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Unit-1

Basic formula of a spherical triangle :

1.1 The two body problem :

The motion of two body problem means the motion of one body of mass m, (say) relative
" to another mass m, (say) due to the mutual gravitational attraction. The :i:::;ﬁnn of the planet relative
o the sun in our Solar system s the classical example of two body problem. But the planetary motion
is governed by Tohann Kepler (1571-1630). In this case the force of attraction is the body of force
of consideration arising out of the two masses in which the persence of other masses (other planets)
are neglected. According to the Keplerian laws the planet move in f.l'“ipﬁc orbit but when ‘'we take
into account of the presence of other planets (or masses), the elliptic motion will be disturbed giving
rise to “disturbed elhphc motion”. otherwise perturbative motion. Since the sum’s motion is 700
times the total mass of all the planets so the pertubation 15 1gnﬂrah1e The motion of an artificial stallite
relative to the earth can also be termed as. mo—bndy problem as the man of the satellite is very small
compred to the man of the ea:ﬂ:s The idea of the satellites motion is derived from the motion of the
moon round the earth. Therefore the motion of satellite, we must have the clear understanding of
the motion of a planet governed by the following there law’s of Kepler— :
(a) Every planet moves round the sun in an elliptic orbit with the sun at one of its foci.
(b) The radius vector joining the planet and the sun sweeps out equal areas in equal interval
of time.
() The square of the time period (i.e time of one complete revolution) is proportional to the
cube of the semj major axis of the elliptic path.

viz-TIa-na ie Tz [‘:] a’,

1.2. Spherical Triangle :
The great circular planes when cut a sphere then a shape of a triangle with curves as sideds
- is farmed. This is called a sph::ﬁml triangle.
In Egure A ABC is a spherical triangle. b
O is the centre of the sphere.

In a spherical triangle A ABC. o B
the following formula can be deducted—




(a) cos a=cos bcos ¢ +sin b sin ¢ cos A 3
(b) sina 2 sinb = sinc : : . :
sin A sinB sinC o b
(c) cos (inner side) x cos (inner angle)
= sin (inner side) x cot (other angle) B c
— sin (inner side) x cot (other angle) :

: a
i.e;cm_acmcnsinacmB—sinccntB
(d) sin a cos B = cos b sin ¢ — sin b cos ¢ cos Aretc.
(sine - cosine formula) _
1.3. The motion of the centre uf mass :
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et my and m, be the two masses at P and Q and 7 and 7, be their position vectors with -
_ respect to intertial frame of reference O —xyz. Let R be the position vector of their centre of mass
place d at ¢ and ; be the position vector of m, relative to m; then : s
L+T=0 — (1) '

If f, is acceleraation of mass m; due to the mass my then

e — ‘m,m, r i
mf, =G ""::1_' [‘r')

" and f,, is acceleraation of mass m; due to the mass m, then

o= O ['E)

due to Newton's law of gravity.




- The eq® nfmnt:'a_ns of the two mass are

IGEIELIEI
l:-_rl. r)

Addmg (2) and (3), we get _
My F [I + m:,l_ rz — .ﬂ
lmegrahng t'mae sucuc:sawei:.r we get

m,r F lnlr1 = ¢ t.+ c, = (4)

. | — 1 + mlf
ButR = -—rL-——-—z-
; - my +m,

or MR = m‘l;’; + m,T,
- Where m, + mz=M. -

umgﬂ]mmsﬂhm{i),wcget

ME:E; +€

= < <,
or | M t + M —=(35)

_ Whichshowthatmnmofmusnfmemnmﬂsesiseimuatmtdruﬂmiﬁﬂmmu&m.
1.4. Relative motion :
Equation (2) and (3) can be written as

g m, =
= =G r — (6)
1 r '_

£ = -G 2 (D
subtructing (6) from (7), we get




r

=} %{E) -(8)

where [;L =G (m,; + my)

Which gives motion of the mass m, relative to the mass m,. Clearly this shows that planet (or
“satellite) is attracted towards the sun (earth) and the law of motion is governed by the inverse square

law (E Ii[) and is directed towards the centre of attruction.

In fig-1, if the mass m, at S is taken as the sun, m, at P is taken as the planet then, the motion
of a planet is also governed by the inverse square and is direted towards the sun. This principle is
also applicable in case of the motion of artificial satellite with respect to the earth as the outcome
of two-body problem. _

The equation of motion being a 2nd order vector differntial equation must have got two
arbitrary vector constants into general solution. But the two vector constants are equevelent to 6
scalar constants. Here for complete determination of the motion of the planet (or satellite). We must
know six conditions. .

It we know the position (x, y, 2) and velocity (X, ¥, 2) of the body at one instant we can
know the motion (in Newtonian sense) completely. Otherwise the known position of the body at
phase-space can help us in knowing the motion under the inverse osquare law (8).

Now taking cross product of (8) with , we get

| I X =0

=X 7 = Constant = h----(9)

Where }, is the constant m@ﬂu momentum vector.

Now if we take r = i + jn + kE with respect to sun as orgin. This from (9) we can get .
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X -=1

TR

i mmpnncntsné, -1 = A
j componets Ec-E& =B

5

3 =t

El=h=iA +jB +kC

k componets &N — nE =C
multiplying by £, 1 and ¢ respectively and then adding we get
AE+Bn+Cg=0
This is the equation of a plane passing though the orgin. (Here the sun)
Hence the motion of every planet or salellite takes place in a plane passing through the orgin (i.e.
| sun) otherwise motion of planet is a plane orbit.
1.5. Kepler’s Equation: _ _ .
Let m, be the mass of the satellite and m, be the mass of the earth (ot sun) at E. at the fows
of the elliptic orbit with respect to E as pole and EA(CA) as .
initial line. Let the polar co-ordinates of S be (r,Q) where Q is
measured from EA. A being the position of perige (perihelion)
" The angle Z/SEA =Q is called the true anomaly. Draw
the auxiliary circle with the centre C of the ellipse as its centre
and the semi-major axis *a’ and semi-minor axis b= QF
SN is drawn perpendicular to A’ and SN is produced to

meet the auxiliary at Q and ZQAC=¢ is called ecentic
anomaly of the planet or satillite.

The rate of description of the total angle 2y in time T..i.e. time for one complete revolutim
by the elliptic orbit by the sutellite (or planet) is called the mean angular motion (or speed) n.

2n
n=—
T
The mean anomaly ‘m’ is defined as
m=n{t— 1)
Where 1t is the time of passage of the price A by the satellite.

L o2r
Som T(t 1)
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'snlmsﬂand(ulwegﬁ .
. r=a(ms¢-—ﬂ} +a{l=z}sm¢

"= =2 [cuszqi -2 cosde + e? +sin? ¢ ,ezm;¢] :
== az[}.-h-mq:%:zcuszii]_ '

‘= = a®(1~e cos ¢)°

=5 r= n{l—a.mtb} o e o ek (iiiil
Agmﬁmmeqﬂafﬂmeﬂipﬁc or bit - :
i g (l-e? ;
L= ,5; = 1+ esin 0, whcrcf = E__i(_l=i i “{3"“1)
¥ a a 13
Dtﬁ‘ermnmwnhmspecttom
= -;-i-f = - Slﬂﬂ'ﬂ

2

g i

= ¥ = e sinB .
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But from (3) t = aesind. ¢

= a ¢ sing. ¢ = I-'a_(llje_?] ¢sind

) - [ g0
= a¥(l-e?) sing

_\B sin @
a ga|l-e’sing
_jr 1
a 7
; ol n as
ora(l-ecos¢)dp =. E'-.:lt usimgaqn {.1,',}'
a using eq” (ii)
Integrating above eq® we get :

a(0-esmg) = JE¢-1) |
where ¢ = Oatt = 1, the time of crossing the perihelon (or perige)
T TG Y R d Wy '
s - esing E(t 1) . (iv)

.- Since the rate of description of the total area = ab in period T

ﬂ:m.mjl-i:i
nab

AT = =

T i
; r:a?ilvez
- o
But it is equivalent to
A Lhw b
dt 2 2

= 128 = ~)pal-e?
2 -




or n= %
a
or na’ =p.
Hence from (iv)
¢ -esing =n(t-1)
L -esing =m l.'.n=E andm = nft - T)
a .
which is the chi:r'é equation.

Example 1. : Communication satillite of the earth are placed in circular orbit on the equamnd
plane so that the remain stationary with respect to the surface of the earth.
Determine the minimum oumnber of satillite required for every place and the equation
to be in view of at rest one satellite. ;
Solution  : Communication satellites are gio-stationary satellite in the that they remain stationary
* with respect to the surface of the earth, Therefore
a sotellite needs to describe the whole equatarial
plane in 1 day = 24 hours. i.e. to describe 360°
angle at the centre. [t rg is the radius of the earth,
x is the distance of the satellite P from the earth’s
surface and o is the angle made at the centre C

(asinfig.)
then
CO8 Qs |, diamiaii s (1)
I +X
since
£ = 6378 km
2
Y (- R @)
and a = (rg +x)

Also T =1 day = 24 hours

=124 x 60 x 60 sec

= 8.64 x 10* sec
10




. From (2)

W2 4x(3.14115) 3
(8.64 x 10°) - W—UEH}

since GM = M = 398603.6 km¥/sec

1

o5 +x - (74.6496 x 39315&:1&.15 3 .

(39.46729329)3

A 2 '
(8.64 x 10)3 x 10% x 73.594790

1
(39.476)3

=TI +X =
E

it

=T X = 42241

6378

42241
0.15099

.. From (1) m.s o

1

, sa= 81°.31
s 2= 1620
- To cover 360°, we require at least 3 satellites.

1.6. Determination of Orbit :

The geocentric position of body (like satellite} means the determination of the required six
elements in a celestial sphere by means of observation. Otherwise with the information of the six
elements, it is possible to determine the position of the body. But it is essential to take into account
of approximation the method of observation. Of course the orbit result is affected by the motion of
the earth which is not case in helicuntric system of referrence where the sum (or other stars) as the

centre of reference.

1.6.1 Laplace method of determination of orbit :
Let S, E and C be the position of the sun,
the earth and the comet (or other body)
respectively

ES=R,SC=r,EC=p
' 11




so that

r’ =p?+ R - 2PRcost ------ (1)
R+7 =p=pp -meee @
RAT =p'p+pp ----ae (3)
and R +r1 =p"p + 20§ +pp" --eenev OF
whrcdaﬂsmndsfmdiﬁﬂmumﬁmﬁmmpemtnaml}'déﬁnedﬁmeBut,t'mmﬂmeeqﬂ
a . - » d r
- o AR
1‘3 _
- T
e &
— M = R
=W RgER

where subject to the newtime T, it is choosen as unity

.~ (4) can be transformed to
E r L -1 : -
~xF - =B F+pp
E (F-E) o T = e .
W D e +2p"p" + pp” using (1)
: -F l I- = A -y LT .
==g |75 | R=PPHWH F PP -ee 5)

As mentioned above, the new modified time 1 is defined as 1 = R(t—t,).

where t, is the intant of consideration.
The unit of mass is taken as the mass of the sun and the unit of time in such a way so that

k = 1. Hence the prime denctes differentiation with respect to the newly define tire 1.
Laplace methods deals with the determination of p’ and " for determination of the orbit by means

of the necessary three observation.
We shall choose p at some instant say 1, so that it can be written means of Taylor’s series

2 . :
(ﬁ}t i {ﬁ]l:l] + T{ﬁ'}:ﬂ % [f’"}r;ﬂ T ansins mmmmen - [15]
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The observed values cannot be takmasgmntadasaccmtevahe,&mefmﬂheywiﬂbem
amount of error. But if we choose the time of middle as the first instant ( T, ) of observation then
the expected error can be minimised in great extent.

We assume that (p°)_ , one (§”), ‘are known. Therefore §” and " can be assumed with
known values of (§) and (p”),.

 Taking dot product of (5) with (p x p) and (p x p") successively we get
1 1

(-5 )R] =l #s] ™

1 1 - Y : r. & o S
_[F-h—;][p.p.ﬂ]w[p,pp} ------ ®
Since p, p”, R are known, therefore we can solve for p aﬁdrfmm{ﬁ} and (7) with these
value of r, we can get p’ from (8) '
Hence from (3) we can get ;*. Thus with the known values of ; (position) and {velocity)
the orbit elements can completely determined.

1.6.2 Gauss's method to dertmine the elements of orbit :

In Laplace method, we dertimine the value of ' and p (p being the direction of the
position of the body or satellite) to know the position 7 and velocity * expanding p by Taylor's

Semes

6) = @) + 1) 5 67 + oo

But in Gausses method, we truncate the dynamical theorical results of f and g series defing
time suitably given by

r, = stands for position vector at t = 1,

,

re Fr gL o mrerseeeses (1)

where -f = 1 - lo‘t:"'- : Gt + ...
2 _ 2

13




EEL=-—0OL"7T —1T + ..
G=i=rﬂ'r°

3 5

I, T,

r.r T
T='-20. = .2

.2 L

Of course the time of superation of the position vector for three observations is to taken small

Since the orbit is a planeorbit and if

=",0L+¢0h  -==----=--- (2)

Takiﬁg cross product of (2) with r_] and E successively we get

nxrn =¢;n Xxpandr, X = ¢, n X

. (rl'rz] w (rl'rs) ’ [IE'I3] — O (rl'r:a]
where [r;, r;] represents the area of the triangle with r;, 1; as two adjacenﬁides-

LSRR CE Y
. l[rl-ﬁ], : [n.r,]

But the three equaﬁdn‘s of is given by (2) are not linearly independent. But if we make use
of T = p - R then we can write (2) as
Py - Ry= CL(P_l : El)"‘ & (E 5 E3}
= C,p-p, + Cyp; = C,R;~-R, + Cxﬂ_l ““““ )

which show’s the p's are linearly independentand R; (i = 1, 2, 3, ...) are the distance of

the sun from the observer instead of the centre of the earth to avoid effect of parallax.

Now are take
T =kt +t), T =kt +t)
T, =kt +t)

sothat Ty =1, T, =T, - T,. T, = -7,

since we modified time as
| t= k(.t - *u)

14




where to stands for the time t, (time of mid observer) that corresponds r,
In the light of (1) we can write

- *

h=fin+g G - () G=hp+gyh rooeeeee ©)
Now making use of fand g series (1) we can write (1)
1 1 3 | I
1‘1=I'E‘5T31- E1=T3{1"6‘5T3}

2
Taking the cross product (5) vith r, and r, successively

L, .3 : b
fy=1- "“:’Trz- g =T [1 - E.’JT12]

#
o=fir Xn g Xy,
i -y fi_x-
=arlxr2--gz l'I I,‘z

¥ —_—
and r X =o0-g 1, Xp

#

=]

== 1'1 sz

-l 1 — _ __f

=>---It><r1=l'lxr2
B

Again taking cross product of (5) with E € successively we get
T X = fig; — g, ¢ xg

’ gl

[_I.'l.l'J] _[1—]11-3] i [1'2,1'3.]

" fg,-fg -8

T, [1 - ‘é‘ UT:;Z)
C= A

fg;~fig

b
'-13(1 - %GT;EJ
C =

3 fig; - g

15




|
figs - fig, =(T, + T;) [1 - P o(Ty + T)']
; 1

+-"‘I‘h' ‘Tz‘—_T]
T 1 2 2
L0 mL Tl o —g(T" + T
I Tz[ 5 (T, p )]
T 1 2 2
Ci ==2[l-=06(T.°-T
3 T2[ "% (" - T3)]

Taking det product (4) with 5, x p,

= - Py (B x B3) = (B x B3) [C\R; - R + C,R]]
=(p, x ﬁs) -[_2+C1EJ'.R—Z+ CiR—J] = N

From this eq” we can get

A : 1
p; +— =0 I C;, C, are functionof ¢ =—
6 ; L’

But r,? = p,? + R,? - 2P,R, cas 1-
<. we can solve for p, and r, from these two equations. Similarly we can solve for p, and

p; and r,, 15, ry can also be determined from r = p - R

# .

Hence, ¢ apq r, can be determined from n o= fin+gn
n=fn+tgy
#*

Hence the elements of the orbit can be known for the known values of [-; and E 5

Exercise
Q.1. Show that the motion of a planet relative to the sun is govern by the inverse square law.
Q.2. Show that the nature of orbit of the plahet of satellite depends on the velocity of pmjm:’tian..
Q.3. Expressof eccentric anomaly ¢ in terms of series of e (eccentricity) and m (mean anomaly)
Q4. An artificial satellite is released at an altitude of 400 k.m. with speed 8.85 km/see bunz:mtalljr
Find the perigce, apogce and the time period. Also determine the total energy per unit mass
assuming the centre of the earth as the centre of force, radius of the earth as 6378 km and
GM = 398603.6 km/sec?.

16




Unit-2

Three body problem :
2.1. Defination : '

" There bodies attracted each other according to Newton’s law of gravitation. To determine the
motion of the bodies which can move freely in space in any manner intially. These body is
known as the three body problem. Sun, moon and earth are the example of three body
problem.

2.2. Motion of the centre of mass :
Let m;,m,, m, be three masses with r, r. , ,
respect to the find orgin O. Let A, B, C be the
position occupied by the masses m,,m,, m, §
respectively.
Sppose that

AB=p,=r -1
E—E“ﬁ-rz
CA=p, =1 -1

The equations of the motion of the masses are

. k’m,m 0 km,m,; p
m’_z [ 2_.F)_2.i._._.....__.:I llﬂ.g_

] pu Piz Pyl pIS
m,
=K’ E—f‘ P2 - Ehﬂ;" p]ljl ““““ (1)
P12 P1
Sirmilert
m,m, - m, ~
my— = k|23t p,y ~ l“_.L_J:_ PBia ] mmmdees (2)
L | Pz Piz )
2| m,m m,m
e Pt iy o gl | i 3)
! | P3 P23 J
DH+@2)+(3) =
s W it Wik [ile B
m, l-i mz rz I‘IE3 4 [-}
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(M

23,

=m— +m,— +m3— = C
| Iz h

=m 5 + m,p + myn = Gt + Cz ————— (4)

Where C, & C, are two arbitrary constant vector. Let R be the position vector of the
centre of mass of the saytem consisting of the mass m,,m,, m,

m g+ m,h + myn

LR =
m, + m,; + m;,
P L L + m,r, + myn e (5)
M
Where M =m, + m; + m,4
= total mass of the system.
(5}*—'me£ + m];; +.m3;; MR = e (6)
~()=MR = Gt + G
o e S gy S
M M
by C_ = -Ez
= i = _l' b= —
at. + b (7) where a " v

Shows that the centre of mass of the three masses is either at rest or moves in a straight line
with constant velocity,

The eq® (7) is also known as the first integral of three body problem.

Here the vector '

a = (a, 3y 2y)

b = (by; by by) _

involve six scalar constant

Integral of Energy :

The eq" of motion three masses m;, m,, m, place at the points A {E_'}, B {E}, C{rj} are
deducted

m1:‘ = kz[mln;.l 512_m3ﬂ;l Ell] pass LY
L P2 P

m,— = k;l:mz“? P - m‘m;z I:_}u] """"" (2
3 Pas Piz

18




- m.,m, - m.,m, -
e il o kz[_L;L P — g Pz;] ““““ 3)
I P P23 ;

By taking the dot product of the éq" (1) by~ we get
: i 1

- mm, - — mym; - = .
M W kz[ =% —Par Yy by e

h 5 Piz n P h

T wh m-omy - = mm, -+ — | ’
m;—.— - k’[—%i —Py = =5t —pp| - @)

2 B Pz D0 Pz & ,

- m,m, - - m,m,; - - ] . ' .
;e Syt kz[ -y = 5 —Pu| = 3) ' A(T )m

I Py 1 Py B T

How (1Y + 2y + (3) =

] . == -
2 M—— = [ (__"} (_‘_ n+ _LL {—__ JI]
= e Plz P2y LY P 5 5

m, - m-m, ~ m,m, .
- kz[ 12 By, ——2 7= P + _Tlpn] ““““ 4)
Piz Py, P
Now
. o B
dtr, 5§, d&t\r, g,
TN Saitiond
Iy Iy
I & %
3 ——————
S 2 dt g,
g 7 :
T —— 5
dt r, .()
d 1 zdu
R .. g —
and g -Du at
& 5 o du
u dt

19




1
= <-eaee (6)
u

Using (5) & (6) in (4) we get

L 1.d -3 d| 1 df 1 df 1
W i e e i b et ) - 2 S i,
uz_. o T NP P, " p,. e o,

2

= Kinetic energy consisting of the massis m;,m, & m, and

k’m m kK’m_m k’'m m
T g A - : S
P P Py
= Potential energy of the system.

(7) can be written as

d
L T+v).0
= (T Y]

= T + V =E = g constant -—-—----— (8

This equation (8) is called the integral of energy. This equation says that the sum of the K.E.&

PE. of a system consisting of three masses is conserved. In (8) the arbitrary scalar constant E is
called the total energy of the system. .
Summary : The integrals of (1), (2) & (3) are

3 T T R — (A)

20




with usual manings of the symbols. The total order of the equations of motion of the system

ZR3IE]XIF+2L 5T
=18
Therefore the general salutions of the equations (1), (2) & (3) must contain (18) arbitrary
constant
The soln (A) contains 3 + 3 = 6 arbitrary scalar constants.
The solo (B) contans 3 arbitrary scalar constants.
The soln {C) contains 1 arbitrary scalar constants. :
Thercfore the total number of arbitrary scalar constans involves in the integral's (A), (B), (C)
=§+ 3+ 1 = 10 which is the leds then 18.
Therefore the solutions D, E, F cannot be the general solution of the equations of motion of
the system consisting of three bodies. Hence the problem remains unsolvable ofcourse some
solutions under certain restrictions can be found in 1887.
" H. brunt demonstrated that the solutions are independent. Also in 1872 another astronomor
poincare also found the some which was demonestrated by H. brunt.

2.4. Stationary Solutions of the three body problem :

In 1772, Lagrange descover to special salution of the 3-body problem which may be termed
as stationary solutions. The stationary solutions of three body problem means one in which the
gemetrical configuration of the bodies remain unchanged assuming then to be projected in a plane

The invariance of the geometrical configuraction can take place in to different ways as stated
below. |
1. It the motion of the masses is such that their mutual distances from each other remain unchanged

through out the motion which can occur if the bodies rotate about there centre of mass as if

they are rigidly connected in the same plane throughout the motion.
2. It the mutual distance between éach pair of bodies expand or contract in the same ratio. So
that shape of the patterns of the points remain unaltered,

21




2.5 The n-body problem :

The solar system with sum as the dominant mass is a true model of n-bodies with mass

mg(et = 1, 2, ...n); Let 1, be the position vector of the mass m,, relative to the point O.

Let P,y be the position vector of the mass My relative to the mass m,, .

*

Ta TB

.

Ed
A D X B
pﬂﬂ

We assume that the measser passes spherical system for which they can be consider as point
mass and only external forces are their mutual attraction.

The eqe of motion of the ™ mass is

“ru =1 puﬂ puﬁ
m -
k’m e
= m,— = -«f“—:_ni Pg —===== ()
Fa i pnﬁ
pea
n k'm om, —
Waives Fme== 2 3 —P py ---- @
a=l 1 B=l  Pgg
it 2
Now
Km.my — kmgm, —
B
__“3.E P + _...__3_"‘ B
Pap Paa

= (2) reduces to ima Y | R (3)

a=l Ta

Let R be the position vector of the centre of mass of the system relative to 0
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M'ﬂ
=)
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|
i
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Where ; g b are two arbitrary constant vector from (4) it follows that the locus of thecentre
of mass is a straight line.

(4). is known as the first integral of the n-body problem.

Again (1) gives
s= S T - .
o X M— =1, XY, —mu-“—?&puﬂ
Ta =t
Bl puﬁ
n F i
_ kmumE &
p“ ?41 Pmﬂ
fae o
2 . n & k'mmg _ .
=3 ixan=E Sy 00
[l = s Q:E l].ﬁ




Now
k*m oy —
3

Pop

T X Dog

kimam,_ —
g
sarﬂxpﬂ'ﬂ
Pga

4=

1
“2ee x Bg -  % P

t

puﬂ
e m_m
£m,my
= B - o) Pog
Pag’
K e e —
. 5 Pap™ Pap
Pop

=0
. (5) reduces to

n e -
Y xmy, — =0
T

I:l"l. (i)

let ) be the angular momentum of the system of masses about 0.

dQ

—= [}

-, {6) reduces to T

= Q = aconstant vector L (5&}"]
The equation (8) shows that the total angular monentum nfﬂ:esystcmabom'ﬂ is constant i.e.
the total angular monentum of the system about is conserved and equation (8) is also consisting
of n bodies. Get is also known as the integral of angultar monentum of n-body problem.
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2.6. ‘Equations of relative motion :
Let us consider a system consisting of three bodies with massen m,, m,, m; placed at the
pomnA,B,Cmspecnvety.m L. T, I, be the position vector of A, B & C respectively
relative to a point 0. S

Letp, = AB=15 -

E"-BT:='_5"'-'1

and p;, = CA =1 -1,

The equations of the masses are
2 G
shes E....I.'_;:. Pa ¥ L.'l;l Pi3
i P By
= ? [m;Pj; + ! } _________ (1)
Pz P
Similarly
aw m —_— m —
— =K —:!'Pn + —J; F‘u] ““““““ (2)
! P13 P
~=i’ Eigiﬁ-ﬂ';p_n] --------- ®)
h | Py P2

Now (2) - (1) and (3) - (1) =

o BN —

5] L Pz

2 P ? _-u E' ;
= (m, +m,)p,, + k'm; - e =l | cecenanas @
p'ul Py P
and
L Iy Pz
e i

|{ [I'II -!;H‘I}] & kzl:l:l 3 _IZ; _________ (5)

Pia Pu F'u




{4)mthcequauonnfth:msm=r¢lanvemﬂmmm,M(S)umcnqlofmumqf
relative to m;.

If my=0, it is obvious that the equation

(4) Describes the motion of m, around m, as in the two body problem.
2.7. The restricted three body problem :

A particular solution of the three body problem results when one of the three masses is so
small in comparison to the other two that it can be neglected as far as its gravitional effects one
concerned. This may be called an infinitesional body compared with the two finite bodies.

Let the two manssive bodies barring spherical symmetry move about their mass in circular orbits.
ﬂmﬁmgﬂnhﬁnimmalmmmumhmcmmbhdmﬁuﬁmm&ﬁehmhn
does not influence their motion.

Lf:tmbememasanfmcmmlluufﬂlemﬂmmmdmmthnnfﬁtmmm
the unit of mass is so choosen that the unit of the time be choosen so that the gravitational constant
) Za

LetC.hethecenutofmass ‘m‘atﬂanqussl-m&tﬂ.htusinmdumamr&inm
system C-xyz with C as the orgin so that A and B lie on X -dsis. Let P (x, y, 2) be the position
of the infinitesional mass,

Let v = CP
-y = velocity of P relative to the moving system C-X Y Z
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- acceleration of P relative to the moving system C-X Y Z

-4,

The equation of motion of the infinitesional motion relative to fixed system at C is

-1
_‘dr} _ Km BP K AP
.ﬂt . BFZ BP AP* AP
2y - s i m g
:r] %xr] +2wx_-<-l-l—'} +wx{wxr)—- £ “m}p,
t e . » p; ptl
= at+2wxy +w(wxr)=-l-m_l-ﬂ_l ........ ()
3 3
P, P,

Where ; = i, @ continious vector relative to n- system.

We have
r=ix+jy +1'Ez,

and a= = =ix+jy+ks

-y

wx =gk x(xj +y) + 2k} =n(x] - ¥i)
_;x;‘=nf: x[i'i‘+jf}+i:1ﬁc}=nx?i-ny3
nndwx(wx_)= [l.'l.)lj-l‘l.}"]).

n’x (— i) — n?y]

= -nz(xi"'jr])
p_lf'(x*xi)‘ih+yj+zln( "

€=(:-xz)?+ﬁ+zﬁ

.. The certesian equations of motion are
X- Zny—nzx-l—m x-x]-t-rg-(x-x} -------- (2.1
1 3 2
p P,
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R e e @2)
P, P,
E. =. i-T z.ﬂa- L =eera==a {2‘3)
P, P,
anbykcﬁlir‘sﬂ!irdhw
2!1'a3,.r2

PﬂT-'ﬁ

Let us choose the scale of distance so that

% =lieca=1
sn=1[sk=1,m+m,=1]

Therefore the equations of motion becomes

o ool B m -. .

2.2 =x. — x-x])-—s[x—xz) -------- (4.1)
pl pZ

- 1-

r+2x=:f-—?:r--%y -------- (4.2)
I:‘II pl

Z=- ~J:-;IE z--E% Z eeeemee- (4.3)

p p

2

The general problem of determining the motion of the infinitesional mass is, therefore, one
requiring six integrals for its complete solution.
Now let us consider a function U defined by




pﬁ:[x - xl)z + yz + 22
pzz=(x - xz)l +y + 2

2|:.-;.3§L =2 [x - xl)
: @z% i3 Z(x 'xz)

Now

u_ 1 a gl v g 9P
o= 5 &+ -mEDp” 2L rmenp’ =2

S lm ¥ m
2 ax . T dx

P, P,

o X=X
PO [l RS e 1

le Py Pz_.pz

a_k"._{= }.r ,.]ﬂy - _Ilr
ay pl: pzl

du 1-m m

—_— e F = —=F
oz 3 3

_ I“}l pz
Equations (4.1), (4.2) and (4.3) reduces to

S(5.1) x 2% + (5.2) x 2¥ + (5.3) x 22
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U v v

= 2xx +29y +28F = 2h—= +2 +25—
4 XAy
52 (k2 +3* +22) = 54y
dt dt
=5 i'u2 = 25&
dt dt
0 13
= — [v'-2u} =0
o 02y
= v-2u = - ¢
= 92-2U = - ¢ -eeese (6)

Where v is the speed of the infinitesional motion.

Theequanm{ﬁ}mvulvcsnmmhmcmsmmmfmt(ﬁ}umumgmufﬂneqm
of motion. Hence to know the complete solution of the equations of motion, another five integrals -
are to be obtained. By further restricting the motion of the infinitesional mass to the xy-plane it is
possible to reduce the number of constants required to three. Jacobi has shown that two of these
are related to the third. _ :

Ultimately, therefore for a complete solution there remaining to be found one new integral.
Bnmhﬂdmummmatmmwﬂgebncumgﬂsmmmnmmmmw
(6) is very useful md:scussmgthcbchavmur of the infinitesional particle.

For simplification of discussion, let the infinitesional niass move in the xy-plane. The equation
(6) shows that v is a function of (x, y). The constant C depends upon the initial position and velocity
of the particle.

The curves of zero speed are givenby v = 0

=2-C=0

Lo PR S, P ™

= X +y +
Jox)ieyt Jox)tey?

Motion of the particle occur only in those regions of the xy-plane for which y* > 0
=2p-C= 0. The curve represented by the eq,, (7) mark the boundaries of the regions within
which motion can take place.
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' A few of contour curves are sketched in figure below.

Wehnvetakmcibcibﬂs
Case I : When C is very large 2| - C = v* mubepomnveifx,yareveryhrgeur

Case 11 :

Caselll :

p,= i(l ‘Il)z*']fz or P, = j(x ‘11)1‘*}'2 mmmﬂ%mx,ymwlm\ge

the curve ¢, asymotically appraches the boundary circles. FormllvahmofP,,Pzﬂm
ovals C,,C, sumroundmg the masses 1-m and m become small in size. Motion of the
particle can occur if it lies within this contour or outside the nearly. circular contour C,
If we allow C to decrease, the ovals around (1-m) and m enpard and the outer contor
moves towards the centre of the figure. In this case, the oval contours merged into a
single closed contour around the two masses. The motion of the particle can occur if it
lies within this contour marked C, : .
If C is decreased further, the regions of stability that is, the areas c-fthe plane in which
motion can occur, become larger. The enlarged oval pattern around the finite masses
marges into that outside the enterior oval leaving only a small region enclosed by C,
where the motion is impossible.

Prnb]r.m Let x="ycos®, y=7sin® denote polar co—nrdmauon in the plane. Show that the
~ equations for purturbative motion in two diminsions become
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2
f- r92+km=—@v-R-

7 o
%(ﬁa)=_

where R = kK’m’ {%"‘3 {a a')}
Solution : Let the dominat mass m, of the group of three masses be placed at the origin of a
cortession co-ordinate system. Let m denote the body whose motiion is to be studied and m’ be
a mass disturbing the motion of around m, . Let (x, y, 2) and (X', ¥, z’]heruspecmlylhapnﬂum
ofmé& m’ at time t. The equation of motion of m are

i=_k1m+3_k
R T i
2
y=-%1+%
where R = K ’{l— +i?;+n’}

2 ; = =
=~.k—(;i+yj+zk)+1%+j-a}£+ka—R

dy dz

r r
{A]15mevectorcqnnfmnnanﬂfﬂmmassmamundmlunderthndmmmofm

Inthepm&mtcase,tbemnummmdmmmnmmth:zpimeasﬂmplamofﬂumum
Let (r, 8) be the polar co-ordinate of (x, y) relative to O pole and OX as the initialline.
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we have

r=rt
.. 1 d A
Z=(f-@f+ - — (P80 -------- 2.2)
T (I ]r T l:h {t p {
s R 6 8R
vR:F—-‘i‘—_ """" 2'3

Y% P Ll

x=rcosB, y=rsin®,z = 0
x=r1'cos®, y'=rsinb’, z’ = 0

On substitution of (2.1), (2.2), (2.3) into the eg” (A) leads to the following equations

i kKM . dR
ool Do g 2O
S r or

2
=— ']L':E .'?E wamnis T35

g Jl rcos@r' cos® +rsin@r sin®’ }
km" 4—-— 3
P v

i}
=
=]
i
|-

rcos 8 r'cos® +rsin@r' sin @ }
- ]
T

g ey l_rc&sﬂ{cﬂ-ﬂ’}__}
= k°m {P

r;I

Exercise

1. Discuss the equilateral triangle solution of the three body problem.

2. Discuss the Path for the masses corresponding to one equilateral triangle solution.
L X R J
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© Unit-3
Perturbation

The deviation from the motion of two-body problem due the prence of other bodies or
atmospheric friction (drag) or oblateness of the earth (for motion of satellite) is called the perturbation.

A modifacation in the mathematical structure of a problem changing the problem from one that
can be should exactly, the unperturbed problem, to one, the pertubed problem for which it is usually
possible to obtain only an approximate solution. The methods employed for this purpose from
perturbation theory. These methods attempt to express the solution of the perturbed problem in the
terms of the properties of the solution of the unperturbed problem. .

Example of perturbation problems can be found in nearly every branch of mathematics and
PH}’SICS and astronomy. The simplest case occurs in ordinary algebra. Suppose that the roots of the
equation f {(x) = O are known (the unperturbed problem), and that the roots of the equation

f(x) + eg(x) = 0 are to be found (the perturbed problem). The parameter & Isl'm'en-neaswesthc
size of the perturbation.

Examples of perturbations :
" Some of variations in the orbital parameters caused by perturbations can be understood in simple

terms. The lunar orbit is inclined to the ecliptic plane by about 5° and the longitude of its ascending
node on the ecliptic plane is observed to regress a complete revolution in 1861 years.

3.2 Equation of the Orbit :

For the motion of the earth’s satellite the atmospheric arising out of scalar winds and obletness
of the earth’s topography may be taken into account depending upon some physical situations. Futher,
the perturbation on the motion of a satellite can be taken in tangential direction for atmospheric effect
(or drag)

Let us consider the motion of a mass ‘m’ in the Newtonian field of g;rawta.tmrn exerted due to
the mass ‘M’.

- |
@ A !

3 cv
The tangential force R = =

Where V is the'orbital speed and r is the ditn. from the centre of mass, then the components

of acclerations are — Rcos@ and - Rsin (i}
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ds rr ds
Or-—zﬂi.ihlund-— ﬁd?
r° dt ds r dt ds
nr-iﬂ:md- EE‘
r di Corodt

. The eq" of motion in a plane is given by

’r-rf}z=_£1-£ﬁf ______ (i)
e

1 d 24 C

;E(rﬁ):-?ﬁ ------ (ii)

bl g T
dt u® do  dt
. _ 1 du H
u? do
du
- - H—
do
peid o[ g
do de ) dt
-H dzl'].|."i_ﬁ ﬂ\EH
a7 ~ e’ de)r’ ..
L e 5 de
- - W2 LY, cHe? 22
6 de
»(using (iii))
(1) reduces to
d’u 2 du 1 1.4 Qb I .2 4
« H* G — = - +Cu’'H— - —Hu
E voer YHOY 3 ha ™ .
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. Which is the differential eqn of the orbit with variable H = h - ¢6.

Now
e A
H* ~ (h -c8)’
= p(n-c8)”
-2
] CE
=ph?|1- =
" [ h]
0 b
. %;[1 f_]I L
h) | h|

Since for small ¢, the higher order terms are neglected.

». The differential eq” of the orbit takes the from

du m 2c8
=’a?*“=—hf(’*7]

-, The solution of the equatioﬁ for the orbit is given by

u= Acos (8-w) + ::'—2 [1_ + Eﬂ}

h
i
= u =-E1- [—-ﬁh cos (0-w) +1 + 2—Cﬂ-]
h m _ h
b :
=-—u=14+ ecus{ﬁ-m} +1 + EE—B N (L)
i h
Ah?

where €= ——
M

; : 2c6
Which is the equation of the orbit but it is not an ellipse due to the presence of the term [ - h_]

_ - dul .’ (dB
Letus assume that at certain position at point B( g, 8, ) having velocity }| - 8 P,

the perturbation force auses Lo act.
1
o ‘E[l + e, cos (6, ‘“H]] """ (v)

Where suffix ‘1" is used to indentify the elliptic orbit when the perturbative effect is absent.
2

h' r “
In this case £; = —;— withh, = h - ¢8,

1 1
1—'1 (h - CE.}
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=h_3[1_§]2
u h
TR h

Since for C, the higher order term are neglected.

4
:f,:f[l-'—“ﬁl]
h

Now at the point P[u, 8, ) both p and { a0 } must be same.

(u, =) = ,;_I[[ + €, cos (E,uml}] = ie |:l +ecos (0, -m) + 3":—l:-:'~:|

[[ u,. 8, ) is same for both the urhil]
1

1 2ch
or e—(-l—-zcjlj[J + & Cos (GL'WJ] = [I + ecos (0, -w) + %]
h

or [I + e, cos (8:-w,)] = [l-z‘f'][i + ecos (0,-w) + ziﬁl}

or 1+e,cos (8,-0,) =1+ecos (8, -m,) Zc:l “Zr,:}, - ZZB‘ e cos (8, m] -ﬂ
5 2C55|
~ecos (0,-w,) =ecos (0, -w,) - cos (8, -w) ----- (vi)

| l:(%E]P, =} ;ll [, sin (6, -a0,)]

|:—¢: sin (0, -w) + ?h-c]

Differentation (iv) and (v) w.r.. @ then puiting [p.], E]]

| =

= -¢,sin(8,-w) = [.l-g%?—'J[—asin (8,-w) + %c]

= - esin(6,-w) + %c+ %esin[ﬁrm] +0
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= e, sin (0,-0) = esin (0, -w) - % - RTB‘ esin (8,-w) ----- (vii)
(vi) x cos(B,-®) + (vii) x sin (8, -w) gives

e, [cos (8, -©) cos (8, -w,) + sin (8;-w) si;: (8,-v,) ]

=ch2 (8, -) - 2_{;?' e cos? (8, -) + e sin® (8, -o)

O sin® (6, -w)

-% sin (6, -w) -

= ¢ [sin (8, -m,-ﬁﬁ-m}] =g~

260 X 4

=e.d=e- L =ax s (0,-0)”

28 2

il B R sin (8, -w)
= de, = - [ lcﬁ,e + % sin (Ell-m)] --=== (ix)

Again (vi) x sin (8, -®) - (vii) x cos (8, -w)

= e,00; = % cos (6, -®w) ----- (x)

From (ix), it is sun that there two parturbative effect, one is purly linear called secular perturbation
and other is called the periodic perbutation. L

The effect of periodic perturbation is negligible in the long run but the effect of secular
perturbation through small can effect the system considerably.

Also from (x) the parturbation of langitude () is fully periedic, so it can be ignored.

Let A {,, An,and A a, be the parturbative effectin £, mand a respectively.

Now £, = f(l-—-—zct;ﬂ‘)

logt, = log ¢ + log (1-%&]

= log! + ['Et:h"l?!,] + 0. (ci)

-~

[order of C? has been neglected]
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At 2C
—Ll= - = A6
2 h !
Al 2C
or —l= . 2= 2m
! f lution 6, = 27
4cn or one revolution 8,
h
Again
2 2
g b
a
¢ = aq {l-ejz) N az{laez]
log £, = loga, + log(l-e® a
. E & | ( } =a(l-e1}
At _ Ba -2e’Ae
£ a

-ean= (xi)
(e
From (viii) ¢, = € - Zn:ﬁ, - -%c sin (9, —m}

D

[-- Periodic perturbation can be neglected)

log e, = loge + ]ug(] - ,ZC_BL)

h
= lﬂgﬂ + lﬂg [- -JZ—-c-hﬂ'-]*'d[CI)
= loge - Rl
h
Ae 2C ;
% --B—L= " n [-- for one revolution 8, = 2n]
1
Ae, 4Cn _ Age
e h e
From (xi), we get
a4

Aa -2 e, [ ¢m)
; T e [
i a, (i & )

e




o _  dem PO
Aa _ b " h
2y h ]‘e|‘-
h l-e,
den le,)
SN L IR |
h 1l-e )
‘Also from
na’=p

we have 1, =i a]"”’

! 3
sologn, = IngJ; + [-5] log a

...._&'nl = E »* EEL
n 2 a
3 dmc 1 +e,
= = = X |=— = =
2 h l-e,
- 4nec 1 e, (xiii]
h ].-E-'l

From (xii) and (xii) it is sun that perturbation in a decreases and that in ‘n’ increases even for
small values of e,

This these changes are called the “variation” of the elements of the tum orbit e and .

Which are integrational constant.

Problem : Determine the expression of ecentric anomaly in terms of ¢ (eccentricity) and m (mean

anomaly) in series from as
3
b=m+|e- —|sinm+ -l-ezsinlm+ Et.=3sir||3m
3 2 8

upto 3rd degree of =.
Solution : From Keplir's equation, we have
m=¢ - esing
orp=m + esinQ
Some' e < | and sin¢ <1 therefore the first approximation ¢, can be considered as

'ﬁ;’m
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If ¢, is 2nd order approximation of . then
$, = m + esin§,
=m+ fsinm
Again ¢, is third order approximation, then
p; = m + esing,

m + esin (m + esinm)

m + e {sin cos & (sinm) + cos m sin (¢ sinm)} -
s ¢, =m+(esinm. 1 + ecosm. esinm)

> 5inB =0 and cosO = 1|
as 0 is small.

=m+esinm + %ezsinim
Again considering the next approximation we can write
¢, = m + esind,

=m+esin(m+=sinm+ %ezsin.‘lm}

. ¥ §. 5t o i
=m+esnmMcos|ecsmnm + ‘2"3 sin2 m + ECcOosmsin|esinm + EE sin2 m
¢,=m + esinm {l . %ezsin“ m} +ecosm X {esinm + %ez sin?.m}

. * 1 : i
=m+esinm - %e’sm’m hisg e’sin2m + % e’ sin2mcosm
=m+esinm - %e’ (3sin m - sin 3m)+ %e*n!m + %el (sin3 m + sinm)

3
d=m+|e- — siom + Lal sin2m + S & dadn
8 2 ]

Exercise
Deduce the equation of orbit as
a-
£1+=m5{ﬁam]+ —l-i—
r h
under tangential resistance
R
r
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with usual meanings of the symbols: What are secular and periodic perturbations?
Show that the components F,, F,, F, of the perbutating force F on the motion of moon relative
to the earth due to the sun are

"

E -;-r.l'wl2 [1 + 3_1:\03 2 (u-U)]

K

% rN? sin 2 (u=U)

E, = -3rN?sinisin U cos (u-UJ)

i GM
Wim Nl = —R'T

What do you mean by osculating orbit of perturbative motion? Determine in this case, the
magnitude of perturbation.
From the orbit

: 5 . 2c¢H

~1l+ecos(®@-w) + —
r ! h

under small tangential perturbation, deduce the expressions

de, = - %+ [e®,+ sin (8, - )]

el&“] = - _'2:" Gﬂﬂ(ﬂl'-m‘}
mgivesacularandpuiodicpermrbaﬁmdmsﬁnbdshawﬂﬁrumﬁlmmﬁng.
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UNIT- 4
_ Flight Machanics

4.1. Defination of Rockei :

_ A variable mass vihicle where a part of its mass is lost by high speed moving particles due to
fuel burning causing upward thrust is called a Rocket.
A roket is used to launch a vihicle or a satellite in to its desired orbit in space for various
_purposes. Depending upon the hight of projection it is necessary to take the help of multi-stage rocket.
Actually, the satellite or space is to be projected to certain hight to undertake some orbit based on the
projection. If a satellite is to be placed in the gravitional region of the earth, then it must be imparted
V.=7.6 km [ sec.

4.2. Equation of motion variable mass :

A variable mass of a system may continously increase due to coalesce or decrease due to -
ejection of particle usually for burning fuels. For space vehicles due to ejection of matter the mass

But due to coalesce a rain drop may acquire additional masses from dust particles.

Let m be the mass of the body moving with velocity V at time t. Let afier small time interval ot
it encounter with small mass ' 3m' moving with velocity u which coalesce with m. ' :

Let (v + 2 v) be the resultant velocity of the combined mass at time (t + d t}. Butat the time
of coalesce, there may appear interacting forces T (say) to act with the external force F arising out of
gravity and and air resistance (or drag). '

. T = change of lenear momentum of the small mass dm

lim dm(v + 9v)-dmu

“dt—o dt

o e B B
e,

- (v-u

Again the change in linear momentum of the mass is given by
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_ lim m(v+dv)-mv
T dt—oo dt

lim av

= m
dt—o dt
dm
= m —
dt
. The equation of variable mass is given

dv
m E—F"T

.= F-T=m ﬁ
dt

=F=m Ev—+T
dt

dv dm

R

= E|[mv]-lu"j—m!
dt dt

' 43, Performance of single stage rocket and equation for the satillite in vacuum (without
gravity)

" Let us consider a first stage rocket consisting of a Nose cone  Hase come
at the top which has housed the payload (or satellite) and a
nozzle at the bottom to release exhaust particles for upward thrust.
An amount of fuel is inserted in the metalic case of the satelite
besides the pay-load which is prottected from atmospheric effect
by the nose cone.

If  is the velocity of the rocket and it is the veloﬁil}; of the
burning fuel, then the eqn motion mass is
= dv

IS el L
dt. dt

If ©, is the relative velocity of the exhaust particles coming out of the rocket then

V—-pu =19,
s 500
dt dt

If the first consideration we ignore the external force (or gravity) so that




dv _ 3 dm

Let M be the total (composite) mass of the rocket so that
M=M +M + M,
where M, is the mass of the payload (or satellite), M(o) is the mass of the initial amount of fluid
and M, is the mass of the matelic stracture.
Let us take
M;(o) + M, = M, and

M(0) = € M, sothat M, = (1-€) M,
Where is called the structural factor. . ]
The amount of fuel to be include depends on the value of g, 0< & < land the mass of the

sructure.
-, The equation 0. . “~tion takes the form

Md_v:ﬂdh"[

— i 2'
dt  d @

with M given by equation (1)
Let us consider that the fuel burn at the constant rate K (say)

If M, (t) is the mass of fuel at any time then

d
5 = [M@j = -K

j'd{m,m] = -Kj’m

=0
= M;(t) - M;(0) = - Kt
= M;(t) = - Kt + M;(0)
=M(t) = - Kt + € M, ---5- (3)

Let us assume that the amount of fuel completely bums att=1,
From (3)

M[{th} = 0D = Mf {GJ = Kt-b

= eM, = Kty ------(h
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Hence
M= My + M(t) + (l-€) M,

M, + (M(0) -kt) + (I-€) M,

M, + eM, - ki+ (l-e)M,

M, + M, - ki

.. The-eq" of motion (Mp + M, - kt) % 6,k

dt dt
. 8. k
d : dt
R Nl M, =
L t
fm:f Vek: oo
T M, e M, -kt

= V(ty).- V(0) = - 8, [log (Mp + M, - ‘“}].;.It'

- 8, [log (My + M, - kt,) - log (M, + M, )]

(M, + M, - ke,
M, + M,

-, log

l

e M,

Pl s
L P o

j| “w EeEM, =k

L=
= -8, log !-M—'—-,vf—-,"—
TR
wYAD

Which gives change (increment) on velocity to the payload launched by first stage rocket.
It is sun that the performance of the first stage rocket depends on
() The exhaust velocity 8,

(i) The structural factor I:I - E} due to e '
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M
(1) The mass ratio —Mr * a comstant.

4.4. When the extemal porce is taken on the gravity in the performance of the I'Irst stage
rocket. g

If one gravity is considered as the external force then the equation of motion, takes
the form

(M + M, - m}%{: S8, k(Mp + M, - ki) - g

md_"-'r = ﬁk -
dt Mp + M, BT
t t
or f.ﬁ: - D f L8 fgdl
4 M, + M,

Where t,, is the time of complete fuel burn

orv(t,) - v{o)= - B, [log (Mp +.Mn . kt]]:“ = g[h

- M, +M_ -k t

Av = - B, —£ 2 _\.g"*
i [hg.MI-“LMu } ¢

— e M e M
A = -%_[1 e - i B B
R -

Which is the incrimental change in velocity of the rocket due to the expense of puel
burning. _
4.5. Performance of the 2nd stage rocket :

A simple model of two stage rocket consis of two matelic

cylinderical structures with the pay-load of the nose cone 1 My rocket
attached to the 2nd chamber and the nozzle to release

Ist stage
rocket

exhaust particles with high speed at the bottom.

Let M, and M, be the masses of the 1st and 2nd chamber
‘respectively. Also let t, & t, be the respective times of fuel

burming in the moter equipped with fuels,

We know the velocity after the 1st stage rockets is
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(v =) vi= -8, 10 [*"‘idi T“Mj ----- (1)

Where #_ is the exhaust speed. It needs to report that after complete burning of the fuel of the
I'st stage the structure is detached and the ignition of the fuel of 2nd stage starts functioning. For
convenionce, let us assume the exhaust speed for the 2nd stage rocket be also @, .

Clearly after the ditachment of the first stage. The 2pd stage rocket moves with initial w.rz‘:lnc_it:n,r ;
V, given by (1)

L I_r
fd; i ﬁ_c’[___!f.d.t,_ﬁ_
9 oMp"‘M:‘kl

or v {t.) - ;{“}= . Ef ['03 (M, + M, - k[}]ﬂlf

or v (12)= - B, log [w] +Vi

-, The initial velocity v(0) =w

orv ()= - 8, log 1:1--———--k-t-—-] +V,

My + M,

e M EM.
= -9, log |l-———2—| -8 log|l- *
¢ g{ M,.+M3] g[ MF+ML+M3]

Which gives the performence of 2nd stage rocket producing there by ligher imparted velocity.
4.6. Problem:

Example 1.

A rocket of total mass | containing a proportion (0< € < 1) as fuel. If the exhuast speed
is §,,a constant and the mass of the pay-load is ignored prove that the final velocity of the saiellite
“is independent of the rate of fuel burn

[[MP + M, - ki) %: B.k-(Mp + M, - kt}g]
[

Solution : Since the total mass of the system is M. therefore the cguation of mation (in absence
of gravity) is given by

dv
My, + M, -t} —=48_k%k
{ F 4] }dt LU
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or fdv = i.k_ dt
o (Mn h k'l')

o

Where 1, is the time of complete burning of the fuel.

[\"Ltu = - ﬂ._.‘[lug (M, - kt)Lth

] o

(M) = -k

= Av

But we have —
ut we .-em
t

-]

= M; (t,) - M, (0) = - ke,

;{Mf-] = -l‘fk dt

&a

= M, (0) = kt,

Now
M, (o) +M, = M,
Sk, +M, = M,
= M, - kt, = M,
) = {V}tb = -8 Eug(%)
Here M, = M

Which is the independent of fuel.
Example 2. : If M, and M, be the masses of a double stage rocket, so that M, =M,=50
sec. then show that

P, Mp being the mass of the payload ¢ = 0.8 and the specity impulse Isp = 300
the rocket is not capable of putting the satellite into earth bound orbit.
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Solution : The specific impulse

= 300 = Trust per unit weight fuel buming per sec.

T
=30 = — - =
kg T-—-'l.r'—ﬂ'\l—dE
: s Codt
g}m:;ﬂc_‘i :ﬂ..k
kg

mﬂ:'= 300 « g

= 300 % 9.8 m/sec . :
But the final velocity after the end of the 2nd-stage rocket is given by

£ M, ; e M,
- - PRI, W, (R ) NS .. TR
v, @ log |:1 YT J _ﬁt ug[ v :]

0.8 x S0P ]

= —-300 x98log |1-
M, + 50 M, + 50M,

0.8 x 50M, ]mfsec

~98 x 300 log |1~
o 05[ M, + SOM,

; 40 40
V, = —2940 log {i—ml-) —2940) log (I'—EJ

61 1
~2940 log | 2| -2940 1og [ —
e (sz s [51]

-2940 x (- 0.21899) +2940 x (0.66618)

l

2940 x 0.21899 + 2940 x0.66618

= 643.560 + 1958.5692

= 5.9 km/sec.

This shows that r the rocket is not capable of placing the satellite in earth bound orbit.
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Exercise
Discuss the performance of a two-stage rocket in launching a satellite in space. [2007]

Discuss the performance of a single-stage rocket, deducing the equation of motion of a rocket
in vacuum. A rocket of total mass M contains a i:mpnninn e M(0< € < 1) as fuel. If
exhaust speed of the rocket in absence of pay-load is independent of the rate at which the fuel
is burnt. . | [2008]
What do you mean by a rocket? Find the motion of a rocket in vacuum and the performance
of a single-stage rocket. ' - [2007)

A rocket engine of mass 3 x 10° kg without payload ejects exhaust gases with velocity 3000
m/s and at a rate 10° kg/s. The rocket is fired vertically from the surface of the earth. Show that
such a rocket is not capable of escaping from the earth’s gravitational field, assuming the
gravitional force acting, on the rocket during the flight constant. [2007]

31







