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INFORMAL STATEMENT CALCULUS ,
Introduction :’
lngcmmlmbgulmmmde.Wushﬂmﬂrnﬂaufdﬂm-
mhngmofﬁcwmmwhﬁnhumﬁmamammhmmfmnwhﬂe

any precision at all we must make our language unambighous, and the standard mathematical way of doing
Mmmmwumamhcwmmesymhkhﬂmgmmmmdm

.

&Mcmmm

A statemeant or verbal auerﬂuluulnﬂ-hmﬂoulmammmgﬁdmhnmgam
value i.e. mmmyﬂmtmcmﬁonm&mmemmemmﬂmwﬂuhﬁmﬂﬂtyof
amtemmtlsdanotedbyanFmspemel}r i

Enmplul. Jd
Two plus two is five (F)

L

2. Delhi is the Capital of India (T)

3.  Paris is in Europe (T)

4. Five is greater than six (F)

5. - The sun rises in the west (F)
Theﬁoﬂowmgmmtm:nmemnfhmc'

1.  Where are you going?

2. [thank you for your kindness e E
3.  Areyou coming to the party? '

snmmmmwmwmmmmmmc . However, we sometimes use
small letters like p,q,r,.... to denote statements.

mmﬁasnmmaﬂammmmmmwmm&amm _
ofash:emmthlsdmtadbywﬁ.oraﬁ.

Examples 1.12 ; * i
% [ﬂ&bemeﬂmn”mophntwomﬁw“u“z+z S"(Nuuﬂut*‘l+2 5”isa
statement.) :

Mﬂmﬂmmmﬂn”rwplmmmmﬁw“ i.r..“2+2#5" 'l'heuﬁvalueofﬁsl'-'whmu
the truth-value of ~A is T.

2. LetB denote the statement “Delhi is the Capital of India”. Thmﬂmﬂmﬂm“ﬂeﬂnumtﬂr
Capital of India”.

The truth-value of B is T whereas the truth-value of ~Bis F.
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3.  Let C denote the statement “The Prime Minister is honest™. Thm{isdwmwmun"ﬁehm
Minister is dishonest”.

4. LetD denote the statement “He is rich”. Thm~DhMmmt“}k i8 poor”.
Any statement A can have a truth-value T or F. The corresponding truth-table of~A is shown in

the following table: _ 3
; T‘_"' . F T
F T

Theuhlegwmm“mmhofammmhwiﬂbemmmedmmmm
a short while from now. s

It is to be noted that negation of a staternent may be regarded.as an eperation on statments. This
mmhcpufmmadmadngbmmmmdmweuﬂunmmmﬁﬂmmmnf .
statements. Mmfwﬂmwmhywhhwmmmm;mmwam
statement. A new statement obtained in this way is called a composite statement or a compound
statement. The negation of a statement is also regarded as a composite or compound statement.

Examples 1.1.3 (Of composite statements):

1. Delhi s in India and Lahore is in Pakistan.

2. Paris is in France and London is in Canada.

3. 242=4 and 3+3=5,

4. Calcutta is in India or 2+4=7.

5. Guwabhati is in Assam or Cakutta is in West Bengal. .

6. London is in India or 3+3=7.

7. Ifthnﬁmcumflsdmuhleatx,thmfmcmnmmusa:x.

8. If 242=5, then 3+7=10.

9. If 3+3=7, then 3+8=12.

10. Paris is in France if and only if 2+2=5.

11. Paris is in France if and only if 2+2=4.

12. Paris is in England if and only if 24+2=5.
Now our aim is to discuss how to determine the truth-value (T or - F) of a composite statement. For this
we need some definitions and symbols relating to composite statements. :

In contrast to a composite statement, a statement of the sim plest type, presented earlier, will be

called Atomic Statement. Letters like A B,C,.... , p.g.r,... artusedtodmmuuhmmtsmly and
such letters are called statement letters.

Conjunction (») and Disjunction(v):

TRmmbwaWemmhmmmmbymmg‘md'mmanjmm
as in examples 1,2,3. If we denote the first statement by A and the second staternent by B then the
composite statement “A and B” is denoted by A A B.
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The operation by which we combing two atomic statements by using *or’ is called disjunction, as
in Examples 4, 5 and 6. For two statements A and B the composite staternent “A or B is denoted by
A v B. Note that, logically “A or B" means “A or B or both A and B". This meaning of A or B is called
the inclusive meaning. However in ordinary usage of ‘or”, A or B means only one of A and B but not .

hnth.ThnsmeamngquorE1sf:ailedﬂ1eu:luﬂvemulhg lnlogtchorﬂwu[alwmhweﬂu
inclusive meaning.

Conditional (~) and biconditional (¢5) operations: .

Let A and B be two atomic statements. The operation on A and B which gives a composite
statement of the form “if A, then B” is called a conditional operation. Such a composite statement is
called a conditional statement and is denoted by A — B. The statements of examples 7,8,9 are of this
type. The operation on A and B which gives a composite statement of the form “A if and only if B” or
in short “A iff B” is called a biconditional operation. Such a composite statement is called a
biconditional statement and is denoted by A «> B. Note that “A if and only if B” is equivalent to “If
. A, then B and if B then A" which can now be expressed in symbols as

(A-=>B) A (B - A)

The symbols ~, A, v, —3, ¢ are called sentential connectives dr propositional connectives or
simply connectives of logic. The first symbol ~ is a unary connective in the sense that it involves a single

atomic statement. The other four symbols, namely A, v, —r,nndﬁmbinujmmm
that each one of them involves a pair of atomic statements.

Any composite statement which contains atomic statements in it can be symbolised by using
staternent letters and the five mnn:cummenumm&ahove

Examples 1.1.4
Consider the following composite statements:
Milk is black and water is liquid. =~
Milk is not black and water is liquid.
Milk is black or water is liquid.
If water is liquid, then milk is black.
5. Milk is black if and only if water is not liquid.
Only two atomic statements occur in the above examples. These are:
Milk is black.
Water is liquid.
Let us use statement letters A and B respectively for these two atomic statements:
A: Milk is black.

h N

B. Water is liquid.




Thmﬂuﬁvemmmomdabcmmhesymbohudm
- AAB

(~A)AB

-AvB

B-=A

.8 AeB

The symbolic MMhﬁwwm{mm}ﬂWWm
as follows:

u e P

® ~-A negation
@ AAB | conjunction
. @) AVB disjunction
‘@) A—B - conditional
W AeB biconditional
where A and B denote atomic statements.

T

Sometimes, for the sake of simplicity in the use of language, we do not distinguish between an
atomic statement and the statement letter denoting the atomic statement. For example, we may say
“Let A be the statement “Delhi is in India’ ” instead of saying “Let A be the statement letter denoting the
statement ‘Delhi is in India” ™. Almwhmthueummupcfmmynmb:gmtywmymmmply :
‘statement”_for ‘atomic statement’ as we have done just above.

s %mmawmmdnummnfmmofﬁn&mmulmpmmm
which can be symbolised as ~A, A A B, A v B, A =5 B, A © B where A and B are atomic statements.
Note that as in the case of atomic statements, we do not make any distinction between a composite
statement and the symbolic expression for it. The same convention will be followed for more complicated
composite statements which will have to be dealt with in future.

In ~A, A can have two truth-value assignments, T and F. Ineachof AAB,AvB,A—B,A & B,
A and B together can have four truth-value assignments, namely (T,T), (F.,T), (TF) and (FF). Keeping
these things in mind five tables, called truth-tables, are constructed which determine the truth-values of
the fundamental composite statements. In each table an entry in the column on the extreme right gives the
truth-value of the composite statement corresponding to the truth-value assignment to’ the atomic
statement(s) shown by the other entry (entries) in the same row.

1. Truth-table for ~ A

A ~ A
T F
F T
‘2. Truth-table for AAB
A B AAB
T T T
F T F
T F F
F F F




false.

A B is true if both the components of A and B are true, and false if any one of the components is -

3. Truth-tableforAvB

o o >

B

L L B

AvB

e B

Aﬂwmfmymnfﬂucmmhmdﬂmmmdﬂumlymmhm

Amdﬂmfalu

4, 'lhe-tabh:furh—}ﬂ - ' -::

A
T
¥
T
F

B
T
2
F
F

A—=B
T .

- e

AB is false only when A is true and B is False, and in all other case A B is true -
5. Truetablefor Ao B

o T e

B
T
T
F
F

A+—B
i 3
F
F
T

A & B is true only when both A and B are true or both A and B are false. AHBmhlnclfou:
of A and B is true and the other false.

The above tables are usually referred to as the truth-tables for the connectives ~, A , v , —, 4.
Wenowdmmnuwﬂhﬂtmuplﬁhuwﬂleabu?emh!esmbeuudmmmuh-vﬂuﬂﬂf

composite statements.

Examples 1.1.5

Cmdermcmﬂomngmmmmmm

1.

el B o e ol

242=4 and 23=6
2+2=5 and 3=6
242=5 and 23=9
Milk is black and water is liquid
242=4 and  23=6
2+2=5 and 2x3=9
2+2=5 and 3=6

i?' -




8. Milk is black or water is liquid
. If 1+1=2, then Paris is in France.
10. If 242 # 4, then 3+3=9
I1. I milk is black, then water is liquid
12. 2+2=4ifand only if 2>3=6
13. 2424 if and only if 2x3=6
14. 242#4 if and only if 2>3=6
15.  Milk is black if and only if water is solid.

Each of the above composite statements contains two atomic statements. Let us denote them by A
and B in the order of occurrence, i.c. A for the first statement and B for the second. The given
mmpoﬂitesmtemmtsmnﬂwbeqmbolisﬂdinmmsufﬁ,ﬂmdﬂumnmcﬁmﬁachmmposit:
statement is of a form A A B or A v B or A—B or A<»B. Moreover, in each case the truth-values of A
and B arc known. Therefore the truth-values of the given composite statements can be determined by
using the tables 2,3,4,5. We now demonstrate the truth-values of these statements by (partial) cruth-tables:

1. A B AaB
T T  §
The statement is true.
2. A B AvB
~ F T F
The statement is false.
3. A B ArnB
F F- . F
The statement is false.
4. A B ArB
F T F
The statement is false. 2
5, A B AvB
T T T
The statement is true.
6. A B AvB
F F F
The statement is false.
7. . A B AvB
F T ;5
The staterneat is true.
8. A B AvB
F T T

The statement is true.




9. A B A—=B

T . T T
The statement is true.
0. A B A—B
F F T
The staternent is troe.
11 A B A—=B
F g T
The statement is true.
122 A B AoB
T T T
The statement is true,
3. A B AoB
F T F
The statement is false.
14. A B AoB
F F T
The statement is true.
15, A B A—=B
F F T
The statement is true.

Very often we come across much more complex composite statements involving several atomic
statements and several connectives. Such statements can also be symbolised by using the symbolism we
have developed so far.

Example 1.1.6 Let A be ‘He is tall’ and B be ‘He is handsome”. Let us symbolise the following statements:
{(a) He is tall but not handsome.
() Itis false that he is short or handsome.
(c) He is neither tall nor handsome.
(d) He is tall or he is short and handsome.
(e) It is not true that he is short or not handsome.

Sometimes it becomes easier to symbolise a given statement if it is transformed into a convenient
form.

(2) The staternent is equivalent to:

He is tall and he is not handsome.
So it can be symbolised as

A A (~-B)




(b) The statement is the negation of the statement:
He is short or he is handsome. '
i.e. He is not tall or he is handsome.
So the given statement can be symbolised as
~{(-A) v B)
() The statement is equivalent to:
He is not tall and he is not handsome
So the given statement canbe symbolised as
(~A) A (-B)
(d) Ih:mmmlsd:s;umumufﬂ:eﬁ)ﬂmmgmm
He is tall
He is not tall and he is handsome.
So, we can symbolise the given statement as AA((~A)AB)
(© mwmhmﬂhdﬂmﬂmmmm
He is not tall
* He is not handsome
So a symbolic expression of the given statement is
~A(~A)V(-B)
Example 1.1.7 Let p be ‘He is rich® and q be “He is happy’. Mhﬂmm
(1) He is neither rich nor happy.
(2) He is poor but happy. . ;
3 Hﬂummbebuthnchmdhappy
(4) Ifhe is unhappy, then he is poor.
(5) If he is not poor and happy, then he is rich.
(6) To be rich means the same as to be happy.
‘() He is poor or-else he is both rich and unhappy.

The above statements are in everyday language. ﬁsweuwmﬂwlmntmple,:tmldbe
convenient to symbolise them if we would first express them in rather ‘mathematical’ forms. For each

* statement we give below an altemative form with the comesponding symbolic expression.

(1) He is not rich and he is not happy.
(-p)A(~9)

(2) He is not rich and he is happy.
(~p)rq

_(3) Itis not true that he is rich and he is happy.

~(pAg)

(4) If he is not happy, then he is not rich.
(~p)—=(~q).
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(5) If he is not poor and he is bappy, then he is rich.
((-pP)Ag)—p.

(6) He isnichif and only if he is happy.
Peq

(7) He is not nich, or he is rich and he is not happy.
(~pIVpA(~q).

A symbolic txpresmmnfamismnymﬂad a statement form. Speaking miore formally,
an expression built up from a number of statement letters A, B, C... by appropriate application of the
connectives ~, A, v , —3, ¢ is called a statement form. A statement form is also called a proposition
or a boolean polyldmill. The name Propositional Calculus originates from the word propesition used
in this sense-Propositional Calculus is the analysis of the truth-values of propositions. Note that
Propositional Calculus is called Statement Caleulus also.

We usually denote statement forms by curly capital letters &,8,C... However, statement letters
A,B,C.,... are also regarded as statement forms.

Note that a statement letiers are given a statement form may be translated into everyday language.

Example 1.1.8 Let p be *H eis rich’ and let q be ‘He is happy’. Consider the following statement forms:
(1) g&=(-p) @ -9
3) (-p)—q @ (P
These statement forms may be translated into language as follows:-
(1) He is happy if and only if he is not rich.
or, In everyday language
To be happy means the same as to be poor.
(2) He is rich or he is unhappy.
(3) Ifhe is not rich, then he is happy.
of, in everyday language
+To be poor is to be happy.
(4) Ifhe is not rich but happy, then he is rich.
or, in everyday language
To be poor but happy means to be nich.

Trath-tables for Statement Forms

The truth-value of a statement form in the statement letters A,B.C.... can be determined from the
truth-values of A,B.C.,...by constructing appropriate truth-tables. In the construction of such a truth-table
we make use of the truth-tables for the fundamental composite statements, i.e. the truth-tables for the
conmectives ~, A , v , =, «> namely.
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A ~A A B AB
T F T T T
F T F T F

T F F

F F F _

; A r’/‘f
A B AvB A B A-B A B A«B
T . | - T ¥ T T T
F T T E T % F T F
T F T T F .F T F F
F F F F” F T F F T
v - o .

Note that in the above tables we can replace the statement letters A,B by any statement
forms A and B C '

In constructing a truth-table for a statement form we plot the truth-values ‘component by
component’ and “step by step’ as domenstrated in the following examples.

Example 1.1.9 The truth-table for the statement form ~(AA(~B)) is as follows:

A B B  AA-B) ~(AAC-B)
T T F F T
F T F F T
T F T T F
F F T F T

Example 1.1,10 The truth-table for the statement form ((A)B)C is as follows:

A B c ~A  AVB)  (~AWVB)C
T T T r T T
T F T F F /3
T T F F T F
T F F F F T
F T T T T T
F F T T T T
F T F T T F
F F F T T F

12




Such truth-tables for statement forms are very useful in the sense that these give the truth-values of
the statement forms corresponding to the truth-values of the statement letters. In other words, if we know
the truth-values of the statement letters we immediately know the truth-value of the statement form, i.c.
the truth-value of the statement represented by the statement form.

Concise way of construction of truth-tables

Truth-tables of statement forms are usually constructed in a concise way. For example, the truth-
tables in the above examples, i.e., the truth-tables for the statement forms ~(AA(~B)) and ((~A)vB)—C
may be constructed as follows: '

= (A A - B))
s S F F T
T F F F T
¥ T T T F
T __F F T F
a I 3 2 1
- A& v B) - C
FFooT T T T ., T
F T F F T- %
F T T T F F
F T F 3 T F
‘T F T T Al
T F T F T, T
T F T T F F
T ¥ i F F F :
2 1 3 1 4 1 | -

The numbers at the bottom of the columns of the tables idicate the order in which the columns
to be filled up. Columns marked 1 are to be filled up first, and go on filling up the columns marked 2,3,4
and so on. The entries in the final column (column 4 in the above examples) give the truth-values of the
statement form under consideration, i.e. an entry in the final column is the truth-value of the statment form

carresponding to the truth-values of the statement letters occurring in the same row in which the entry
OCCours.

We already mentioned that a statement form may be regarded as a function f{A,B,C....) in the
statement letters A,B,C.,.... Now we see that such a function may take the truth-value T or F. In this sense
a statement form is sometimes referred to as a truth-function.

1.2. Tautology, Contradiction, Contingent
A statement form which is always true, no matter what the truth-values of its statement letters may

13 -




be, is called a tautology. In other words, a statement form is a tautology if and only if its corresponding
truth-function takes the value T only, or equivalently, if and only if the final column i its truth-table contains

only Ts.
Example 1.2.1 The following statement forms are tautologies:
B AV-A) @  HAA-A))
@ (AAB)-A ™  A-{(AvB)

v (P9 g-n)={p—1).

" When we construct the truth-tables we see that the final columns contain only Ts.

B A ¥ - A)
T T F T
F T T F
1 3 2 1

This tautology is referred to as the Law of Excluded Middle.

@ - A A A
T T F F T
T F F T F
4 1 3 2 1
@ (A A B) - A
4 ) T T T T
F F T T F
T F F T T
F F F T F
1 2 1 3 1
@) A i (A v B)
T T T T T
F i F T T
p T T T F
. F T F F F
1 3 1 2 1
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A statement form which is always false, no matter what the truth-values of its statement letters may
be is called a contradiction. In other words a statement form is a contradiction if and only if its
corresponding truth-function takes the value F only, or equivalently, if and only if the final column in its
truth-table contains only Fs.

Note that the negation of a contradiction is a tautology and vice-versa.

Example 1.2.2 The following statement forms are contradictions
® pA~p) ®  (erA(pv)

® -p A (= p)
: T F F «
F F T F
1 3 2 1
@ e A 9@ A ~ @® v q)
x T T F F T T . 7T
F F T F F F T T
T F F F *F T T F
F F F F T F F .F
1 2 1 4 3 1 . 1

If the final column of the truth-table of a statement form contains both Ts and Fs, then the statement
fmm:scnlledamﬁuut‘l‘hus,ncmmgemisaﬂammamformwhos::truth-valu:depmdmnlhc
mﬂvﬂulmhvvﬂmmgnmmbﬂ:emmhm
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Example 1.23 (~Aa(~B)) is a contingent.

_—
I

B))

P TR R
--"rl--}"n--l':;:
Wk 4mm>
B gmm
- om o

NOTATION If A is a tautology, we write A.

Definitions : If 2B is a tautology, then we say that A logically implies ® or that B is a logical
consequence of 4, .

If A¢>B is a tantology then & and B are said to be logically equivalent, and written Aws.

Example 1.2.4 AAB logically implies A
We have to check that (AAB)— A is a tautology:

A A B -5 A
T i SE T T
F F T T F
T F F T T
F F F T F
1 2 1 3 1

Example 1.2.5 B is a logical consequence of An(A->B)
We have to check that (AA(A—B))—B is a tautology.

(A A (A — B)) — B
T T T T T T T
F F F T T T T
T F T F F T F
F F F T F T F
1 3 l 2 I 4 1

L6




Example 1.2.6 A©B is logically equivalent to (A—B)A(B—A).
We check that (A<sB){{A—B}A(B<3A)) is a tautolégy -

vt | on .*'.-'h' it

: S I T ot T RN Y T R LI
(A €3 By & (A - B) A B - A))
T 5 i L | TN, O | T T T T
F F s JCNE, DO T: .1 JF Bt F F
T F F T T F F F F T - 7T

" F T F - TioiFoi . % F T _F T F

s e A RS B TR TR R RGeS B ) |

Example 1.2.7 (~A)vB and (~B)vA are not logitatly equivalent.
We check that {{*ANB}H({**B}V&) ismota tautulogy

tI.-. A} b ) B] . -5 {{‘v : ’B} .V' e SO | A} PR S
F T T 'T T . _F T T T
: F . T: T gEY ¥ T F F _
F T: "B LR SLE T o Fas LD i
T F ¢ A Al & T F T g
2 1 3 1 4 2 1 3 1

hﬂrsyn:bohcwﬁtmwfmmhnwmﬁrmainmmufm
(small brackets) with the obvious implication that the operations inside the parentheses are 1o be péfformed
first.-In order to minimise the use of parentheses we follow a convention. However, we cannot totally
avoid use of parentheses. The convention we are going to follow hence forward is:
First, dispose of the parentheses part(s), if any. '
Secondly, perform the operations of the connectives in the order
— iy W, =,
Now using this convention the statement forms
AV(-A)
~(An(~A))
A-(AVB)
(gD} {p—1)

g

may be expressed as
Av-A
~Ar-A)
A-+AvB
(P—A(q—1)>{p—1)

17




Laws of Logical Equivalence ; RELE -
A short while ago we wrote aboutlgglcal aqu.wnlmx: ufsmam;mt MWp-gve below a set of
laws of logical equivalence for any three statement forms 4,BC, any tautology 7'and any contradiction

7. Recall the symbol = for equivalence of two statement forms.

'

Idempotent Laws Ay :
a) AvA=4 i : : b)arA=A -
] AsecawityLews
2a) (AvBvC=av(BuC) . 2(b) MA‘B}AC-..HA['BAC‘}
MWM“ . P s B ; Lieg
a) AvB=BvAa b) AAB=BAA .
L St R L u“ L i "'- LI b T T L
4(a) HV{‘Ff-C}'(ﬂV‘B}‘;{\ﬂVﬁ? L4b) AABVOE@AABAAC
" Identity Laws -
58) AvF=A _ i -\ 5b) AAT=A
6a) AvT=T ' = -:6(b) 3;\}'._.:5'-
NN -y Con:ﬂemutum 2 -
T av-asT U ) AAAmE T ;
B@), ~~AmA i Ao 8b) . ~T=F F=T .
%a) ~(AvB=-~-AAr=B " . 9b) ~AAB=-Av-B

Wemmﬂmmlﬁofwrﬂuﬁhin&tfmnafm.mmm
will give an indication of the oncoming results.: -

Proposition 1.2.1 If A and A>3 are tautologies then so is B«
Proof: Since 4 is a tautology A takes the truth-value T only for every truth assignmetit to the statement
letters of A. ' '

A->B is also a tautology and so A—B takes the truth-value T only. Therefore, if 8 has the truth-
value F, then (by the truth-table for —») A must bave the truth-value F. But this gives a contradiction.
Hence B must have the truth-value T, i.e. B is a tautology.

18




Preposition 1.2:2 (Princifle of substitution) If 4 is a ‘tautology contdining ﬂ:ﬂ: staminqp% Itttm A,
A A miﬂmmﬁmhﬂbymbmtmgmmﬁfm.ﬂpnp AL ﬁr}‘. AR ..ﬁ;r&rpecmeh'
ﬂ'bcnmsntaumlogy{lc substitution in a tautology' yields a tautology). e

Before we give the proof of the above proposition we ﬂJu.stm:e mmm:anmp'lé“

.li.l

Enmpleliﬂﬂmﬂ&&thlwmm} A,.-\Afhrﬂ,““ i
: ﬁsamﬂtubﬂhn%—}h R:placEA. andA,hy.H Bﬁmﬂ#,”f}vﬂmpeﬁhvely
Then (BvC)A(CD)—BvC is a tautology. This can be checked by constructing a truth-table.

L9t TATHTEENE {I e b "i"‘ A

r'. i L e -’

L IS N ) ok 1 1 PRELL R T TULIN 1 BT { B 1 LW SR ta T R N
(B 2y :Vz' o C} L A‘:."; '.(-C: :ﬂ =1 réﬂ“'ru "?rh ﬁ .,'_'-,‘é..‘-','"l e
s s R S R T T (it o 'I NG S Sy
i 4T o o Won - BB b wBoe , T .-I'Ja wrk e {T . 2 *'_E R LS
; gdtls | b RTINS IR i PV it | .v-'e -"F' ek SRR SRl 2 S
&) RS F _F.a P --._F 5T :an; s 1?,’*#. ., rf"];”:.;.,r.
5 T ST REIRNGEEL D VITY PR s SRRl G TN T
F e - PR e g g R F E“”’-’ o o
1 F " ?"_‘\F O F,, i :F i F : - T 17 T':L 1 1_;.-1 o 'EFq. BN PO
S A T LR R T T oA B Imv«mT % g
L ._E‘_._ oL F A5 _f it | F"‘ 3 F : F E E'} I.l I""I I ...I,F LI Fr : 1..F VI
1 T T TR, T (Rl T g L RS SRR D
Proof of Proposition 1:1.2 . * ' + ' vkl Wik A e d L F i nner

4 is a tautology; mdsn.ﬂhkuﬂuumhwahel'mty Formuipmcntuftrulh—ﬁhumﬁe i

statement letters in B, suppose the statement forms A, 4,,...., A, have the truth-values x,, X,...x, where

each x_ is either T or F. Ifwmignﬁtmhml,,ﬁ,._x_bﬁ.ﬁawﬂmpmﬁvdy,hmﬁgm '
value of A is same as the truth-value of B for the given assignment of truth-values. But the truth-vatue of
A is always T. So the truth-value of 4 is also always T, i.e. B is a tautology.

Propodﬂouuﬂsﬂppuuﬁmnmfmmwhmhmmmmfomﬂ Suppose B
is obtained from A by Substituting 8, for oné'or more occurences of A 'in’A. Then (4, Hm}—-rmwa)
is'a tautology. Hence if 1, and 3, u‘elogmﬂyeqmwahﬂthmmmﬁmﬂi .

m:cmmnafmmmMlim
' i i

Case 1. Suppose A, and B, have oppesite truth-values. Then A, +> B, takes the truth-value F.
On the other hand the truth-value of A«<>Bis either T or F. Since A4, «> B, takes value F,
HﬂHﬂemmmevﬂmwammcvmemdFﬂfﬂ% Therefmc

(A, B )(2+>B) is.a tautology.
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Case IL Suppose 4, and B, have the same truth-value. Then A and B also have the same truth-value,
becmﬂd:ﬁcrsﬁ-om.ﬂmtymmmmmgﬂ msnmeplaccswhm.ﬂmmmﬁ So the truth-values
ofbuth[ﬂHﬂ]and(ﬁ%}mT and so the truth-value of. .

(A,e38)3A8)is T
ie. (1,603 )—>(A-B) is a tautology.

lf_ﬂandﬁminglmﬂyaqmvalmt,thmﬂ%mkmthcvalusTNawmﬂHm}—)tﬁHﬂ}
mamhgy (ﬂHﬁ}takesﬂrvalutT L€ .ﬂnndﬁ’arelﬁgwallyeqmvﬂmt it b

, ; : ; Wy A ' i ey
13 AdéquteSmuf'mﬁuﬂi'u '

Wemumdmﬂ:umuammfmmamwmhm&,ﬂ,ﬂ . may be regarded as a
function f{A,B,C,...) where the variables A,B,C.,.... can take the values T and F, and the function falso
cmtakc:hevahu?mdFtpmﬂmgmthﬂalmuﬂhcvanablm In general we can therefore conceive
of a fimction f{x .x,,.. ,x_)mnﬁrmblux,x,. ,x_smhﬂmuchmahkx,uvﬁulhsmeﬁmfm
uhvlhnsﬁ-umﬂaesd{'l'f} Such a function will be referred 10 s a truth-function. Any statement form
with n statement letters generates (i.. gives rise t0) a truth-function in the sense that if we replace the
n statement letters A ,A,,...,A, by the n variables X, x,,..., respectively in the statement form then we get
a truth-function.

Suppmewemglmanudaﬁ.mm«mﬁx R § B Cmmnlwayumnstmﬂawﬁxmﬂ
in the statement letters’A A, .. A, whxhpmqmtethctmth-ﬁmmmﬂx,,@, .X)? The answer is YES.
There is a standard technique to do this, and only three connectives, famely <, A, v, are sufficient or
adequate for the purpose. First, we illustrate the technique by some examples.-

Example 1.3.1 Let f{x,,x,) be a truth-function given by the following ‘truth-table’s .+ = .

2 A U ) S, F . 2
S I | 1°
i Wt T
F F 3
Table 1

Hnwmrpmhlem:stomtmctasmemmfmmﬂ)mtwomtcmmthmﬁ mdﬁ. suchﬂmtfu
genmtesf 1e.ﬂhasauumrulﬂeﬂmbcﬂmmtheh'um-mhlefmfﬁabh l),te Whlsammh-ubh

A A D

 JRTE LR

¥ By T

Fo B e ¥

EosB. o T _ .
' Table2 - piik

Smhuwfom@malwaﬁbuommmwdusmgonlyﬁmmﬁ —- A,V L8~ A,
v constitute an adequate set of connectives for such a construction.

20




Table 1 contains 4(=2°) rows. Call them R, R,. R,, R,. In each row there are three entries; the
extreme right entry gives the tnuth-value of the function. Pick up those rows in which the extreme i‘igm

entries are Ts.
These are R,, R, R,. For each these rows bruildacnnjun:tinnﬂj(j-:m,#]asfolluws
D,= Rj AR}
= A, if the entry in the ij-th position ‘
where R, | ofthe TableisT - RS
=~ A, if the entry in the ij - th position '
of the Table is F

i.r.._ R1:= #1*“52“!
RL;‘AHR: =~ A,

R,= ALRi= A,
and D, = ~ A, A A,
Do=A A~-A
Rt
Then construct the disjunction Dof D,, D,, D j.e.
ie D=D,v D,v D, . .
ie D=(-A,AA) V(A A-A)V(-A AA)
Wtdmﬁmﬂm&sh&mmtﬁnrnﬁmmsﬁx'@m&mmm
our claim.

1. Ifwe give the assignment of R, i.c. T,T, to the statement letters A .A,, then all of D,, D,, D,
are false (F), and therefore D is false (F).

2. If we give the assignment of R, or R, or R, to A, A,, then D, or D, or D, mlme('l‘]m&
therefore D is true (T).

This &hnmﬂmﬂmimﬂa—ublefmﬂmid:nncalmmmatnfﬁxl,xl).
. Example 133 To find a statement form in the connectives ~, » and v that generates the following truth-

finction.

0% % fixxx)
T .3 T

T. ~F T T

T -7T F T

T F F F
F<x -1 F

F F T F
F-T F 'F

F F F T
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. We pick up first, second, third and eighth rows in each of which the last entry.(i.e. the truth-value
ut‘l;hc ﬁ.mcuon)uT Then we construct D, D,, D, and D, as follows. . rife

D=A rAAnA,
L D= A A A AA,
"D A AA1A=-A
= A A A A"-A,
Then let =D, v D,vD,v D, %clalmﬁatﬂgenﬁatﬂﬂacgwmtm:h-ﬂmchonf(x,xﬂxj}

1. Ifwegm&n:mgnmmtofﬂ:fomﬁorﬁﬂhurmﬂ:muvmﬂ;mw{mﬂxmmm.hthe
lastmmnrcf)tuth:stavcmmtletmﬁt,.&, A, mcnallufﬂ,,m fﬂrﬂ are false (F), and so D
is also false (F).

2. H‘wegmﬂmass:gnmontufﬂmﬁ:stmsccmdmﬂmdnrmghﬁmw(m !hcmwsmwhmhthe
last entries are T) to the statement letters A , A, A,, then D, or D, or D, or D, is true (T), and so D
is true (T). .
Thmfmthenmh—mbleford)mtdmhmlwﬂhthﬂﬂfﬂxl,g,x,)

"

f A

Example 1.3.4 Consider the truth-function f(x, X,x,) given by the ruth-table:

X, X X fxxx,) AR
T T T F : z
T _F T R
T T F F A
b s F F F .
” F T T ' F
F F T F
- F T F F: : t
F F F F 1 ; POy

NmematmﬂemmmwmwmchthelastennylsT ie. allﬂ:elmtentmaml’ insuchacas;
w:mnsh‘uciastatcmﬂfonn‘ﬂasfollmﬂrs- '

D=(A A~A)VIA A~A) V(A A-A) '- b e

Then D generates f{x,,x,.x,). Fnrthmwehaveonlytucbmkmmmkﬂsﬂutmﬂimthﬁrmy
truth-assignment of A , A,, A,. But this is almost obvios, because for any assignment of truth-value one
-::—annd~A {1—1,2,3}15h'ucandtheuthr:rfalse,shnmngthataﬂnfh}h~hl,ﬁln—APA]ﬂ~A,
are false, and therefore D is false. Thus, the truth-table for D is identical with that of f{x,x,,X).

I‘heabuvee:ampleuxphm&wm]nmthcpmot‘a[agmm!mukmtheaduqmcyofﬂm:c
connectives, presented in the next proposition.

Proposition 1.3.1 Every truth-function can be generated by a statement form mw:tvmg only the three
connectives ~, A and v.

me‘l.gtf[xl,x:, ,x‘)beatruﬂa-ﬁmcnmmnmahles Our problem is to construct a statement form
D in n statement letters A, A.,...., A, such that the truth-tables for D and fare identical.
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The truth- mhl:farfhas?mmufmmesltt&denmﬂhe:ﬂzmwnfenm'fhulmmhjrm
amwuﬂnuuth-vﬂmofmcﬁmchmfmmngmﬂ:ew&wﬂmofq;l, X, in the same row.

Case 1 Suppose all the last entries are F it ¥ i
Construct statement form D as follows:
D=(AA~A) V(A A~-A)v.. v(A A~A). Fmanymgnmlufmnh-vahefmnl,ﬁq;.,
A allof A A~A, V(A A~A,. H,.Abnvﬁmmmwmﬂuﬁhﬁf}.ﬂmm-
truth-table for D is identical with that of f, i.e. D generates f.

Case IL Suppose not all the last entries are F. i Al
-. Pmkupﬂmsemmkj BI.H,RLMMMMM“TMEHMIWR!‘M
ﬂtm i . P (

Dy =AM AA A AA,, where PRGN T e

A Anrw.k'

mmdmguﬂ:etmﬂwn]mmlhnkﬂ;mmeF : ~ Fo s A e
ﬂ=ﬂ v"..D . V!Jj' : n S ';‘:_r-- 3 b
Wchmﬂniﬂmtﬁﬂx],x‘ _,x'} ] ; g R '=

- Thuhﬂnmﬁnmﬁ:ﬁ:ﬁow:gubsmm

{l}lfw:gwetnAI,A,, dﬁimwﬁftuﬂ:-mhmmnsﬂntmamw&wh:mnt’} ,J ...JH
_thm:ﬂofﬂji,ﬂ ﬂhmfslse('{-‘},mdmmfumﬂmfnlsc{ﬂ

ﬂ){mﬁreaﬂ:erhmd:fw:gwetoAIAr A_anmgnmmtofm:ﬂz—vnhmmuﬂﬂmamwal'
t'hmD utrue{'l‘) This shows that the truth-table ﬁ:rDlssameasﬂ:alforiHm'ngm

Corollary : Evn-ymnh-ﬁmmmunbegmumdbyammfurmmmmgum

® only A and ~ _ y
or i) ' . onlyvand~ !
or - (m) only’— and ~ -

mnsmmaﬂmﬂmuumberofnduqmmmmaywmhemdmm]
Prml.ﬂ}ltcanbecheck:dtha:furmymmmlmmAmdB

A vBe{(~A A -B)
1s & tautology, i.e. A v B and ~A A -B are logically eqmwslmt,:,e truth-tables for AvB and ~A A ~B

are identical, i.e. the connective v can be replaced by the connectives A and ~, Therefore A and ~ can
serve as an adequate set of connectives in place of A, v and ~.

(@ It can be checked that
AABH-{«A\.HH)l.samuto.‘mg}r
So can be replaced by v and ~.
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(m) It can be checked that - _
AvBe-~A—B
AAB & ~A - -~B)
uctaumlﬂgi:s.Thtr:forevcauberep[mdbyﬁmﬂ~,andz\¢analsub:reph¢eﬁb)r—hmﬂ-.

" Definition = Adhjmdvumhmmummfmmmmhmadﬁjmmm:mhdmm-
macummcuonofsmemmtletmundmgmnmnfmmml&m

For example
(~A, A ADV(A A ~A V(A A ~A)
is a disjunctive normal form.

Wmmﬂdeﬁnmmﬂmsmmmfmmmnfﬁm:ﬁonlj luadm;nmcﬂwﬁrmulﬁxm,mg.
mcrefnmmaprnpmlmncanbcrqtawdu

Every truth-function can be generated b‘y 2 dhjuittiw: normal form. *

i
-

hnpuﬁnnlJJEv:qsmmmtfmmmmcﬂlynthtwadlsjmuwmﬂrm v
Proof : Let A be any statement form in n statement letters A, A,.., A_Suppos:ﬂgwmrmetuthemlﬁ-
function fix x,... @Mﬂﬂfﬂwumm-mﬂm&wfmmmbyﬂum
form . Then the truth-tables of f and D are identical, and, as mentioned just before this propositien, D
ua&gmhwmﬂ&rmﬁmﬁemﬁubksdﬂmdhﬂmﬂwmmﬂmmmmm A
huttlmmmettnngmuythatﬂ{—mmnmumlog}r,uﬂandmmlogmilymmhmt

Definition : A conjonctive namﬂfarm:saﬂmmfumwhmhuamnjunmnnmththatmh
conjunct is a disjunct of statement letters and negations of statement letters.

For examples

(A, v ANA, v ~A)A~A, v -+A1}

is a conjunctive normal form.

Proposition 1.3.3 Any statement form is logically equivalent to a conjunctive normal form.
Prof: Let A be any statement form. Then ~A is also a statement form. So ~A4 is logically equivalent to
a disjunctive normal form D, i.e. a statement form which is a disjunction such mnaachms]mc; isa
conjunction of statement letters and negations of statement letters. Themﬁmﬂm]ogmally equ.w:lcnt o
~D, Now by repeated application of the tautologies (check!)

~(~A)A .

~(AvB)e~An-B

and {AnB)>~Av~-B
we see that ~D s logically equivalent to a statement form which lsnm:gunct:msunh ﬂﬂtnchm;tmct

is a disjunction of statement letters and negations of statement letters, i.e. 4 is logically equivalent to a
conjunctive normal form.
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- 1.4 Two Other Binary Connectives : Joint Denial and Alternative Denial

We have so far introduced four binary connectives, namely A, v, — and . These binary
connectives are completely determined by their truth-tables :-

A B AnB A B AB

T T T T T T

F T F F T T

T F F T F T

F F F F F F
Table 1 Table 2

A B A—B A B AeB

T T T T T I

F T T F T F

T F F T F F

F F T F F T
Table 3 Table 4

The order of the entries in the last column of each of the above tables determines the corresponding
binary connective. There are altogether 16 ways of constructing the last column in a truth-fable of the form
given above, and each way gives rise to a binary connective b between two statement letters A and B i.e.
each way gives the truth-value of AbB corresponding to a given assignment of truth-values to A and B.
Tables 1, 2, 3, 4 define AbB as AAB, AvB, A—B, A<B respectively. We now consider two other binary
connectives (determined by truth tables) which are important in many respects :-

The binary connective 4, called joint denial, is defined by the truth-table.

A B AlB
T Y F
F T . F
T F F
F F T

or in the concise form -

o LI R I
Rl Mmoo
—|m - -
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Note that ALB is true when and only when both A and B are false, i.e. neither A nor B is true.
The binary connective J,caﬂcdﬂtcm&udenillisdeﬁnedbym:umb-table.

A B AlB
T T F
F T T
T F T
F F 3
. 1 2 1
or i1 the concise form.
' A i B
T F T
F T T
¥ T F
F ‘) F

Proposition 1.4.1 Every truth-function can be generated by a statement form containing a single binary
connective | (jont denial) or | (alternative denial).
Proof : We know that (Corollary to Proposition 1.3.1) every truth-function can be generated by a
statement form containing as connectives A and ~ only. We show that both A and ~ can be ‘replaced’
by 1 alone, i.e. we show that the following two are tautologies :

ArBe{((AlA)(BIB)

~Ae(AlA)

That the above two are tautologies are seen by constructing a truth-table for each of them, and in
such a construction we use the truth-table for | :

A A B & (Al Al @ | By
T T T T FE T T Y OE Y
¥F P T 2. F.T E ® T F T
T F T 'T°F F F ¥ T ¥
F  FF T F T *F F' F T F
L% 1 #,.1 % 1 % 4 3 1

~ A o A 1 A

F T T.T B T

T B T F T P

2 1 3L 21
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So A and ~ can be replaced by J alone, and this shows that a truth-function canbe generated by
a statement form containing the single binary connectives ..
From Corollary to Proposition 1.3.1 we also know that every truth-function can be generated by
a statement form containing as connectives v and — only. Now we show that v and - can be ‘replaced
by’ by | alone, and for this it will be sufficient to show that the following two are tautologies :
AvBo((A | A)| B B))
~Ae(AlA)

We now construct the truth-tables by using the truth-table for | :

A v B e (!l & 1 @ | 8y
T . T“7T *®* T2 % Y T"F %
F T T T F T F T T F T
T T F T T F T T F T F
E _F F. . ¥  F . ¥ .F.F ¥ T . F
1 2 I & 1° 2 97 A +1..2 -~}

~ A e @A | &

F T T T F T

§ G . ol . A

¥ 1 3 1 %4

We now ask a very important question- -

Does there exist any ether binary connective that alone can be adeduate to construct a statement
form which generates a given truth-finction ? The answer is No as will be seen from the next proposition.

Wlﬂﬁ@yhﬁym&ﬁmhaﬁemmﬁrmﬂmufﬂlmm
are L and |.

Proef : Let b be a connective which alone is adequate for generation of all truth-functions. It will be

sufficient to show that AbB is either ALB or A | B, i.¢. the truth-table for AbB is >
cither
A b B
T F : i
F F T
T F P
F i F
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m e T o R
e B B ™
Mmoo - @

Suppose in the truth-table for AbB, AbB takes the value T when both A and B take the value T.

Then any statement form built up by using the only connective b would take the value T when all the

statement letters take the value T. But the statement form ~A does not take the value T when its statement

 letter A takes the value T. This gives us a contradiction that AbB takes the value T when both A and B
take the value T. So AbB must take the value F when both A and B take the value T.

Next, suppose AbB takes the value F'when both A and B takes the value F. Then any statement
form built up by using the only connective b would take the value F when all the statement letters take
the value F. But we have the statement form ~A which takes the value T when A takes the value F. This
gives a contradiction, and so AbB must take the value T when both A and B take the value F. Thus we
have the following partial table for AbB.

A b B
T F T
F = T
T *=* F
F P F

If the values in the positions * and ** in the above are F, F or T, T, then p is 4 or |. We prove
that the values, in these positions cannot be F, T or T, F. If the valuesare F, T then (AbB) <> ~B is
a tautology which can be seen from the following table :

(A b Bf & -~ B
T F T T F T
F F T T F T
T T F T T F
F T F T T F
1 2 1 3 2 1

This means that b can be replaced by ~, i.e. ~alone is also adequate for generation of all truth-
functions. But we have the statement for mAB which cannot be expressed by using ~only. Therefore, in
the positions *, ** we cannot have F, T. If in the positions *, ** we have the values T, F then (AbB)
> ~A is a tautology as seen from the following table :
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ol B B B B I
Rl m - Mo
—lmm -
o I R B B
Rl om0
—lm o m 9w

This means that b can be replaced by ~, i.e. ~alone is adequate for generation of all truth-functions.
But this is not possible as we have seen above. Therefore the two positions *, ** must he filled up by
F, For T, T, i.e. the truth-table for AbB is

either
A b B
T F T
F F T
T F. F
F T F
or
A b B
T F T
F T T
T T F
F T F

i.e. b is either L or |. This proves the proposition.

1.5 Arguments and Validity

Our intuitive notion of an argument is that we make some assertions and then we come to a
conclusion. In other words, an argument is a collection of assertions followed by a conclusion. The
assertions in an argument are referred to as the premisses of the argument. In day to day life very often
we have to “deal with’ arguments, and analyse if an argument put forward by some one makes any sense
or is valid. '

These things will now be discussed in the light of mathematical logic. 3
Let us consider the following examples of arguments.

1. (a) [fPrasanta is a man, then Prasanta is mortal
(b) Therefore Prasanta is mortal

2. (a) Prasantais a man
(b) Therefore Prasanta is mortal
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3. (a) [f the function f is not continuous, then the function g is not differentiable
(b) Tl_ie function g is differentiable
(c}) Therefore the function f is continuous

4. (a) If Prasanta has owned a house, then either be has sold his car or he has borrowed
money from the bank. .

(b) Prasanta has not borrowed money from the bank.
(c) Therefore, if Prasanta has not sold his car, then bhe has not owned a house.

The above arguments can be symbolised by using statement letters for the atomic statements and
appropriate connectives.

(1) Using A for Prasanta is a man,
B for Prasanta is mortal,
the argument can be symbolised as

" (@A-B

(b) A
(c) . B _
A —> B and A are the premisses, and B is the conclusion.

(2) Using A for Prasanta is a man,
B for Prasanta is mortal,
the argument can be symbolised as
(a) A
(b) . B
A is the only premiss, and B is the conclusion.

(3) Using A for the function f is continuous,
B for the function g is differentiable,
- the argument can be symbolised as
(a) ~A — ~B
(b)B
(c).. A >
~A — ~B, B are the premisses, and A is the conclusion.

(4) Using A for Prasanta has owned a house,
B for Prasanta has sold his car,
C for Prasanta has borrowed money from the bank,
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the argument can be symbolised as
(a) A-»Bv C

(b) C

(c) . ~-B—~A

Here A — B v C and ~C are the premisses, and ~B— ~A is the conclusion.

From the above examples it becomes clear that when symbolised, an argument takes the form of
a sequence of statement forms ; :

I A
inwhich.il,l_,...,.a_nhmmAhmmmMammsymho&ingmm
is called an argument form. :

Validity of an Argument :

Letd, A, .., A, . A bean argument form symbolising an argument. 4, 4,,, ..., A_and 4 are
statement forms in some statement letters. For a given assignment of truth-values to the statemnent letters
we can determine the truth-values of 4, 4., ..., 4_and A by constructing truth-tables. For some
assignments of truth-values to the statement letters all of4,A4,, ..., A ; may take the truth-value T, but
then A may take the value either T or F.

IfA always takes the value T whenever all of 4, 4,,, ...., 4 take the value T for an assignment
dm—mmhm%%&mmmﬂmmmhmmﬂ
to be valid. .

Let us now examine the validity of the arguments given in Example 1-4 above :
1. The argument form symbolising the given argument is
A—-B A, . B : .
We construct a combined truth-table for A—B, A and B as follows :

P i : : I A
A - B A B
T . T @ T
F T T F T
: F F T F
F F F F F

mm&&gmmmmmmmnmmmhmmm&w
value of the conclusion is also T. So the argument form, and therefore the argument, are valid. :

2. 'The argument form symbolising the given argument is
A; B
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The combined truth-table for A and B is as follows -

@
F

@
F

I"r!"fl-lh-ltﬂ

Hence the premiss A take the value T in the first as well as the third row, but the conclusion B takes
the value T in the first row and the F in the third row. Therefore the argument is valid.

3. The argument form symbolising the given argument is

~A —~B,B; . A
The combined truth-table is :
~ A om S B B A
F T F T | @] T
T F F F T T F
F T T T F F T
T F T T F F F

Only in the first row both the premisses take the value T, andﬂuuum:spondmgwlueuf!he
conclusion is also T. This means that the argument form, and therefore the argument, are valid.

4., Here the argument form is
A—=Bv(C -C,.-B=-A
The combined truth-table is :

A =5 B v Cp = w B O W Ak
T T T 3 F T | F T : F T
T*% F % I F T T..X T F T
T &8 T T F IO F B~ T T F T
T F F F F| T F T F F F . T
F-T T 7T Tl E % F T T T F
F“T -F 7T Tl F T r- § T F F.
FE- O T 7T F|®@® F g% T T F
F @ F F FI® F ™ F T ¥ P

Both the premisses take the value T in the third, seventh and eight rows, and the corresponding value
nfﬂ:recumhmimhhismmhahutmfmmcmtmmﬂmmﬂwmmwﬁi
The above discussion and examples suggest the following useful proposition.
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Proposition 1.5.1 The argument form

a, H;.....,Hn; - 4 is valid if and only if the statement form A, A A, A ... AA —Ais a tautology.
Proof : Suppose first

a,A4,,...A,; - Ais a valid argument form, but 4, A A, A ... AR —Ais not a tautology. Then
there is an assignment of truth-values of the statement ]el:ters forwh:ch}l AA,A...AA 18 TRUE but A
is FALSE.

IfA, AAA... AA s true, then all of A, A A, A... A A are true. It contradicts that the argument -
form is valui (when all the premisses are true, ‘then the conclusion must be true).

Conversely suppose A, A4, A... AA, — A is a tautology, but the argument form A,, 4,,..4; .. A
Is not valid. Then if all of 4, 4,,..., A take the value T, A must take the value of F which gives a
contradiction since A, A A,A... AR —a is a tautology.

Example 1.5.1 Examine the validity of the following arguments :

M p—=2>®=2pPhpr PP

(i) If there is a gold mine in Kamakhya hill, then either the experts are right or the government is
lying. There is o gold mine in Kamakhya hill or the experts are wrong. Therefore the government is not
lymg. :

) The argument is already in symbolic form. We have to check, in view of

Proposition 1.5.1: If (p, = (p, 2 p ) ~Ap,— (P, = p)
is a tautology. So we construct the following truth-table :

® - ® = p) A~ p = p - p)
A R R A i
T ¥ ¥ ¥ * ¥ ¥ ¥ T T T
T ‘7T ¥ .§ ¥ T T T F F
T T F T F FF F T T F F
¥ T T # T T ¥ 4 B T ¥
F T F T T F F T F T T
¥F T ¢ % ¥:% T F ' ¥
F T F T F F F T F T F
¥ 3 | ‘g 1 4 1 s i 3 1

The above table gives a tautology. Therefore the given argument form is valid
(i) First we have to symbolise the given argument. Let us use
A for There is a gold mine in Kamakhya hill,
B for The experts are right,
C for The government is lying
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We now have the following arguments form :-
A->(BvC),-AvB, .. ~C
Then we use Proposition 1.5.1 :-

A — (B v C)) A (~ A W -~ B) - - C
T T T T T F F. ¥ F..F T . T § T
T T F T T T F T T T F F F T
T T T T F E £ T ¥ . BT T B
T F F F F F F T T T F T.. T F
¥ F L. X T TF L F r B T F F T
F T F T T T 'T. F T T F F F T
F T T T F T T-'F T B R P
F. T F FF T T F T T F T T F
I 4 1 3 1 5 2 1 3 2 1 & -9 -1

The above table does not give a tautology. Therefore the given arguent is not valid.

Sammary :
* IfA — Bis a tautology, then we say that A4 Iugmally implies B or that B is a logical

consequence of 4.
If 4 ¢> Bis a tautology then 4 and B are smﬂtnbelogzcaﬂyecpmﬂentandmuenasﬂzﬂ

* If A and B are tautologies then so is B.
*  Every truth-function can be generated by statement form involving only the three connectives
~, A and A.
-+ Every statement form is logically equivalent to disjunctive normal form.
*  Any statement form is logically equivalent to conjunctive normal form.

*  Theargument fom A, A4,, ..., A; .. A is valid if and only if the statement-form A, A A, A
. AA_—> A is a tautology.

G.U. Questions

1996

1. Translate the following sentences into symbolic notation using statement letters for the atomic
sentences and the usval connectives :

(i) * If demand has remained constant and prices have been increased, then turnover must be
decreased.

(@ Ify is an integer then z is not real, provided that x is a rational number. 1+1=2

34




Give examples with justification of tautology, contradiction and contingent containing at least two
statement letters. 24242=6
. White the following statement in symbolic form

* “If either labour or management is stubbor, then the strike wil be settled if and only lfﬁiegpvumn:m
obtains an injunction, but troops are not sent into the mills’
Now determine by a truth value analysis whether the above statement is true or false under the
following assumptions:

‘If the government obtains an injunction, then the troops will be sent into the mills. Iftmupsmsent
mto the mills, then the strike will be settled Management is stubborn’. 4 8

Define the binary connectives joint denial () and alternative denial ( | ). Prove that | and | are
the only bmary connectives that alone are adequate for representation of all truth functions. 2+6=8

1997

Translate the following sentences into symbeolic notation using statement letters for the atomic

sentences and usual connectives :

() If the murderer has not left the country, then somebody is harbouring him.

(@) If Das is not elected leader of the party, ﬂ:mmﬁ:arChalﬂ:aorSmhnw:ll!eweﬂnCabnﬂ,md
we shall lose the election.

(i) 'Ihesumufhmmnnhm::swmifmdonlyifeiﬂmrboﬂmumbnﬂmmmbnﬂmmm

are odd. 1+1+1=3
When are two statement forms A and B said to be logically equivalent? Is ~(AAB) logically
equivalent to ~A A ~B where A and B are two statement letters? 1+2=3

A and B are two statement forms and A and A—B are both tautologies. Prove that B is a tautology.

Suppose A is a statement form which contains another statement form A . Suppose B is obtained from
A by substituting B, for one or more occurences of A, Then prove that A,—B, logically implies

AeB. 3
Let f{x,.x,) be a truth function with the following truth table :

xl )'& ﬂ:xl'xi)

T " 3 F

F g 5 T

T F 2

F F T

Construct (with justification) a statement from D with the three connectives ~, A and v only such that
D generates f{x,x,). 6

as




1998

Tramlairtheﬁ:lluwﬁngsmtmmshhsymboﬁcfunnsmingﬂamtlamfurmeammicm
and the usual connectives :

(i) He is tall, or he is short and handsome. _
(i) To be poor but happy means to be rich. 1+2=3
Examine the validity of the following argument by writing the corresponding argument form :

‘If the function f is not continuous, then the function g is not differentiable. The function g is
differentiable. Therefore, the function f is continuous. 5

When is a staternent form said to be a tautology? Examine if the following statement form is a
tautology.

(-p) =~ : 1+2=3
Prove that every truth function is generated by a statement form involving the connectives , , and only.
Show further that the adequate number of connectives may even be reduced to two : A and ~, or

and ~, v or = and ~. 5+2+2+2=11

Defind disjunctive normal form and conjunctive normal form. Show that any statement form is

logically equivalent to a conjunctive normal form. 1+1+3=5
1999

Translate the following composite sentences into symbolic form using to stand for the atomic
sentences -

(i) If demand has remained constant and prices bave been increased, then turnover must be
decreased.

(i) If Jones is not elected leader of the party, then either Smith or Robinson will leave the cabinet,
and we shall lose the election.

(i) The corps will survive if and only if umigation thches are dug; should be crops not survive, then
the farmers will go bankrupt and leave. 24+242=6

Define tautology, contradiction and contingent and give an example (with justification) of each.
24242=6

Counstruct {with justification) a statement form that generates the truth function f{x, ,x_!) define by the
fu]lnmng truth table : 4

X, % fix,x,)
T T F
F T T
T F T
F F T

Define the binary connectives joint denial (1) and alternative denial ( ) of propositional calculus.
Prove that the only hmmy connectives that alone are adequate for representation of all truth functions
are and .

2+6=8 ; M
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Unit-2
Formal Statement Calculus

Introduction :

The word “formal’ is one which appears regularly in logic text books without being explained. It is
mndwh:nrefmingMasimaﬁmwfmrcsymbﬂlsmb:ingusadandwhﬁelhc[xhnﬁmmdpmpﬁﬁes .
of the symbols are determined completely by a given set of rules. In a formal system the symbols have
no meanings, and in dealing with them we must be careful to assume nothing about their properties other
than what is specified in the system. .

2.1. Notion of a Formal Theory : -

A formal theory £ is said to be defined if the following conditions are satisfied:

(1) There is a countable set of symbols given as the symbols of £. A finite sequnce of symbols of &
is called an expression of £. :

(ii) There is a subset of the set of all expressions of £, called the set of well-formed formulas,
abbteviadeffsnrsimplwak,nfﬁ.I‘hmcisumnﬂyaneﬁacﬁv:pufmmnmdetermincwheﬁnqgivm
expression is a wf or not.

(ii1) A subset of the set of all wf3 is setaside and is called a set of axioms. There is usually an effective
way to determine whether a given wf is an axiom or not. In such a case £ is called an Axiomatic Theory.

(iv) There is a finite set R, R,,....R of relations among the wis called the rules of inference. For
each R, there is a unique positive integer j such that for every set of j wfs and any given wf 7 one can decide
whether the given j wis are in the relation R, to 7. Ifit is so then 77 is called a direct consequence of the
given j wis by virtue of the R,

Some common terms like proof, theory, consequence, deduction are given precise meanings ina
formal theory £ as follows: o

(a) A proof n £ isasaqucme:fl,;‘.ira, s A, Of wis such that for each i, either 27 is an axiom of £ or
4, 1s adirect consequence of some of the preceding wis by virtue of one of the rules of inference.

(b) A theorem in £ isa wf # such that there is a proof A Ay oA Where A issame as . Such
aproofis called a proof of 7.

(c) A wf 7 is said to be a consequence in £ of a set I" of wfs ifand only if there is a sequence 7,7,
A of wis such that 7=27_and for eachi, either

(1) 7, is an axiom

or (11) = 15 a direct consequence by some rule of inference of some of the preceding wfs in the
sequence 7,7, ..., -

or (i) A isinT".
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Such a sequence 7,,74,, ..., 7, is called a deduction of & from I'(or a proof of 7 from I ). The
members of I are called the hypotheses or the premisses of the deduction.
If 2 is a consequence in a formal theory £ of the set of premisses [, then we write in symbol as
=
£ .
or simply I' |~ 7 if there is no need to specify the formal theory £.
If I is a finite set {531,21?...,:2!_}&3@5{_'\“&&%
(B, By B) -7
we usually write '
BBy B = A
" Itmay happen that I" = ¢, the empty set. From the above definition of consequence it is clear that ¢
- ifand only if 7 is a theorem. We therefore use the symbol |7 (which is logically same as ¢ |-
) to mean that 7 is a theorem. .
The following three properties of consequence follow from the definition of consequence:
(HIfrcAand -5, then A |-
[This means that if 77 is provable from a set I" of premisses, then 77 is also provable from a larger
set of premisses.)
(2) '} 7 if and only if there is a finite subset A of I" such that A |- 7
[Half of this follows from (1): If A g I" and A |- then from (1) ' 27 . The other half follows
from the definition of a proof i.e. in a proof there are a finite number of premisses.]
(3)If A}, and for each B A, T -2 then ' |- 7
[This means that if 77 is provable from premisses in A, and each premiss in A is provable from the
premisses in [, then 27 is provable from premisses in I which is quite obvious. ]

2.2. Propositional Calenlus as Formal(A xiomatic) Theory:

We recall that in order to have a formal(axiomatic) theory we must have the following:

1. A countable set of symbols. ‘

2. A set of well-formed formulas(wis).

3. A set ofaxioms.

4. A setof rules of inference.

A formal{axiomatic) theory L of propositional calculus may be introduced by prescribing the above
four things as follows:

1.~,=,(...),, and the statement setters A, A,,... are taken as the symbols for L.

2.(a) All statement letters are taken as wis.

{b) If 7 and 7 are wis by (a), then ~ 27 and 77— F are also taken as wfs.
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(c) A statement form that is generated by wfs of types (a) and (b) is also a wf.
3.1f 3, 7, C are any wfs in L, then the following are taken as axioms:
(AD) A= (B—7)
(A2} (A= (B> C)= (A~ B)= (A-C))
(A3) (~ A= ~B) > (B> 7) |
The above axioms are usually called axiom schemas, rather than simply axioms, because each one
of them actually gives an infinite number of axioms being valid for any set of three wfs 2, 7, G. Note that
schema means plan or disgram. [tlsalsunnpcmntmbearmmmdthatﬂwchumufm i not unique-
this is only one choice out of many probables. -
4. The only rule of inference is: A wf 7 is the direct consequence of the wfs 7 and 7— 7.
Th:sndcofmfmmumaﬂycnﬂedmcmmrmmabbrwubdm which means in Latina
mede of expression. '
Iuswmﬁlwhﬂemnntcthatnu the axioms (A1), (A2), (A3) can easily be verified to be tautologies
mn the sense of informal propositional calculus(Unit ) and the MLP, Issuggestedbyapmpusttmnpmvedm
Unit I which states that if 27and 27— 7 are tautologies then so is 3.
Now the definitions of proof, theorem and deduction given in § 2.1. can be restated in the context
of the theory L as follows:
A proofis a sequence of wfs A A, ..., A, suchthateach 7 i&anaxicmorisdedum'blefmmm
of the preceding wfs and the MLP. = .
A theorem 7 is a wf such that ﬂmreisaplmfﬁi;.?j,.,.,?_ with 7= (notation : |~ %)
L
Adedur.ﬂon.?ﬁ'nmasetl“nfw{sisawqumneﬂl,:?:,.--,ﬂnnfwﬂsmh&m3=?nwhemm:2; :

{i) an axiom

(ii)awfinI’

or (iii) deducible from some of the preceding wfs and the M.P.(notation : I" |- )
L

g

Example 2.2.1.: For all wfs 77 and 7 of L
FF=Z)= (A= 3)
- L
ie, (A— B)—= (F— A) is atheorem of L.
Here we have to show that
(A= )= (A= T) -
is provable by repeated applications of the axioms and the M.P. We have the following sequence of wis:
1. A= (F - 7) : (by (A1)
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2. (A= (B— A= ((A- B)= (A->A)  by(A2)
[writing 7 for C in (A2)]
3. (A B)— (A= A) by (1), (2) and M.P.

The last member of the above sequence is same as the wf given to establish as a theorem.

The above example illustrates the proof of a theorem. We have a sequence of wis (1,2 and 3) such
that each one of them is cither an axiom or a direct consequence of some of the preceding wfS in the sequence
by virtue of the rule of inference{M.P).

Here 1.and 2 are axioms and 3 is the direct consequence of | and 2 by virtue of the MLP.

Eumplez.z.z.:Foranytwoﬁrﬁz and 7 of L
=B (B A)
L
Ae. ~B— (BT— A)isatheoremof L. )
We have to show that~ Z—» (3 — ) is provable by repeated application of the axioms and the
M_P. For this we produce the following sequence of wis:

1.~ B> (~ T ~3) by (A1)
{writing ~ @ for 7 and ~ 77 for Z in (A1)]
2.(-A~T (B> by (A3)
3.~ A=~ B) 2 (B (~ B~ A~ D)= (Z->7A)
by (Al)
[writing (~ A— ~ B) = (Z— ) for 7 and ~ B for B in(Al)]
4.~ B=((~ A~ F) > (B—7A)) by 2,3 and M.P.

5(-B3{{((~FA->~-B)=2(B-3A))—
(- B2 (~F>-B)=>(~ B> (B3-7)) by(A2)
[writing ~ & for A, ~A— ~3 for Band B— 7 for in(A2)]
6. (~ B =~ A= ~ B)) = (~ BB —A)) by4,5, and M.P.

1.~BHB-AD by 1,6 and M.P.
Be convinced that the above sequence of wfs (i.e. 1,2, 3,4, 5, 6, 7) is a proofof the Theorem ~ &
—(8 = A) of L.

Example 2.2.3.: For any three wis 7, 7, Gof L
(A, BHA-CO))—B-=C
; - L
This is an example of a deduction. We have to show that 3 — C is deducible from the bypotheses 7
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and 7 — (A = G) by repeated application of the axioms and the M.,

We have the following sequence:

L7 hypothesis

2. B-H7A>C) hypothesis

3. A—(B = A) | by (Al)

4. B—7A | ' by1,3 and M.P.
5.(B (A B>HHB=C) ) by(A2) | |
6.(B—-M=HB -0 by2,5and M.P.
1.3 G ' by4,6and M.P. -

The example illustrates the meaning of a deduction as defined earlier
For future use as a standard result we now give a lemma:

Lemma 2.2.1.: Forany wf 7 of L
' " Fa-=3,
.
i.e. for every wf 27, #— 7 is a theorem of L.
Replacing the statement forms occurring in the axioms by appropriate statement forms suitable for
our purpose we have the following sequence of wfs:
LA (A= A=A = (T = (T =D >(F - A)

by (A2)
2. A (A= D>A) by (A1)
I(FHF -T2 by 1,2 and M.P.
4. A (A=A by (Al)
5.9 by 3,4and M.P.

Proposition 2.2.1.(Deduction Theorem): If I' U {4} | & where 7 and 5 are
- L
wis of LandT is asetof wis of L{possibly empty), then
T-a2-3.
L
In particular if # |—3 , then|— 77 — 7.
L- L
Proof: Suppose the deduction
ro{aj}—-=
L
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consists of a sequence of n wfs
By B B=B .. 1)
We use induction on the positive integern. meemﬂntdnmmumﬁn- l,ie., for
=1, THa- 3.
2
When n =1 the sequence (1) contains only one term, namely Z,, and we have three possible cases:
B, isanaxiomof L
oo  Zisinl ' .
or B isA |

le:S-ppoum.hulﬂuifLWemmM.m

'—a-a3,
L -

For this we produce the following sequence:
' 1.3, axiomof L.

2.85(A-3) by(Al)

3. A3, by 1,2 and MLP.
The above sequence means that

7 - 3,

L

e, ¢}—-F -3,
L
and therefore
T—7-3,

; L i ;
because ¢ — I' (See property (1) given at the end of § 2.1). Moreover it is to be noted that in this case 3, =
2 and s0 we can write

| .
L

CIHII.SWH 2 isinT. Here also we have to show that
I'-2-3,ie, Tp-A->2
L
~ We have the following sequence:
1.3 hypothesis.
2.3 (A>3) by(AL)
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3. A3, by1,2and M.P.
Therefore & |~ — B, and s0

L
" Tha- 3,
L
since BeT.
Case I1I : Suppose 2, - 7. Here again we have to show that
I'l-2- 3,
L
ie, I'-A-2
L 5
By Lemma 2.1.1. we know that I'}|—27 — S7and therefore
L ‘
'~ - 3,
L
g MmhavepmvedﬂmthemmﬂaﬂhepmpmiﬁmismwfmnnLlnnrdnrtousehdwtim
' T2 - 3,
L
fork <i< n, and then prove that
-4 - 3,
L
We have four possibilities to examine :
' 7, isan axiom of L
or Zisinl’
or BisA

or ;:HiisobtahmdﬁunmiﬁjaudﬂmbyusingﬂmM.P.whﬁ: j<m<iand 7_has
the form B~ 7, (Note that only then you can use the M.P.)
The first three cases are identical to Case I, Case 11 and Case I1I respectively considered earlier. So

in these cases

e R B
L
For the last case we have the sequence :
1L.A- 3 (j <1i,and it follows by our supposition)
223 (m <i, and it follows by our supposition)
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3.9 (8- 7)  (writing ,— 7, for 3_)

4, (3—}{2&5-—)3&)} = ((FA-> B)— (- 3B)) by (A2)

i{ﬂﬁﬁi)—}(ﬂ—} Z) by 3,4and M.P.

6. A>3, byl,5and M.P.

This shows that T' -7 — 3.

L ;

Thus the mduction is complete and the case i =n is the required result. _ ' x

The particular case follows by putting '=¢.

Proposition 2.2.2.(Converse of the Deduction Theorem) : Let 7, & be twowfs andTasetof wis of L.
If '~ — B, then
ok |
v {7}-2.
L
Proof: Suppose I' |7 —» 7 and take T" U {77 }as the set of hypotheses.

L "
Then we have
| B deduction from I
2.7 hypothesis in " U {77}
3.3 2,1 and M.P.
Therefore Trv{z}}-=.

L

Proposition 2.2.3. (Hypothetical Syllogism, abbreviated H.S.) Forany three wis 77, 3, G of L
{22 38,8->C}a=>0C

L
Proof: We take {37 — 3, B — C, 7} as the set of hypotheses and use Deduction Theorem. We have
l.A-> 3 hypothesis
23-5¢C hypothesis
3z hypothesis
4.7 3,1and MP
5.G 4,2and M.P.
Thus {7 = &, B - G, A}|—C.
g L

Then by Deduction Theorem




(A>3, ->C}-A->C

L
Example 2.24. {F = (B - G, -2 ->0C
’ 2oy ) L
We prove this by Deduction Theorem.
First we show that
(A =(B = 0), B, A}-C
L
We have the following sequence of wis :
1.7 " hypothesis
2.7 hypothesis s
3. A—(B = 0) hypothesis ' .
4 T C 1,3 and M.P.
i 5.0 2,4 and M.P.
Therefore {7 = (7 —=0), 3, A}-0C.
L
By Deduction Theorem
{Z=(B-0),B}}-F->0C.
L

Example 2.2.5.: For any two wfs 7 and 7 of L the following is a theorem of L :

~B =T =7

This was proved in an altemative way in Fx.2.2.2. Here we prove it by using the Hypothetical Syllogism -

(HS):
1.~ =5 (~A —~7)
2-A =~ (B>
3. ~F=(B -3

Lemma2.2.2: Forany wis 2% and 7 of L
{~A-2 - 2.
L

The following sequence of wfs proves this :

1.~

2.~A = (~B =~
3.~F -~

4 (~F 9~A)—=>(A - 5)
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(A3)
H.S.

(A1)
1,2 and M.P.
(A3)




5.3 3,4and M.P.

Proposition 2.2.4.: For anywi 7 of L
a3 ) B A
: L
i.e.(~A—A) — A isatheorem of L.
Proof : We prove that

{(~A = A} -2
L
and then use the Deduction Theorem.
We bave the following sequence of wis:
L.~ hypothesis
2. ~A= (~A~A > D—>~A) (Al)
L (A~ A A~ S (A~ (~TA-A) (A3 . - -
4, ~A=(A =~ (A=) 2,3and HS.

5.~A=(Fo~ (A=) —
(~A=D = (=A>~A>M) (A2)

6. (AWM o4(~A->~(~TFT-A)) - = 4,5amdMP
1.~A ~(~A =~ 1,6 and M.P.
B.(~A~(~A= M) ((~-A>D =M (A3)
9.~A-M - 7,8and M.P.
10.7 1,9 and M.P.

Hence {~3 — A}}— 7 which gives on using Deduction Theorem :

- L

e Gt A I ) R 2. |
L

Example 2.2.6.: Forany wf 2 of L
b~~~ -3
L

i.e. ~~ 4 — A isatheorem of L.
To eastablish this it is sufficient to show that
o l} -
L
because the use of Deduction Theorem will then give the required result.
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We have

l~~T hypothesis
2.~A7A taking A =~7 and =7 in Lemma 2.2.2.
3.(~A—=F)~— A Proposition2.2.4.
4.2 2,3 and M.P.
Example 2.2.7 : For any three wfs 7, Z and G of L

DA (A2 3) -
L :

(i) = (T (B Q) = (Z=(7- 0))

L
(i) We prove that {7, 71— Z}}-3 and use Deduction Theorem twice.
L
1.2 hypothesis
2A-3 hypothesis
3.z 1,2and MLP. -
Therefore  {A, A= T)=3.
L
(- (FA-»B)> 3
L
- Using Deduction Theorem once again

A = (F — Ty B)
L "y
(ii) We prove that {3, B, A= (Z-O)}|-0C
) L

and use Deduction Theorem thrice.
1% | hypothesis
2.7 Irypothesis
3.29(B-0 hypothesis
4. B=>C 1,3and M.P.
5.Cc 2,4and M.P.

Therefore {#, B, A = (B =C)}|-C
L
Then using the Deduction theorem thrice :
(B, A= (B-O)}=AC
L
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A= (B-30)-2 =2 (F-0)
L
HA=(B=0)= (B2 (A-0)
L
Example 2.2.8. : For three wfs 22, B, G of L .
{MHA=(B->C) =2 (T =0 ; ke I ' »
L =
AsinEx2.2.7. prove that ,
A, B, A (T -C
L
and use Deduction Theorem twice.

-

Summary :
*  Aproofis asequence of wis A, 4,,4,, ..., A, Stch that each A, is an axiém or is deducible
from some of the preceding wfs and the M.P.
* A theorem A is a wf such that there is a proof
- a,,4,,4,, .., 4, with A=2,_ ( notation |-7)
L :
_* A deduction 4 from a set T of wis is a sequence 4,, 4,, 4,, .., A, of wis such that
H:R. where each 4, is 3
(1) an axiom or (ii) a wf in I" or (iii) deducible from some of the preceding wis and the M.P.
*  Deduction Theorem : ' )
If Tu{A}|— 7 where Fand & are wis of Land I is a set of wis of L(possibly empty)
_ -, ;
then rN—a2-3%.
L.
*  Converse of the Deduction Theorem :
Let 7, B betwowfsand Fasetof wisof L. If T}~ — B, then T'V {A}|-7.
L L

*  Hypothetical Syllogism :
For any three wis 7, 2, C of L
(A= 3,B83=C)A—C
L
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Unit-3
The Adequacy Theorem for L

Introduction : Unit 1 gave us a notion of ‘logical truth’, namely that of tautology. It would be reasonable to
hope that these logical truths will correspond to the theorems of L, and to attempt to construct L with this end
in view. _

3.1 The Adequacy Theorem for L : Though the syinbols of the language of L are being thought of purely as
formal symbols, L was defined in such a way that we could interpret the ws. of L as statement forms and that
then each truth fanction is represented by some wf. Thus although we cannot talk of assigning truth values to
the symbols of L i precisely the same way as in Unit 1, we can define an analogous procedure.

Definition : A valuation of L is a function v whose domain is the set of wis, nfLanc!whusl:rangc isthe set-
{T, F} such that, for any wis. 7, Zof L. '
(v(A) # v(-A), and
(iiyv(F = B)=F ifandonlyif v(#) = Tand v(Z) = F
Note that an arbitrary ‘assignment of truth values’ to the symbols p, p,, .... of L will yield a valuation, as each
wf. of L will (as a statemen? form) take one of the two truth values under such an assignment. (i) and (ii) will
then obviously be satisfied. '
Definition : A wf. FFof L is atautology if for every valuation v, v( ) =T This is same as regarding &
as a staterment form and applying the previous definition.

Propaosition 3.1.1. (The Soundness Theorem) : Every theorem of L is a tautology (in the truth-table sense)
Proof: To prove this proposition it is sufficient to verify that
- (1) all the axioms of L are tautologies,

(2)if A and Z7— 7 are tautologies, then so is 7, _
because a theorem is provable by repeated application of the axioms and the Modus Ponens.

The result (2) was proved in a proposition in UNIT L. The axioms of L are:

A= (B—A)
(F=(B=20)>(FA- D)= (F—=0)
(~A=~T)= (B3

By constructing truth-tables one can easily verify that these are tautologies.

We now give some definitions and propositions with the primary aim to define a tautology in the
formal theory L and establish another famous theorem known as the Adequacy Theorem of Propositional
Calculus. It will appear that a tautology in the truth-table sense as defined in UNIT 1 is also a tautology in this
Dew Sense.
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An extension L’ of L is a formal theory obtained by altering or enlarging the set of axioms of L so
that all theorems of L are also theorems of L" (which may have some new theorems).
An extension L* of L is consistent if for no wf 7 of L are both 7 and ~ -7 theorems of L".
y Noteﬂﬁtfmbecmi&aedmminnofimlﬁanditmbepmvedﬂmLismismtlﬂm
extension of itself

Proposition 3.1.2. : L is consistent as an extension of itself. ¥

Proof : Suppose L is not consistent, Thien there exists a wf 77 of L such that both 7 and ~ 77 are theorems
of L. By Soundness Theorem then both -7and ~ 77 are tautologies. But this is impossible, because if 7 isa
tautology, then ~ 7 is a contradiction. p

Proposition 3.1.3. : An extension L of L is consistent ifand only if there is a wf of L which is not a theorem
ofL". -
Proof : Let L be consistent. Then for any wf 7 both 7 and ~ 5 cannot be theorems i.e. either 7 isnota
theorm or ~ 27 is not a theorem of L* 50 that L" has at least one wf which is not a theorem.
To prove the converse it is sufficient to show that if L* is not consistent, then every wf'is a theorem of
| ik
If L' is not consistent then |- 3 and |-~ 2 for some wf . Let 7 be any wi,
L’ L’
First we prove that
F=~3=(zZ->9)
L
For this, it is sufficient to prove that
(~B)- B—A
L
and then apply the Deduction Theorem :
. 1.~% bypothesis
2.~B=(~A—>~B) (A1)
3.~A—>~B 1,2and M.P.
4 (~A>~B)y> (B> (A3)
G 5.3 3,4and M.P.
By Deduction theorem we get
b =~ B2(B-A)
L

But L’ is an extension of L. So we have




~Z (B

L
Thereforein L* we have
1.3 Theorem
2.~3 Theorem
3.~B(B>A) Theorem
4. B> 2,3, and M.P.
53 - 1,4and M.P.
Thus, |- A, ie.,everywf7 isaTheoreminL'
L §
This completes the proof.

Proposition 3.1.4. : Let L" be a consistent extension of L and let 7 be a wf of L which is not a theorem of
L’. Then L™ is also consistent where L™ is the extension of L obtained from L* by including ~ 7 as an
Proof : Given that 27 is a wf of L which is not a theorem of L". Suppose L™ is not consistent. Then for some
B ' '

]

L™ :

and |}~

L
We can also prove as in Proposition 2.2.7 that

-

L“ '
But L** differs from L’ only in having ~ 27 as an additional axiom. So |- 27 isequivalentto

; L
{(~A -
L

By Deduction Theorem

=~ =7 (1

L
By Proposition 2.2.4.

F(~=A-3) -7

L
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and therefore ; '
(A7) -2 2)
L
By (1), (2)and M.P. we get
(N7 |
L
But this contradicts the hypothesis that ¥is not a theorem of L". Hence L™ must be consistent.
An extension L" of L is said to be complete if for each wf 77 either 77 or ~ #is a theorem of L".

Proposition 3.1.5. : Let L" be a consistent extension of L. Then there is a consistent complete extension of
L.
Proof : See A .G Hamilton's Logic for Mathematicians, pages 41, 42,

Since L is a consistent extension of itself, L has a consistent complete extension.

A valuation v of L is a function from the set of all wis of L to the set {T, F} such that

(D(T)£v(~T)

and (i) W — B)=F ifand only if () =T and w(#)=F.

Note that if we consider a wfas a statement form and {T, F} as the set of truth-values TRUE and
FALSE, then a truth function dicussed earlier is a valuation.

AwfFof L is a tautology if for every valuation v, () =T.

Itis very important to appreciate that a tautology in the truth-table sense is a tautology in this sense
also. This follows immediately from the above formal deﬁmumoftautulagy, and so we have the following
Proposition in view of Proposition 3.1.1.

Proposition 3.1.6. : Every theorem of L is a tautology (in the formal sense).

Propesition 3.1.7. : If L’ is a consistent extension of L then there is a valution in which each theorem of L*

takes the value T.

Proof : Let L~ be a consistent complete extension of L*(Such an L ™ exists in view of Proposition 3.1.6.)
Define v on the set of wfs of L by ' 2

WA =Tif -7
L
and V(A =Fif j-~ F
L~
for any wi A[since L "is complete either |27 or |~ 77, and so we can define v as above .

L L 1] L';-l"
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We pow want to show that v is a valuation, i.e.,
D V()= v(~7A)
{ii) v(# — #)=F if and only if v(>7)= T and v(Z)=F.
(@) follows from the fact that L ™ is consistent, i.., there is no 7 for which 77 and ~ 27 are both
theorems of L. ™. For (ii) we proceed as follows
Suppose first v() = T, v( ) = F and suppose on the contrary (A = B)=T,then
7 (definition of v) (1)
L
b~ 3 (assumption and definition of v) @)
L= \
I—E:J-}I'.H (assumption and definition of v) (3)
L
4 By(1),(3)and M.P.
3 : 4)
L™
me{Z}and(4)w¢wacmmnﬁﬁmmhmmoﬂ,"{z,-mmhom&mmu}
Hence our assumption v(-zam=Tismtnmmt.anﬁsu,ifv{j!}-Tandv{;B'j-F,ﬂxnv(.’?—b.‘ﬁ}-?.
Conversely suppose v(77— 7)) =F and suppose on the contrary either v(Z)=Forv(Z)=T. Then
-~7#— 7) (assumption and definition of v)

-~ (assumption and deﬁnitim:mf v) {5)
" oor ] (assumption and defmition of v) (6)

Now
A B~ (A ™
Ly '

and B (A7) (A1) (8)
L*

By (5), (7) and M.P. or (6), (8) and M.P. we have

~B—>~A &)
. Figg

or A— 3
L Li

€
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Now
32~ (A->7) (A3) (10)
L” .

But by (9), (10) and M.P. we also have
| o e 2V 1
.[,;'"

Therefore in either case
A3
L-

But we already saw that _
(7> 2) - '
L"

This contradicts the consistency of L, . Thus v(97— ) = F must imply v(#)=T and v(Z)=F.
Therefore v is a valuation. .
Now let ¥ be atheorem of L". Then |27 because L ™ is an extension of L".
3 Ltﬂ 3
Therefore (A =T. -

Proposition 3.1.8. (Adequacy or Completeness Theorem) : If a wf 77 of L is a tautology (in the formal
sense) then it is a theorem of L.
Proof : Let 7 be a wf of L such that 7 is a tautology. Suppose 77 is not a theorem. Let L* be the extension
mmwmmwm—amwammwm.[m
L forL") L"is consistent. Therefore by Proposition 2.2.11.there is a valuation v which gives every theorem of
L' the value T. In particular _ ;
vi==T (Note that ~ 7 is an axiom, and so as good as a theorem)

- But () =T because 7 is a tautology. Thus we get a contradiction to the fact that v is a valuation

" [v(~ ) # v(21)]. Hence 27 is a theorem of L.

Summary : :
* The Soundness Theorem : Every theorem of L is a tautology.
* L is consistent as an extension of itself.
* An extension L* of L is consistent if and only if there is a wf of L which is not a theorem of L*
* IfawfAofL is a tautology (in the formal sense), then it is a theorem of L.

54




G.U. Questions
- 1997
1. Define a Theorem of formal propositional calculus L. Prove that for any wf 77, 77— 7 is a theorem of
L . 1+4=35
2 Prove that in the formal theory L, 7— G is deducible from 7— 2 and 7 —C where 7, 7, G arc any
- : _ . | 5
3. Explain clearly the meaning of a tautology in the formal theory L. Prove thatifawf 77of L is a tautology,
then it is a theorem of L. | 2+9=11
1998
1. Give a set of axioms for formal theory L of propositional calculus.
Prove that the following statement form is a theorm of L
(A= B> (A ) : . 2+3=35
2. When s a theory L' said to be an extension of L? When do you call L' consistent?
Prove that an extension L nleacmsuwnhfmdonlylfﬂuemlweﬂ -formed formula which is not

atheoreminL". 1+1+6=8
3.Emhmmammhgyhmnwkmumyhmﬂdﬁdﬁamlmmthcm
theory L. 3
4. Prove that the statement form 77— G is a consequence in L of the set of statement forms
(A= 3B, B>} 3
1999
1. If Tu{A}}- B where 7 and B are well-formed formulas(wis) of an axiomatic
L
theory L of propositional calculus and I" is a set of wfs of L(possibly empty) then prove that
r-aa—-=
L i
Deduce that if 7 |7, then -A— Z. : : 8
L L

2. Define an extension " of an axiomatic theory L of propositional calculus. When is an extension L* of
L said to be consistent? . '
Prove that L, as its own extension, is consistent. : 1+1+3=5
3. Define a tautology mmm&m’LﬂmﬂdmmhmﬁmﬂMd,
L .
IfL’ is a consistent extension of L then prove that there is a valuaton in which each theorem of L*
takes the value T. Hence deduce that a tautology in L is a theorem of L. 2+7+2=11

EE
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Unit 4
Informal Predicate Calculus

Introduction .mmimmﬂymdsmtmmmdw t:uk:ngﬂm:nduwumammnnntswh
mu,mmdmgm&mmplemmutbemudmgbhdu By this means we were able to discover
something of what makes a valid argument. The symbol of £ may,be interpreted in many different ways, but
we shall now concern ourselves with the purely formal aspects of the language and consider the logical

relationships of wis, rather than properties which depend on particular interpretations.

4.1. Symbolism of Prédicate Calculus :
Let us consider the following sentences :
[. Hilton is a human being.
2. Miina is a friend of Rita.
3. A bird has wings.
4. The successor of an integer is an integer.
S.T'hcpm(hwiofmm numbers is a number.
In predicate calculus such sentences are symbolised as follows :
1. H(h}), h— Hilton, H — is a buman being.
2. F(m, r), m— Mina, r— Rita, F —is a friend of
3. W(b), b— a bird, W — has wings. '
4, I(s(x)), x — any integer, s(x) —successor of an integer x, [ - is an integer
5. R(p(Y, 2)), ¥, Z— any two numbers, p(y, z) — the product of the numbers yand z, R —is a

The letters used in the above symbolism fall into three categories in regard to their meanings :
(A) H, F, W I, R — each of them denotes a certain property.
(B} h, m, r— each of them denotes a fixed object.
b, X, y, z— each of them denotes any object of a certain class, i.c.,a variable object.
(C) 5, p—each of them denotes a fanction in the mathematical sense.
The capital letters denoting some properties are called predicate letters.
The small letters denoting fixed objects are called individual constants.
The small letters denoting variables objects are called individual variables.
The small letters denoting fimctions are called function letters.

Example 4.1.1.:
S}‘l:nbuhse the following using predicate letters, individual variables and constants and function letters
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{a) A bird and an animal have legs.
(b) The rational aumbers are real numbers.
(c) 2 divides 4.
(d) A rose or a dahlia is pink.
(¢) The square of an even number is even.
(f) The square of a number is divisible by the number.
(a) The sentence is equivalent to :
A bird has legs and an animal has legs.
L(b) A L(a)
1L —predicate letter
a, b—individual variables.
(b) The sentence is equivalent to
Ifx is a rational number, then x is a real number.
(Q-—is a rational number.
R—is areal number
(Q(x)—R(x))
Q, R—predicate letters
x—individual variable
© D24 D—divides
D—predicate letter
2, 4—mdividual constants
(d  r—vose,d—dahlia, P—is pink
P(r) v P(d).
P—predicate letter
r, d—individual variables
() E—iseven, e—evennumber
s(e)}—square of e
E(s(e)), E—predicate letter, e—individual variable,
s—function letter
(] n—anumber
s(n)—the square ofn’
D—isdivisible by
D(s(n),n)
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The quantifiers y and 3 :
Consider the statement—
Every rational number is a real number.
The statement is equivalent to—
Forall 1, If x is 2 rational number, then x is 3 real number.
This may be expressed in predicate calculus symbolism as follows—

Forallx, (Q(x)—=R(x)) - - {1)
whu'erunis for “is a rational oumber” and R for “is a real number”.
Comduagamthemm—

Allmen mmmrh],whmh is equivalent to—
Forall x, if x is a man, then x ismortal. hmmm—
Forallx,(A(x)->M(x)) = ... A2)
where A means *'is a man™ and M means “is mortal”, :
The phrase for all x is called a universal quantifier and symbolised as {Vx ).
The statements (1) and (2) above can now be written as

(¥'x )(Q(x) = R(X))
and * (¥x J(A(x) = M(x)) respectively.
Now mnmdu' the statement— '

Some real numbers are rational, which is equivalent to—
 There exists at least one real number such that it is rational, i.¢., There exists at least one object x
such that x is a real number and x is a rational nmumber.
Similarly the statement—
Some pigs have wings may be written as :
m:muatkmmnijeﬂxmmumap:gmdxmm
The phrase “there exists at least one object x™ mmﬂﬂmwmmmﬂﬁx}
MMMG statements may now be symbolised as

(E)Rx) A Q%))
EX)(P() A W(x)
with R(x), Q(x), P(x) and W(x) having obvious meanings.
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Example 4.1.2.:
Translate the following sentences into symbols using quantifiers, predicate letters, individual variables
etc. : :
(1) All judges are lawyers.
(2) Not all lawyers are judges.
(3) Judge Sinha is neither active nor honest.
(4) Some writers admire women.
(5) No woman is both a politician and a housewife.
Solution : '
(1) For all x, if x is a judge, then x is a lawyer.
J—isajudge
L—isalawyer
(VX )0 LE)
(2)  ~(Alllawyersare judges)
~ (vx J(LA(x) = J(x))
"(3)  s—Judge Sinha, A—is active, H—is honest.
~ A(s) A~Hq(s)
Judge Sinha is not active and Judge Sinha is not honest.
(4) There exists an x such that x is a writer and x admires women.
ExNW() A AX))
(55  ~(Forallx,x isa politician and x is a housewife).
~ (x J(P(x) AH(x))

Example 4.1.3.:
Translate into symbols :
(a) Not all birds can fly.
(b) Anyone can do that.
(c) Some people are stupid.
Solution :
®  ~(Vx {B(x)—F(x)
®  (vx)Mx)- Cx))
© GIHMEOASE)
Let us look at {a) more closely—
It is not true that for all x if x is a bird then x can fly.
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The sentence is equivalent to—
There are some birds which cannot fly. i.e., there is an x such that x is a bird and x cannot fly :
(FxXB(x) A ~F(x)).
This shows that the existential quantifier (3x) can be replaced by ~ (Wx ).
Ingeneral the following two sentences have the same meaning :
(1) There exists an x which has property P.
(11) Itis not true that all x"s do not have property P.
Thus
PO nd~ (v (- P)
are equivalent in meaning.
Also from our knowledge of propositional calculus we know that for any two statements 7 and
(A B)is equivalentto (~(F — (~F))),
(Av B)is equivalent to ((~ ) — &),
(A4 B)isequivalent to (A— DA (T A),
in the sense that each pair has the same tuth-value. Snfmmmd:sctmmwtcandmpemmﬂ:ﬂzsymbo]s
3, A, vand ¢,

4.2. First order langnage

The symbolic expressions of the type discussed above constitute what is called First Order lan-
guage £, ¢
If we have to deal with sequences of individual variables and constants, predicate letters and function
letters, then it is convenient to use some conventions in the symbolism.

Let A be a predicate letter such that we have a symbol of the form A(s ,s,,...,s). Then A is called
a predicate letter of n arguments and is usually denoted by A". If we have to deal with sequences of predi-
cate |etters of different arguments, then we use symbols like :

AL AL A (predicate letters with | argument)
AL AL A2, v (predicate letters with 2 arguments)
A,,AJ,A‘ (predicate letters with n arguments)

Again let f bc a ﬁ.mchun lcl:tcr such that we hnvea syn:boi ofthe fm’m fit,t,..»t). Thenfiscalled -
a function letter of n argumeats and is usually denoted by . While dealing with of such function
letters of different arguments we use the symbols : :
F SR (function letters with 1 argument)
£2.£3, . (function letters with 2 arguments)
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......................................................................................

s BySE (function letters with n arguments)
Sequences of individual variables and constants are denoted by

Xy Ko
and a,a,....
respectively. ;
The following set of symbols is called the alphabet of the First Order Language :
% SR indrvidual variables
a,, 8, individual constants
ALA A AR APL, .. predicate letters
ELEL wa B B fimction letters
(). punctuation symbols
-~ =3 connectives
L4 quantifier
Example4.2.1.:

Let x,, x, be natural numbers. Express ‘x, + X, =xX,X,” in first order language.
We use predicate letter A ? for =, function letters f,? and £? for + and * respectively. Then

il | G 5 stands for x, +X,

£ix,x,) stands for X, x,

AN (x,,x,), £(x,,x,)) stands for X, + X, =X X,.
Example4.2.2.:

Let x, be an element of a group.

Express x x ' = identity, in first order language.

Let - a stand for the identity

£ stand for the function which takes each element to its inverse
stand for the product of two group elements

A  stand for equality between two elements.

Then ,
f'(x,) stands for x "
f(x,, £'(x,) stands for x x, '
ANE(x,. f(x))a,) stands forx x,"' = identity.
Definition :
Let £'be a first order language.

Aterm inEi,sdf:ﬁnﬂdas follows :
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(1} Individual constants and variables are terms,
(i) If £ isa function letter in 5, and t,, t,, ..., t, are terms in 4, then £t ,t,,...,t )isatermin 4.
(iif) The set of all terms is generated as in (i) and (ii).
In Example 4.2.2, above
- a,x,f{(x)and f(x, f'(x,)) are terms.

Definition :

An atomic formula in £ is an expression of the form Al(t,t, ..., t) where Aj“ is a predicate letter
andt,t, ..., t areterms in£. _

In Example 4.2.2. A Xf*(x , f '(x,)). a,) is an atomic formula of predicate calculus.

Definition :
A well-formed formula (wif) of £is defined as follows :
(1) Every atomic formula of £is awfof &
(i) If Fand 7 are wis of £by (i) so are
(~ ), (A— B) and ('Vx )7, where x is any variable
(iil) The set of all wfs of Sis generated as in (i) and (ii).

Example4.2.3.:
The following are atomic formulas : .
(1) A5, ), £76x,, %)) (Type ()
@~(A,'x) > Ax,) (Type i)

(Vx, J(A(x) = A,'(x,)
(3) (vx, ) (¥x, JA X, x) =2 AMX))  (Type(i)
(¥x, )A(x, %) = (Vx, JA(x, x)
Definition :
In the wf (V'x; )7, we say that 77 is the scope of the quantifier (Vx, ). Moreover generally, when
((W¥x; )A) occurs as a subformula of a wf 2 we say that the scope of (Vx, ) in Zis 7.
Example4.2.4.:

Inthe wf (Vx, ) A, '(x,), the scope of the quantifier (Vx, ) is A '(x,).

Example4.2.5.:
In the wf (Wx, ) (\u‘xz}(nf{xl,xln — A, '(x,)) the scope of the quantifier (V'x,) is
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(A %(x,,x,) = A,'(x,)) and the scope of the quantifier (Vx,) is (¥x,) (A*(x,,x,) = A,'(x))).
Example4.2.6.: :

The scope of (Vx,) in (Vx.}{ﬁﬂx’l, X,) = (Vx,) A,’{?i:)] ?5 A Hx,).

Definition :

Wcsayﬂu:avambhxiucunhunmmmcmmmesmpenfa (Vx,) orin (v'x,) ofawf. Ifa
vanablcxdnesnntnmurbmmdﬂlemtmmdtDmrfme

Example4.2.7.:
In the wf (¥x, ) A,'(x,), the variable x, occurs bound but the variable x, occurs free.

Example 4.2.8.: ; s
In the wf (¥x,) (Vx,) (A Xx,,X,) = A, (x,)) both the variables x, and x, occur bound.

Example 4.2.9.:
In the wf (Wx,) (A, (X,, X,) = (¥x,) A,'(x,)) the variable x, occurs bound twice and x, occurs free
once and bound twice.

Definition :
Let be any wfof £. A term tis saidtobe trnfurxilnﬂ'ifxidnesnotmurﬁﬂin:?wiihinﬂm
s-mpenfa.(‘#xj}whﬁexiis sumevariahleocmmingint '

Example 4.2.10.:
Let 27 be the wi
((vx,) A (x, %) = (Vx4 )A “(x;,‘-'l )
in £. Consider the following terms

£2(x %), 00, X)), X5, £(X, ).
(1) f*(x,, x,) is net free for x, in 7, because x, occurs free within the scope of (Vx, ).

(2)£2(x,, x,} is free for x, in 27, because x, does not occur free in 77 within the scope of (¥x, ).

(3)x, is free forx, i:nji',i:;e:v.':.!il.isr,mt1 does not occur free in 7 within the scope of (¥'x, )} [in fact there
isno (Vx,) in7] |

(4) £3(x,, x,) is not free for x, in 77, because x, occurs free in the scope of (Vx,).
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Example4.2.11.:
Which occurences of x, in the following wfs are free and which are bound?
(a) (Vx,) (A (x,, X,) = A '(x,a)
B (A'(x)) = (~ (Vx,) (Vx,) A (x,, x,,2)))
(@) ((vx,)A,'(x,) = (vx,) A’(x, X.)
(d) (Vx5 ) (AR (x, X)), x ) = (W%, ) A (x,, £(x,, L}}
Is the term f,*(x,, x,) free for x, in any or all of these?
First Part:
(a) The only occurence of x, is free.
(b) Both the occurences of x, are bound (not free)
(c) The first two occurences of x, are bound and the third occurence is free.
(d) The first two occurences of x, are free and the third and the fourth occurences are bound.
Second part :
(a) The variables in the given term are x, andx_.
The given wicontains a (¥x,) in the scope of which x, mmnsbmmd, i.e. does not occur free.
Therefore f *(x,, x,) is free for x, in the given wi.
(b) The given wf contains a (Wx ;) in the scope of which x, occurs bound, i.e. does not occur free.
Therefore f *(x,, x,) is free for x, in the given wi.
(c) Argument is same as (b).
(d) Argument is same as (b).

4.3, Interpretation :
Let us recall the following example—
Letx,, x, be natural numbers. The equality

EETXX
can be expressed in first order language as follows :
AN (X, x), B(x, x,))
when we assign the following intrepretations to the symbols used in our first order language :
the variables x , x, ~ stand for natural numbers
the function letter f* stands for the function +
the function letter £ stands for the function =
the predicate letter A * stands for the relation =

Agam we saw that the relation x]x]* = jdentity in a group may be expressed in first order language as
"&H]{f} :{xp t?(xJ}i &.L}




if we give the following interpretations to the symbols used :

the variable x, stands for any element of a group
the constant a, stands for a distinguished element
of a group -

the function letter fI1 stands for the function “product”
the function letter £ stands for the fimction “inverse™
the predicate letter A * stands for the relation =

In general a wf of £ contains some of the following symbols :

4} o SICEN individual variables

R B i individual constants

) | By A o function letters

@DALANLAZA).. predicate letters

3G, punctution symbols

6)~— connectives

Mv quantifiers

The meaning or the interpretation of the symbols at (5), (6) and (7) is known to us in any situation. But
i order to know the meaning or interpretation of a wf of 5 we must assign proper meaning or interpretation to
the symbols at (1)— (4). Roughly speaking an interpretation of wf of 5 consists of a “set of meanings” of -
{1) the variables
(2) the constants
(3) the function letters
and  (4)the predicate letters that occur in the wf.

Definition :
Aninterpretation [ of 5 consists of
(1) a pon-empty set D, called the domain of I
(2) a collection of distinguished elements
{3,,3,....} of D,
(3) a collection of functions {T.L",i >0,n }ﬂ}nnD,

and  (4)a collection of relations {A," i > 0,n >0 JonD,

Example 4.3.1.:
Consider the wf

(V) (V%) (~ (V%)) (= A (x, X)), X))
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Translate the above wf into everyday language with the following interpretation, and state the truth or
falsity of the staternent representing the wf :

(1) the domain D, = {0, 1, 2,3, ...}

(2) £’ is+

() A is=
With this interpretation the given wf'is the statement : _

“fﬂra]lwbu!enumhcrsxmdyitisnntmﬂmfmanywholenmnb:rz, X+zey™;
alternatively,

“for any two whole numbers x and y there exists a whole number z such that

X+Z=y"
We know that this statement is false.

Example43.2.: S
Consider again the same wfas in Ex.3.3.1.:
(Vx,).0Vx,) (= (%, ) (~ A (£ (%, X)), X))
Translate the above wf into everyday language with the following interpretation, and state the truth or
falsity of the statement representing the wf':
(1) D, is the set of all positive rational numbers;
(2) £* ismultiplication, ,” is division
(3) A, isequality.
with this interpretation the given wfbecomes the statement :
“Fnranyhmposiﬁvemﬁmalmnnbersxuﬂythemisaposiﬁvemﬁmmlmmhuz. such that
Xz=y".
This is a kmown property of the rational numbers.
The above two examples reveal a very important property of wis in first order language :
The truth or falsity of a statement representing a wf in first order langu2ge depends on the

interpretation.

Example4.3.3. :
Let £be a first order language which includes (besides variables, punctuation symbols, connectives
and quantifier) the individual constant a,, the function letter £ and the predicate letter A, >. Let 7 denote the wf
(Vx,) (Vx, 1A (%, x,),8,) = A X(x,, X))
Define an interpretation [ of & as follows :
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(1) D, is Z, the set of integers;

(2)a, is0;

(3) £ is-;

4 A’is<

Write down the interpretation (meaning in everyday language) of 7in L. Isthis a true statement ora
false one? Find another interpretation in which 7is interpretated by a statement with the opposite truth value.

With the given interpretation the wfmeans :

For any two integers x and y, if x - y is less than 0, then x is less than y.

This is true.

Now consider the following interpretation :

(1)D, isZ; :

(2) 3, is0;

(B) £ is+;

(YA is=

With this interpretation the given wimeans :

Forany two integers x and y, if x +y is equal to 0, then x is equal to y.

This is false, '
Example43.4.:

Is there an interpretation in which the wf

(vVx,)(A(x) = A ()

of £ can be interpreted by a false statement?

Cansider the following interpretation I :

(1)D, is Z; .

(2)a, is0;

(3) £, is the negative of an element of D;;

(4) A|' is the relation “is greater than 0".

With the above interpretation the given wf means—

For any integer x, if x is greater than 0 then - x is also greater than zero.

This is false.
Note : In all the above examples, the variables in each wf occur ail bound. In each case with a given interpre-
tation the statement representating the wf is either true or false. [f a wf contains free variables then we face
an uncertainty regarding truth or falsity of the statement as will be seen in the examples below :
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Example4.3.5.;:

Consider the following wfof 5 :

AR XLER,K)

Here both the variables occur free.

Define an interpretation [ as follows :

()D,=1{1,2,3,..}

(2) {,* isaddition, f,’ is multiplication

(3) A, isequality

Then the given wibecomes the statement

X +y=xy

where x, y are positive integers.

The above statement is not true for any two elements x, y of the domain but it is true for the pair (2,
2) of the elements-of the domain. Such a pair (2, 2) will be called a satisfaction of the wfunder the above
. ,

Example 4.3.6.: %

Consider the wfof &

(7%, ) (A M(f(x,, x,),2,))

The wf contains a free variable x,.

Define an interpretation [ as follows :

(1)D,isZ

(2)a, is0

(3) f,* is multiplication

(4) &,? isequality

Under the above interpretation the given wf becomes the statement—

For every integer x, Xy =0, where y is an integer. A satisfaction for the given wfunder the above
interpretation is (m, 0) where m is any integer. '

4.4, Satisflability and truth :
Definition : :
Let 1 be an interpretation with the domain D, and let 7 be the set ofall terms of 5.
A valuation v in [ is a function
v:7—=D
with the properties—
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(iyw(t)= i, foreachtermt, of £.

(@) V(Et by s 1)) = £ (V(L,), -y ¥(8,)) Where L, .., 1, are any terms of £and f* is any function
letter of £. ;

A valuation is thus a rule which assigns to each term in & the object in D, which is to be its interpreta-
tion. Part (if) above ensures that the rule is a consistent one.

Remarks : .
(1) In general, in a given interpretation there may exist many valuations.
{Z}Agivmwhmﬁmuﬁﬂm:ignanehnmnmfﬂ.mmchofﬂuevaﬁnblmx‘nf&ﬁ\Mvudﬂbe
completely specified by giving v(x,), ¥(x,), .... This is because the v(x)) are given by the definition and,
inductivity, for any term £2(t,, t,, .., .), the value of (£}, t,, .. 1)) is determined by (ii).
Definition : ‘
Two valuations v and V' in the same interpretation are called i-equivalent if v(x)=v/(x) for every j #i.

Definition :

Let 77ba a wfof 5 and let I be an interpretation of £. 77 valuation v in I is said to satisfy the wf Zif it
can be shown inductivily to do so under the following four conditions :

(i) v satisfies the atomic formula A", .. 1) if A;" (v(1), ... v(t)) is tuein D,

(ii) v sastisfies ~ 7 if v does not satisfy 3. '

(iiii) v satisfies (7 — ©) if either v satisfies ~ 7 or v satisfies C.

(iv) v satisfies (Vx;) 2 if every valuation v’ which is i-equivalent to v satisfies 7.
Remark1: _

For any v and 7, either v satisfies 7 or v satisfies ~ 27.

Remark 2.: :
R.nughlyspﬂkhmgbysayiﬁgthtavahmﬁmvnﬂsﬂuihcwfﬂafﬁwenmﬂwfeﬂnwing:
mm:mM:mzwﬂt}m@mmhMmlmwmmwmw

tion in I. We obtain a statement about the elements of D,.

This statement is now either true or false. If it is true, then we say that v satisfies 4.

Exampled4.4.1.:
Consider the wiof £
A]_!(f! z(x" xz)? f'.l(x_!_' x‘)}
under the interpretation I defined as follows :
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(1)D,isN={1,2,3, ..}
(2) f,* is multiplication
() A, isequality
Under the interpretation I the given wf becomes the statement
X, %, = X,X, where Xy, Xy, X,, X, € N.
Define a valuation v in I such that
v(x,)=2,v(x,)=6, vix,)=3,v(x)=4,
Thuwmﬁsﬁﬁlhegimwiﬂmlﬂusmhmoﬂn'ﬁhaﬁnuwhlmm
w(x,)= 1-“’(x,)=5fﬁ'{!t,}=4:“'fl..}'1
Then 1 N5#4>¢2.Suwdoesmtsatinfyﬂmgiv¢nﬂ
Example 4.4.2.:
Consider the wf
(vx, ) AN X(x, %), £}(x,, x,))
of Sunder the interpretation I defined as follows *
(1)D,isN={1,2,3, ..}
@) ismultiplication
() A’ isequality ;
'l'hcgimwfisinterprewdas“furweryne-nr.um-m",wbi:himbviuusiym.
Letvbeavaluationin .
Note that
| (1) the atomic formula A (£(x,, x,), £3(x,, x.)) is then interpreted as
_ v(x,) % v(x) =v(x,) x v(x,)
which is certainly true. So v satisfies A (x, X)), £ (%, x ).
{E]Iff'uanulhumhmwchisi-eqﬁvnkn:mv,ﬂmv‘nhusaﬁxﬁuhﬂﬂ’{xt,xj},ﬁ’{g,x,]}.
Soby (iv) of the definition above, v satisfies (Vx,) A (X, x,), £1(x,, X.).
Thus every valuation v in | satisfies this wf
Example 4.4.3.:
Counsider the wf
(Vx)AX(x,,a)
and the interpretation I of Example 3.4.2., viz
(1)D, isN;
(2) 3, is0
B) A is=
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Let us take a valuation v in [. Then A (x,, a,) is nterpretated as
v(x)=0 o |

Let us take a valuation v which is i-equivalent to v, i.e., v((x,) # v(x,). But we see that v' does not
satisfy A %(x,,a). Therefore by (iv) of the definition of satisfiability, v does not satisfy (¥x,)A *(x,,a ). Since
v is arbitrary, we see that no valuation satisfies the wf.
Definition : _
| A wf 7is said to be true in an interpretation I if every valuation in I satisfies -7, and ¥is said tobe
false if no valuation in [ satisfies 2. :

The wfof Example 3.4.2 is true in the given interpretation.
The wf of Example 3.4.3. is false.

Notation :
* Weuse [ |=7to mean “7is true in I".

Note that j=is not a symbol of first order language, but it is a part of the metalanguage.

It may happen that for a particular wf &, some valuations in 1 satisfiy 7 and some valua-
tions do not. Such a wf is neither true nor false in 1. See Ex. 3.4.3. above.

It is clear from the definition of valuation that a given valuation either satisfles or does not satisfy a
given wi 77, and hence it is impossible for a wi'to be both true and false in a given interpretation.

In a given interpretation L, a wf 7is false if and only if ~ 77is true. This follows from the condition (ii)
of the definition of satisfiability. '

Proposition 4.4.1. :

Ina given interpretation I, 8 wf 27 — 7 is false if and only if 77 is true and 7 is false.
Proof:

First suppose 7— Wisfalein L.

Then no valuation satisfies 7— B L

Given amy valuation v, then, v does not satisfy 77— . Condition (iii) in the definition of satisfiability
says that v satisfies 27— Zif either v satisfies~ 27 or v satisfies 7. Therefore v does not satisfy 7— Bifv
does not satisfy ~ 7and v does not satisfy 7 i.e., if v satisfies 7 and v does not satisfy Zi.e., if #is true and
Zis false.

Next suppose “¥is true and 77 is false. Let v be any valuation in I. Then v satisfies 7and v does not
satisfy . Therefore v does not satisfy ~ 77 and v does not satisfy . Hence by condition (iii) of the definition
of satisfiability v does not satisfy A — 7, i.e., 7— Fis false. '
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Propesition 4.4.2. :

If ina particular interpretation I, the wfs Z7and 7 — 7 are true then 7 is also true,
Proof : | '

Letv be any valuation in L Suppose ¥ and 7 — Zare true. Then

vsatisfies =02 ... (1)

and vsatisfiess¥o7m @ 0002 ... {2)

Then from (2) by applying condition (fii) of the definition of satisfiability, either v satisfies~ F or v
satisfies 7. But by (1) vdoes not satisfy~ 7. Sov  satisfies .

L]

Propasition 4.4.3. :

Let Z7be a wf of £, and let I be an interpretation of 5. Then I =7 if and only if I |= (Vx,)'.?w'hﬂex'
is amy variable. '
Proof:

Suppose I =22, i.e., Fis true in 1. Then v satisfies 7. Let v/ be any valuation which is i-equivalent to v,
Then v also satisfies 57 (since every valuation satisfies 27, Mm}hﬁmﬂﬂm(w}mmﬁn—
tion of satisfiability v satisfies (Vx, )7, i.e., = (Vx,) 7.

Next suppose I |= (Vx, ) 1. Then v'satisfies (Vx,) 7. Hence every v/ which is i-equivalent to v
satisfies 77 (by condition (iv) of the definition of satisfiability). In particular, v satisfies 77, and so every valuation
satisfies 7, i.e. I =27,

By repeated application of the above theorem we get the following corollary.

Corollary :
Lety,, ¥y- - Y, be variables in £, lﬂ:ﬂ'buwfuf.&.mdlulbnnmuprmum.mmll-?ﬁmd
onlyifIf= (Vy,) (Vy,).-(Vy,) 2.
In first order language we use anly two connectives ~and — and one quantifier (vx). 'Ihenmmvm
A and v, and the quantifier (3x) are defined as symbols as follows :
(Bx)is an abbreviation for (~ ((Vx, ) (~ 7))
(7 A 59) is an abbreviation for (~ (71— (~ 7))
(A v Z) is an abbreviation for ((~ ) — )

Proposition 4.4.4. : .
In an interpretation I, a valuation v satisfies the formula (3x )7if and only if there is at least one
valuation v/ which is i-equivalent to v and which satisfies 7.
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Proof: .

(@x)A stands for (~ ((¥x;) ~ ().

Let v satisfy (~( (¥'x, } (~ 7). Then v does not satisfy (V) (~ 7). By condition (iv) of the definition
of satisfisbility there is some valuation v/ which is i-equivalentto v and which does not satisfy (~ 7). This v '
. then must satisfy 77. _

Conversely suppose v satisfies 7. Then v/ does not satisfy ~ 7. By condition (iv) of the definition of
satisfiability v does not satisfy {in)("ﬁﬂ,andtlmm_:fmevnﬁsﬁu~{wx,.)(~m}_

Definition :
Let 27, bea wfof L (formal theory of propositional calculus). Replace each statenent letter of 7, by
aufnfﬁ{ﬁ:ﬂmd:lmyage}rqrhcmgﬁemstatm:mtlmubyﬂmmnewﬁ:m&rmghout
Thenwe getawf ZHof 8. Th:swfﬂofﬁlscaﬂedanbsdmﬂminmmnf:z mé.

Enmplem

A,=(~p, 2 (p,—py)) of L
Substitute
.(Vx,}A"{xi} for p,
(V) A,(x, ) for P,
(A'(x)- (vx)A)x)) for  p,
Then
A=~(Vx,) A, (X)) H(¥x,) A }(x,, %)) A '{x,J—rf‘n’x,}Aﬁx )
is a substitution instance of 4, m L.
Note : Ais also a substitution instance of 7' =~p, —p, because 4 is obtained by substituting (¥'x,) A, '(x,)
for p,, and (Vx,) A (X, X,) = (A,'0) = (Vx,) A,'(x))) for p,.
Definition : ;
‘gwiof &is called a tautology (in £) if it is'a substistution instance in £ of a tautology in L.
It can be proved (see Hamilton, p 65) that a wf 7 of £ which is a tautology is true in any
interpretation of 5. |
It can also be proved that if 7 is a wf of £ in which there is no free variable (such a wf'is said to be
closed), and | is any interpretation of 7 then
cither | FAorl =~ Fi.e. Ais either true or false in [. This fnc:mn]mdy:llusuamdbyunmplﬁ
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Definition :

AwfZof £is said to be logieally valid if 7 is true in every interpretation of 5. A wf 7 of £is said to
be contradictory if it is false in every interpretation.

Proposition 4.4.5. : _ ; :

Ifthe wis Z7and 77 — % of 5 are logically valid, then 2is logically valid
Proof: '

First prove that (Proposition 3.4.2.) if in a particular interpretation the wis 77 and 7 — 7 are true, then
Zis also true. Then apply the definition of logical validity.
Proposition 4.4.6. :

AwiA0f £is logically valid ifand only if (Vx, ) 7is logically valid, where x, is any variable.
Proof: _

Prove first that (Proposition 3.4.3) in any interpretation in &, 77 is true if and only if (Vx, ) 7is true for
any variable x. Then apply the definition of logical  validity.

Remark :

1. To show that a wf Z7is logically valid, we just have to prove that an arbitrary valuation in an
arbitrary interpretation satisfies 7.

2. To show that a wf 7 is not logically valid, we must construct an interpretation in which there is a
valuation which does not satisfy it.

Definition :

A wf of £said to logically imply another wf 7 of 8 if a valuation v satisfies 7, then v satisfies % also

A wf B of £ is said to be a logical consequence of a set T of wfs of £if  and only if in every
interpretation every valuation that satisfies every wiT also satisfies 3.

Two wis 7and 7 of £ are said to be logically equivaleat if and only if they logically imply each
other.

Definition :
An interpretation [ is said to be a model for a set I" of wis of £if and only if every wf of T is true for
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Example 4.4.5.:
(1) The wf
(%, ) GX)A X%, x) = @x) (VX,) A (X, %)
is not logically valid.
We have to choose an interpretation I, and a valuation v which does not satisfy the wf.
Let I be an interpretation such that '
()D,isZ
@) A (x,x)isx, <x,
Then (¥, }(3x,)A X(x,, x,) is true but (3x,) (vx,,) A (x,,x,) is false for any valuation.
(2) Let 7 be a closed wf of 4. Then we know that in any interpretation [ of 5 cither 77 is true or ~ ¥is
true. Therefore the wf
Av{~3A)
is always true in any interpretation [ of 5.

Formal Predicate Calculus :
4.5. A Set of AX1IOMS for Predicate Calculus : _
Let £ be a first order language. Formal or axiomatic predicate calculus is a deductive system
denoted K, or simply K, Wimﬂwfnlluwﬁ:gaxjummmmmfhmrfermw(deducﬁm).
Axiom schemas :
Let 7, 3, Cbe any wfs of £. The following are axiom schemas of K _:
(KD)(F>(B—>A)
(K2) (A= (B> ) = (A= B) > (A~ )
(KI)(~A=~B)2(B-23A)
(K4) ((Vx,) F— A), if x, does not occur free in 7
(KS) ((¥x,) %) —> AY), i Ax) isawfof Sand tis atermin £
which is free for x in Z(x).
(K6) (Vx,) (A—> B) = (A—> (¥x,) B), if A contains no free occurence of the variable x.
Rules of Inference (Deduction) :
1. Modus Ponens(MP) :
From # and (7 — &), deduce 7.
2. Generalisation :
From (Vx, ) A deduce 7 for any variable x..
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Definition :
(1)A proofin K is a finite sequence of wfs 77, ,, ..., A, of £ such that for each i(1 <i<n), either
;ismaximnnfi(‘ or 7, is deduced from the previous members of the sequence by MP or Generalisation.
(2) T isa set of wfs of £, a deduction from I" in K is a similar sequence in which members of T
may be included,
(3) A wf ZZisa theorem of K, ifitis the lastmember of some sequence which constitues a proofin K.
(4) A wf 7 is a consequence in K  of the setT" of wis if Ais the last member of a sequence which
constitues adeduction from I'inK, . '

Notation :
(1) —7means “77is a theorem of K"
K,
(2) T'|—7 means “7is a consequence of T'in K, " where I" is a set of wis
K .

c

ofK,. .

4

(3) Very often (when there is no scope for ambiguity) K means K,

Proposition 4.5.1. :

If #is a wfof £ and 7is a tautology, then 7¥is a theorem of K.
Proof : :
Recall thata wi 7 of £ is a tautology if there is a wf 7, of L from which 7is obtained by substituting
wis of £ for the statemerit letters, and which is a tautology. Let 77 be a wf of 5 which is a tautology, and
let 7, be the corresponding wfof L. Then 7, is a tautology of L and so |-, The proof of 7; in L can

L a

be transformed into a proof of 7in K simply by replacing statement letters by appropriate wis of 4 through-
out, because the axiom schems (L1), (L2), (L3) and the MP are common to both the systems L and K.
Note : ' )

In constrast to the situation in propositionnal calculus the converse of the above theorem is not true.

Proposition 4.5.2.

All instances of (K1), (K2) and (K3) are logically valid.
Proof: .

We already mentioned that a tautology in £'is true in any interpretation i.e., a tautology in Zis logically
valid. (K1), (K2) and (K3) are tantologies because their propositional calculus counterparts (L1), (L2) and
(L3) are tautologies, Therefore (K1), (K2) and (K3) are logically valid.
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Pmpuiﬁtlnls.i.
Aﬂ:mmnfﬂ:cmm&m {KS)and(Kﬁ}mhgmnltyvﬂ:d,m.,lmeﬂﬂmwwfs
of £, then the following are logically valid :
(@) ((vx,) A— mlfx]dncsm:ﬁmcmﬁaemﬁ
fb}((in}fojésﬂt}},sfﬂjx)mawfnfﬁmdmammé‘whlch:sﬁ'eeﬂ:urx‘m‘:![xi}.
{c]{(\?‘x Y (A= B) (A (Vx,) A)), if 7 contains no free occurence of the variable x;.
Proof: 1
(a)Ld[bemyhmemﬁunofEuﬂvmyvﬂmﬁminL
We know (from Proposition 3.4.1.) that
((¥x,) A—» A)is false if and only if
(¥'x,) A is true and Fis false.
Suppose (V'x,) 7 is true, so that v satisfies (Vx;) 7. Then by condition (iv) of the definition of
satisfiability, every v which is i-equivalent to v satisfies 7. In particular v also satisfies 7. 'I‘lnsmnsﬂmtvm
true ml.Th:rtme((Vxl}ﬂ—}ﬂ}lsmlEmm}anﬂptﬁthmﬂﬂt{Nl Yy A= ﬂjmlomilyﬁhd_.
() and (c) : See p 75, Hamilton. |

Proposition 4.5.4. (Soundness theorem forK):
For any wf 1 of 8, if |7 then A is logically valid.
_ K
Proof : .
Note that |— 77 means that 7is a theorem of K. In the proof of ¥ thereisa
K
sequenée v . S ?nfﬁsuchthatfurmhi{lsiin]eiﬁler?iisanmomnfl(orﬂ'ifnﬂuwsErum
mmnuusumhﬂsnfﬂxemmbymm;mﬂmum
We use induction ot n, i.e. nuthcnumbuufmmhmmﬂqumufuﬁuﬁprmfuf?
Ifn=1, |hlfﬁesqmufwﬁmmmmfmmlymnmbmmndyﬂmzmh
an axiom. But we know that any axiom is logically valid (by Propositions 4.1.3., 4.1.4.). So the theorem 7is
logically valid. '
Suppnaemmmn{ivl)umbminmeaequm:nfwfsmaprmfﬂ.smw&eﬂlﬂ:mmmufk
havmgpmofsmthshmm{{n)sequmahrﬁmhmmﬂymhd
If 72 foHlows from 7 and 7 — Aby M.P,, mmm‘zandﬁ—:ﬁhaveshmtersaqmafwfsm
their proof. Snﬁm{ﬂ%mmlog@ﬂywlﬂmwmlmﬂ45]Jtslng1m.'|]yvahd
lf:!mdadmudbyﬁmlmumﬁ'm (V'x;) A, then (Vx; ) Amay be regarded as a theorem having
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a shorter sequence of wis iniits proof. So (Vx, ) 77is logically valid. Then (by Proposition 3.4.6.) s logically

Proposition 4.5.5. (Deduction Theorem for K) :
Let zuﬂzhcw&nfsuﬂhtrbusa{muym} of wis of £. If ' {#}|— 2, and the

K
-deduction contains no appﬂuﬂonnfmlhﬂmhvohhgﬂﬂhbhwﬂchmnﬁuhﬂ,thm
I‘I—-(?—rm
K

Proof :

Letn be the number of wis in the sequence constituting the deductiion of Z from I'U {7}. We use
inductiononn.

When n = 1, then the sequence contains only 7. mzummuﬂ oramemberof T. We
dadmed:atl“l—{:r—r 7) in exactly the same way as we

K

did in the corresponding proof for the Deduction Theorem for L. -

Now letn > 1. Suppose that if . 7 is a wf of £ which can be deduced from I"'w {7} without using
generalisation applied to a free variable of 77, in a deduction containing fewer than n wis then I' |—(77 — . 7]

K

Casel:

2 follows from previous wfs in the deduction by MP. The proof here is again the same as for L.

Casell : .
2 is an axiom, or 7, or a member of T. Again the proofiis same as for L.

Case 1il :

:Bfuﬂnwsﬁnmpmwouswfsmmdednmmhymhnmn So, suppose that Z is Cwhere C
appears previously in the deduction. Thus 'u () |G,

K
and the deduction contains fewer than n wfs. So I' | — (7 — ©), since there is no
K

' application of Generalisation involving a free variable of G. Also x, canmot occur free in 7, as it is involved inan
application of Generalisation in the deduction of 7 from I' U {7} So we have a deduction of (7 — %) from
I"as follows :
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(1)

deduction of (7 — C)from I

® @0

k+1) (vx,)(7=20) from (k) and Generalisation
(k+2) (Vx,)(F=C)—=(TF- (vx,)0) (K6)
(k+3) (Z= (¥x,)0) from (k + 1), (k + 2) and M.P.
So, I —(7 — ) as required, and this concludes the inductive proof.
K ,
Corollaries :
()T (A} |-, and Fis a closed wf, thea T |—(A— 7).
K K
Proof:

Immediate. “7is closed” means “there is no variable occurring free in 7, and therefore the deduction

does not contain application of Generalisation involving a variable which occurs free in 7.

(2) Forany wis 27, 3, Cof 5,

{(A— B),(B— O} H(A—0)
K

Proof: ;

The proof is identical with the proof of a similar result in propositional  calculus. (The Hypothetical
Syllogism, H,S.)
Propesition 4.5.6. :

Suppose 7 and B are wfs of £, Ta setof wis of Sand T |—(Z7 — 7). Then

K

rv@®—z
K

Proof:
Identical with the comresponding proposition in propositional calculus.
Example4.5.1.:
Ifx, does not occur free in 77, then
=({(Z— (Vx,) )= (¥x,)(T—> 3))
K

- .




(1)@= (Vx,) D) assumption
@)((¥x,) B— B) (K49
BMF—7) (1), (2)and H.S.
@) (Vx,)(7—2) (3) and Generalisation
So, (- (Vx,) ) |— (Vx, (A D).

K

Now, Generalisation is used in the above deduction only by using the variable x, which does not occur

free in (77— (V'x, ) %). Hence we can apply the deduction theorem to obtain :

(- (Vx,) B) - (Vx, }(F— T))
K

Proposition 4.5.7. (The Adequacy Theorem for K,) :

If 77is a logically valid wf of £, then 77 is a theorem of K .

Proof':

See Hamilton, pages 99-100.

Summary :

In a given interpretation [, a wf Z7—» 7 is false if and only if Ais true and Fis false.
If in a particular interpretation I, the wis. ¥ and ¥ — 7 are true then 7 is also true.
Let 77be a wf of £, and let I be an interpretation of 4. Then I =7 if and only if 1 }= (Vx,) 7 where
X, is any variable. , : '
A wf 7 of L is logically valid if and only if (¥'x,) 7 is logically valid where x, is any variable.
If Aisa wfof £and Fis a tautology, then 27 is a theorem of K.
All instances of (K1), (K2) and (K3) are logically vahid.
Soundness theorem for K :

Forany wf Zof £, if |27 then 7 is logically valid.

K. -

{(Deduction Theorem for K)) :

Let #and 7 be wfs of £ and let I be a set (possibly empty) of wis of 2. If I'v {}|— 5, and the

K
deduction contains no application of generalisation involving a variable which occurs free in 27, then
TH@-3)
K.

80




* (The Adequacy Theorem for K ) :
If 7is a logically valid wfof £, then 7 is a theorem of K. -

G.U. Questions

1997
1. Give an interpretation so that the wf '
(¥x,) (Vx, ) &~ (Vx,) (< A M (x,, X))
can be translated to : :
‘memmmﬂmbusxmdymﬂnislpmhmemmﬂ:HzMﬂnn-y 3
2, Justify the truth of the following statement.
‘Thumhmmmynhwmmuwfmﬁmmmmdehm
tation.” 6
3.mummmmmmm@pﬁdmmmm
Examine if the wf
{Vxn}"‘.l(x)JA (sz}ﬁ]l(x]lxj) -+ Wxi]‘q"il{xd
isa tautology of predicate calculus. 2+5=17

1998
1. Express the following statements in first order language :
(i) Some real numbers are rational.
(ii) No woman is both a politictan an a housewife. : 2+2=4
2, With usual symbolism of predicate calculus examine if the following expressions are well-formed formulas

DA (x,),x)
(i)~ (vx,) A (x,,x,)
(i)~ A, \(x,) = A,'(x) ' I+1+1=3
3. Consider the following well formed formula of predicate calcubus :
AXEx, 1) £, X))
Give an interpretation to the above formula to explain the notion of satisfaction of a formula. 5
4. Prove that a well-formed wf 77 of predicate calculus is true in an interpretation I if and only if (Vx) ¥

where x is any variable istrue in L. 6

_ 1999

1. Describe a First Order Language of Predicate Calculus and define a well-formed in this language.
2+2=4
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2. Define interpretation of a wf of Predicate Calculus. Give an interpretation to the followings wfand
examine its truth-value ;

(VR 7% = V%, ) (- APHE (X %)), %) 23w f
3. Ina given interpretation [, prove that A — B is false ifand only if A istrueand B is false, 5
4. Let A be a wfof Predicate calculus and [ an interpretation. Prove that I = A if and only if I = (¥x, ) A where
X, is any variable. _ 6
1997

5 StatcasetDfaﬂumschmmandmhsnfdtdmﬂonfmaﬁnmﬂmmryKofpmdzmmlmhﬁ.me
ﬂntanymnolugynfpmpmhmalmlmdmmaﬂmormnfpmdlmuhﬂn&
Is the converse true? 3+4+1=8
2. Prove Deduction Theorm of K : ;
LEtﬁand:‘Ehewﬁufmupmlmﬂcaku]usLandletheasﬁ{pmlhlyempty}ofwﬁ uf]...lf
ru {7} -3
K
and the deduction contains no application of Generalization involving a variable which occurs free in 7, then
(- 7)
K

: 1998
1. 1f s a theorem in a formal theory of predicate calculus, then prove that 27 is logically valid 6
2. If § is a consistent first order system with equality, then prove that the following is a theorem of §:
(Vxl sz ] fﬁﬁ(x.- 1_1_} =¥ Aﬁ{xlr x.]} I 5
3. Describe a first order system using a formal language which contains no individual constants.?

1999 :
1. Present predicate calculus as an Axiomatic Theory K stating its axiom schemas and the rules of inference.
Prove that a tautology of Propositional Calculus is a theorem in K.
4+6=10
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UNIT : 5
Mathematical systems

Introduction _
| Units 1 to 4 are not mathematics. The systems L and K, are systems of logical deduction. We have

Mmmmmmwmmmmmﬁﬁwmmmmm .
been of an elementary nature, principally properties of natural mumbers. The mathematician interested in the
foundations of his subject seeks to clarify the assumptions he makes and the procedures he uses. We can use
the system K, in such a clarification. K, embodies procedures of logical deducation as used by mathematicians.
_We have seen that the absence of restrictions on the language £ make our results about X very general, and
that the symbols of a given £ can be interpreted in many different ways. For any £, however, thereisaclass
of wfs. whose truth does not depend on the interpretation of the symbols, namely the class of logically valid

wj., i.e. the class of theorems of K. If £ is interpreted in a mathematical way, as it is in our examples, the
theorems of K, are interpreted as mathematical truths. They are mathematical statements which are trae
because of their logical structure rather than because of their mathematical content, For example, in the

(v, X Vx, Al ), 1) = Al 3,)

which is logically valid, is interpreted as a mathematical statement, namely: ‘for all natural numbers xand y; if
x =y thenx = y’, which is true by virtue of its logical structure. On the other hand, the wy.

(Vx, XVx, XA @, x) > Al x))

is interpreted as the mathematical statement: *for all natural numbers xand y, ifx =y then y=x, which is true.
That it is true is, however, a consequence of the méaning of *=" rather than merely its logical structure. Indeed
this wf. is not logically valid. It is not difficult to find an interpretation in which A{ is not interpreted as =, in
which it is false. It follows that this wy is not a theorem of K. Thus the theorems of K, have in themselves no
mathematical value, Each of our mathematical formal systems will be an extension of some K, obtained by
including appropriate additional axioms so that the theorems of the system will represent mathematical truths
as well as logical truths. If our formal system is to be a mathematical system then it is clearly desirable to have
as theorems all wfs. whose interpretations are mathematical truths (o, if that is not possible, as many such
wfs. as we can). ;

What constitutes a mathmatical truth depends to a very larg extent on the mathematical context. For example, -
the statement

(Vx)(Vy)(ay = yx)
is true when regarded as a statement about natural numbers, but is not necessarily true when regarded as a
staternent about elements fan arbitrary group. We shall show, by means of examples, how different mathematical
contexts can be represented by different formal systems, so that, in particular, the above statement would be
the interpretation of a theorem of formal arithmetic but the interpretation of a non-theorem of formal group
theory. The context will determine the language £ (as in the case of arithmetic) and it will also determine a set
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nfp'upermm The word “proper’ :susadmmﬂertoduhngmshﬂmefmm(xl)—(xﬂ,whmhm
logical axioms, and are common to all our systems. Having specified L, the proper axioms are wfs. of L
which, when added as new axioms, give an extension of K, in which mathematical truths of the particular
context (as well as logical truths) appear as interpretations of theorems.

S.1. First order systems with equality '

Mathematics can very rarely do without the relation of equality. The symbol ‘=" does not appear in our formal
lmmas,hutwehm: used it in examples as the interpretation of the predicate symbol 4? . In all our
examples of mathematical systems we shall include 4 inﬂwlmgmge,hnd=wﬂlheilsirmhdiﬁqlm
As we observed above, the wf. (Vx,)(Vx,{A(x,, 5,) = Al(x,,x,)) is not a theorem of X, but we _
would like it to be a theorem of our mathematical extensions of K, . One way of ensuring this would be to
include it amang the proper axioms of each mathematical system. But there are clearly otherwyfs. which would
require similar treatment, for example (Vx, )47 (x,, x,) . We do not need to include as axioms all such wf.,
but we take as axioms for equality a set of them from which others may be deduced.

(EN A (x,,5). |

(EQ)A (1,,0) = A (fMtyotyeeeisty)y [yt 8), Where?,, ..., 1, uare any terms, and
f* is any predicate symbol of £. '
(ENA](t,,u)— A" (1), ks ) =2 A7 (U)ol 1, ) WHETC,, ... 1, ware any terms, and A7
is any predicate symbol of L.

Notes 5.1.1

(a) (£8) and (E9) are axiom schemes each representing a number of axioms, possibly infinitely many,
depending on the number of function letters and predicate symbols in £.

(b)ﬂﬂhmamhmﬁuwmbhsmm:gmﬁunﬁnyhawh&mnnﬂmmmmfmmm ;
of clarity and for ease of application later. We know, however, that for any wf, A, whose universal
closureis A' Al—&'m&ﬁ'l—.&mmethﬂmsaafnnmswauldheﬂmumvemlclmmnfm

(c) As a consequence of (b), and Proposition 4.18, regarding change of bound variables, the fact that the
variable x, in particular appears in (£7) bas no significance. Forexample, A47(x,,x,) isacousequence
of (E7), by means of the deduction :

(D A fx),x,) (ET)

@ (Vxl)““.l (x;,x,) ' (1) Generalisation
B)  (Vx)A](x5,x) (2), Proposition 4.18
4 Nxs)-’inz (x5,%5) = .le{x‘,,x,} (X5)

) A(xx)) £ . 3), () MP.




All mathematical systems which we describe will be extensions of X, (for some L) which inchude amongst
their axioms (£7) and all appropriate (depending on £) instances of (E8) and (E9).

Remark 5.1.2

The need to include (E7) should be cleac. It ensure that in any model the interpretation of 4 behave in one
mspactiike=.(H]mﬂ{m)mnmmphmmwhhﬂmm&ﬂhmymmmﬁm
of A7 behaves like = in another respect, namely that equals may be substituted for one another.
Definition 5.1.3

The axioms (E7), {ﬂ)mﬂ(ﬂ)mmﬂeﬂaﬂwmﬁrm.mmnfx_wﬁdi includes amongst
its axioms (E7) and all appropriate instances of (E8) and (E9) is called a first order system with equality.

Proposition 8.1.4 |
Let Sbe a first order system with equality. Then the following are theorems of S, -
® (Vx4 (x,x) |
(1) (Y, )V, Y Al (%),x5) = 4 (x3,%,))s :
G VYRV AL (%p0x;) = (A (52, 30) = 4 (x,%5))

Proof. (i) Immediate, by Generalisation, from (E7).
‘@  WegiveaproofinS:

(1) A2 (%, x,) = (A1 (x,,%,) = A7 (x,,%,)) (E9)
(2) A (x),x,) = (A4 (x)5%,) = A (x5,%,))) =

((A3(x,.x,) = (3, 5)) = (4] (31, %) = 4 (x:,5,))) (X2)
B)  (A(x.x) = A (3, %)) = (£ (%3,%,) = 4(x1,3,) (1), 2y MP
@ (A (x) = A (xx) = (A (xx)) (K1)
6 A(x.x) )
6) (4 (x,%) = 4(x.x) . (4),(5), MP
M (A (xpx) = 4 (x,%,)) (3),(6), MP -
®  (Vx)VEXNA(x,x5) = A1 (x,x) (7), Generalisation
@)  Againwe givea proofins.
M) (4 x) > (£(55) = (4(x,5)) (E9)
@ (x> (4 ) @ebowe
B) (A% = (A (53) > A (x,5))  M@.E

@ . (¥x)(Vx, }(v‘tl.!}(dll (X1 %,) = (4 (x5, %,) = A (x,,x,)) (3), Generalisation
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A Thus, since each of (i), (i), (i) in the above proposition must be true in any model of 5, the symbol 4 will
be interpreted in any model by a relation which is reflexive, symmetric and transitive, i.e. an equivalence
relation. Now = is the intended interpretation for 47 . In an arbitrary interpretation, the axioms could well be
false, 50 4? could be interpfeted by any binary relation, but in a model of S we have seen that the axioms
must bc.mxa and, as above, 4 must be interpreted as an equivalence relation. However, the axioms (ET),
(£8)and (£9) do not ensure that in any model of S the interpretation of Al isactually =

Example 5.1.5 _ _

Consider the first order language £ with variables XX, ..., function letter £;?, and predicate letter 1
Define an interpretation /as follows. D, is the set Z of all integers, £,%(x,y) isx+y,and 4 (x,y) bolds if
- and only ifx =y (mod 2), forx, y € Z. The axioms for equality are true in this interpretation.

For (E7), its interpretation is x = x (mod 2), which is true,

For (£8), as a particular case, consider

' ’411(1:1:)‘2}_’ Aljfﬁlrxr-xs)rflzﬁz:xl})'
This s interpreted as :
. ifx=y(mod 2) thenx + z= y +z (mod 2)
which is true. Verification of (£8) in its full generality is left as an exercise.
For (E9), there are only two instances to be verified, since L contains only one predicate letter. These are
(A (tw) = (A} (1V) = A} (@)
and j
) (1) > (4 (m1) = 4] (v.u))).
The interpretations of these are, respectively.
if x =y (mod 2) then x =z (mod 2) implies y=z (mod 2)
and :
ifx= y(mod 2) then z =x (mod 2) implies z =y (mod 2), which are true.
© This example shows that in a model of (£7), (E8) and (E£9) the symbol A} need not necessarily be
interpreted by =, However, the following proposition restores the situation.

Proposition 5.1.6
If S is a consistent first order system with equality, then S has a model in which the interpretation of Al s

Proof. By Proposition 4.44, if Sis consistent, then Shas a model, M, say. 42 isan equivalence relation on
D, because of Proposition 5 4.
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Denote the equivalence class containing x by [x]. Now define a new Wﬂ*uﬁﬂow.m
domain of M*is {[x]): xe D,},q,isinterpreted by [a,], foreachi, " is interpreted by f* where, fory,
sy, @D,

Pl (57 B 7 B § A LR
and A is interpreted by j",whun,ﬁry,.}..ylﬁ D,
& @D
holds ifand only if 7 (y,,..., »,) holds, where a,, 7", 4" arethe interpretations of the symbols of o< in M.
It is a lengthy but not difficult task to verify that these are well defined and that M™* is a model of 5. For .
example, let fbe a one-place function letter of = and  its interpretation in M. Suppose that a and b are
members of D, and that [a] = {5]. We have to show that [ fia)] =[ AB)] -

Now

I_(.Alltxpxl} - “l1IF (f(x), f(x)))- (E38)

Hence (A2(x,,x,) = 42(f (%), f(x,))).is true in M, since M is a model, and so 4'(a,b) implies
A2 (f (@), £ (b)), i.e.[a] = [b] implies [ f(a)) =L/ (®)]- |

Also the interpretation of 47 in M*is=,since 47([x), [y])holdsifand onlyif 47 (x,y) holds. i.e.and only
if [x] =[]

> This proof can be well illustrated by our last example in which we gave a model where 4} was not
interpreted as =. In that example we had 47 (x,y) if and only if x =y (mod 2) (x and y integers). Define a
new model, with domain {[0], (1]}, inwhich £ and 47 arcinterpretedby ;' and. 4} , givenby .
FDY) =15 (x)l=(x+y], -
A2(1x),[y)) holdsifand only if 42 (x, y) bolds,

ie. ifandonlyifr=y(mod2)
ie. ifandonlyif[x]=[y],

Definition 5.1.7 |

* Let Sbea first order system with equality. A normal model of Sis a model in which 4? is interpreted as =,
We shall be concerned in what follows mostly with normal models, since they represent the intended
mathematical situation regarding the interpretation of 4.
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Note. Of course it does not matter that we have chosen 4] to stand for equality. We could have chosen, say
A}, inwhich case axioms (E7), (£8) and (£9) would have involved this predicate symbol instead of 47.

AFor the rest of this chapter we shall be dealing with first order systems with equality in which 4] stands for -
equality. The proof of Proposition 5.4 indicates how repetitive writing out proofs can become, and we can
alleviate this some what by introducing the symbol = into our language in place of 4.

Notation. Write t, = ¢t, in place of A4; (¢, t,) where t, and ¢, are terms of L.

Axioms (£7), (E8) and (E9) can now be written in a simplified form, and in way which makes their significance
much clearer.

(ET) =x =x,

(E8) (h=u3 (" (i lp cin &)™ L pcniny By sy B}
Loyt uy f" as in (EB)

(E) (,=u (A (s by e 1)) =2 A7 (05 ey 8y e 1)),

Ly by A® 8510 (E9)
v

The symbol =is not the only one which we have introduced into the formal language in addition to the original
alphabet of symbols. For example we use (3x; ) as an abbreviation for ~ (Wx;) ~, and we use (1> B) asan
abbreviation for ~ ((1 — B) — ~ (B —A)). [t is sometimes convenient to write (4 v B) as an abbreviation
for (~A— ), and (A A B) for ~ (2 = — B). These correspond with our intuitive ideas from Chapter 1, and
the use of these new symbols clearly does not extend our formal systems in any way. Itis a convenience to
avoid lengthy repetition of symbols. In the different contexts which we are about to describe it is possible and
sometimes desirable to extend the practice, and introduce further defined symbols. There is one useful one in
particular which applies in any first order system with equality. This is the symbol for 'there exists a unique....
such that'. ,

Ha.raﬁmlr, (3,x,)A (x} is an abbreviation for the formula
(3x) Alx) A (wx)Ax) - x, = x)).

5.2 The theory of groups

Group theory is perhaps the most familiar branch of mathematics which is based explicitly on a simple set of
axioms, so let us use this 'mathematical context to illustrate how mathematical systems anse as extensions of
K

£
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—— — —— - -

First we must describe an appropriate first order language L, so let £ _ be the first order language with the
following alphabet of symbols : '
variablesx , x,, ...

individual constant a, (identity)

functionsymbols £', f,? (inverse, product)

predicate symbol =

punctuation(,),,

logical symbols v, ~, = |
Now define G to be the extension of K£  whose proper axioms are (E7), all appropriate instances of (E8)
and (E9), and the following :
(G1) TS, 20,5 5 %) [asmauvclaw}
(G2) f(a,, x,) = x, (leftidentity)

(G3) -flz (f, (x)x) =g, (left inverse).

As previously, it does not matter whether universal quantifiers are included in these axioms for each free
variable or not. An equivalent set of axioms would be the universal closures of these.

(G1),{G2) and (G3) are merely translations of the usual group axioms. Normally (G2) and (G3) arc stated
_ in the form “There exists a left identity’ and ‘For each element there exists a left inverst’. Our axioms here do

not explicitly assert existence. They merely state that a, and f,'( x,) . when interpreted in 2 model, must have
the appropriate properties. To assert existence is unnecessary since in any model of this systemn there will be
interpretations of a, and of £, and so the identity and inverse will automatically exist. Similarly, the group
axiom conceming closure under the group operation is unnecessary here because the interpretation of f* in
amodel is necessarily a two place function with values in the domain of the model.

Given such a system of group theory, we can convert any standard proof from an algebra textbook of a result
about elements of groups into a formal proof in the system. Such a procedure would have little practical use,
for a formal proofin G is necessarily rather complicated, and the large numbers of pu:e.'ly manipulative steps
would obscure the intuitive ideas involved, as the following example shows.

Example 5.2.1

In any group G with identity element e, efee) = e. Corresponding to this, let us give a formal proof in the
system G of the wf.

fll{ﬂw.ﬁ:(ﬂnm)} =4a,.
M fia.x)=x '
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@ X fa,x)=x) (1), Gemeralisstion

@) (M) (a.x)=x) = (fia,a)=a) <
@ fXa,a)=a, - (2),G), MP
&) (VxS (a, x,}-x.}—rcf’m,,f.’(a. a,)) |

= f}(a,.a)) - L&)
© fia.fa.a)=fa,a) @), (5). MP .
D (2 @a)=a) > (@ £ @ma))

= [ (@)= fHa, f(a.a)) =a,) &)
® (8, fa,a) = f(a,a,)

- fXa, [ a.a)) =a) @), (7), MP
®) fia,fi(a.a) =4, ©.@.MP

hmmmmamhﬂwuﬁufdn}-eﬁ:mymunm More complicated results
about groups are reflected in still more complicated formal proof in G. Particular examples are not very
* rewarding, but a further idea of the complications involved will be obtained by attempting to prove in e« the
wf.

f:j (x,a)=x "
Whﬂ!m&mm&nlﬁiﬁﬁgh also a right identity.

& It should be clear that any group G is a model of the system G provided that a, is interpreted as the
identity element of G. f/' as the inverse, f,? as the group operation and = as equals. However, there are
other models, as we shall see,

Construct en interpretation / of the system G as follows. Let D, be the set Z of integers, let a, be interpreted
as 0, let
' fl‘(x) =—xforxe Z,
and
fxy)=x+y forx,ye Z

and let = interpreted by congruence (mod m), where m is some fixed positive intsger. (Although weareusing
= s a symbol of L., as we have secn above, it need not be interpreted always as actual equality.) /is a model
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of G. To verify this we must show that every axiom of e is true in [. That (K1)-{K6) are true requires no
verification since they are logically valid. That (E7), (£8) and (£9) are true is verified just as in Example 5.5.
_ Let us look more closely at (G1), (G2) and (G3).

{Gi}ismlﬁ'prctadas
{x+y)tz=x+(y+z) (mod m).

(Gz}ﬁimmmdas

O+x= x_(t_nnd m).

(G3) is interpreted as
—x +x =0 {mod m).

All of these are true statements, for any x, y, z € Z. Thus /is a model of G. However, [ is not a group. Indeed
it involves the extraneous relation of congruence. However, the reader with some experience of group theory
or number theory will realise that there is a group in the background waiting to be discovered. From the model
I'we can construct a normal model /* by the procedure of Proposition 5.6. The domain.of /* is the set of

congruence classes of integers (mod m), g, is interpreted by 0 (the class containing 0), £ is iﬁicrpreced by
+(which is well defined on congruence classes), f;'is interpreted by ‘additive inverse™ (which is again well-
defined), and = is interpreted by equals. /* is a normal model, and it is a group.

& Ingeneral, any group is a normal model for the formal system of group theory, and conversely any
normal model of the system is a group. So to make mathematical sensc of the svstem we must restrictour
attention to normal models. [t is unfortunate, perhaps, but it is impossible to give axioms for equality which
force the interpretation to be actual equality. It will always be possible to construct a model in which = is
interpreted by some other equivalence relation.

The reason for constructing this formal system of group theory is not to provide any shortcuts or new methods
for obtaining results about groups and their elements. As we have seen, the methads of proof within G are so
unwieldy as to be useless for this purpose. What we have gained by descnibing tie system G is that we have
made precise and explicit all the assumptions and procedures which mathematicians use in the context of
group theory, including the logical ones as well as the mathematical ones. Inthiswe . 2 have clarified this part
of mathematids,. -

Giroups have been treated in detail, and similar treatment can be given for othe: sorts of abstract algebraic
systems, for example rings, ficlds, vector spaces, lattices, boolean algebras, etc. Each of these 1s knownto be
characterised by a finite set of axioms, and these can be easily translated into an appropriate formal language.
Indeed every area of mathematics which is characterised by a set of axioms may be treated in a similar way.
For example, Euclidean geometry can be based on a rather lengthy and complex set of axioms, and a formal
system would have to include predicate letters intended to be interpreted by "is a point’, “is a line’, “mteresect’
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etc. Also an axiomatic system for the real numbers can be dwcnbed,‘By means of the axioms for a complete
ordered field. '

There are two areas of mathematics which are particularly important when treated in this way. They are
. arithmetic and set theory. Each would require a whole book for a full treatment, but we shall merely try to
explain why they have a special position. It is only within the framework of an explicit formal system that
questions of consistency or of the relationships between different assumptions or of the position and use of
fundamental assumptions can be clarified. Set theory serves as a foundation for all of mathematics, so its
logical base is of over-riding importance. Arithmetic is an elementary fragment of mathematics, and its significance
lies in the methods used to show that the search for a formal system which would enable any mathematical
proposition to be tested must be fruitless. Any mathematical system in which ordinary arithmetic can be
performed cannot be such a universal system, for the set of theorems of any consistent extension of arithmetic
(in a sense which will be made precise) omits at least one true proposition. Some systems which are exicnsions
of arithmetic (e.g. the theory of groups) donot have this property. However a system which includes mathematical -
analysis or is intended to embrace mathematics as a whole will certainly include arithmetic, and so will suffer

from this shortcoming.

5.3 First order arithmetic
We develop the ideas involved in the arithmetic interpretation N first introduced in Chapter 3. The language L,
we take to include variables x,, x,, ... , the individual constant a, (for 0), the function letters f', £2, 72

(successor, sum and product), and the predicate syrobol =, as well as punctuation, connectives and quantifier.
Let us denote by A(the first order system which is the extension of X, obtained by including as additional
axioms (£7), all appropriate instances of (£8) and {(£9), and the following six axioms and one axiom scheme.

) ()~ () =ay).

W2)  (I0) (V) )= fim) = x=x,)

(N3) (Vx) (f (x,a)=x,)

N8 () (V) A )= R (D)

W5 (V%) (f (x.a)=a,) .

N6)  (Y5) (V)5 (s £ )= A1 (3, )s3,))-
WD) Aa) = (Vx)Akx) > A &) - (Vx)Al,))

for each wf A(x,) of L,, in which x, occurs free.

Notation. As yet we cannot know whether, for example, £,} must, in any normal model, be imerpreted as
addition (or a function with the same properties as the sum function), but it will make the system A couch
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clearer and the axioms above much easier to understand if we modify £, immediately by using the symbols +,
xand instead of f;’, f,}and £, respectively. To be explicit, we shall write ' ' '
41, for f3(1,,1,)
t,+t, for £l(t,t)
and

1’ for £, (1)

wherer, 7, :,manyrmns.ﬁlmmshaﬂmmcsymhummmu&mat.mmgmufdohlgmismusthe
emphasised once again. Having done it, we must not assume that these new symbols are necessarily always
interpreted by the functions or objects which they normally represent.

Using these symbols, the axioms (N1)-(N7) may be rewritten as follows
(M*)  (Ix)~ (x,=0),

(M%) (Y, XVx,)(x, =x, = x, =x,)

(N3*)  (Vx,)x,+0=x,),

(N4*) (Vx, NVx, )(x, +x, =(x,+x,)).

(N5*) (Vx, x, x0=0),

(N6%)  (Vx, X(Vx, )(x, XX, = (x, XX, ) +X,).

=
(NT%)  A(0) - (Vx,) (A(x,) ={A(x,)) = (Vx,) Alx)).
- for each wf A(x,) in which x, occurs free.

 Remarks 5.3.1

(@) The reader who is familiar with Peano’s Postulates will recognise (N1), (N2) and (V7). Peano’s Postulates
are a set of axioms for the system of natural numbers which weve first made explicit well before formal
systems were studied as such. They are :

1: 0isanatural number.

2. Foreach natural number n, there is another natural number ',
3. Forno natural number n is n' equal to 0.

4. Forany natural oumbers mand n, if m'=n'thenm=n.

5

For any set A of natural numbers contaming 0, if n’ € A whenever n g A, ther.. _Jlitains every natural
number

Note that the first two postulates do not correspond with any of the axioms for our system N, We do not ned
them because we have included symbols in the language £, (0 and ', or a, and £') which must have
interpretations in any model, so that in any model, an element 7, exists, and for each x there must be an :
element f,'(x).
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(b}mmmhmm{,wﬂmdmnﬁﬂhommmushmm Both are versions of
the Principle of Mathematical Induction. However, because in N we are restricted to the use of the first oder
language £ the axiom {(¥7) cannot be as strong or inclusive as Peano's fifth postulate. The reason is that
Peano's fifth postulate contains a second order quantifier ‘for any set A of natural mumbers’, which cannot be
expressed in our first order language. The best we can do is use the notion of axiom scheme, so that we
effectively have a quantificr in ‘for every wf, A(x) in which x, occurs free'. Note that such a wf. Alx,)
determines a set imany interpretation, namely the set of all elements v, of the domain of the interpretation
which satisfy A(x, ). (Morc precisely, the set of all elements v, of the domain of the interpretation such that
every valuation v for which v{(x,) = v, satisfies A(x,).)

If we think in the context of a model of & therefore, each instance of the axiom scheme (N7) corresponds to
the assertion of Peano's fifth postulate in regard to one particular set. However, there is still an essential
difference. The instances of axiom scheme (V7) form a countsble set of wi. of £, Peano's fifth postulate is
utthenmhuutallsmafnmma}numbas,arﬂﬂrmumﬁmofaﬂﬁmismmbhmmﬂjin
much restricted form of the Induction Principle, since it refers only to that countable collection of subsets of
the domain of a mode! which can be 'represented" in the manner described above by wf. of £,
(q}Pmno'sanﬂnmcmtainmﬁmnﬁmofgmamm&m&ummh:d:ﬁmdinmufﬂm
successor function, using the induction principle, but it is convenient to include symbols for these in the formal
wmvhgdmemiaum(MHmmmmmmnhmnnddEWﬂ
these symbols have the required properties.

P There is a fundamental difference mathematically between this situation and the situation with groups. The
formal system of groun theory allowed many different normal models, namely all groups. The system A(of
uithmeticEm&dmhmmﬂymmimdﬂmlyﬂmsaufmmmmiﬁsm.
of natural numbers which we hope will appear as theorems in the system. Whereas the group theoristmay be
mmmimwamhmmhmmummammﬂunMa
particular set, the set of natural numbers. [t is a natural question to ask, therefore, whether there are any
nmrmlmﬁdelsnfdww;mﬂ{:}&mﬂmmesetnfmﬂﬂun:i:m.ﬁmﬂhaqumﬁmwhichuimmmnﬂy
is whether the systemiis stronz enough, m the sense ofhaving as theorems all wys. which we would like to be
theorems, i.e. all w/fS. which comrespond to true statements about natural numbers. These two questions are
not unconnected, as we shall see shortly.

Some readers may e familiar with the standard proof that Peano’s Postulates determine the set of natural
numbers uniquely. Let N and M be ‘models’ of Peano's Postulates. Then 0c Nand 0 e M. Let A be the set
of elements of & which are elements of M. Then O € A. Alsoifne 4, thenne Nandne M son'e Nand
n'e M, son'e A Thus, by Peano's fifth postulate. A consists of all natural mmbers, i.e. 4= N, andsoNc
M Similarly, MC N, and so M= N. Inthis proof, the fifth postulate is used essentially, and as we have noted
above, (N7) does not correspond exactly to this postulate. Indeed the above proof cannot be translated into
aproofin N, So there is no hope here of obtaining a negative answer to our first question about N,
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Let us now address ourselves to the question : Is ?{mmpiet:? i.e.i5.4 or (=4) always a theorem of A, for
each closed wf. 4 of L,.. The significance of this question may not be obvious at first sight, but it has a bearing
on both questions above. [f N'were not complete, then it would not be a strong enongh system in the above
sense, for then there would be a closed wf. 4 such that neither A nor (~A) were theorems of N. Now in an:
interpretation a closed w is either true or false, so in the interpretation N either A is true or 4 is false, and i
the latter case (~A) is true. Now the interpretation of 4 in %(is a statement about natural numbers, and,
intuitively, eitherA or (~A) will have an interpretation which is a true statement about natural numbers. But
neither A nor (~4) is a theorem of A, Thus if A were not complete then there would be a true statement about
numbers whose corresponding wy, in N was not a theorem of A, It would be desirable, and was part of the
original aim in constructing the system N, that all the wifs. whichare true in the model N should be theorem of
N. However, if Al were not complete then this could not be so.

Also, if there were a wfl A such that neither A nor (~A4) were theorems of N, then (provided that N itself is
consistent) we could obtain, two distinct consistent extensions of N' by adding first 4 as a new axiom and
second (~A) as a new axiom. Each of these extensions will have a normal model (Proposition 5.6), and these
models are certainly models of N'which must be essentially different, since in one A is frue and in the other
(=) is true. Thus if N'were not complete there would necessarily be a normal model of N other than the
That Nis not complete was one of the major results first obtained by Godel. In fact he proved a much stronger
result with this as a special case.

5.4 Formal set theory

The foundations of mathematics are nowadays laid in the theory of séts, and since the beginning of this
century mathematicians have investigated the basic assumptions that have to be made about sets (i.e. axioms)
and the ways in which all of mathematics can be built upon these assumptions. The advantage of developing
a formal theory of sets lies in making the assumptions explicit and providing an opportunity to criticise them
andto explore interdependences between them. We shall describe one system of formal set theory. There are
others, but ours is one of the standard ones, and it is perhaps easiest to describe, in terms of concepts we have
already discussed. The reader who is unfamiliar with the set theoretic foundations of mathematics may find the
axioms themselves difficult, but they are included here for the sake of completeness and in order to give some
. 1dea of their nature. What comes later does not depend on them. We do not have space to do more than
describe the system and to point out some of the ways in which set theory develops from it.

The system which we describe is called ZF. The name derives from Ernst Zermelo, who first formulated a
collection of axioms for set theory in 1905, and Abraham Fraenkel, who modified them in 1920.
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The first order language which is appropriate for ZF contains variables, punctuation, connectives and quantifier

as usual, and the predicate symbols=and A? (no function letters or individual constants). Al isntended to

be interpreted as €, the relation of membership. Indeed, with the same waming as was given in the case of
==, we shall consider € as a symbol of the language, standin for A},and write 7, ¢, in place of A2(t,, 1), for
any terms /, and #,. Notice that the lack of individual constants and function letters means that the only terms

are the variables, and the only atomic formulas are of the form x, =x, orx, € x,. This may seem excessively

restricting, but the axioms which we introduce will ensure that the formal system genvinely reflects the full

generality of intuitive set theory, and we shall be able to introduce defined symbols corresponding to the standard

notions of set theory, such as the empty set, union, power set, etc.

ZF is defined to be the extension of K_ (where = is as described above) obtained by including as axioms (E7),
all appropriate instances of (£9) (£8 ha no non-trival instances), and (ZF1) to (ZF8) listed below.

(ZF1} (x, =x, & (¥ x,)(x, € x, & x, € x)).

This s called the Axiom of Extensionality, and its intended meaning is that two sets are equal if and only if they
have the same elements. Note that the left to right implication is given already by (E9), but it makes the
significance of this axiom clearer if we include both implications here.

(ZF2) @x) (vx) ~ (x, € x).

This is the Null Set Axiom, sinc eit guarantees the existence, in the intended interpertation, of a set with no
members. [t is a consequence of (ZF'1) that in any normal mode! there will be only one such set. We can thus
introduce into the language the symbol &, to act as an individual constant, the wf 'y x,) ~ (x, € @) being
then the form that (ZF2) takes.

Notation, We introduce the symbol < as an abbreviation as follows :
(1, = ,) stands for (wx,)x € 1, 2> x,€ 1)
where ¢, and 1, are any terms.
(ZF3) (v x X vx)Ex N vx)x, € x, © (x,=x, ¥ x,= x,)

This 15 the Axiom of Pairing. Given any sets x and y there is a set z whose members are x and y. Again this
axiom asserts existence, and it is convenient to introduce the symbols { and } into the language in order to
denote the object whose existence is being asserted. {r, x5 e =x v x,=x,)

(ZF4) (wx )Ex N v x,)x, € x, & (Ax) (x,€ x, A x,€ x,)
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This is the Axiom of Unions. Given any set x, there is a set y which has as its members all members of
members of x.

Notation. We denote by Ur, the object whose existence is asserted in (ZF4). This acts as 3 term, 50\ acts
as a one-place function symbol. We can then introduce U by :

(1, v 1) stands for (1, £,).
(ZF5) (wx )3 vwx)x, € x, o x,Cx) "

This is the Power Set Axiom. Given anys&xdwrc is a set y which has as its members all the subsets ofx.
(ZF6) (wx)(@Ex) Alx, x,) =
(v )3 (v x)x, € x, > Ex)x, € x; AR (x, X)),
for every wf. A(x,, x,) in which x, and x, occur free (and in which, we may suppose without loss of
generality, the quantifiers ( ¥ x,) and (v x,) do not appear).

This is the Axiom Scheme of Replacement, [f the wf. A determines a function, then for any set.x, there isa set
y which has as its members all the images of members of x under this function.

(ZFT) Ax MD € x, A{¥xNx, € X, 3 X, U {x,}€ X))
* (N.B. {x,} is anabbreviation of {x,,x,}, defined above.)

' This is the Axiom of Infinity. It assexts the existence, in any model, of an infinite set. If it were not inchuded
amongst the axioms there would be no way of ensuring that the formal system had any relevance to intuitive
set theory which inchudes infinite sets.

(ZF8) (yx)(~x=D - (3Ax) (x, € x, A ~ (3x,)(x, € x,A x;€ x))).
This is the Axiom of Foundation. Every non-empty set x contains a member which is disjomt fromx. Thisisa

technical axiom which is included in order to a avoid anti-intuitive anomalies such as the possibility of a set
being a member of itself.

ZF is a formal system of set theory. The axioms are chosen so that the interpretations of the formal symbols in
normal models will behave as sets do. Some of the axioms have a stronger basis in intuition than others, but
these eight have stood the test of time as representing basic truths about sets.

ZF can be used as a basis for mathematical analysis in the following way. On the assumption thatitis a
consistent system, we know that a normal model exists. [t can be shown that in any such model there are sets
with all the usual properties of the number systems. The details of this are lengthy and cannot be covered here.
For example, a model for the system A of arithmetic can be defined as a subset of a model of ZF in the
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following way. & has an interpretation in the model of ZE 35 , say. Then { 5 } is a different element of the
model (the set whose only memberis 75 ), { 35 | (@ }} is another (this set has two elements, 5 and, {5 }).
This is the beginning of an inductive process, generating a sequence of sets. The general rule is : for each xin
the sequence, its successor is x U{x}. It can be verified easily that the (k+ 1)st member of this sequence has
k elements, and it is possible to define the natural number k as this (k + 1)st member. We have already seen
that the other arithmetic operations can be defined in terms of the successor function. The axioms (N1)....
(NT)are then consequences of the definitions and the ZF axioms, Note that (ZF7) is needed to ensure that
the collection of all members of this sequence is an element of our normal model of ZF In this way every
normal model of ZF contains a normal model of ¢ - '

The reader with a mathematical background may be familiar with the way in which the number systems of
integers, rationals, reals and complex numbers may be constructed, starting from the nasural members, by
algebraic procedures. All of these procedures can be carried out within ZF. There is a lot of detailed verification
required but the end result is confirmation that every normal ﬁmd;l of ZF contains a set which looks and
behaves like the set of complex numbers. (This set of course has a subset which looks and behaves like the set
of real numbers.) ; . epi,’ R R,
Besides the foundation of analysis on an axiomatic base, there was another stimulus at the turn of the cmtm-_v
for the study of axiomatic set theory and this was in the intuitive justification (if any) for the use of certain
principles in mathematics. Attention was then focussed on two particular principles, the axiom of choice
(which was known to have several equivalent formulations) and the continuum hypothesis. Itis quite illuminating
to investigate some of the history of these principles since that time. Some mathematicians have regarded them
as additional axioms of set theory, and others have regarded them either as susl:reét intuitively or even as

falsehoods,

(AC)For any_mn—embty set.x there is a set y which has precisely one element in common with each member
of x. :

(Two of the best known equivalent formulations are : Zorn'’s Lemma; if each chain in a partially ordered set
has an upper bound, then there is a maximal element of the set, and The H’Ieff-{}rd'en'ng Principle; each set
~canbe well-ordered.) .

The continuum hypothesis is -
(CH) Each infinite set of real numbers either is countable or has the same cardinal number as the set of all
real numbers. (Two sets have the same cardinal number if there is a bijection between them.)

Because mathematicians were not in agreement about the acceptability of these two principles, the question of
course was asked; are they true? The next question is: if these principles are to be demonstrated, on what
principles ought such demonstrations to be based? Zermelo and Fraenkel (and others) listed what they thought
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to be the fundamental principles of set theory, and the question became; Can (4C) and { CH) be deduced as
theorems of the system ZF of set theory, and if they can not, would it be consistent to include one or both as
additional axioms?

5.5 Consistency and models

Any first order system is consistent if and only if it has a model. It is possible to argue, then, that the mathematical

systems we have described are consistent because in eachi case we have becunurmrmg, in the axioms, the
properties of an intended model. However, the perceptive readcr may already have been concerned about a

possible circularity in our arguments, which can be exemplified by the definition in Unit 3 of an interpretation

as a ser with certain operations and relations. How can we talk of interpretations or models of ZF, the formal

system of set theory, then, without a circularity? The answer is i the ideas previously mentioned of a metatheory

embodying the assumptions which have to be made in order to prove results about formal systems. When we

deal with the system &, for example, it is possible to use, say, ZF as a metatheory since ZF *cotains’ Nina .
sense already referred to. However, when we discuss ZF we have, so 1o speak, reached the end of the line.

By its nature, ZF is to be appropriate to set theory and hence for all of mathematics. However, in order to
study ZF we require mathematical methods which are not part of ZF. The notion of an interpretation of ZF
can be defined only in terms of some intuitive metatheory concerning ‘real” sets. The elements of a model of
ZF are to'be thought of as sets interpreting the symbaols of ZF7 However, the domain of a model of ZF, though

it may be a ‘real’ set, cannot be a set in the same sense that the elements of that dﬂmamare for it cannot be

the interpretation of a symbol of ZF.

There are certainly intuitive and semantic difficulties in these matters, and it is because of this that demonstrations
of consistency by means of models are generally beld to be inadequate. The more respectable approach is the’
following. Given two first order systems §and S*, we may appempt to show, on the assumption that a model
exists for §*, that a model for § can be constructed. This would give a proof of relative consistency. There
is one situation where this is almost trivial.

Proposition 5.5.1
Let 5*be an extension of §. Then if $* is consistent, sois S,

FProof Suppose that 5* is consistent, but § 15 not. Then 1 Aand = (—A). for some wf A of S. ButA is a wf
of §*also, and any proof in S is also a proofin 5%, so ks Aand — (~A) contradicting consistency of S*.

This is the easiest situation to deal with. In cases where S* is not an extension of § in this sense, for
example, where the languages of the two systems are different. the proof of relative consistency would be
more difficult and may involve actual consiruction of a model of § from an assumed model of §* We have
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given one such construction, albeit sketchily. in showing that consistency of ZF implies consistency of N.

Itis ot known whether ZF is consistent. Most logicians believe that it is, but any attempt to prove that it is
consistent will lead to difficulties of the kind described above. Essenti ally, it would require the asumpmn of
consistency of a system even more all embracing than ZF, Certainly there would be no corresponding difficuldes
" inthe way of an atiempt to disprove consistency. All that would be required for that would be an example of
awf. A such that both A1 and (=) are theorems of ZF Itis implicit in the above that no such wf has yet been
found. Seventy years of fruitless search is evidence th.at no such wf, exists, but it is no way conclusive.

Finally let us note a result ahuur models of ZF. ZF is a first order system. Under the assumption that ZF is
consistent. ZF has a countuble model. Now uncountable sets exist, mnutwely s0 we would expect models of
ZF to be uncountable, in order to contain such sets. This apparent paradox is called Skolem’s Paradox. but
we can escape from a direct contradiction by careful consideration of what constitutes a model., in the following
way.

To be specific. axiom (ZF5) is interpreted as ‘given any set x, there is a set consisting of all subsets of x”. If x
is an infinite countable set. then, according to the rules of set ehtory, x has uncountably many subsets. How
can the set of all subsets of such a setx belong toa countable model? A countable modet of ZF consists of
‘sets. For any ‘real’ sct.x which belongs to the model (clearly) there must be “real” sefs which do not belong to
the model), axiom ( ZF5) asserts that all of the subsets of x which belong to the model constitute a séty which
must also belong to the model. This set y will be countable, when regarded as a ‘real” set, but it will be
uncountable when regarded as an element of the model. An infinite set is uncountable if there is no bijection
between it and the set of natural numbers. In the model there will be no bijection between v and the set of
natural numbers (all *real” such bijections will be missing from the model in the same way that some subsets of
‘xare missing).

Summary: :
. 1t Sisa consistent first order system with equality, then S has a model in which the interpretation of
Alis=

® LetSbe a first order system with equality. Then the following are theorems of .
(D) (vx,)Ai(x,, x,)
(i) (¥x, X Vx, WA (x,,3.) = Al(x,,x,)),
(i) (7o, N Ve, NV, WA (x, %, ) = AL (x,x,) = Al(x,,x,))). _
. Let Sbe a first order system with equality. A normal model of Sis a model in which Aj :smze:preted

as=,

. Let 5* be an extension of S. Then if $* is consistent, 50 is 5.
o0
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