,n;
Here t*? =o,n,=0 {gi';ren}-
0 1 2)n 0
ca bl 8, 1||n|=|0
2 1 0})in, 0

Therefore the components equation are given by
0+n,+2n;,=0
n, +"ﬁnn;+n3 =0
2n,+n,+0=0
ie. n,+2n,=0

n,+8,.0,+n,=0

2n,+n, =0
Solving we get
gy, =1
andn, =n, n = -2n,
Again we have the identify

nn =lien!+nj+nj=1

_ 1

ie. I =-J_E

2

1
n,=n,= n, =——
Thus oy 1 Tﬁand 2 JE

1 2 1 1 ‘ -
: ‘HT-E—'HE——-——E“!"—.-—H'r:—' E:—ZET'I'Et
Thus J—ﬁ N - Jé {:[' 2 3}

21




Example 11

The state of stress of a point is given by the stress sensor

¢ ac bo
0,=|a0 O <O
b¢ o ©

Where a, b, c are constants and ¢ is some stress value. Determine the constants a, b, ¢ so that
the stress vector on the octahedral plane vanishes.

Solution :
(Def" + Octahadral plane is that plane whose normal makes equal angles with positive direction

|
with co-ordinator axes. For this plane n, =n, =0, = 77)
We have the relation
tE“ ' = E'-in.l

Here ti*’ =o,n, =0

T 1 Al AT |, AT
and = (6 +81+5)

o ac bo

bg co O

1
Bl oo
acraculzu
43
lﬂ
3

The components equations are *

-};[a+a¢+ba]=n

:;E{aﬁ+u+cc}:ﬂ

:,%(bc+ w+a].=ﬂ

ie.1+a+b=0
a+1+c=0
b+c+1=0
Solving there three equations whenever
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a=h=c=——

Example 12 :

Show that 8,8,8, is an invariant of the stress tensor.
Solution :

By using the transformation law where are,

Eﬁﬁ—a o6_a

ik l-PJq_pleri:s

{ ](amam (a alm)ﬁm
8 06.06.0 0.0
(

T T D

prgnamt pg U ma

8,.) (BB )(8.e.)
=5, 8,0, = 8,8,y

]

Supplementary Problems
1. The stress tensor at a point is given as
g 1 2
o, =|1 o5 1
2 4 90

with o,, unspecified. Determine ¢, so that the stress vector on some plane at the point will be zero.
Give the unit normal for this traction- free plane .

Ans. o, =ln=¢ —2¢, +E,,"(-u'rg

2. Determine the principal stress values for

011 211
@ o,=|1 0 1|and Gi) o,=[1 2 1
1 1 0 1 1 2
and show that both have the same principal directions.
Ans (1) o, =20y =0y =1 (1) o, =40, =0, =1
3. The stress vectors acting on the three coordinate planes are givenby t/“’, 1®) % Show

that the sum of the squares of the magnitudes of these vectors is independent of the nnentatmn of the
coordinate planes.
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4. The state of stréss at a point is given by the stress tensor

g ac bo
0,=|a0 G <O
bo co o

where a,b,c are constants and o is some stress value. Determine the constants a,b,c so that the stress
vector on the octahedral plane vanishes.

I
Ans a=b=c=--

2
5. Determine the Cauchy stress quadric at P for the following states of stress:
(i) uniform tension 6, =06, =0,,=C, 0,=0,,=0; =0
(i) uniaxial tension G,=0, 0,=0,=0,=0,=0,=0
(iii) Simple shear 6.=0, =1, 0,=0,=0,=0,=0,=0
(iv) plane stress with 0, =0,,=0, 0,=0,=1 0,=0,=0,=0

Ans (i) Gl +Li+L =1k’ /o
(ii)  =tk'/o
(iii) 2148, =£k°
(iv) of; + 215, L, + of} =1k’

6. Determine the principal stress values and principal directions for the stress tenson

T T
0, =|T T 1
T T 1

Ans: G, =G, =0, 0, =31

7. Provethat 0; G, O, isan invariant of the stress tensor.
8. Show that the normal component of the stress vector on the octahedral plane 1s equal to one third
the first invariant of the stress tensor.

9. The state of stress throughout a continuum is given with respect to the Cartesion axes Ox x,x, by the
array

Ix, S5x; O
I=| Sx] 0 2x,
0 2x, O

Determine the stress vector at the point P(2, 1, +/3 ) of the plane that is tangent to the cylindrical surface
24




xi+x1=4 atP.

o T = 38,438, 5%,

10. Determine the principal deviator stress values for the stress (ensor

10 -6 0
g, =|-6 10 0
0o 0 1
Ans =9, 5;=-3, 5=-6.
L LB
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Unit I
Analysis of Strain

2.1 Lagrangian and Eulerian descriptions.

' When a continuum undergoes deformation (or flow), the particles of the continuum move
along various paths in space. This motion may be expressed by equations of the form

x=x(X,, X,, X, 1) R )]

Which give the present location x, of the particle that occupied the point (x,s X,, x,) at time t=0. Also,
(2.1) may be interpreted as a mapping of the initial configuration into the current configuration. It is
assumed that such a mapping is one-to-one and continuous, with continuous partial derivativés to
whatever order is required. Thcdmﬁpﬁmufmuﬁunprd:fmmﬁmemsedby{ll)ismwnas

il i
" Ifon the other hand, the motion or deformation is given through quations of form
X=X (x,,x,x,,1) " ad22)

in which the independent variables are the coordinates x. and t, the description is known as the Eluerian
description. This description may be viewed as one which provides a tracing to its original position of
the particle that now occupies the location (x,, x,, x.). If (2.2) is a continuous one-to-one mapping with
and sufficient condition for the inverse functions to exit is that the Jacobian

ax,

2.2. Deformation and Displacement gradients

should not vanish.

ox,
Partial defferentiation of (2.1) with recpect to X, produces the tensor. 3x _ Which is called the
1

material deformation gradient and is represented in matrix form as

‘ax, ax| axt
: A dX, dX, X,
1
19x | g d d 0 |_[9%, 9x, 9x,
X, Ilex,” 8x,’ 8X,| |o9X, aX, oX, (2.4)
X, - ox, dx, odx,
_axl. ax: &XJ-
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: oX;
Partial differentiation d{l.!}ﬁ&mmﬁwmm[g]whichism]hdﬂw
; ]

spatial deformation g_radientandisprnmmdhimuixfmmas

[aX, X, 9X, |

x1 a’.‘il ax! ax}
[EX_L]= X [3 d d ]‘ X, dX, oX, .
ax, _; ax,’ O, x| [9x, &, X | (25)

3 . X, X, X,

[ ox, ox, ox, ]

mmmmmmmmﬂmﬂm@mmﬂmmm
for partial differentiation : _

__L_-'-—._—-L—-l—s
Bxi ax . h! axt al crsensd 20)

| wmﬂmwmummmmmm .

ﬂmumﬂwmu wumﬂwmgmax . We know

| ﬂﬂd::duplmmmtmbepmw
u,=x,-X, . wA2.7)
Thmﬂ:emlmnldmlmm:swhy
ou,  dx
. ey
nﬂmcmﬁaldhphnm;ﬂmhgimhy
o, aX '
3;";-34 —gj- ..(2.9)
}n matrix forms they are expressed as
_ u, N ]
; & X, X, X,
..a'i = ul g d 9 ?_'.]'.J- Eu_z ou, :
Bx, L aqu’ axz’ ax; axl 9X, oX; -A2.10)
u, Bu}_ cdu, Ou,
X, X, X,
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2.3. Deformation tensors, Finite strain tensors.
In Fig. 2.1 the initial (underformed)
and final (deformed) configurations of a
contimum are reffered to the superimposed
rectangular Cartesian coordinate axes
OX, XX, and ox xx,. The neighbouring
particles which occupy points P_and Q,
before deformation, move to points P and
Q respectively in the deformed
configuration.
The square of the differential " *»% - Fig.21
clement of length between P_and Q, is _ :
(@X) =dx dX; =§,dX,dX; ...(2.12)
Again, the distance element dX, is seen to be
aX
dX, ot e ~{(2.13)
|
so that the squared length (dX)* in (2.12) may be written as
X, dX

i

dX) =—L_& =C,dx, P
_( ¥ =, dx dx, dx (2.19)
in which the second-order tensor
X, dX,
C.=
" a‘x Hx

15 known as Cauchy’s deformation tensor.

In the deformed configuration, the square of the differential elenmmflengmhet!.veeni"andq
B

(dx )’ =dx,dx; =8 dx,dx, .(2.15)

ox,
) dx. =L
Again . BX dX,
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mthatthesquafedlengd:{dx]’ in (2.15) may be written as
ax, dx

(dx) *ﬁaxk dX,dX; =GydXdX, ~A2.16)

in which the second-order tensor
= 9% 9%y
Y aX, dX,
lskmwnnsﬁremsdefummtmntmsur

The difference (dx)*<(dX) fﬂrmnnghbmrmgpamclﬁofamnhmmmmndﬁ the measure
of deformation that occurs in the neighbourhood of the particles between the initial and final configurations.
If this difference is identically zero for all neighbouring particles of a continuum, a rigid displacement is
said to occur. Using (2.16) and (2. 12) this difference may be expressed in the form

@ -7 = e }xdx—zr-dw e

in which the second-order tensor

ax, ox,
L, = 2[3_7(-.3_?(;— O, ] en(2.18)

in called the Lagrangian (or Green's) finite strain tensor. Using{llS]andQ.M),ﬂ:esamediﬂ‘erm
may be expressed as

1 daX, oX
E, = E[Eq ——ax—ki ] N i % (|

is called the Eulerian (or Almansi's) finite strain tensor.
Substituling (2.8) into (2. 18) and after some simple algebraic manipulation the Lag;rmgwn
finite strain tmsurcanbeexpawsedmﬂye form

1[311; du, But]

i =

2|3x, " X, X, 9K, ~(2.21)

i

Similarly, substituling (2.9) into (2.20), the Eulerian finite strain tensor may be writien as

1{du,  du du, du, '
Eu*g g"' > % ox. | —222

b
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2.4 Small deformation theory, Infinitesimal strain tensors

The small deformation theory of continuum mechanics has its basic candition that the
displacement gradients be small campared to unity. The fundamental measure of deformation is the
difference (dx)* (dX)* which may be expressed in terms of the displacement gradients by inserting
(2.21) and (2.22) into (2.17) and (2.19) respectively. If the displacement gradients are small, the finite
strain tensor in (2.17) and (2.19) reduce to nfinitesimal strain tensor, and the resulting equations represent
small deformations.

p]

du, .
In(2.21), if the displacement gradient components é‘f;‘ are each small compared to unity, the
Mﬁmmmgﬁghkmdmﬁjbcmmmmh&mmﬁﬁm
strain tensor, which is denoted by
| —,.1_ ..ia..“..i.-..p- E.j..
VTalx, T X, A

El'u '
Likewise for 5 (! in(2.22), the product terms may be droped to yield Eulerian infinitesimal strain
a:tj . 1 )

tensor, which is denoted by

Y S eED)

!
Ifboth the displacement gradients and displacements themselves are small, there is very little difference
in the matenial and spatial coordinates of a continuum particle. Accordingly, we may consider
l. =£.
- s

if both the displacement and displacement gradients are sufficiently small.

E :l[.&.!.h-}- ;a.l_i]

2.5 Relative displacements, Limear rotation temsor, Rotation vector.
In Fig 2.2 the displacements of two neighbouring particles are represented by the vectors u'™

and u:‘;'-".'l'he:vécmr

du=u{%- y*...(2.25)

is called the relative displacement vector of the particle originally at Q, with respect to the particle
originally at P . Again, the relative displacement vector can be written as

(ow,) .. g
ﬁ“i*[ﬁql X, .26 |




Here the parentheses on the partial derivatives are to emphasize the requirement that the derivatives

are to be evaluated atpoint P Equation (2.26) is the Lagrangian form of the relative displacement
The unit relative displacement vector is defined by

o B TR

L]

X aX, dX  oX, Vi -4227)

whercd}{isd;enngnimdcofﬁwdiﬂ‘amﬁahﬁsmmcvm&(. and v, is a unit vector in the directions
of dX, so that dX=v dX.

. 2, . ,
Again, the material displacement gradient ﬁ;‘ nnybc:bmequmlynﬂuasym
and an antisymmetric part, the relative displacement vector du, may be writtenas

sl 15 By i :
'l2|ex ;0 oX, | 2(9X, X i .(2.28)

=[l;+WldX;
1 aui au} .
where 1 -y 'a'f_"" ax. | is called the linear Lagrangian strain tensor and
i i Pt '
1 oy, auj
T3 BT_ ﬁ mmﬂediﬁulmrug;mgmnmmmtmmr

In a displacement for which mesm_mlﬁmﬁmnaﬂymmﬂmﬂcﬂwofﬂm pointP
the relative displacement at that poift will be an infinitesimal rigid body rotation. This infinitesimal

rotation may be expressed by the rotation vector ©, = %Gﬂ Wy o .(229)
m terms of which the relative displacement is given by the expression

du, =eu0dX,  .(230)°
Accordingly the Eulerian description of the relative displacement vector is given by

du
du. ng_ldxj

j
mﬂthemﬂrelaﬁvedisﬂacemmtmﬁﬁsgivmby
doo O
;= aT -E;‘ ax ,.,(2.31} where dx.l- =!.l|dx

i

£} |




u
Decomposition of the Eulerian displacement gradient 3 results in the expression
]

do =| Y2, ) 13w, N
lalax, ax, ) 2|ex, o, )|
ey +wyle, -(2.32)
1 ou, ;i_uhi R i
where Ea"i 5‘;* = | 18 called the Eulerian ‘linear strain temsor and
3 1 2

i

w -l ﬂ-. EI.L & i e ¥
i~ 5] 2x ox, is the linear Eulerian rotation.

The linear Eulerian rotation vector is defined by

e |
O =Wy . .(2.33)
in terms of which the relative dispiacement is given by the expression

© du; =e, o dx, ~(234)

Mhhﬂpreﬁﬂmﬂﬁehnrmm

Furmllde.fmmuonﬂnnry the ﬁmtel..ngnnpmmmlﬂuurl.. myberuphdbyﬂu-
lianer Lagrangian strain tensorLas

(@F - (@XF =(x- €X) @+ D)=2GXAX,  .239
- Since dx = m{ﬁ:rmﬂdaﬁummﬂtheqmﬁmmuyhepnhlhm

dx-dX |, dXdX,

-dX IU dXdx =lﬂv ¥ -(2.36)

mmmmnf(zmummumed-@mmpm
original length of the differential element andis called the normal strain for
hlmuhmﬁmpﬂhhwmdnmm%

When (2.36) is applied to the differential line element P Q , located
with respect to the set of local axes at P, as shown in Fig 2.3, the result g 7
will be the normal strain for that ; - Fg23
element. Because P Q_ here lies along the X, axis

®_dX, o X,
x X X
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- and therefore (136] becomes

(2.36) yields normal strain values |, and 1 respectively. In general, therefore, the diagonal terms of the
mmmmquxumtnmnﬂmmmmemdmtedmmm _

" The physical interpretation of the off-diagonal terms of |, may be obtained by a consideration
nfh:ﬁmehmmmmmmmdmmﬁ&emﬂmm In Fig 2.4 the line elements
. P.Q, and PM, originally along the X,and X, axes,respectively become after deformation the [ine
elements PQ and PM with respect to the parallel set of local axes with origin at P. The original right

mg}ebﬁwmthtﬁncainnmhbecmmemghﬂfmmm&mdﬂummpﬁmufmﬂ _ :

deformation theory, a first order approximation gives the unit vector at P in the direction of Qas - -
2

Ao O o S :
n:.‘ﬁ*'el""z"'a":'é: | .(2.38)

and, for the unit vector at P in the direction of M,as

1, =Eﬁé. +§-“431 +8 (2.39)
ax} ax, ETT

Therefore cosmi, 8= M T By
| VOSEE, O, . Y

or, neglecting the procuct term which is of higher order,

du, o,
| Emﬁ=§x-§+a—x-:':=-2ln .(2.41)
Ayin,ukingﬂ:chmgein&uriglﬂuh-hﬂwmth;demﬁnﬁu
_H}'%‘h ,

and remembering that for the linear theory y,, is very small, it follows that
: 33




y, ~siny_ =sin(1%—&]= cos@=2l, ..(242)
Thmﬁxemeuﬂdiagmdtﬁmofﬂ}eﬁnﬁrmmwmmmtmhnﬁmemgkchmbﬁwm
Mnheemmgmnymﬁgmmglm_mmmmmmﬂmmmammlhdm

) ,
A similar interpretation may be made for the linear Eulerian strain tensor €.
mengedefmnuﬁminummemmmli= &;isvalid, no distinction is made between
2.7 Strain quadric of Cauchy _
Fora setofrotatedaxes x,” having the transformation matrix (b, ] with respect to the set of
local unprimed axes X, at point P, as shown in Fig 2.5(a), the components of L; and I are givenby
Li=b,b,L, - ' +(2.42)
I =byb,l_ Qe

ong <Py,

™ Fig. 2.5(b)

Likewise, for the rotated axes x; the transformation matrix [a,]in Fig 2.5(b), the components
of E; and € aregivenby
Ey=a,a.E_ -(2.44)
€. =a.a. ¢ ..(2.45)
Thla@mgianandEﬂmimH:wskahmMimmybegﬂm%mhmhhm}m
coordinates n; and {; at the points P_ and P respectively as shown in Fig 2.6. Thus, the equation of the
I_agm:igimsn'ainquadricisgivm_bﬂy :
L, =th® . (2.46)
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and the equation of the Eulerian strain quadric is given by
g;0.C; =12’ {247
" Two important properties of the Lagrangian (Eulerian) linear strain quadric are
1. The normal strain with respect to te original (final) length of a line element is inversely proportional to
. the distance squared from the origin of the quadric P_ (P) to a point on its surface.

2. Thmhhwﬁsphnmﬂﬂfﬂrnmghbmmgpmuchhmdﬂg(ojp&mﬂmglmﬂw}hngﬁ
wpnmﬂeltnmenormalofthgqum:ﬂnﬁuntmepomtofmmw:uunmmﬂmhn:thmglﬂ Qﬂ

*Q

: Physically, a principal direction of the strain tensor is one for which the orientation of an element
ata given point is not altered by a pure strain deformation. The principal strain value is simply the unit
relative displacement (normal strain) that occurs in the principal direction.

Fm&eummhmh,ﬂnmtmhﬁwﬁwmmmybeMmmﬁ

%-uﬁwi}vj (2.48)

Calling Lf" ﬂlcmmalstmmﬂ:edumhnnﬂfthemnvmn] {l@}ynl{hfmmm_

(W, = 0)the relation

: ®=ln, -(2:49)
If the direction n, is a principal direction with a principal strain value I then
| ¥ =In, =15,n, = ..(2.50)
From (2.49) and (2.50) we have |
‘ (1, -18,)n, =0 .(2.51)

which together with the condition n.n=1 on the unit vectors n, provide the necessary equation for
determining the principal strain value | and its direction cosines n. deauhmumnf{z.il}md'
and only if the determinant nfmeﬁmmuvml'ﬁ.
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18y =0 ~(2.52)
which upon expansion yields the MS& equation of |, the cubic
P -1, +I,1-HI =0 |
: sl o .(2.53)
where L=l

1
I, =5(1i1,. -1,1;) |
m, =i | .2
are the first, nemndandthxrdl.agl'anglansu'ammvmantsmpmnwﬂy 'Ih:rmtsuf{l 53) are the

principal straif values denoted by I, 1, and 1,

m&ﬂmﬂﬂwmmﬁmybGWmm ofthe prmcmalslmm
as

Lol oty (255

and has an important physical interpretation. .
To see this, consider a differential rectangular )

pnralil:lop:ped whose edges are parallel to the

principal strain directions as shown in Fig 2.7. -

The change in volume per unit original vohmne of the

element is called the Cubical dilatation and is given

by :

*laad
% . Figd7

_Av, &X {141, )dxX, (1+1, }dx (141, )- dX-:D{dX
o dX dX,dX,

[

D

(2.56)

For mmllstmm theory, the first-order approximation of this ratio is the sum
D=l Hlo =l -(2.57)

With regard to the Eulerian strain tensor €; and its associated relative displacement vector h:'“ , the

principal directions and principal strain values €,,, €, £, aredetertmined in exactly in the same
way as their Lagrangian courterparts. The Eulerian strain inveriants may be expressed in terms of the
principal strains as .
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L =&y +e, +£,
_ Ml =g,€38,
The cubical dilatation for the Eulerian description s given by

Av ' :

2.9. Spherical and deviator strain tensors
The Lagrangian and Eulerian linear strain tensor may each be split into spherical and deviator
tensors in the same manner in which the stress tensor decomposition was carried out in Unit L. If
Lagrmglanandﬁulmandnumrmmnmmdmomwdimd g, respectively, the resolution
1 N
I; =d; +&i~?'* .(2.60)

and 'eﬁ=_=§+a,% (0 Y

The deviator tensor are associated with shear deformation for which the cubical dilatation vanishes.
Therefore, the first invariants d and e of the deviator strain tensorsare identically zero.

2.10. Compatibility equations for linear strains. '

If the strain components €, are given explicitly as functions of the coordinates, the six
independent equations

i "l T o 8

2|3, ox, \aad) _

: mybevhwedasasyswmofshpmﬁﬂdiﬁemﬁﬂeqmﬁmﬁxdrmhmgmaﬁmdhphm

components u.. If the displacement components u. are to be single-valued and continuous, some

mu&dommuﬂbphnposedupnnmemhmmmmm.ThEmmwymdsuﬁidmtmndjﬁmsfm
suchadisplamncntﬁeldareexpressedbytheaqmﬁons

d’e. é"e de d’e,

e T TR T

i x, oxox, oxox, omax, . (263)

. There are eighty-one equation in all in (2.63) but only six are distinct. Theresix equations are
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d’e,, % e, - d’e,,
ox;  ox!  ox,dx,

d'e, e, A d’e,,
ox;  9x;  9x,ox,
a!E” +a:E" 1!2 a'zE-n'

x| axE ax,ox,

D[ ey 2y e, ey |
_E.h;,~~ ox,  ox, dx, ) ox,ox, _..‘(2..64}-
d raen_&sl +aelz = d’ey
ax, |k, ox, ox, | oxdx,
9 (e Bk, de,)_ 2y
ox,|dx, ox, ox,) oxx,

CwmwmmayﬂmbeMmmofﬂnlwmmmmmli Forpln:
strain parallel to the x x, plane, the six equations in (2.64) reduce to ﬂ::mgleeqlmnm

9’ +31£n N d’e,
ax’ ax’ dax,0x,
sm.mmﬂm

Expl. mumduumoﬁdcﬁmmmnmhy
x, =X, +X,(e1¥l) x, =X, +X et -e 1 x,:t’lﬁ,

where e is a constant show that the Jacobian J does not vanish and determine me.Eulmanequuuons
mhm . '

: % | | | | | g 2 Fl
ox, - 9x, 8::1
aX, dX, | aX, 10" el

J=|—=ti= = &Ml 0 1 e’~¢?

axj axI Ex!' ax! 00 2 .-cliﬂ
ox, ox, ox, | "
dX, dX, X,
and the reqd. Eulerian equations are
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X, =x,-x,(1-e? )

X,=x,-x,(1-¢*)

X, =e7x,.
Exp2 mepenmposedmnmaimdspauﬂaxﬁ,thedmﬂaumvmofabodyngwmby -

u= 4X7e, + X, X8, + X X2¢,.
Determine the displaced location of the particle originally at (1,0,2).
Solution: The particle was originally at the point (1,0,2).
The original position vector of the particle s X =&, +26,.
Its displacement is i=%-X :
ie. x=i+X
=58, +68,.

Exp3 Amnnnmmmamaluuduwsmedeﬁrmmmxl-xt,x:—)(;m x,=xj+ﬁxi,whmsﬂ
is a constant. Determine the Lagrangian finite strain tensor.
Solution The Lagrangian finite strain tensor is given by

‘1[ax, ax,
L=--—-'-l—k—..
' 2| ax; 3x, E‘]
b It o0 o
o, [Z2]H{o 1
. ik T [T T
1o 0lfr 0 o
[g;*][g%%ﬁ i & 1 A
’ i 0 A 1 Al
1 0 0
=10 1+A? 2A

1 0 0 100
s2Lg=[0 1+A* 2A |-|0 1 0
0 2A 1+A*| |0 0 1
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Je o o
Ly==|0 A? 2A
0 2A A’

Le.

" Exp4 A displacement field is defined by

X=X CXABX,, XCXAX-AX, x=BX+AXX, . :
Shwthatthwd:sphmmeﬂmpmenmangdbodymmnunmlytfﬂlemu C are small.
Determine the rotation vector § for the infinitesimal rigid body rotation.-
Solution The Lagrangian finite strain tensor is given by

1 ox, ax,
L.= .
' [ax X, .5_*]

7 |1 =C B
"[% =lC 1 -A
=B A1

1 -C B].J1 C--B]l[1 00
~L.={Cc 1 -Al=|-C 1 aAl-]o.1 0
-B A 1| |B -A 1|00
e L -AB - -AC
slg=5| -AB AT+C'  -BC

-AC ~BC A+P’

When the constants A,B,C are very small, then the products of the constants are neglected and we

I.,‘-ﬂ i.e. the displacement represents :ngldbodymtlm.

The rotation vector is given by
18 - & g,
ald 3 2
29X, dX, dX,| =AE +B& +Cé,.
ul u! u.l

Exp S Under the restriction of small deformation theory, the displacement field is given by
ﬁ=(1|—.;})lél+{x:+13)"E=_;Ixzél |
determine the change in length per unit length (nonmal strain) in the direction of
0= (351 'Ez +45,)
9 .




at point P(0,2-1). Also, determine the linear strain tensor, the linear rotation tensor and the rotation
vectorat P.

e dx-dX _, dX,
Solution. The normal strain is given by X =lidx dx’:ljjviv!
-+ 1f o, —ou; :
Now, ! =3| 3 *3- |,under the restriction of small deformation theory.
i i
Lo 4.4 =2
~ AP0, 2, —11[51 =lo 2 2
. i 1=20 0
2 0 -2] ' |
~AtPL=|0 2 1
-2 1 0]
. The normal strain is
&
AR ek &Y
[a*"a“a] il B T
— 1 4
93

=
b
|
ol L
] '
=
N o
|
g S
A i

2{ox,  ax, ax, ‘oK,
2 0 -2
ie g=| 02 1
=3 1- 0
0 0 0
wd: im0 01
0 -1 0
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The rotation vector is

é, é, é
= 1 0 ) ) a
{l=— e il e =g
2l ox, ox, ax, :

(xi'xz)z {7‘1 'H‘i)l_ =XX;
-, The rotation vector g has the components (-1, 0, 0).
Exp 6 A linear deformation is specified by
u=4x -x,+3x,u=x +7x,,0,=-3x, +4x, ix,
Solution : The principal strains are obtained from
| ;e |=0

1 aﬂ; au]‘
oW, z[ax,+axi]

Hence principal strain vahes are obtained from

4-g 0 0 :
0 7-e 2 |=0
S T T
Expanding this we have
e=843 ie. &y=8, ¢g;=4, ¢g,=3.

Which gives the principal strains and the principal deviator strains are given by

1
€im) =Eqm) 'Ef'-'l

1
e[.,=8—3(4+7+4}=3
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€y =4-5=-I
ey =3-5=-2

ie. e =3e, =-Le, =-2
Example 7
A displacement field is given by
1 X=X X3& +XIX, & + X2X,&
Determine independently the material deformation gradient F and material displacement gradient J
and show that F - J = 1.
Solution :
The material deformation gradient is defined by F=| -

i

Wek:uuwthedisplm;:memvm
' u=x-X
SX=u+X
x, =X X]+X,
‘xa‘xi"xz“"xz
x:'x:xi"'x}
(8, B, 8x,)
' 8X; 8X, &X,
.'.F:[sx']- h! &1 .- ax‘t
8X, ) | 8X, ax, 58X,
b, & &,
(| 8X, 8X, &X,)

X+l 0 2XX,
=[2XX, Xl+1 0
0 - 2X,X, Xi+l
The displacement gradient is denoted by
' x: 0 - -2X.X,

) -[%L] =[2XX, X 0

| 0 XX X
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1 0 0
~F=J={0 1 0|=I
0.0 1

Example 8 : A displacement field is given x, = X, + AX, x, =X, + AX,, x, = X, + AX . Calculate
the Lagrangian and Eulerian lionear strain tensor, compare them for the component, when A is small.
Solution : The displacement is defined by

ui = xi — Xi

" = AX, w, = AX, u, = AX,
Now Lograngian linear straen tensor is defined by

s8]

0 A O
[%]anna
i/ \A 0 0
IﬂAﬁ 0 0 A
1i=50c|p.+ann
LA 0 0 0 A D
luaa
‘-;EPLUA
A A O

From given conditions
X, =X *+AX
%=X, + AX,
Xy =X, + AX,
XI=xI-AX1=II—AxI+&111!—AIIXL

S(1+A%) X, =x, - Ax, +A’x,




1
X, —Ax, +A’x,

‘When A is small then A? and higher powers of A may be neglected
45

. 14 A?
Siﬂli]ﬂ'l?.x =x2'—.!'tx.3 +Azx]
L 14A°
x. = =A% +A'x,
: 1+A°
-ﬁ'*.( x:"""z J}
Here, 1, =x-X= PR
B =h($zx,+x,—ﬁx,] : =A{ﬁ_’x,+xk—ﬁx1)
’ 1+A° ! : 1+A’
r A} AJ hl !
| 1+A7  1+A7 1+A°
¢ i@_‘_: . Al - A
| By, 1+A2 1+A? 1+A%
' A ' A? A’
(IFAY o 1FAY 1A
Hence
[ & A A AL A AY
1+A° 1+A 1+A° 1+A° 1+A) .-1+A8
e-=-1--—ﬂ2. A A " A A A
V2|l 1+AY | 13AY 1+A° I+AY 1+A°  1+A}
A A A’ -A* A AY."
1+AY - 1+A' 1+A° 1+A  1+A* 1+A°
A PN /]
(2A’ A-A? A-A")
1+A°  1+A°  1+A°
_1lA-A 24 - A-A7
2] 1+A  1+A° 1+A°
A-A' A-A’  2A
LI+AY  1+A°  1+A° )



(0 A A)

e;=—|A 0 Al=l;

B | -

(A A 0,

Example 9 : With respect to rmtanguhrﬂaﬂmanmﬂanluo—ordammxkadwplacemmt ﬁeid
15 given by

U=AXX,U = ﬁLXK, U, =0,
MA:samMme&mwwhwwmmm
x. if the two systems have a common origin.

Solution :
From the geometry of the a".es the traris formation tensor

Oy =€) I is
cosx, sinx, 0
o, =|-sinx; cosx, 0
0 0 1
and from the inverse form _
U, =&, U,. Thus since Cartesian and cylindridal co-ordinates are related through the equations
X, = X, cosx,,
X,=x, sinx
X,=x

3 E]

u, =(-cosx,; JAX, X, +(sinx; )JAX,AX,
= (- cos X, )AX,X, sinx, +(sin X, )JAX,x, cosx, =0
X, = (sin X, JAX, X, +(cosx,)AX,X,
= (sin® x,))AX,x, +(cos’ x,)AXx,
= AXX;
U,=0
This displacement is that of a circular shaft in torsion.

Supplementary problems

L. memmwmammmmw
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i=0X, -4X, B, + 2X, - X, B, +(4X, - X, &,

Determine the dJsplacad position of the position vector of points C(2,6,3) which is parallel to the
vector joining A(1,0,3) and B(3,6,6). show that two vectors remain paralle] after defnrmahmn.

2 Adisplacemmtﬁeldisgivenby x=X+AX,, x,=X+AX,, xJ=Xj+AX where A is a constant.
&hﬂmh[whmmmmhﬂﬂﬁmhmmmm&mmmﬂrmﬁr
the case when A is small. ; .

3. A continuum body undergoes the deformation

1|=_x1+2xa’ =KX, x7X2X 42X,

2. -2 0] 3 "3 0
A Lo=|-2 2 0 E,‘=é-2 270

0 0 4 “lo o 4

4. A certain homogeneous deformation field results in the finite strain tensor

1 3 =2
Ly=| 3 1 -2
-2 -2 6

* Determine the principal strains, strain invariants and principal directions.
Ans  Principal strains: 8,2, -2, principal invariants : &%—Hmdmmﬂdrm

1 1 f.]
2
[‘ﬁ]= 75 'Ii; 72;
% "% B

5. The state of strain throughout a continuum is given by

X, Xy 8§

Are the compatibility equatmm for strain satisfied ? Ans yes.
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6. A displacement field is given by
u,=3x.xi, u, =2x,x,, u,=x}-xx,

' Determiné the strain tensor €; and :heckwhethm-urnmﬂmmmuhhqm&mmmaﬁed

Ans (1)
3;111 jx,xl +x, -X,/2
g; =| 3x,x, +x, - 0 x/2
[ Fz.ﬁ . X, /2 2x,
(i) yes.

7. mmmmmmmmmxpammﬁmmpmwu =
-AX X, U=AX X, U =0where Aisaconstant. Dﬁmﬂndmplmu:nmtommﬁrcyhﬂlcal
spaualmdmtmxilfﬂnmmhﬂnammmmmgm.

. Ams  u=0,u=Axx,u=0.

T 3
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" Unit IT1 _ '
Motion and Flow

3.1. Material derivatives

- mcmafammmyhmmﬂmmofmmmmW
description) by

x=x(X,, X,, X,,t) ~(3.1)
or, by the inverse of these equations in terms of spatial coordinates (Eulerian dmnpuun]as
X=X (x, X, X,,t) .(3.2)
Tbe:necessmyaudmﬂimentcundmunfmﬂaemvmﬁmcum(u}mmm that the Jacobian
x, |
J={i
dX;

should not vanish. -

Physically, the L. ~rangian description fixes attention on specific particles of the continuum,
where as the Eulenian description concemns itself with a particular region of the space occupied by the
continuum. Since (i) and (ii) are the inverses of one another, any physical quantity of the continuum that
is expressed with respect to a specific particle may also be expressed w.r. the particular location in
space occupied by the particle.

The time rate of change of any property of a continuum w.r.t. specific particles of the moving
continuum is called the material derivative{or, substantial, or comoving or convective derivative) of that
property. The instantaneous position x of a particle is itself a property of the particle. The material

derivative of the particle’s position is the instantaneous velocity of the particle. The velocity vector is
~ defined by,

= Ttl =X i 3.3)
Iugencrnl,i.fl?ﬁ...isan}rscalar,vectormneusorpmpmyufamntiﬁmthatmaybcexprcsmdasa
point function of the coordinates, and if the Lagrangian descriptionis givenby  P,.....=P,......(%,1)

-(3.4)
the material derivative of the property is expressed by

- dPy. IaPﬁ,,.(}-(,t}

- 5 (3.5)
Whenﬂ]épmp:rtyPi.“iscxprmsedhy the spatial description in the form
Pyovoees = Pyini(Ea t) .(3.6)
the material derivative is given by
dPij-.(i,t]= aﬁj...(i,t)+ﬂl‘ﬁ,..{i,t] dx, g
dt at dx, dt lfled)
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where the second term on the right arises because the specific particles are changing position in space.
Thke first term on the right side of (3.7) give the rate of change at a particular location and is called the
local rate of change and the second term is called the convective rate of change since it expresses the
contmibution due to the motion of the particles in the variable field of the property.

From (3.3), the material derivative (3.7) may be written as
dP,..(x,t) - oP,..(X,1) e ?PE...{JT;,:)

dt at x,, - 38
whichsuggmmeinunducﬁmnflhemamﬁﬂdmivﬂiveopm
4 Rie 2
dt ot i&xt ~{3.9)

utichhusadmmhngﬂmnﬂwﬁﬂdmiwﬁv&ufqumﬁﬁwcmﬁsﬂdhspaﬁﬂmdimm.

3.2. Velocity, Acceleration, Instantaneous velocity field.

The velocity vector is defined by
‘dx.
v, =—
dt
. dx._'i{’-l..‘i'xi}_d“i .
Agam' V. = dt = dt = d‘t ,..(3.1'3}

since X is independent of time. In (3.10), if the displacement is expressed in the Lagrangian form
u; =u,-{i,'l},ﬂ.'lm

v. = = X _du X

vt dt dt
If, on the other hand, the displacement is in the Eulenian form i.e. u, =ui(i, t), then

v,& 0= ,(%,1)= d—u%ﬂ

G.11)

o, ~G12)

The finction v, = v, (X, 1) msaidmspwi@m:msmnmwkxﬁtyﬁeli
The material derivative of the velocity is the acceleration. In Lagrangian form,
g dv,(X,1) _ av. (X,t)

* dt ot

and in Eulerian form,

«(3.13)
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’ i.:h.ri*{i,t)_I:h.ri(:T:,t)
b dt ot

+v, (%,t) -(3.14)

v, (% 1)
9%y
33 i‘ath lines, stream lines, steady motion
ApathIirmisﬂ:emneorpadafuﬂowedhynpmﬁcleduﬁngiﬁmmjmmﬂaw.mdiﬂ'mnt_ial .
equation of path line is dx =v dt . :
dx, dx, dx
v

or, > =dt ﬁmﬂxavebdiycomponmmvj, vz;vimﬁmcﬁmufspm-

] ¥, ¥s
coordinates.
A stream line is the curve whose tangent at any point is in the direction of the velocity at that

p-nint'Ihusthestreamlﬁmsatﬁmatamﬂmmvesﬂmtaretangmtsmmevelocityﬁcld_Hmmc
integral curves to v, = kdx, are the stream lines at time t. :

The motion of a continumim is termed steady motion if the velocity field is independent of time

av.
so that -E}_t =0. For steady motion, stream lines and path lines coincide.

3.4 Rate of deformation, Vorticity, Natural strain increments

v, n
The velocity gradient tensor ox. - may be decomposed into its symmetric and skew-symmetric

part as
v Yaw ) 1fav, By
ox; 2{ox;, ox, | 2|ax, ox
=D,+V, -(3.15)
: _ av,
This dacumpoa:itiﬂnisvaijdmonwmifvjmd O arefinite quantities. The symmetric tensor
|
1fav, W,
. Dy=Dy =-2{Ex_’+§:] ..{3.16)
isca]ladﬂnemtﬂufdefomﬁmtensmandtheskews?nmu‘icmm
1{dv, 9v,
c VeV 2] T )
¥ n z[ax] ax' ] {3.'.7}
lsmﬂﬁdﬂlemruml}rmq:mtem -
The rate of deformation tensor is easily shown to be the material derivative of the Eulerian
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Thus if in the equation

de, 1dfdu 3 -
dt ~ 2dt|ox, ox, .(3.18)
the differentiation with respect to the coordinates and time are interchanged, the equation takes the
E—l iil+_a_v_‘ =D
fom 3773 x, x| .(3.19)

Similarly, the vorticity tensor may be shown to be equal to the material derivative of the Eulerian linear
rotation tensor and the result is expressed by the equation

dt 2 axj a!.i B . .B.Zﬂ)
The equation (3.19) may be rewritten as
de, =D,dt -(321)

The left side of (3.21) represents the components known as the natural strain increments.

3.5. Physical interpretation of the Rate of deformation and Vorticity tensor.
In Fig 3.1 the velocities of the neighbouring particles at

points P and Q in a moving continuum are given by v.and v +dv,

respectively. The relative velocity of the particle at Q with respect

3

to the one at P is therefore
ov;
dv, =§I¢H ~(3.21)
in which the partial derivatives are to be evaluated at P. In terms :
of D, and V;, (3.21) becomes / e
dv, = (D, +V, ix;, ..(3.22) Fig.3.1

If the rate of deformation tensor is identically zero (D, = 0),

dv=V, dx, .{3.23)
and the motion in the neighbourhood of P is a rigid body rotation. For this reason a velocity field is said
to be irrotational if the vorticity tensor vanishes everywhere within the field.
Associated with the vorticity tensor, the vector defined by

q;, =€5Vy ...(3.24)
is known as the vorticity vector. The vector defined as one-half the vorticity vector,
1 1
e AT .(3.25)
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is called the rate of rotation vector. For nigid body rotation, such as that described by (3.23), the
relative velocity fora neighbouring particle separated from P by dx is given as

dv, =e, Q dx, .(3.26)
The components of the rate of deformation tensor have the following physical interpretation. The

diagonal elements of D. are called as the stretching or rate of extension components, Thus for pure
deformation, from (3.22)
dv=D.dx -(3.27)

and, since the rate of change of length ofﬂmlim:l:lemmtdxiperlmitinsta.nta_nﬂmmlmgﬂz is given by

d dx
di” =ii =Dy—'=Dyv, ..(3.28)
the rate of deformation in the direction of unit vector v, is

- d=dMv, =Dy, ~(3.29)

From (3.29),if V; is the direction of a coordinate axis,say ¢, ,

d=d, -(3.30) .
Thnuﬂ‘-diagonaltemnnfﬂijmahwmms,bemgameam of the rate of change between directions
atright angles.

3.6. Material derivatives of Volume, Area and Line Elements.

In the motion from some initial configuration at time t=0 to the L
present configuration at time t, the continuum particles which occupied i tat
the differential volume element dv_ in the initial state now occupy the '_:ﬁ‘
differential volume element dv. If the initial volumeé element is taken as p
the rectangular parallelopiped shown in Fig 3.2 and i
dV,=dX, dX,dX, -(3.31) g

Due to motion, the parallelopiped is moved and distored, but "
because the motion is assumed continuous the volume elements does
not break up. The “line of particles” that formed dX, now form the “r  Fig.d.2
ox,
diferential line segment 4" = ==X, _ Similarly, dX, becomes
1

ax. dx
dx!l! s i d:{., l__!‘_r == = .
i _'EJXZ 2 and dX, becomes dx; _BX, dX,

Therefore the differential volume element dV is a skewed parallelopiped having edges
dx{”, dx!”, dx* andavolumeisgivenby

dx, 3, ax
WX, X, aK, ol =Y, ~(332)
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J= ax‘ . 'I
where BXJ 15 the Jacobian
d d,. dJ
—(dv)=—(1dV, )= —dV
Now, 5 @)= (aV,)=—-dv, -(333)

d .
since dV is time independent, so that s (dv,)=0,
The material derivative of the Jacobian J is shown to be

d_ av
¥ ]Elx | ..(3.34)

1

and hence (3.34) may be put in th e form

d, av

@)= o s (3.35)
For the initial configuration of a continuum, a differential element of area having the magnitude ds may
bereprﬁemedinmmsafimmimmnmlvectmnibymemmsimihﬂ. For the current configuration
of the continuum in motion , the particles initially making up the area ds now fill an area element
represented by the vectordsn urds..]tma_jrbcsbuﬁmthat

v,
—{ }-—— ,=~s—Lds, (336
I BX }
The material derivative of the squared length of the differential line element dx. may be calculated as
d didx.
E(&x}* {dxdx] z[ ) dx, .{3.37)
ox;
However, Since dx; 231"1}{1,
ov, dv, ox,
- =—idX = Edx.
{ J= (ax]”x X, - ' px aX, - ?
dv,
= dX,. -(3.38)
k
ﬁd(&.&?}becumcs
d ov
--&—t(de’ =25 dx,dx, (3.39)

k
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av, av
= 'é;:dxtdxl + a_x‘::"dxidxt

o] 20 5 0%
“[axh ", }’"d"‘

=D, dx.dx, -(3.40)
[since the right side in the indicial form of (3.39) is symmetric ini and k]

3.7 Material derivative of 1’nlnm¢, Surface and Line elements.

Pi...(:)-!*';‘ (%, 0)dV .(3.41).

. Where V'is the volume that the considered part of the continuum occupies at time t. The
material derivative of P,...t) is . -

" T,
sh-ol-g /R C o (342)

Since, the differentiation is with respect to a definite portion of the contitnm(i.e. a specific mass
system), the operations of differentiation and integration may be mterchanged. Therefore

< JB;- A tpv = !%!}‘J....(ﬁ,t}w]

ARG o v
- ‘!‘[_._HEt__q-?ﬁ.,..(x, :]ax—:]dv .(3.43)
. Again, we have .
LS SO
dt &t "ox

From (3.43) we have

OR..(&t) 3y .
—a—t_ +éx“;' {vp Pia' ,{![, [‘)}:Idv +H{3'44}

%!P;...{i,t]d\f:: f[
By using Gauss’ theorem, the second term of right hand integral of (3.44) becomes
a [ = 4 -
!EP-{VPFG...{J{, t)}:ﬁ’ =;[VP [I:"r‘i ....(x,t}}isp

Hence {3.;14} becomes
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__Jp R,V = JaP i t}ni'b.f+j [P ..... .(x,t}]:ls .(3.45)

This equation states that the rate of increase of the property P,.....(t) in that portion of the continuum
instantaneously occupying V is equal to the sum of the amount of the property created within V plus the

ﬂm,[P;,,..{i,t)]:rmughmboundipgmfmehm
Similarly, for any tensarial property of a continuum represented by the surface integral

Q;.--{t)= _[Q ..... (X, t)dS, (3.46)

where s is the surface occupied by the considered part of the continuum at time t, then

Q1= L Qo =] Tl 5ok,

JN*TFQ EEQ& Az, t}]ﬂs I:Qg 11‘}“““‘15!] (3.47)

5

For properties expressed in line intergral form such as

R,...{t)= IR AKX, -(3.48)
the material derivative isgivenby
—IR (o), I dtﬁl ----- {x t)dx] (3.49)

' Differentiating the right handmtcgmluf(l@},wchave
d _cdR;.(x0) v,
2R, [t):lx?..lexﬁjax

L
dtc €

R;...&thx, | 3.50)

3.8 Conservation of Mass, Continuity equation
Associated with every material continuum there is the property known as mass. The amount of
mass in that portion of the continuum occupying the spatial volume V at time tis given by the integral

m*-'!F(ivthv....{lﬂ}

in which p(,t) is called the mass density.

The law of conservation of mass requires that the mass of a specific portion of a continuum
remain constant and hence that the material derivative of (3.51) is zero i.e

56




dm d ¢ . ov
—d;— = Et-jp(x,t}ﬂl'r = I[%‘? +P§;fj|dv =0 {352}

v

Since V is arbitrary therefore

dp _av,
—4+p—==1
- : (3.53)

This equation is called the continuity equation. Using the material derivative, we get from
(3.53)

9% ” P e 8
Gl ['dtsdt+v"&xk

For an incomoressible continuum the mass denisity of each particle is independent of time, so that

% =0 and (3.53) yields

.(3.54)

V™0
The velocity field ¥(%, 1) of an incompressible continuum can therefore be expressed by the
equation
V= E%Su _
inwhich 5(X, t) is called the vector potential of 7. -
The continuity equation can also be expressed in the Lagrangian form. The conservation of
mass requires that
J-pn {i-ﬂﬁvu - _‘P{i: dVv (3.57)

where the integrals are taken over the same particles, i.e. V is the volume now occupied by the material
which occupied V, at time t=0, Now,

:[ Po(R.OXV, = [p(R(X.0),1)aV, ='Jp(i, DIdVe (358

since the relationship holds for any volume V,, it follows that

ppJ
i.¢. the product pJ is independent of time since V is arbitrary, or that

d

—_— J =

- (pH =0 ..{3.59)
This equation is the Lagrangian differential form of the continuity equation.

3.9 Linear momentum principle, Equation of motion, Equilibrium equation.
Consider amoving continuum which occupies the volume V at timet.
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Also, let b, be the body forces per unit mass and t(* be the stress vector acting on the differential

elementds of the bounding surface. The velocity field ¥, = E is

prescribed throughout the regiﬂh occupied by the continuum. For this

situation, the total linear momentum of the mass system within V is

givenby :
P(t)= [pvidV .(3.60)

Based upon Newton's second law the principle of linear
momentum states that the time rate of change of the linear momentum
of an arbitrary portion of a continuum is equal to the resultant force
acting upon the considered portion. Therefore, ﬂth:mhnﬂﬁnmbﬂmmmksofﬂxm
in Fig 3.3 obeys Newton's third law of action and reaction, the momentum principle fnrthmm.u

system is expressed by

Itf'“ds+:|:phld'u’%% _[ pv,dV

ie. J oym,ds + Ipbiw - %IP’-’,-dV [ P = nﬁnj]

d
ie. ] (@, +pb)AV = EI pv;dV ..(3.61)

[By using divergence theorem of Gauss]

Agnin %!pvidv = % ipvijdvn = !ﬂ[vil d{::)+ pJ %L V,
= f"—PdV .,.‘(.3.62}
Using (3.62) in (3.61) we have
l o+ Ay =%, BV =0 (3.63)
Since V is arbitrary, therefore
G,,+pb, =pV, - (3.64)

These equations are called equations of motion.
In case of static equilibruim, The acceleration components vanishes therefore (3.64) become

+pb, =0 .{3.65)

;“J

These are the equilibrium equations, used extensively in solid mechanies.
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3.10 Moment of momentum (Angular Momentum) principle.

The moment of momentum principle is simply the moment of linear momentum with respect to
some point. Thus for the continuum shown in Fig 3.3, the total moment of momentum (or, angular
momentum) with respect to the origin is

N;(t)= Jegu"ap"'kdv ..{(3.66)

where x, is the position vector of the volume element dV, The moment of momentum principle states
that the time rate of change of the angular momentum of any portion of a continuum with respect to an
arbitrary point is equal to the resultant moment with respect to that point of the body and surface forces
acting a the considered portion of the contimmm. According for the continuum of fig (3.3) the momen
of momentum principal is expressed by

: de .
[enxtds+ [e,x,pb,av = a;_[ EaX,PvidV _  (3.67)
5 v v

Equation (3.67) is valid for those continua in which the forces between particles are equal, opposite
and collinear, and in wh*~h distributed moments are absent.

The moment of momentum principle does not firnish any new differential equation of motion.

3.11 Conservation of mass, continuity equation.

Associated with every material continuum there is the property known as mass. The amount
of mass in that portion of the continuum accupying the spatial volume V at time t is given by the
integral. ;

m = [p(x,t)dV - (3.1)

in which #(x,t) is a continuous fimction of the co-ordinates called the mass density. The law
of conservation of mass requires that the mass of a specific portion of the continuum remain
constant, and hence that the material derivative of (3, 1) be zero. Therefore the rate of change of
min(3,1)is

dm d dp ov
—== dv=[[=F4p—% dv=0- (32
gt = ar Pevdv ,I[dt+pﬁka )
Since this equation holds form arbitrary volume V, the integrand must vanish, or
d
d_f+pv"‘_ﬂ

or, %+p{?, V)=0-(33)

This equation is called the continuity equation, using the material derivative operator if may be
put into the alternative form
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dp

7&-+(p,ﬁt],k=0

or, % +V.(ev)=0—=(34)

mehnmnpreémhlecmﬁnuumﬂmmassdensitynfmhparﬁdcin independent of time, so

iha:%ﬂ and (3.2) yields the result

Vi =0—-(35)

The velocity field v(x,t) of an incompressible continuum can therefore be exprienced by the

: V; =05, ; = (36)
or, which s(x,t) is called the vector potential of v.

- The continuety equation may also be expressed in the Lagrangian, or material form. The
conservation of mass requires that

; Jpn{x:ﬂ}dvu =J (I(K., t),t)Jdv, |
v, e

= [p(X,0JdV, - (38)

Since this relationship must hold for any volume V,, if follows that
Pe =pI —=(39)

Which implies that the product pJ is indépendent of time since V is arbitrary, or that
4 .
—(PI)=0- (310
e )=0-( ]_

Equation (3.10) is the Lagrungian differential form of the contineuity equation.

3.12 Linear momentum principle, Equation of motion, Equilibrium equations :

A moving continuum which occerpies the volume V at I "

time t is shown in the fig. Body force b, per unit mass 6 ”if?ﬁ H—TE*\\

are given. On the differential element ds of the bounding WV’. X___,E

surface, the stress vector is ¢{*"). The velocity field {i f'“‘—‘[‘“ i _hi/ v
du. :

Vi =35 is prescribed throughout the region occupied "

by the continuum. For this situation, the total linear
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mnmmhunifthemasssySEthhinVisgij"b}'
P(t)=[pv,dV - (311)
, v
Based upon Newton's second law, the principle of linear momentum states that the time rate
of change of an arbitrary portion of a continuum is equal to the resuetant force acting upon the

considered portion. Thu‘cfom.ifthzintcra]fmbetwmpmﬁclmofﬂmcmﬁmnnmﬁgi. obey
Nemm‘skdhwufmﬁmandmcﬁmthemﬂmmmmmipkfbrMmmsymisw

J1"ds+[pb,av = —5’-] Pv,dV — (312)
8 v dty

upon substituting t* = §,n, into the first integral of (3.12) and converting the resulting
surface integral by the divergience theorem of Gauss (3.12) becomes '

j(aj_ﬁph,}dv=£jpvidv—;{3.13]
S df\r .

_ Incnlculnﬁngﬂrminldn'hmﬁveis{3+13}ﬂ:emnthnﬁtjreqmﬁmi:1ﬂritxmgivmhy(3.m]
may be used. Thus :

d d
e AV e—[ov.
'dt lp‘rn | dt;[pvljdvn
d dv.
- : +p)—L | dV,
= ,{{v‘dtm” P dt] .

dv, dv,
= J==pdV—L (314
= {dt pd 3 - (314)
Replacing the RHS of (3.13) by the RH.S of (3.14) and collecting terms results in the linear
momentum principle in integral form.
J(ﬁﬁ.j'."phi—PVi}dV=D—}{3.15)

v

Since the volume V is arbitrary, the integrand of (3.15) must vanish, The resulting equations
O ; +Pb,—pv, = (316)
are known as the equation of motion.
The important case of static equilibrium, in which the acveleration components vanish, is given
at once from (3.16) as
' 0, ;+pb,=0-(317)

These are equilibrium equations, used extensively in solid mechanis.
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3.13 Moment of momentum (Angular momentum) principle :

The moment of momentum is, as the name implies, simply the moment of linear momentum with
respect to some point. Thus for the continuum shown in Fig 5, the total moment of momentum or
angular momentum as it is often called, ... to the origin is i

N.(D=k[e," jpv, 7—(318)
4

in which X, is the positive vector of the volume element dV. The moment of momentum principle
states that the time rate of change of the angular momentum of any position of a continuum with
respect to an arbitrary point is equal to the resuetant moment (with respect to that point) of the body
and surface force deting on the considered portion of the continuum. Accordingly for the of fig. 5
the moment of momentum principle is expressed in integral form by

Jeg xt ds+ [ e, x,pb,dV
5 L

d
= [ € x,pv,dV — (319)
¥

Equation (3.19) is valid for those continuum in which the forces between particles are equal,
opposite and collinear, and in which distributed moments are absent.

The moment of momentum principle does not fumish any new differential equation of motion.
If the substitutions t{"’ = &, n_is made in (3.19) and the symmetry of the stress tensor assuemed,
the equation is satisfied identically by using the relationship given in (3.16). If stress symmetry is not
assumed, such symmetry may be shown to follow directly from (3.19), which upon substitation of

ty"’ =o,n, reduces to
fen 6,dV=0-(320)
v

Since the volume V is arbitrary
€a 0, =0—(321)

Which by expansion demonstrates that 8, =5,

3.14 Energy Equation

If mechanical quantities only are considered, the principle of conservation of energy for the
continuum of Fig (3.3 )may be derived directly from the equation of motion given by (3.64). To accomplish
this, the scalar product between (3.16) and the velocity v, is first computed, and the result integrated
over the volume V. Thus

[pviv.av = }‘v-ﬁii,jdV+£ pv,bydV (3.68)

v L
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A d; wvv d cpv? dK
vdVe=[p—ligy=2 [0 qv=2 :
But 1|: pv,¥, dt!n - dt! > = L

which represents the time rate of change of the Kinetic energy K in the continuum. Also,
VO, = (vin#),j-vi,jﬁﬁ
- ("'-'"-_'i ll'(Dﬁ + Vﬁ)’ﬁ
_ ={v0;),-D0, k- v,0, =0
Thus (3.68) may be writen in the form :

% =j[["'iﬁnlj" Dﬂqﬁ]dv+‘[pbi_vidv
v , ¥

Ji

ie %f‘_[ﬂiﬂ -d\f=!(viﬁﬁ],}dv+_£pbividv

= !vitfﬂd_sn*‘ J pb,v,dV .-(3.70)

[Using divergence theorem of Gauss)
This equation is known as the energy equation for a continuum. This equation relates the time rate
nfchgﬂwm&mgyufmemmmehﬂﬁdemﬂmmnfmmwm&
surface and body forces, on the right hand side of the equation. The integral on the left side is known as

. ; : ; du
the time rate of change of intnal mechanical energy, and written as T Therefore, (3.70) may be

— 4= ~(3.71)

Where EE:E represents the rate of work and the symbol & isusedto h:tdimte_thatﬂaisquantityisml
an exact differential.

If both mechanical and non-mechanical energies are to be considered, the principle of
conservation of energy in its most general form must be used. In this form the conservation principle
states that the time rate of change of the kinetic plus the internal energy is equal to the sum of the rate
of work plus all other energies supplied to or, removed form the continuum per unit time. Such energies
and thermal energies are considered, and the energy principle takes on the form of the well-known _
first law of thermodynamics. '

Fora thermo nechanical continuum, the time rate of change of internal energy may be expressed
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dUu _d .

where u is called the specific internal energy. Also, if the vector c, is defined as the heat flux per unit
area per unit time by conduction, and z is taken as the radiant heat constant per unit mass per unit time,
the rate of increase of total heat into the continuum is given by

id‘tl =—[c,n,ds + [padV -(3.73)
5 v

Therefore the energy principle for a thermomechanical continuum is given by
dk dU d'w+dQ

—_— - — = — —_—
dt  dt dt dt ~4.7%)

or, in terms of energy integrals as ?
L. Ip ilx"—dv+‘|'pﬁdv = Jt:ﬁ‘vids+jpvihidv +Ipzdz-jcin.ds (3.75)
dty” 2 v 3 v v 5 S

Converting the surface integrals in (3.75) to volume integrals by the divergence theorem of Gauss, and
again using the fact that v is arbitrary, leads to the local form of the energy equation
)
de} 2 :
Within the arbitrary small vohume element for which the local energy equation (3.76) is valid the balance
of momentum given by (3.64) must also hold. Therefore by taking the scalar product between (3.64)
and the velocity pv;v; = v,0; + py,;b, and , after some simple manupulations, substracting this
product from (3.76), the result is the reduced, but highly useful form of the local energy equation,

d

dt p
This equation expresses the rate of change of internal energy as the sum of the stress power plus the
heat added to the continuum. ;

: ,
[v—+uJ=%(ﬁa"'ilj+ b,v; _%ci.i il =

1
.';“Eci.i +z P o

Solved Problems

X, 2x, 2x, - .
¥ 1% orf YV =— VYV, S ¥, =
Exp 1. A velocity field is given by Vi a+1)’ 2 (a+1)’ 3 “_'_t].Detummedwamehm

components for this motion.

Solution: The acceleration components are defined by

_dv, dv, _ dv
a=v=_:—

=R iR 3t+v"&x_;




x ‘o,
av v av av
e e g

BT T O

av
20 -_3tl+vk %:-

= 2x, & 4x, = 2!‘;_
(1+8)  (1+1® (1+1)?

. v ov
.'.:,-%i+v,§:

. 3% A 9%,. . _6x,
1+ (1+19° (1+9°
E:plﬁmﬁﬂuflmisﬁmby

o B
X, = A.+Tnin A(A + cot)

e :
X, =-l!-—-i-mul(h+m}, X, Fx,.

Show that the particle paths are circles and that the velocity magnitude is constant. Also, determine the
relationship between X, and X, and the constants A and B.
Selution By given condition »

e—li.
X, —A.'-Tsinl(h+mt}

e-ﬁ
X,+B= -Tml{.ﬁ. + t),

Squaring and adding, t is eliminated and the path lines are the circles

(x, -A)? +(x, =B)? =+




v, =—L =we™ cosA(A + wt)

g al®

v, =T’=m'."'sinl{ﬁ+m]

&

3
Vy = —

&

wvi=vi+vi+vl =ole™®

Fmall}' wh:nt*{], x=X, and so

1=.A+{rl;{hmm
X, =B-(""4)cosAA
Exp3 A velocity field is described by v, = —1— e o, 3% . Determine the
. by Vi ™ 1+t° 1+t Lt ——

lines and path lines of the flow and show that they coincide.
dx _dx, _dx,
i V3 Y
For the given flow, this equation becomes

e

X, 2x, 3x,
hmﬁngmdusingttmmdiﬁnm%-xlattwﬂ,mpquﬁmufmﬁmm

Y & (2} oxi (%) %
X, X'\ X, X, '\ X, X,

dx;
_.....="|-_i
dt
i.l.‘..ﬂ=dt
i dx
ie. Endt, E"'Lf—1=dt, —i =gt
Vi Vy v,

Integrating the above expressions we have X=X (1), ;=X (1HY, x, =X, (1 +H).
Elimination of t from these equations gives the path lines which are identical with the stream lines
presented above.
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Exp 4 For the steady velocity field ¥ = 3xx,8, + 2xx,8, + X,x;x 2¢, , determine the rate of

extension at P(1,1 I}mﬂ:nedtrecumof‘?"ik;—).
(48, +3¢,)
A]so,determmlh:ufshmrat?betnmﬂmoﬂhogmalmﬁ mﬂ-——'——-’-s :

Solution. The velocity gradient is

6x Xy Il ®
[—] 0 4x,x, 2x}
X3 XX 2xX,X,

: EA &v i 2z : P .
Now, E"’D"‘Vi wheren' Bx h istherﬂenfdefumaﬁugmind

(av, o, 4

T E‘g u_ﬂ:evmﬁcilydnphm
Now, at P(1,1,1), |

6 15 0-5

b,J=[15 4 15

0-5 1.5 2
Themteofextensionis ~ d=D,v,v,

| 6 15 0
- a=[¥%, o, - (s 4 s

0 |==
0-5 1.5 2 —%
and the rate of shearis ¥, =2Du,v,

I &1

io fw = ,us,]asa ‘
ol lly )|

E:psshnwthnt!htmatuia]ﬁ'm =ﬂuf:h=muunmtyaqu-nonmdﬂ:espnmlfmm
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3¢ TPVis = Oare equivaient.
L IOD g %Py, 00
m, " ﬂﬁml+p 0
95,0 _ [E, ]
Hdtj+p'!axi 0 2 Wy,
2.0 1
m][ﬂt+|:rf‘.:mk 0
_ .ﬁ*:l—p+p%:-=.ﬂ F-1=0]

' E:piﬂiminpoﬁ in a continuum the rate of deformation mﬂsﬂmmmm\mw

1T 6 4 (4 0 1
Dy={6 3 2| and 0;=| 0 -2 7
4 3 5§ -1 7 8

Determine the value A of the stress power D, at the point.

Solution Multiplying each element of D, by its counterpart in o, and adding we get the value A of the

meupuwernuaias A=4+0-4+ -£+14-4_+1.4+40=58

Exp 7 If o,=-pd, where p is a positive constant, show that the stress power may be expressed by the
2 pdp :

.qmnhmnuﬁ“.- pdt

Solution We know

v,
— DI, + V'

i
Di =V,;- Vi:i

Thus Do, =v, 0, -V,0,

el [+ Vyo; =0]
=Y. j{-Ps.;)
==pVi;-
5 do " By continuity equation
_EE %:5-+pvi_l=ﬂ

68




Exp8A two dimensional incompressible flow is given by v, = A(x? -x)/r* v, s&{h,u,}fr‘.v, =0
where r? = x] +x3. Show that the continuity equation is satisfied by the motion.
Solntion For incompressible flow, the equation of continuity is

- 0 Le.v,, + V., =_ﬂ

av -4x (x2 -x?) 2x,
L LN TS
Here Yia ax, A[ o o

e Ny _ v, 2x, lex;]

(o P ax 1_4 ri
Adding, v, +v,, =0
E:p!lForamnnmmwbmemmmemmu, a-{—p-!-?. D, )5, +2p° D,,dﬂum

the equations of motion in terms of the velocity v.
Solution The equation of motion is

pv, =0, +pb, .
=pb, ;?‘E(‘P+1‘Du )8 +2uDy ]
=pb, —p;8; +A'Dy;8; + 2u'D,;
=pb; =P, +X Ve + 20" (v, +v,)
=pb,—p;+(X +p1')v,, +RV [+ Dy =4(v, +v;)]

Exp 10 Show that q=e,V, and Ihat Z?E-ciiqt.

where D, is the rate of deformation tensor and V., is the velocity or spin tensor.
q=e,Vy [since e, D, =0]




el =Lt Vy
= (5-1’5-: =8, )V_ﬁ
= ﬁuﬁ#\",ﬂ - Eﬁﬁ“d’“
= V,', -V,
=V'-I.'-V' : [."vu"' Il-
= zv‘ ;

Example 11 : A continuum motion is given by |
_ N =Xe'+X,(e'~1),x, =X, -Ijx,{e'—é“'},x.;,l':{;« . o
Show that the jacobian J does not vanish for this motion and obtain the velocity acceleration

components. |
Solve : ' ;
Wehn_‘e
gx, dx,' 9x,
_ aX, dX, mg_
j= 9x, uax’. axzax"'
1o, |7lox; X, 5,
axl. axi ax'!
: a.xl axl alx!
e 0 e'-1
=0 1 e'-e"
00 1
-ﬁiﬂ
Now u=x-X
In material form :
| 'u1-x1_-x| =X, + X)) (1)
u =X -
w=0 - .
uﬂm-%?=%?

. ¥ -‘%‘ =(X, +.x:}¢t
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v, =9§1=x,;e* +e™")
v, =%l:1=ﬁ

In spatial form
| =%, =X, = (I-e")}(x,+x,)

L, =x,(e'~e"),u, =0

du du du.

andy,=—l=—"J9gy —i

v; - &t+v'3xt
oty A 2 du

=V =e (X, +x,) +(1-e")y,
BV, =X +X,

v, =Xx,(e' +e7')

VJ =ﬂ
Agamn
- dv, av
ﬂ.ﬂ'ai'ﬂ—'“‘l'“ﬂkg:'
dv, v,
aJ_EH-?tE
dv dv
= —l bl B
x +v*3x,+vzaxz+v33x,
=x +x
L=x(E-c)
a=0
Supplementary Problems

1. A continuum motion is given by X =Xe'+ X (e-1), x, =X, + X (e*e"), x,=X,. Show that the
Jacobian J does not vanish for this motion and obtain the velocity components.

Ans. v (X +X))e', v,=X,(e'+e"), v,=0

V=X - X, v,=x (e +e), v,=0
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2. A velocity ﬁcldm:pemﬁadmlagmnglanfnrmbyv- X‘e",vn--xl,v!-it.ﬂeﬁrmineme
acceleration components in Eulerian form. :

Anms.a =c'(x,+tx,-t'),a,=0,3,=0.

3. Show that for the flow vi=i—:ﬂnmmpmmmm.

4. A steady velocity field is givenby v, = =2x,,v,= Zx?v uwmwmm
_,wmﬂmmﬁ&fmmm@mmmmm

-+ -+ %]
. T =1 -% 0
' ' 1%

and principal values are Wz, 0, -2)

5 mmmmm&mmm&mu&mmjﬂm
d!{dx! :

2 2
.&' o) z[dDHn _“D'ax }txdx

ad.) _
t"1",11::-\«.”:11!! dt

. A _
' T.mwm&mm_[??ﬂ)ﬁam&m&ﬂmdmmm 3
8. Taking the material derivative of ds, in its cross product form ds, = e, dx{7dxy” , show that
; ._ dsr = a"‘rq a‘vq_ A

: dt - ax’. ’ ax! ’

9, Determine the form of the continuity equation for an irrotational motion.
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Ax.
10. Show that the velocity field v, =*rT' , Where x x = r* and A is an arbitrary constant, satisfies the
continuity equation for an incompressible flow.

11. Determine the material rate of change ofkinetic energy of the contimmim which occupies the volume
V and give the meaning of the resulting integrals.

12. Show that the constitutive equation 6,=A"8,D_+2"D, may splitinto the aquivaln:ni equations
0,=(3A"+2)1")D, and S, =2y’ Dj where S, and Dj are the deviators tensors of stress and rate of
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UnitIV
Equations of Elasticity

4.1. Generalized Hooke’s low, Strain Energy Function.

In classical linear elasticity theory, it is assumed that the dispalcements and displacements -
gradients are sufficiently small that no distinction need be made between the Lagrangian and Eulerian
descriptions. Accordingly, the linear strain tensor is given by the equivalent expressions

=g, =2 ﬂ'**ﬁu—!‘ - a—ui+-ai =l(u +u) (4
6= X, 9%, 2(9x, o, | 2 it Wi} L (4.1)

Here it is further assumed that the deformation processes are adiabatic (no heat loss or gain ) and
isothermal (constant temperature) unless specifically stated otherwise.
The constitutive equations for a linear elastic solid relate the stress and strain tensors through
the relationship
05 = Cinlin ..(4.2)

which is known as the generalized Hooke’s low. In (4.2) the tensor of elastic constants C,,_ has 81
components. However, due to symmetry of both stress and strain tensors, there are at most 36 distinct
elastic constants. For writing Hooke's low in terms of these 36 components, the double indexed
system of stress and strain components is often replaced by a single indexed system having a range of
6. Thus in the notation i

Gy =0, , 0,=0,;=0; ...(4.3)
and E; =§ ' 2£23 _2232 =E,

£, =E, y 2B =12g,=§g,

€, =€, , 2¢,=2, =g ..(4.4)

Hni;ke‘s law may be written as
0, = Cyu€n (K. M =1,2,34,5,6) -+(4.5)

Where C,__ represents 36 elastic constants.
When thermal effects are neglected the energy balance equation may be written as
du 1 1 '
e EG-., 5= Eﬁutu .(4.6)
The internal energy in this case is purely mechanical and is called the strain energy (per unit mass). from
(4.6),

1
du= Euhdﬂij 4.7
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and if u is considered a function of the nine strain components,u = u [Ei’ ],itsdjffﬂrenria] is given by
du
il = -ty (4.8)

Companing (4.7) and (4.8) we cbserve that

5 e .(4.9)

The strain energy density u” (per unit volume) is defined as

v=pn - - .(4.10)
and since p may be considered a constant in the small strain theory, u" has the property that
P "k, A4.11)

Furthermore, the zero state of strain energy may be chosen arbitrarily ; and the stress must vanish with
the strains , the simplest form of strain energy function that leads to a linear stress-strain relation is the
quadratic form k

. - 1 C - '

U= R -(4.12)
From (4.2), this equation may be written as

i

u ZEU"]EU' (413}
In the single indexed system of symbols, (4.12) becomes

PR |
u = ECMEI{EH (4'4}

Inwhich C, =C, . Because of the symmetry on C,, , the number of independent elastic constants is at
most 21 ifa strain energy function exists. '

: 4.2. Isotropy, Anisotropy, Elastic symmetry.

Ifthe elastic properties are independent of the reference system
used to describe it, a material is said to be elastically isotropic. A e
material that is not isotropic is called anisotropic. Since the elastic
properties of a Hookian solid are expressed through the coefficients .| ~ ™
C,a » 2 general anisotropic body will have an elastic constant matrix AT -
of the form it B
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Cll Cl: Cl! Cl.d. CIJ Clﬁ
Cz! C‘n Cﬂ CH CH Clﬁ
[C }_. C,y Cp C; Cy Cy Cy
1=
Ca Co C; Cu Cy C, .{(4.15)
Ci Cun Gy GCo Cy Cyf
; L.Cﬂ Cu Cﬂ Cﬂ Cﬁﬁ Cﬁﬁ 4

When a strain energy function exists for the body, Cyp= C, 2nd the 36 constants in (4.15) are
reduced to 21.

A plane of elastic symmetry exits at a point where the elastic constants have the same values for
every pair of coordinate systems which are the reflected images of one another with respect to the -

plane.

The axes of such coordinate system are referred to as “equivalant elastic directions”. If the x x, plane
is one of elastic symmetry, the constants C,,, are invariant under the coordinate transformation
X;®mE; Xy=mXys Xy==X, ..4.16) '

as shown in Fig 4.1. The tranformation matrix of (4.16) is given by

1 0 0

byl=fo 1 o (417
o o -1

Mehsﬁéﬁlamfmamamialhaving xl'xzasaplm of symmetry is

-CH C]I C]! ﬂ ﬂ C'Iﬁ1
Gy €p Cu: U DT,
e J= Cy Ci C; 0 0 Gy
wale 0 B Cy B 0
“ s .{4.18)
g O -0 B, G -0
[ €4 Ca Cq U, O €4 ]

The 20 constants in (4.18) are reduced to 13 when a strain energy function exists.

Hanmtmalpessemesﬂretmuumﬂypﬁpmdmularphnmnfelasncmmuy the material is
ca]ledorﬂmtmpmanﬂﬂselmhcmam)cmufthﬂform
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Ci Cu Cy 0 0 .0
Ca Cp C 0 0 .0
Py €, B, 0.0 8
[ew =500 .0 o
“ -(4.19)
0 0 0 0 C, 0
[0 @ B8 B

 having 12 independent constants, or 9 if C,,,, =C, . -
Anaxis of elastic symmetry of order N exits at a point when there are sets of equivalent elastic
directions which can be superimposed by a rotation through an angle of 211/N about the axis.

4.3. Isotropic madia, Elastic Constants _
Bodies which are elastically equivalent in all directions possess complete symmetry and are
—_— s :
Every plane and every axis is one of elastic symmetry in this case. For isotropy, the number of elastic
constants reduce to 2, and the elastic matrix is symimetric regardless of the existence of a strain energy
function. Choosing as the two independent constants the well-known Lame’ constants, A and y, the
matrix (6.19) reduces to the isotropic elastic form

(A+21 A A 0 0 0]
A A+2u A 0 0 0
A A A+21 0 0 O
[Cu ]= 0 0 un 0 0
H ...(4.20)
0 0 0 0O p 0 :
| o 0 0 0 0 p |

In terms of A and u, Hooke's law (4.2) for an isotropic body is written as

o, =Ade,, +2ue, .(4.21)
This equation may be inverted to express the strains in terms of stresses as
——;LSG b '
i 2“{31’+m) i~ 2 ] ..{4.22)

Fora simple uniaxial state of stress in the x, direction, engineering constants E and v may be introduced
through the relationships ©,, = Ee,, and €, =¢€,, =-ve,,. TheconstantE is known as young’s

modulus and v is called Poisson’s ratio. In terms of these elastic constants. Hooke’s law for isotropic
bodies becomes
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Gy =— [Eij+ \ &,a] (423)
1+v 1=2v

‘or, when inverted

.(4.24) |
From a consideration of a uniform hydrostatic pressure state of stress, it is possible to define the bulk
modulus,

E K IA+2

or _
3(1-2v) : : L (425)

which relates the pressure to the cubical dilatation of a body so loaded. For a so called state of pure
shear, the shear modulus G relates the shear components of stress and strain. G is actually equal to
and the expression : : :

=G= L
1 2(1+v) ...(4.26)

may be easily established.

4.4 Elastostatic problems, Elastodynamic problems—
In an elastostatic problem of a homogreusous isolopic body, certain field equations, namely
(a) Equilibrium equations,
0, ;+pb, =0-(427)
(b) Hooke's law
6, =Ad; €, +2ue; —(428)
(c) Strain — displacement relations,

1
€= (1 +,,) = (429)

~must be satisfied at all interior points of the body. Also prescribed conditions on stress and
displacement must be satisfied on the bunding surface of the body.

The boundary value problems of elasticity are usually classified according to boundary
condition into problems for which

{1) displacements are prescribed everywhere on the boundary.

(2) stresses (surface tractions) are prescribed everywhere on the boundary.

(3) displacements are prescribed over a portion of the boundary stresser are prescribed over
the remaiming part.

For all three categories the body forur are assumed to be given throughout the contunuum.

For those problems in which boundary displacement components are given everywhere by an
equation of the form
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u = E-.(X} — (4.30)
~ the strain—displacement relation (4.29) may be substitufed into stooke’s law (4.28) and the
result in turn sub stituted into [4.2?] to produce the governing equations.
L HPb, =0 (431)

which are called the Nawm'-t.'.‘.auchy equations. The sohution of this type of problem is therefore
given in the form of the displacement vector u,, satisfying (4.31) lhmugbuut the continuum and
fulfilling (4.30) on the boundary.

For those problems in which surface nansacimnsareprmcnhadwerywhmmﬂmbomdm
by equation of the form i

ij T (A+ )y,

") =o;n; = (432)

The equation of compatibility may be combined with stooke’s law (4.24) and the equilibrium
equation (4.27) to produce the goveming equations, :

1 Famn
ﬁ&ufmﬁnﬂ+p{b:,]+bj,:}

v
+-]:; Eijhk.k. =0— (433)

which are called the Beltrami-Michell equations of compatibility.
The solution for this type of problem is given by specifying the stress tensor which satisfies
(4.33) throughout the continuum and fulfills (4.32) on the boundary.
In the formulation of elastodynamils problems, the equilibrium equation (4.27) must be replaced
by the equation of motion.
8;,+pb =pUSi—(434)
and initial cund_itiuns a8 well as boundary conditions must be specified. In terms of the
displacement field u, the governing equation here, analogous to (4.31) in the elastostatic case is
MU, ;+(A+p) u; ; +pb, =pii, - (433)
solutions of (4.35) appear in the form u, = u(x, t) and must satisfy notonly initial conditions
on the motion, usually expressed by equations such as
U, =u,(x,0) and 1, =1, =(x,0) — (4.36)
but also boundary conditions, either on the displacements
ui = g(x, t) = (4.37)
or on the surface tractions -

™) =" (x, t) = (4.38)
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Solved Problems

E I+
Exp 1 Showthat K= 30-2v) g Sm,mmin_gnmafmiﬁnmmmnﬁvebodym

o; = -pﬁﬁ.
Solution Hooke’s law for isotropic body becomes
o, = . (si MR LR ] i)
I+v 1-2v
or when inverted
g = 1% G, - %Eﬁa, (i)

When o, = —pd; then (ii) becomes
1+v v
€ “‘_E‘(_Pai)ﬁﬁuﬁu

adso 0, =5 3p0+v)+ove] - =2Bv-1)

Now, Bulk modulus can be defined by
k= ratio of pressure to volume change

il
e, 301-2v)
Again, in terms of Lame’ constants A and p HDOkE'SlﬁWfOTMi&NNPiC.bOdeImn}'hWﬁM'H
O, =MD e, +2pe,
-0y = (A +2p;
Bu  O,=-pd, .. O, =-3p

Hence (3 + Zp.)si =-3p

Exp 2 Express the ingineering constants v and E in terms of the Lame” constants A and .
Solution We know the bulk modulus and k is defined as
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3IA+2u E
k= =
3 fi—2v) W

Where E is Young's modulus and v is Poisson’s ratio. From (i) we have

E=(1-2v) (3h+2u) -(2)
Again the shear modulus Gisdefin s
E
M P ~®)
From (iii),
E=2u(l1+v) (4)
From (ii) and (iv)
: (1-2v)BA+2u )=2u(1+V)..(5)
- Soliving we get,
L.
0 ..(6)
Substituting v from (v), we have _
E < BBA+2))
A +n)

Exp 3 For uniaxial state of stress in the X, direction, show that Hooke's law
o; =Ade, + 2pe
may be expresed as

Deduce that

Solution The generalized Hooke's law_isdeﬁnedas
Interms of | ame’ constants A and p, Hooke's law for an isotropic body is given by

Oy =AB€, +2ue, ..(ii)
Fwashnphlmiaﬁﬂ&ﬂknfs&mh&:gdﬁxﬁoﬁmgimhgmﬂmdvm?b:w

81




through the relationship 6,, =Eg,, and €, =¢,, =-vg,, . _
The constant E is known as Young's modulus and v is called Poisson’s ratio. Interms of A and p;
E and v may be given by

£ o BBA+2u) ..(iii) v

1+I_‘|_ =m .,.{l'u"}

3 < M2u-E)
E-3u

_M1-2v)
B 2v

e ¥)

From (iii)

From (iv),

Substituting the valueof p in (V) ,

.
1-2v)i+v)

E
Thus, h= ey

substituting these valuesof A and p in (i),

E v 1
y _1+v[ 1oy vy (D
From (vi)
I+v v i
T T 0,€u ,,,(m)‘
From (vi)
E 1-2v
Uti - 1—2v Eﬂi 0T, EL_‘. = E i

Substituting e, in(vii), we have

Y Vs
s B~ el

Exp 4 Find the inversion formula of o =8 €, +2)g;.
Solution Hooke’s law for an isotropic body is given by
O; =AD€,, +21E; ..(i)
Putting i=j, we have
o, =(3n+2u) e, ..(i1)
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Again 2ue; =0, - A€,
8]
1L.E I'I'Eq ij ij {31+2 )

: c —L.ﬂ‘ ..___j_"..._.ﬁ o
ie &=3570; 2#(3?"_'_ ZH) i
provided p#0 , 3A+2u=0

Supplementary problems

1.Show that the shear modulus

E |,
2(1+v)

G=u=
2. Find the inversion formua of
E v

" 1+'.-(£"j ke I-ZvE“E"‘ ]

~ 3. When a material is said to be elastically isotropic? What will be the number of elastic constants if
C,, ~C

KM MK

4. Write the generalized Hooke's law in tensor form. What is the number of elastic constants?
5. Assuming a state of uniform compressive stress 0, =-pd; , prove that the bulk modulus is given

3h+2pu . B
= G:  —
by k =~ andshear modulus G =} 20+v)°

6. For an orthotropic elastic continuum find the elastic coefficient matrix.
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UNITV
Equations of Fluid Dynamics

5.1. Fluid pressure, Viscous stress tensor, Barotropic flow
In any fluid is rest the stress vector +{*} on an arbitrary surface element is collinear with the
normal ; of the surface and equal in manitude for every direction at a given point. Thus
t* =o,n, =—p,n, «(5.1)
Inwhich p, is the stress magnitude, or hydrostatic pressure. The negative sign indicates a compressive
stress for a positive value of the presssure. Here every diection is a principal direction, and from (5.1)
o, =—p,5, (5.2)

which repr‘maentsaspha‘mlﬂatcufstmssrcfmedtnashydrmﬁﬂcprm From (5.2), lheahﬁr
stress components are observed to be zero in a fluid at rest .

For a fluid in motion, the shear stress components are usually not zero, and in this case we have
o, =—p8; +1, -(53)
where 7; is called the viscous stress tensor and p is the pressure.
A perfect or inviscid fluid is one for which T; is taken identically zero even when motion is
present. _ '
From (5.3), the mean normal stress is given by

1 | ; ;
-0, =-p+-T,

3 P 3 v -(3.4)
F{:-raﬂuidatrest, Tjj vanishes and p reduces to p, which in this case is equal to the negative of the
mean normal stress. For an incompressible fluid, The thermodynamic pressure is not defined separately

ﬁ'umthemaclmnml conditions so that p must be conmdmadasanmdqmdmtmmtmmua}mablcm
such fluids. '

In a compressible fluid, the pressure p.the density p and the absolute temperature T are
related through a kinetic equation of static having the form

p=pp,T) «(5.5)
- An example of such an equation of static is the well-known ideal gas law
p=pRT ..(5.6)

where R is the gas constant. If the changes of state of a fluid obeys an equation of state that does not
contain the temperature, i.e. p=p( p ), such changes are termed barotropic. An isothermal prosses for
a perfect gas is an example of a special case which obeys the barotropic assumption.

5.2. Constitutive equations,Stokesion fluids, Newtonian fluids
In developing constitutivere relations for fluids, It is generally assumed that the viscous stress

84




tensor T is a function of the rate of deformation tensor D,. If the functional relationship is a nonlinear
one, as expressed symbolically by

v, =f,D,) {5.7)
The fluid is called a stokesion fluid. When the function is a linear one of the form
ek D, A58)

where the constants K__are called viscosity coefficients, the fluid is known as a Newtonian fluid.
Some authors classify fhuids simply as Newtonian and Non-Newtonain.

The constitutive equation for an isotropic homogeneous Newtonain fluid is of form
o; =-pd; +A'3,D, +2u'D; -(5.9)
where 2" and 1" are velocity coefficients of the Yuid. From (5.9),the mean noemal stress s givea by

1 Vs i
-0, ==p+-—{30" +2 -
3 [ 1] p 3( !"' )jl.l-
=_F'+k-Dii {5+Iﬁ}
e, s 2 '
where k™ =2 +3W  iscalled the coefficient of bulk  scosity. The condition that

T
vEkdohel w(5.11)
is known as Stoke’s condition, and guarantees that the pressure p is defined as the average of the

normal stress for a compressible fluid at rest. In this way the thermodynamic pressure is defined in
terms of the machanical stresses.

In terms of the deviator components

8§ =04-8;04/3 and D)= Di.j ~8; Dy, /3, equation (5.9) above may be rewritten
in the form

T o B 3
S, +-3-5-._,-ﬁn =-pd, +E<j[l +§p. })i, +2U D; =(5.12)
Therefore in view of the relationship (5.10), equation (5.12) may be expressed by the pair of equations
s =20'D , o, =-3p+3K'D, .(5.13)

The first of which relates the shear effects in the fluid and the second gives the volumetric relationship.

5.3. Navier Stokes-Duhem equations
Cauchy’s first equation of motion of the continuum is

O, +Pb; = pv, (5.14)

where Oy is stress tensor, b, the body force, v, the velocity and
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d _d d :
& = é?-i- Vi x. -Again, the constitutive equation for an isotropic homogeneous Newtonian fluid is
k

o, =-p8; +A'§,D,, +21'D; ~(5.15)

: 1

where D,J‘= -2-['-' i Y ,,)is the rate of deformation tensor. Thus D, =v,,,
Hence we can write i

o; = _paij +‘:""51'ij 'k +P.(""i=j+"’j=i}

oGy =—Ps; O + l'ﬁ.u.vk i "'P-‘(""i i Vo1 )

=—p +A VL (".:j“""jsa }
Substituting in (5.14), ,

pv; =pb, 'F--i"-‘(r ""‘l-"-)"juji""l-'-""isjj. -.(5.16)
These equations are known as Navier-stokes-Duhem equations. [n case of incompressible flow
(vi’i =ﬂ}, (Slﬁ) reduces to

pv, =pb, —p,,HL'v,, i ‘..{5:11] < If stokes condition is assumed

g 2 '
: [l =3k ],{5;16} reduce to Navier stokes equations for compressible flow

1 . .
Py, =phi _P'!i+-3-u Vit Vs -(5.18)
The Navier-Stokes equations (5.17), together with the continuity equation
p+pv,,; =0 -(3.19)

fmm.aommlemsﬁnffmumﬁunsinfummkmwm'
the pressure p and the three velocity components v,.

' Ifthe Navier-Stokes equations are put into dimensionless form, several ratios of the normalizing
parameters appear. One of the most significant and commonly used ratio is the Reynolds numbers R,
which expresses the ratios of inertia to viscous force,

Thus if a flow is characterized by a certain length L, velocity V and density p , the Reynolds
mumber is
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where V= Pp_ is called the Kinematic viscosity.

5.4. Steady flow, Hydrostatics, Irrotational flow .
The motion of a fluid is referred to as a steady flow if the velocity components are independent
of time. For this situation, the derivative ;_35;_1 is zero, and hence the material derivative of the velocity -

dv, . _dv,
E- =V, —E—'l' vjvi’j .(5420}
reduces to simple form ’
AR .{5.21)

A steady flow in which the velocity is zero everywhere, causes the Navier-Stokes equation (5.16) to
reduce to '

pb, =p, _ (522)
which describes the hydrostatic equilibrium situation. If the barotropic condition p = pfp) is
assumed, & pressure function “ T '

Pp)= ;i'-_ﬂg (5.22)
e P _ '
may be defined. Furthermore, If the body force may be prescribed by apoﬁtia] function
| b, =—Q, {5.23)
equations (5.22) take on the fo_rm
@Q+P),=0 ~(5.29)

A flow in which the vorticty or spin tensor
' 1
Vi =E(vi’j_vjli} «(5.25)

~ vanishes everywere isca]ledauhutaﬁunalﬂaw.T’hevunicitquisrelatad to the vorticity tensor
by the equation

q; = 'Euk\"ﬁ ..{5.26)
and therefore also vanishes for irrotaltional flow.
Furthermore,

4 =€y Vi, .(5.27)

andsince V x v = 0 isnecessary and sufficient for a velocity potential ¢ to exit, the velocity vector for
irrotational flow may beexpressedby v, = —$,,
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3.5. Perfect fluids, Bernoulli equation, Circulation
If the viscosity coefficients A° and " are zero, the resulting fluid is called on inviscid or
perfect (frictionless) fluid and Navier-Stokes-Duhem equations (5.16) reduce to the form
pv, =pb, —p,; (5.28)
whichis lu;uwn as Euler equation of motion.
For a barotropic fluid with conservative body forces this equations becomes

v, =—(Q+P), .(5.29)

If the Euler equation (5.28) is integrated along a streamline, the result is the well known Bernoulli’s
equation n the form

Q+P+v/2+ f%dx, =C(t) ..{(5.30)

v,
For steady motion, 3;‘- =0 and C(t) becomes the Bernoulli’s constant C which is, in general, different

along different streamlines. If the flow is irrotational as well, a single constant C holds everywhere in the
field of flow.
When the only body force present is gravity, the potential Q=gh where g is the gravitational
* P
constant and h is the elevation above some refference level. Thuswith b, :Edeﬁnadasﬂmpresmm

‘JI

head, and 2_g =h, defined as the velocity head, Bernoulli’s equation requires the total head along any
streamline to be constant. Forincompressible fluids, the equ.anun takes the form

h+h,+h, =h+p/pg+ v’ /2g =Constant i iaal)
By definition, the velocity circulation around a closed path of fluid particles is given by the line integral

I, =§v,dx, .(532)
From Stokes theorem, the line integral (5.32) may be converted to the surface integral
r = J‘nieljivt,jds

when n_is the unit normal to the surface S enclosed by the path. If the flow is irrotational, the circulation
is zero. ' '

.(3.33)

dr,
The material derivative d—: of the circulation may be given as

I =§{if..dxi +v,dv,) ..(5.34)
For a barotropic, inviscid fluid with conservative body forces the circulation may be shown to be
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|

constant. )
This is known as Kelvin’s Theorem of constant circulation,

Solved Problems
Exp1 The stress tensor ata given point for a Newtonian fluid with zero vicosity is

-6 2 -1
o;=| 2 -9 4
-1 4 -3

Solution The viscous stress tensor t; is given by

o; =—pd; +1,
| 1 s o
where P=_§Ui =“§{ﬁll +.0p+ Oy)=0
< Ty =03 +pd,
-6 2 -1 1 00 0o 2 -1
)=l 2 -9 4l+do 1 0|=[2 -3 4
-1 4 -3 0 0 1 -1 4 3

Exp!%owmanh:mnsuhm\rcrclaucnsmraﬂcwwmmﬂmdmmwuhulkwmltymaybe '
expressed by the pair of equations

S;=21'D; and -0, =3p
Sullli'ulﬁivmhdkﬁmmityk'ﬂ

The constitutive equation for a Newtonian fluid is

2 - L
=-pd; -3k 8;Dy + 21D,
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- l -
=-—p5‘-’- +2u [D# = 'iﬁinu ) (1)
We introduce the deviator components. -
1 » 1
8y=0;-3%Du and Dj=D, =3P

Thus (i) becomes
S; +%Eiﬂ& =-poy + 2“'[“; +%Einh _';‘EED&']

="Paﬁ +2F.Du
This relationship may be expressed by the pair of equations
.8, =2%'Dy and Gy m-3p." . |
Exp3 Determine the pressure function P(p) for barotropic fluid having the state p =p*2 where
A and k areconstants, : '
Solution The pressure function P(p) is defined as

)= |2 Given p=hp*
ta (P},
I o{f] =
*A kpt .
S T - R
= ipm _I[P ]
o P e
z—k":i'[p =Ps ]
. X 1B_ B
K1 P Po

| Exp4 Ifaﬂu:idmﬁtionisvuyslowsnthathighﬁnrdﬂtcrmsinﬁxvchcitymmghgib{gshﬂwdm
in a steady incompressible flow with zero body forces the pressure is a harmonic functioni.e. V:p =0.
Solution for an incompressible flow, the Navier-Stokes equations are

: P';'rj =pb: _Pu"'l"'.vn.u




{%‘w ViVis; ]: Rbi =P, "'“."’i-ﬁ
For creeping flow, this equation become
P%-whi ~ P HVisg
. For steady flow, this equation reduces to
0=pb, 'P.;-H.l'v,,i
ie. Pu=W'V,,; forzerobody forces.

: Tﬁmﬁmﬂﬁmmafﬂmeqlm
Pw'lll vhﬂ :
=0 -+ Forincompressible flow v, = 0] .
ipﬂ- vlp-u_ £

l‘.lpSDmvc:Bumﬂh'lm bymm*,mm.mm
Solation E‘""mn{‘m

. =pb; —p,; : : -
: Fﬂibﬂmﬂmdmﬁ:mmmm &
. -_n'i M .P'[-pp”

. where Pis a pressure function and is defined by P-f%.
. " - ¢,

T_tlnfi)bom
pv; =-p{Q+P),
. %
L a +?J?"j‘|'n, +Pﬂ.ﬂ _.{ﬁ)

Letdx, be an increment of | ;
wﬂhd:::.l')wehwe wm.mnmmmﬂhm

5 o
"aTi‘hi +V;¥,;dx, +Q, dx, +P,; dx, =0
nt " . |
ov
I"'&'J'dxj +J?j\l'i.jdli +Iﬂ,l dx, 'l"JP,,l dx; = C(t)
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ie I%ﬂli""!vl"mhi +Q+P=C() ’ ~{(ii)
" Also, along a stream line

V. - '
dx, ‘[—:]’3 , where ds is the increment of distance.

v, v ;s
LV i = vy, [?}h = v,v,,j[Tj}:a =Vv,,, dx; =vdv,
1 1

Thus equation is known as Bernoulli’s equation after Daniel Bernoulli (1738). -

Exp 6 Showthat for a bsrotropic, inviscid fluid with conservative body forces the rate change of

circulation is zero.. _ ;8
mmmmm-mmdmmhﬁmw&mm
i | 5 =§vidxl .
c
ool A i
The material derivative -d-f of the circulation is given by
Ie= i{i’.‘dxi +vidv,] -
<
For a barotropic, inviscid fluid with conservative body forces the rate of circulation is given by _
I f![‘(ﬂiﬁpﬁh;"'?id"u] : ['-":'i =_{ﬂ+pli]

Areref)

=-§[d{f1+l‘)-v—2] =0
! 2
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This is known as MEMMMMM{IM}.

Exp7 Shnwihat;%=“unemdmmﬁr ——f-=pfummm
mmmﬁmﬁrmmmﬂmﬁmdn
Oy =-pd; +X'§,D,, +2u'D,
For i=j, . :
o, =r-—.’.j:«l-:’;qi."l:iﬂ,l,_l +2u'D;
=-3p+06x +20°)D,

1 R
==_-§ﬂ-.- 'p-(l +3P }Jn

F.""(i: +§H-' }'1 5 i)

‘I Ll u Cl - 5 --- -!u

e vtV =l
For incompressible flow , Vin =0 ..(ii) .

‘Ihnfmn(i}wehwe -%63 =p
. for a Newtonian fluid with the condition that

Exp8 dnwihtfuaphﬁmﬁﬂdwﬁhungﬁgibbhodyﬁxmﬂnmofdmgwfdmdﬁmmyhc
-y
; El":"ﬂflb}' —Iﬂl[—}j Psx dsi.
s P
Solution The rate circulation is defined by
| 78 =fv"dx,.
C

rc.;ffi'i‘ﬂi +v,dv,)
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=4V l : ;
gv.dx,- +§dz{v )
=§vdx, ..(0)
C
* Now, when the viscosity coefficients 3° and y° are zero, the resulting fluid is called perfect fluid and
Navier-stokes equation reduces to ' R
pv; =pb; “Py

-mmwmmmmm
pv; =-p,

rc ‘_‘f%ﬂud‘i
Wriing i the foem of surface imtegral
e t_fniei(p‘lfpl} ds [“fﬂdli I.jﬁit*ﬂ,;'l.‘ls] '
) C 2 : .

) m.w
“—feof3 }ipnen

m:mummdhmwmﬂmmuﬁmm f
potennal ¢ ﬁrmmmﬂmm
Solution The velocity potential ¢ ﬁrmmuuhomlmuﬂmudeﬁmdby
. . . =_¢’i
Now, the equation of continuty is
- %*"P"'i'i"ﬂ

Cie popv,=0 ie. p-pVip=0
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mmeummmmhﬁmh
Y fpbi -P:ﬁ{l'ﬂ-l‘)";,j*‘ﬂ"’uﬁ
= —pd,, =pb, “‘Eﬂ"(‘: 'H"'.b'ii _u.¢'ﬁ

=’ . %"k#,t%‘)-;;hi_pﬂ_.a--‘hm-b’i |
ie.  -pV [%+@°)Z]¥nif?p—ﬁ'+m'ﬁ(vz¢)

. _ 3
Ty =aD; +BD, D, where. and P areconstants. -
Solution we know ' '

Oy =P+,
=-p3; +aD +BD,D, "
0 =3p+aD; +BD, D, .

. St g Tl AN ek i g
Exp 10 . Determine the stress —* for an incompressible Stokesion fluid for which

+% . 5, BOWD

3 5 EDi=v,  and D, =D,]

: ' Supplementary Problems ' :

l.DmmmnmﬁmﬁmP(p}ﬁaﬂhuwmﬂﬁdhwhgﬂmaqmﬁmdme-lp‘ﬂm

- Aandk are constants. ' = ' _
Ifthe fluid flows from a large closed tank through a thin smooth pipe and if the pressure in the

mnkmﬁmﬂrmm,Mﬂuspmdufﬂnmﬂmi ' '

. k(p_m
Aw. @ PP) k—-l[p Fn]

ka k-1
.lﬁhrwuﬁcﬂﬁdhavhgﬁeqmﬁmnfmFlp*Whﬂtlmdkmmhmmmwﬁy :
ﬁcl:dmmnx,d&wﬁmmmemmmmmﬁdﬁmmmex,aﬂdp,,mMat
x,=0. S :
Al o\ (g, 'Jgp,ii e Iuer, ., < fp nWE
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3. Assuming the constitutive equation
¢, =—pd; +X' D8, +21'D;
show that the equation of motion is
pY, =pb, —p, + (X +p ), +1'v,;
Deducethat (i) p¥, =pb, .—p_‘. RV for incompressible flow.

; - : l - L] I
(i) P¥; =pb, —P; +3B Vi ¥ Vi for compressible fluid.

Ifthe fiuid motion is very slow, so that higher order terms in the velocity distribution are negligible
shuwdeaslmdymmibhﬂuw with zero body ﬁ:mmd:umuhn‘m

4. Ata certain point of an incompressible viscous fluid, the stress matrix is

; [-F #.
b,J<|0o -2 1

1 1 0
* Find the pressure and the viscous stress tensor.
0 0 1 :

Ans p=l:{‘i]= 0 -11 .
\ 1 1.1

5. Show that
T Zxx;x,’ v (x ’E x
() R ) |3
nmﬂﬂewhuwwmm
Is this motion irrotational?

Ans For possible motion v,=0 , Yes.

Ghnvetuhquﬂmm ispmﬂ:lcnrhmwluu‘ﬁuatapoim{x,.xpx,)ﬁgimby

x2-r? 3x,x ' Ix.x
] 1 ;
ne R V= g " = rls .

Where ? =x7 +x3+x].

7. What is the distinction between a Newtonian and non-Newtonian fiuid?




8. For perfect fluid, write Euler equation of motion. Show that for a barotropic fluid with conservative
dP
body forces b=— 2. and P(p) = [ s the equation reduces to

¥, =—(Q+P),
Integrate this equation along a stream line.

9. For a fluid in motion, express shear stress components G, in terms of viscous stress tensor T, and
the pressure p. '

10. With usual notations, for an isotropic homogeneous Newtonian fluid determine the the constifutive
equation in the form

G; ==p§; +A' D, 5, +2u'D,

From this expression determine the *stress power’ for this fluid.

Question Paper of G.U
i 1997
1. (a) What is stress quadric of Cauchy ?
(b) Explain small deformation theory?-
(c) Define the rate of deformation tensor D,
V, is skew symmetric.
(d) Determine the form of continuity equation for an irrotational motion.
(e) Whena material is said to be elastically isotropic? What will be the number of elastic constants
i G =C
() For a fluid in motion, express shear stress components O in terms of viscous stress tensor T,
and the pressure p. Ix6=18
2.(a) Deduce the expressions for first, second and the third Lagrangian strain invariants, Ifthe Lagrangian
and the Eularian deviator tensor components are denoted by d; and e; respectively, to show that
the resolution expressionsare =

and vorticity tensor V- Show that D, is symmetric and

|
I =d; +3, T""
10
and g, =e, +i_"‘sn,.j 53—

{b) The stress tensor at apoint is given as

0 1 2
o;={ 1 o, I
2 1 0
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with @, unspecified. Determine ,, so that the stress vector on some plane at the point will be
ZeT0. 6
3. (a) A continuum body undergoes the displacement
U=(3§,-4E,) &, +(26, ;) &, +(4E, -E)) &, :
Determine the displaced position of the vector joining particles A(1,0,3) and B(3,6,6) assuming -
superposed material and spatial axes. For the above displacementfield, determine the displaced position -
of the position vector of the particle C(2,6,3) which is parallel to the vector joining particles A and B .

Show that the two vectors remain parallel after deformation. 4+2+2=8
(b) Define vortex line. Show that the equations of the vortex lines are
o, 5% g,
q, q; 9
Show that for the velocity field
v ={(Ax, -Bx,) & +(Bx, -Cx,) &, +(Cx, - Ax,) &,
the vortex lines are straight lines and determine their equations. 8
dfg ) (Egay;+q;u,) : :
4, (a) Show that a F = > where p is the density, a the acceleration and q, the
vorticity vector. ; 6

(b) Develop the Navier equation for plane stress

- L
20+v) . * T 2(1-v)
z - F
Viacd g0

dx,” . ox,

Uppe +Pb, =0
where

and show that it is equivalent to the corresponding equation for plane strain

RV, "u, + A+ gy, +pb, =0

£ A= 2hn 10
A+2u

a, . ;
5. (a) Determine the mean normal stress —;* for an incompressible non-linear fluid for which

T, =uD; +BD, D, where ¢ and P areconstants. 5
(b) Define creaping flow. For creaping flow show that in a stzady incompressible flow with zero
body forces, the pressure is a harmonic function. 5
(c) If a fluid moves radially with the velocity ¥ = ¥(r,t) where r’ = x x,, show that the equation
of continuity is
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1.(a) The stress vector acting on the three coordinate planes are given by
t* 1% and t;. Show that the sum of the squares of the magnitudes of these vectors is independent
of the orientation of the coordinate planes. _ '
(b}Shuwamanﬂ]dcfammﬁm&my,ﬁ:EﬂmimmdﬂmemﬁﬂmmmIthm
are equal. :
(c) If J denotes Jacobian of transformation from material to spatial coordinates, show that

-&d-gﬂug.l} =divv

(d)If o; = —pd,, where p isa positive constant, show that the stress power may be expressed by
the equation
Do, =2%
p dt _
(¢) What do you mean by strain energy of the elastic body. .
(f) Show that the time rate of change of kinetic and internal mechanical energy of a continuum is -

equal to the rate of work done by the surface and body forces. 3x6=18

2. (a) What are principal strains and strain imvariants? What is the physical interpretation of first invariant

of the Lagrangian strain tensor, 242+4=8
(b) What do you mean by the state of stress at a point. 3+5=8

The state of stress at a point is given by the stress tensor

g ad bo
0;=|ac o «co
bs co o

where a, b, ¢ are constants and & is some stress'value. Determine the constants a, b and ¢ so that
the stress vector on the octahedral plane vanishes.

3. (a) State the principle of linear momentum for moving continuum. From this principle, derive the
equations of motion and the equillibrium equations, 2+4+2=8
(b) A vector field is given by
v, =0
v, = A (XX, sz)c-ﬂi
V= A xx e

where A and B are constants, Determine the velocity gradient for this motion and compute the rate of
deformation tensor and the spin tensor for the point p(1,0,3) when t = 0. State the condition for which
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the given velocity field represents a rigid body rotation. _ 8
4. (a) For uniaxial state of stress in the x, — direction, show that the generalized Hooke's law

O = :l"ﬂijetk +2ue,
may be expressed as

g —E-—-B+--E—-ﬁe
T R T TR

Deduce that
14V
"=E OVE
(b) In a vertical elastic beam deforming under its own weight (acting in the x3— direction), the strain
components are found to be

8,0u - 6+4=10

A
Zl:ld'l.l}rarb“xs}

ey =a(b-x,):
€, =€y =¢; =0

En=Cg=r

where a and b are constants. Find the stress components.

5 (a) What do you mean by Barotropic flow? Show that for a Barotropic, inviscid fluid with conservative
body forces, the rate of circulation is zero. Also, prove that for a perfect fluid with negligible body
forces the rate of change of circulation may be given by

1
‘inﬁ[g] p,ds; 2+4+4=10
5 i
(b) Show that the velocity field : 4+2=6
v, t_Zx.iﬂs;

X
2
v, =—=
3
ri

where 1’ =x} +x2 + x? isa possible flow for an incompressible fluid. Is the motion irrotational?
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