Institute of Distance and Open Learning
Gauhati University
M.A/M.Sc. in Mathematics
Semester 3 °
~ PaperV
Special Theory of Relativity

Unit 1 : Inertial and non-inertial frames

Unit 2 : Relativistic Addition Law of Velocities and Its
- Interpretation

Unit 3 : Relativistic Mechanics

Unit 4 : Minkowaki's Space

Unit 5 : Electrodynamics




‘Contributors :

Mr. Nawsad Ali . Dept. of Mathematics
Juiata Gauhati University

L

Editorial Team :

Prof. Kuntala Patra Dept. of Mathematics
Gauhati University
Prof. Pranab Jyoti Das Director, i/c
' IDOL, Gauhati University

Dipankar Saikia Editor, (SLM) GU, IDOL

Cover Page Designing:

Mr. Bhaskarjyoti Goswami: IDOL, Gauhati University

© Institue of Distanmce and Open Leamning, Gauhati University. All rights
reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the
Institute of Distance and Open Learning, Gauhati University. Published on
behalf of the Institue of Distance and Open Learning, Gauhati University
by Prof. Pranab Jyoti Das, Director, i/c, and printed at under the aegis of
G.U. Press as per procedure laid down for the purpose. Copies printed 500.




Unit-1
L1 lnmdm' _

Tlnﬂmmynfrelanwtycunsmdtwupaﬂs Th:spucmturkcstnmd]ﬂmryufﬂalmmymd
the General Theory of Relativity. MSpeleThﬁmywasmmdbyEIMmmlWSandﬁmeqﬂ
- Theory in 1916, msmwnfkdmmhadmmmmﬂtde\ﬁmn&hwdymm
Guuaﬂheoryufkclanwty:sﬁnmlaumdnmyofmﬂmm

'l‘heSpmﬂﬂm?mwymmubmmsymwhmhmmmmgmmmmW :
m:mpeamu:muﬂn*(mmhmmdm}mwhchmmmvmgxﬂ(mamw :
ufzem}ThaGuucmlihﬂorjrumtsufnbjmtsnrsysmwhmhmspeedmguporsluwmgduwnwuh
respect t0.one another (accelerated systems). The Special theory is really a particular case of the General
theory, since systems moving with constant velocity can be thought of as having an acceleration zero.

1.2 Absolute Motion : - .
ﬁﬁmofmfamncewhchlsmpposedmbeﬂahmluwm{m atmforaﬂunns]lscaﬂedm

absolute frame of reference. Anymﬂnonmhnwmmhﬁamofmfﬂmucdbdahmlmemm
which time malsnmnsmedmbe absolute.

ThN:wmmm:ahasedwﬂn;ﬂunfahmluhﬁmofmfammﬂMMmlmmﬂed
absolute motion. ;

13Lawotinertia:
knﬂﬂdm‘ﬁmyhﬂysﬁmﬂdbeﬂmunfmﬁmmuﬂmmkﬁumapphedbymmmﬂ
fmwstochangcﬂmsm:ufrﬂt

Idlmmﬂkmﬂrﬁemmmdmmmalhmi ;

According to Newton's first law, “A body at rest remains at rest and a body in motion continues with
Myspwdmaﬂmg!nhmtmﬁlaneﬂmnﬂfmmmapphedmmebody'I‘mslawmayalsubcmgarded
‘as the definition of force, i.e. “Force is the source by which the state of a body whether in motion or at
_mstnuybechanged. Nuwmhowmumufabodyhmmmgmm:tmdmmhedwmtum
wel.ldeﬁnndm—m!dmatesystemurfraunurm&mw:mwhmhﬂtwloc:tynfabodyrsmeam*ﬂd,
I&“MMEWWSMWMMMmﬂEMyMEMW
Newton introduced the idea of * “absolute space.” In any case a frame of reference must be chosen in such
amymumehwomeybmumemndmuﬂywwhm:mmedmmnthﬁm
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of reference. _

There are generally two types of reference system

1. The frame w.r. to which an unaccelerated body is unaccelerated. This also includes the state of
rest. '

2. The frame w.r. to which an unaccelerated body is accelerated.

The frame w.r. mwhchmmlmamdbodyappmnumuhnﬂmmmﬂﬁmm In other
_ wordsth:frame.swhmhmatmsmfmumfﬂnnu‘mslamqrmumrelahwmmmﬂnrammemﬂ
frames :

. Let us consider any co-ordinate system relative 1o which a body mmunmhascu-mﬂmm (x,y
z). Thccn—nrdmateofthcbodyrclanvcmthcassumem-ordmates}rsmcmamﬁlmmmofunm,smhﬂ
Newtqnsﬁ:stlawcanbestatedmmamcmancalfpnn.m:t}mbodylsnuthemgacwdbyafqme.

d’x | d’y d’z
Thus, : -——ﬂ —==0, —={)
— dt? dr? dr?
hich gi EI-1(-*1: Ez—u I'd—z—-u
s ™ e . °

where u,, u, and u, are three components of velocity in x, y, z direction respectively. From these
equations the components of the velocity are constant, that is we may say that without the application of
an external force, a body in motion continues to be in motion with umfm-mvtlomymasrrmghﬂm Which
is Newton’s first law.

Thus we may always choose a frame of reference or co-ordinate system w.r. to which the body is
at rest or in uniform motion. Thus when a body is not subjected to any frame, there exists a frame of
reference w.r. to which the body is at rest or moving with constant linear velocity i.e. w.r. to which the
body is unacceterated. Such a frame of reference or co-ordinate system is called inertial frame. In brief
we may say “An inertial frame is one which Newton'’s first law is true.” Or an unaceelerated frame is inertial
frame.

Non-inertial frames

. The frames relative to which an unaceelerated body appears aceelerated are called non-inertial
frames. Iut}ﬂ}_crwnrdsttmaceeleratedfmmsmnﬂnmmua] .

Experiments give an inference that Newton's frame of reference fixed in stars in an inertial frame. A
co-ondinate system fixed in earth is not an inertial frame since the earth rotates about its axis and also about
the sun. In fact anything which is capable of turning is not an inertial frame. Since though no forces act




onthcbudy.bmulsmﬂrutmnmnm\rmgmast:-a:gdnhmnrlmcmantspmdw.r to such frame -
of reference. -

1.5 Gaﬂhnhmnl’rﬂerm

LﬂSanﬂS‘betwomema!frmufmfercnmwheres‘mnmw:thmnstantspeed i, 4 mthe '
direction of x-axis relative to S.

| : In this case, :hetwnmgm(}aud[)‘mmmdaattnf 0.
Lﬁ(x.y.z.t}btﬁnposﬁmufapwu:lem&rmpcct

~ to S-frame and (x/, ¥, Z, t') be the position of the same e e 2
particle w.rt. S-frame. ‘ ‘ £ 5 _TU gl
Smthe&ames’-muvmmﬂ:mnmmedvmthc : —pul 'f"‘r'.,g,t'}
. direction of x-axis, therefore x/ = x—vt, y' =y, 2/ = 2. " 5 -:I’U | i{’m .
But ¢ =t/ (absolute assumption of time) . s ;
x' = x-vi, Y=y fmz, t=p I £

- I %7 '
is called the Galileas transformation. It is of course, the _ EﬁfﬁL—i‘Q}
essential transformation for Newtoriian mechanics. ' Wk, O

- If we consider the motion of the frame S with constant il
- speed v(u', u?, w?) in the direction of a straight line (other ”
than x-axis) then tin: Galilean transfumauﬂn can be 7
expressed as :
x' = x-u't, ¥ =y-u’t, 2/ = z=v’, t' =1 (absolute time)
This can be thrown to the form—
Mi=x-ut 2L x)=(xy.2)
U=t _
Differentiating wilh respectto ‘t’
dx - dx ‘-
o a |
‘ 1Mri.:illlri_mi _ (A)
Again differentiating w.rt. ‘t' we gct
(5} i
£/ = gt ' .- u' is constant. (B)

From relation (A) and (B) it is seen that the two velocities are different w.rt. two inertial frames
whereas two acceleration dre same w.r.t. two inertial frames. This suggests any mathematical or scientific
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mvdmgmhrmwﬂlbcmmuﬂw;umﬂﬁmahnﬁuuhwsmvﬂwngmhnﬁrmﬂm_
be invariant w.rt. inertial frames. It will be seen later on that this contradiction of invariancy with
acceleration and velocity will create problems in mechanics. mswmofmbemestﬁmngmfm'
relativistic mechanic.

1.6 Galilio’s Principle of relativity :

Aﬂhmufmechmucsmemvmwuobwvmmgmmmﬂﬁamnm{mwnm
frames). Thmmmphufmhnmywasmmuamdbyﬁahimbeﬁmdrmvmdmemmquhgm
Butwnhﬂnemmgmmofﬂrmpmfhgmmudﬂmmmmnfmmtmudrmmm
optics developed. Momofthehwsafnpucsandmafthelamufdecmdynmmgnwmﬁhy
ﬂuvehc:tynfhgh:c :

Thcsclawsq:pcarmtmhemvnriant( i=vie u‘)w:LincmalfmmTtnsshuwsthHGahhus
mnmpieafﬂ:lanwtymmapphcahlemﬁlmynﬂnmalmdcpucalhwsmhssclsomstant,ﬂmw': !
cnnprnvewuhlheha!pofiahnmryﬂpenm:nmrmthﬂmhelpnfasmmphemnrm,ﬂmme
spwdnfhghtclsamtamquanuty 'I'!nslsprcm:dbyﬂlefnﬂnwmgs '

(1) From l:henhswvatinnnflightmmingim thehlnarym

Dutnftwustarsmspacefmugbmaryhghtsmubsenedmmmemthﬂmhﬂpufmghm o

" telescope. Dngnfmctwﬂm{mbemgmﬂn:samcdjsmmeﬁnmﬂrmth}goesawayfrmmewth-
while the other, appmaches&eeartmmﬁmnmmlfhghmmnhmnedﬁumﬂwmﬁmmhaﬂm
they are found to reach the earth simultaneously. Had the speed of light ‘c’ been dependent on the motion_
_ ufﬂwmme{nnesta:"isn:al}edmemmpanjahmﬁﬂrnﬂmi&pﬁma:y},ﬂmnﬂuﬁglﬂmmingﬁnmthc
thhgmﬂnﬂdﬁwmbdhmﬂhawﬁuﬂmﬂmﬁgﬂmuﬁngﬁumﬂnmmmﬂu'-
mn-.amyhghisﬁumbu&ﬂmﬂmmmhthcmnhmm:mnmm&ﬁmmymecmm
affcctedmaﬂhythemunonofthemum Hence,cmacunstan:quanut}r

(2) Fizeu’s experiment : ; .

Inalabonaryset—upﬁzeusmi:dtuubscnfcﬁmgesofhghLaHWanass:h:mghmedmum
of flowing water and against it, but in reality, he could not observe it (fringes of light). This proves that
the speed of light is not at all affected by the medium like the flowing water. Hence ‘e’ is constant.

(3) Michelson-Morley experiment :

Michelson and Morley tried to establish the absolute motion of the earth relative to the hypothcncal'
ﬁmdeﬂ:ermdmmwimlhthclpnfalabomrym—upmthmlmmﬂmmth.

hmeuhbmwmup,drytiedmuhameﬁmgmufhghtmasmdemmﬂmabWMM-
of earth. But they could not observe the fringes of light. This definitely rejects the concept of absolute
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* motion. mm“mmwmwmswmwmydmufmf
Mmﬂ:mm.hgmsmmedmm:&mwofumfmmdmhwmm
not produce fringes at the receiving position: Hence velocity of light is ultimately found to be constasit. But .
if we want to generalise Galileo’s principle of relativity to include Electrodynamical and optical laws then

* speed of light will come out not to be constant. This assumption of one contradicts the other, but both of
them are correct. It was only Einstein who could give a compromise formula assuming the following two

upmmdspmddmyufﬂchu\mmbseqmﬂywﬂrw&mndm. o

{l)MMdm(mM]MMMwumMnmm
motion. - o
: (Z}Th:spead_uﬂightc{invmm}iscmmanwnmmgimdmiwmifmm
L'?Ahmhﬂewﬂmﬂdﬂm:
- Bz, ,}am{x,.y,z,,g)beﬂ:mmmmfmmwumwmam&m
_ ﬂmbyﬂahleanumsformmm,wﬂu\t, :

_ Xmx -, Y=y, . z=2, ty=t, - . .
X=X =V, Y:=Y¥:. =L, ! 4=t ] o
" =(x}-x + O~y +(&-2)Y |
wh:r:d’mlhcdutmubﬂwunﬂmtwopumtsmmd:mdms’ﬁ-nm: Usmg{l}weget,
d? = (x = x P + (¥, - ¥ + (2, - 2) e
= & ¢t =1
=d=d |
Thtsshmthatﬂ:ﬂdmumebe:tweenthemnpmntsmthesmOthcrwmspaoewh;mhlsthc
mﬁmmmmmmmmmmm“hmmmm
t=t, Hmespmcaﬁmmmmmmmﬂmmmcthanmmmhm
mfummmumammuﬂumfmmatmbmmmlsﬁaht&mmfmmweh:vegm
' Visvi-u (at t=1t) _
whmhhascmuadlcwdthcmvarmncynfthcspwdofhglnc & w0l
mslkawmﬂ:bomdMMMMEmmmmmmmﬂfwm

of Relativity. He has rejected the absolute concepts of space and time other than the Galilean .
-mmmmhfmmmfmmmmwmfmmmMMdm

po-smlalﬁ Hence, motion is-not absolute rather it is relative.




mmuMumﬂmsmmfﬁmmmmeme
v mﬂ:ed:mmmﬂh-ansmlanvetus-ﬁ-nm memnmgmsmmﬂrmpmmna:
' t=¢=0 : A

Letp(x,y,z.t}helhemdlmtcsnfapnmtevemw.rts-&mrn{x’ Y.z, !“)bethccnordmuﬂ
nfthcmpmntw.rt.s’— :

~ Now the point X' =0 (i.e. the.my.nufs’-frmjls1dmﬂcﬂwﬂtpointx=ﬂurx-ﬂ=0mﬂn
languageufﬁ-ﬁm

AY \T}'
, . '(‘,r)’iaﬂ
g5 .
I
4
!
;o 4'5,’/
,/..
T
4
_;r./
x =Q
; x-vt ; '
= x' = ax — vi) (1)

whmummmnmmh:dﬂdeandnﬁmmmnf‘v‘simﬂwmmmchmgﬁmyuﬂ
' z—dmmuuﬂrrefmmumsynmy :
| . y=yamdz=7 ) _
_ Fmd:mmof(l}mdﬂ]mdmgmmwuﬂghtmamm
mmtnke :
f:ﬂt-!-'ﬂ. e ' (3) _
whﬂaﬁmd*rmmhumofvmdlhqmmhmmi :
Mmm:ma@dﬂHm:hmﬂmﬂﬁ-&mmﬁm&Smm“u




propagates in the form of a sphere, therefore the wavefront is described as
xX+y+2-ct'=0(r) in S-frame @
X% 4+ y2 + 2% - c4% = 0 () in '-frame 5)
using (1), (2) and (3) in (5) we get—
aX(x — vi)t + y* + 22— 2 (Bt + )’ =0
o, (02 - PR - 2xt (v + Pyed) + ¥ + 214 (0 - PRI = 0

which must be identical to (4)
Lt-cy=1 (6)
@'y + Pt = 0 2
vl - Bt =-¢? . ®)
(6) X v.=(T) gives |
Bt el | 9)
@) -(6) xvigives |
P P s T | (10)
Also (8) - (7) x v gives
- P- Pyt = - &
cor B+ pv=1
R o
S
" Putting this value of y in (10) we get
i
fl-?;“(l;:ﬁ:;] ;ﬂic’.i—'_r:"—'-v‘”_

o Xl - 2B+ BY - P = - P
e — 2f%c? + Pt = - PV
or Bﬁﬁuﬂ%c* '
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ﬂz.ﬂ C: — X 1
1 2 2
or c =¥ v
c
1 »
p= -
v
or -ty
C




- Putting the value of B?in (8) we get

' c
aiv! i c! — G:

*a!'cripz"ﬂ]
Hence a=f= :
. ]_i'
.c:1
From (7) B’ =-a’v
or, ?=—g (a=8)
Hence ¥=a(x-w), Y=y, =z
.i't EE = —E
=R xmafi-3)
which is the Lorentz transformation -

vl
Cﬁn{l]:lf-v{:cﬂtn:—,—-iﬂ
o sa=p ®
In this case, the Lorentz transformation takes the form
X=x-w, Y=y, Z=z and t=t

which is the Galilean transformation
Case (2) : Now from Lorentz transformation
B 00 -p
oo ro o B .O.-pr
= 0 01 0 =1l 0 1 4]
. =B
c_ev 00 B g P

1 ' 2
=1xﬁ’—ﬁ"‘+§;=ﬁ’ 1-:5)
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SN (i)
RO
B -
e @
Usng@in@@)
. L’_I-vx(£+E
B \B ¢
¥ v v} ..x
or, Tag—+ﬂr"-{l-;;]-?
AR . 1
or, F{f'”ﬂ_‘% ot )
E l._c_‘l
o, = x=px+w) '

: Ah.‘.r,}'*.‘f'f : =17,

x;ﬁf+vﬁ}
y=vy. z=7"
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!
; VX
t= ti‘l"_?-
c

This shows that the inverse Lorentz transformation is recoverable from Lorentz transformation
replacing v by —v. It can be concluded from the basic idea that the frame S is moving with velocity .
~v" w.rt. ‘S”, : = '

l.i : Loremtl‘lnd'mﬂouunmtaﬂnn.

%knawﬁ‘nmdemcntarymm mmmphatbyrﬁatinnafx-uignndrnis through an
'mglcﬁmfﬂjsmdfﬂismpmﬁvﬁy,weget:hafuﬂuwmgmfumﬁm .
x’smmﬁ-!;ysinﬂ
Y = -xsinf + ycosf (1)
=2
V=t
Thismﬁﬁmnfmumplmmugxy-plmamm:m
If we apply the wansformation of equation (1) to the rotation of x-axis atid (ict) axis through an
WNEEE“i?iﬂth&-ﬂmnﬂ:xx-ictplam;thtn"weubmm-
x' = xcos (i¢) + ict sin (i¢)
= Xcoshe * i{_ir:t) sin hé
= x cosh$ ~ ct sinhé
Y=y
'=z _
ict’ = (ict) cos(i9) — x sin(i)
= ict cosh — ixsinh¢
ie.  cf =ctcoshp - x sinh¢ (2)
It can be easily seen that if

l-vy._:z A

cosh¢ =

} 0

A J
- UZ“

and sinh¢

12




mmﬁmiz}mmmmmmlmnmmmmmmumu
Lorentz rotation of axes. . :

l.‘lﬂlﬂﬂ‘ﬂﬂtztl‘lﬂtﬁlmﬂunﬂlm
Cms.iderthreefm_mesofrefmmeﬁ.s’.sy. where §' is moving with velocity v relative to S along
x—aﬂsandS”_ismuvingwﬁh?ehcityv‘mlaﬁvcmS’almgxﬂis.Bylumtrm{mnﬁmm'

the frames S and S can be related as
X=px-w), y=y, zZ=z f=%’"‘c_:). (1)
: 1-_
27
) -7 |
SimﬂalyS’andS”cmbc.mlnmdu' -x';:-ﬂ"(xf-‘v’l"]. Y=Y, =7,
= ﬁ;[;_ﬁ“]

l','I

where - B=

where | ﬂ'E- -

w vy
o= ~ .
v
1+—':—. (3}
- .

Let v be the resultant of v and v’ so that

V" is the velocity of the system S relative to S.

ﬁ.ﬁ’ = 1
writing i . . :

We are to show

_ "
X'=p'(x-v), y=y, z=gz t":ﬂ”["v_'iiJ (4)

1 V.F.F!

ﬁx.r.z e CZ
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c’[l+%:i+z-%f) -(v 4 42w)
c‘(l+%]
c=+£§vi+2w"'-v’*“"e.“.2“’f
e
Ji A A A (A
i G e B A "_]
; C‘(l-}.%] - [1 _'lg:*] .
So, .
'3 ] WI . .
T, -_=.ﬁﬁ’{1#17] ®)

Witing cquaion (2)with the help o equation (1).
o pf(.g -.-u"r’.) =p [ﬁ("" v)- "';{t— ':'-17]]
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I-I-:-l-—

=ﬁﬁ'[:[l+;)-r(v+v’.}]fﬂﬁ’(”?—;) x- v+:; '

=B (x - vi) using equ* (5)
X' = fx - v) : .
Again from equation (2) and (1) we get

b4 L)oo 2)- L)

e

.I'f'—'cT
A, o
=ﬂ’(“‘;=—J | . using equation (3) and (5)-
Y=y, Y=y=y'=y |
and x'=2z, _ T=z2=2"=; 7
Thus we have shown that

111 Postulafes of special theory of relativity. _ :
(1) “The fundamental laws of physics have the same form for all inertial systems, ie. for all reference
System at rest or moving with constant linear velocity relative to one another”. e
&}Thnvchdtyufﬁghhvamumhiwpéndemnfﬂrmhﬁwm&mofﬂ:mmmm
Thcscammcmnmmmmnmlpusnﬂmsumdm&:mnmufmlaﬁmy.neﬁmmnm
is the extension of the conclusion drawn from Newtonian mechanies; since velocity is not absolute, but
m!aﬁvu:whichisafmdmmfmmﬂufaﬂmuﬂttcxpeﬁnnntsmdﬂﬁnnim&:velucitynfmhmlaﬁ?c
to ether. : ;
chunwﬂ'latﬂ:speednfﬁghtlsmtmtantuﬁuﬁaiikmmfmmaﬁmsandﬂ:ﬁmpmmm
is the conclusion from Newtonian mechanics: thus 2nd postulate is not true according to Galilean
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transformations. Actually this is true since the velocity of light calculated by any mean is a constant. Thus

mmmsmwmm@mmhmmmmm&uww

and Einstein’s theory of relativity. According to Einstein the theory of relativity is applicable to laws of

th&mﬁﬂmﬁofhﬂnmhmthmwmﬁmmm

wh:chﬁ.:tﬁld:fdkm;ngmqlmm
I,Th:spwdnfhghtcmushamﬂ:csamevmeinwerthﬁalﬁnme.-
2.mmmwummhmmhvc<cmmmwhmm
3. They should not be based an absolute time and absolite space.

16




UNIT 2

2.1 Introduction :

In special theory of relativity if a particle is moving with velocity of light c, it will be observed ¢ in
all inertial frames whatever their relative speed is. It follows that “the velocity of light is an absolute constant
independent of the motion of the reference system”. But there are many physical phenomenon and

laboratory experiment supported that the velocity of light is an upper limit of the velocity of a parm:le with
which a particle can move in nature.

This fact is also expressed by saying that it is impossible to send out signals with a velocity greater
than the speed of light. '

2.2 Relativistic addition law of velocity or composition law of velocities :

Let S and §' be two inertial frames of reference where S’ moves with constant speed ‘v’ in the
direction of x-axis relative to S-frame, the two origins being at the same positionatt=t'=0.
. By Lorentz transformation
x = Bx-wt), Y=y, =z,

45

or the inverse Lorentz transformation
x=px'+w), y=y, z=72,

t=f1t +E |
pE! (1)

Let (u,,u,u)and (u/,u/, u) be the velocities of a point event w.r.t. S and §' frame respectively.

dx dy dz

u:‘:—'u :—'uz:—-

de ¥ dt dt
mﬂ I.lf Ej ur—ﬁ u“—E
R S Y R

From (1)

dx = B(dx’' + vdt), dy = dy', dz = &z

dt = ﬁ{d:“’ +i,d.z’]
. c_




ct dr’ c
Also,
dy dy’
U =—= =
1 ﬁ{dl’+w£: ] ﬂ(l+lzu:]
" c
Similarly,
i,
U =

Ifwetake u/=u,u’=0and u'=0ie. if we assume that the point event is moving with velocity
‘v’ but also in the x-direction only, then

Which is called the composition law or relativistic addition law of two velocities.
Ifu<<ec, v<<cthen
uv

V=u+v LB i)
T

which is the classical addition law of two velocities in relativistic sense.

u+v

Deduction : (1) By the addition law of velocities V =

Wy
l+_’2
c

Let us take u = ¢, then

C+ Vv

'L?=c
il

18




Deduction : (2)
The addition of two velocities each of which is less than c is also less than c.
Let u and v be two velocities each of which is less than ¢, so that

u=c-A, veECc— I Apn=0
V= u+v
.. From the addition law i
we get g
ve oM +(c—p)
14 & Me-p)
: ]
c
2 2c=(A+p) L
e’ +{c* —(A+p)c+ M)
4 :__Et:—-(lﬂi}
2 —(A+p)c+Ap
~V=c AR
Er—fﬂ.+;.tj+—-2£
c
SV <elsince A, u>0. ie. Ve<e
Deduction (3)

It is impossible to send a signal with velocity greater than the velocity of light c.

Let if possible a signal is sent with velocity ‘w’ greater than the velocity of light ‘c’ w.r.t. an inertial
frame S.

Let AB =/ be the distance to be covered by the signal. Now if v/ be the velocity of the signal w.r.t
~ the frame S’ which moves with constant speed V, in the direction of x-axis relative to S, then

= B v owse (1)
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W=+ A iA >l

and V< Sv=c-—p{p>0
W=V 0,
Now. wv = (c + A)c - )

=¢ + (- e - A
Twv>el f (A—pe-Aus>0
Ap

> 1 if {l-u)}T

wv
o, —5
]

<. Subject to this condition ' = negative quantity (from (1))

This shows that the signal with velocity w (> ¢) will reach the position of B before it is signaled.
Otherwise the effect of an action will be perceived before the commencement of the action. This can be
made always possible suitably selecting A and M ie. w and v. Hence it is impossible to send a signal with
a velocity exceeding the velocity of light.

2.3 Consequences of Lorentz Transformation.
(1) Lorentz-Fitzerald Contraction -

Let S and S’ be two inertial frames of reference where S’ moves with constant speed ‘v’ in the
direction of x-axis relative to S-frame. The two origins O and O coincide at t = ' = 0.

’ Case I : Let us consider a rod AB of length ‘I
which is placed parallel to the direction of y-axis. 51 1 ¥ F
Let y, and y, be the y-coordinates of A and B f g’
respectively of the rod w.r.t. S-frame. A
. S ] I
AR Eom = 8 &
If y, and y ' be the y-coordinates of the ends A and | A '
B rtsP:{r:ltively t;rt S-tlrjamc then /o /0 ?W
e 4 /, S =T —p
P=y/-y'=y -y, =I g P
This shows that the length of the rod when placed ;{;.-f/ 2/
perpendicular to the direction of motion remains 2 2

unchanged w.r.t. both the observers in S and S'-frame.

Case I : Let us place the rod AB =/ in S-frame parallel to the direction of motion. i.e. parallel to
X-axis. '

Let x, and x, be the coordinates of the end points A and B respectively of the rod w.r.t. S-frame.
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=K -K ; ®

Let x"and x." be the coordinates of A and B respectively of the end points measured at the same
tirme in $'-frame .

-'=x1’—x|’ : (i}
From iy
L=B(x, +vt,')=B(x, +w, |
=[?'(’~:'l _fo}
=1=fI
1 f v
— = ]==
B gl J
J c
= 1-[- —l L N
2 ¢
i - |
A -
L.e. the length of the rod is found to be contracted in the moving frame 5. This is knowrn as ihe
Lorentz Fitzerald contraction.

If the rod is placed in S’ frame and observation is made from S frame then we gel

I'=Bl ie I'>1 because B>1

Thus it can be concluded that “every body appears to be greatest when it is at rest relative to the
observer otherwise it is found to be contracted in the direction of motion when it{body) is in motion relative
to the observer.”

(2) Time Dilation :

Let S and §' be two inertial frames, where S moves with constant speed v in the direction of x axis
relative to the S frame and the two origins coincide at t = t/ =0.

Let a clock be placed in S frame. Let the two times recorded by this clock for an event taking place
at the same position in S frame be t, and t,.

Let t/ and 1,"be the corresponding times of record of the event measured in the S' frame. By Lorentz
transformation :
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So,  Al'> AL

This shows that the time interval in §' is found to be greater than that of S i.e. the time interval is found
to be lengthened or dialated. This is known as time dialation.

On the otherhand if the clock is placed in S'-frame and the time interval is observed from S-frame,
then we could get

. At = pAr ie. At > At

Apparently it shows that the time interval in §' is dialated. It appears to be a contradiction. For in

the Ist case it is 8's clock that goes slow. This is known as clock paradox. Thus every clock goes slow
~when it is in motion relative to the observer.

A Silllul-tlnﬂl_.]' of events :

Let two events omxrsimnlm::euusi}r at two positions ii and x, w.r.t. the observer at the origin O and
an inertial frame S. '
Let x," and x,’ be the positions of the two events w.r.t. another observer at ¢ in a frame $' which

moves with constant speed ‘v’ in the direction of ‘x’ axis relative to S. The two observers at O and O’
are at the same position att =t/ = 0.

. By Lorentz transformation
x| =B(x, ~vt,), X, =PBlx,-vt,)
VX

and H= ﬂ(l, *f@) ;= ﬁ(f:- "_'vé]

c C

Vv

sty =t =B—(x-x) (“h=1) t/-t/20 o 8 2N
% L' -
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Hence, the events which are simultaneous w.r.t. one observer, is not simultaneous w.rt. other cbserver
moving in relative uniform motion.

Thus the simultaneity of events w.r.. one observer does not imply simultaneity of the events w.r..
another observer moving in relative inertial frames.

24. Transformation of acceleration—

Let S and 5'be two systems, §' moving with velocity v relative to'S along positive direction of x-
axis. If there is a particle moving with velocity v relative to frame of reference S/, then components of v’
as observe from system S are according to law of composition of velocities

. ' ! g
u.'r-p-v u, 1-a? I.I: 1-o
u, = =g u, = ——— 5 and ul=--—-—--—.-.—u e M
]+—%— 1+;2" . 1+ =%
C C L+

Now if f' is the acceleration of a particle in frame $; its components along the three axes being
£/, £/, f/ then we have, '

£ =if/ 4+ jf! +kf",
where i, j, k being unit vectors along their respective axes.

We have to find the acceleration f relative to frame S. Let the component of f along three axis be
f.. f, and f, then

f=if, +jf +kf,

du du., du
='_'L. =L nd L=
Thus = 8 = a F %

Now for the purpose taking differentiation of (1), we haw::

f !
' vu ' vdu,
dul{l+ c;]—(u‘+v} -

du, = 5

X ; 2
vu
1+—5
¢
2

! ¥ o f ¥ i ! v !
du, +Ei_ u,du; - = u,du, ——du,

( W’T

i1+ —2

2

% ik
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3 v v :
dufvlll—a'(l+—2n:)u——,du:uf-u"]-a'
P

.I'r -
H+l=ufj
L

;¥ ;v
du, +— ul du, - —dulu)
ot g

=

a

-
1+—*'u:]
(1+ 24
A .
(1+1}U; du’ — vl d’
] c” r 1 e

¥ 3 -
¥
[]'!'—1 ':J
P

and similrly

Also from inverse Lorentz transformation we have,

)
vx
ki

Taking differentials, we have,

(2)

-

where & =-—

(3}

i+




(5)

Thus from (1), we have

“using (5)

;]_’

= (ifﬂl}zs f!
v

~f

e

) Msufmm@aﬁon(i]},wchaw,_

V s
—HJ

cI

1+

1-a?

x)f: -;;uif;f
2

2

-
=vJl-a®

If.f

e |

17) _




Similarly from equation (4) we have,

v
; P — f
f:"%:‘-n l'—ﬂl) f; - <
P4 o5
c

The equations (6), (7) and (8) represents ﬂsc'mmponen:s.uf acceleration f as viewed from system
S in terms of components f, , f; and ' of f observed in system §'. From these equations it is clear that
acceleration which is constant in one frame of reference is not generally constant in another frame of

reference, because the components of acceleration in system S also contain the components of velocity
along with those of acceleration.

Now consider the particular case where the particle mdcrcnnslde:mum in 8'is at rest relative to
fnmeS Then since v’ =0

“u, =0,u) =0 and u’= 0 therefore the equations (6), (7) and (8) take the form,

f, = (1-a?)%f!

-f,={1—a2} i 9

f,=(1-0a%) f]

From equations (9) it is clear that unlike the Galilean transformations the acceleration is different in

the two inertial frames. This difference may be stated due to relatively of space and time.
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Unit -3
31  Introduction :
The formulation of Lorentz transformation is based on the requirement that the law of electrodynamics
(in particular Maxwell’s equations) remain invariant. The electromagnetic disturbance is propagated with
speed (3 x 10® m/sec) in free space, independent of the choice of referenice system and no signal can travet
with a speed greater than this speed c. il

1.2 Relativistic mechanics :

Variation of mass : In classical mechanics we consider space and time as obsolute concepts. But
in relativistic mechanics, they are not obsolute concepts. At the same time mass is supposed to be
conserved and in absence of external forces the momentum remains conserved. But in relativistic
mechanics we will see that if the momentum is supposed to be conserved, then mass of the body will be
subjected to change with velocity. i.e. mass will be come out not to be constant.

i Lctmlulandml’u{’béﬂu_mnmm_nfabudyw,m, two inertial frames S and §' where S’ moves
~with constant speed ‘v’ relative to S-frame but in the direction of x-axis; the two origins being at the same
position at t =t = 0. ' '

lﬂdﬁaﬂiﬂsanumhupfbodm{uwhinhmaﬁMmmnmmmmmdh&ﬁnﬁrigh
= constant and ¥m u, = constant.

Let : _
ﬁj= 1!{ v B:E 15,1 .3_-" Ipr
J]_ci Jl_-c’. ;1_?_
Since P and v are constants therefore Zm pv = constant, Imu B = constant

. .~ Zm P (u, - v) = constant (0

st B o Ty M
Again, RE L
But by the addition law of velocities :

- Bo—V
u =—"!




A i .‘ii.j
" 7)
H[]*-zler+5.j::J—{q T+
] 8{1*?31
arfed) 4eg At
AeZ)- - A

it =B (u - - .. Lo
B, ﬂ( =) i l.hEl}f.
¢
i
. From (1) Im, %I'L = constant (2)

LﬂusassumethatthecnnsewatimufmmnmzhnldsinS’-franualsnmlha:

2m v, = constant (3)
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Comparing (2) and (3), we get

“t=a(3)

m, =myf, =

1-—=

Hence if m is the mass of a body which moves with velocity ‘u’ then from the above results

- @

Thlsshnwsthatlhemassofamvmghodyufumnonnhmvﬂumty u' and s0 it is not constant.
But1fu=ﬂ1hen

2
. ==0 Som=
A m=m,
Whichis:ﬂﬂndmsimsiofhody.ﬂn‘%*iscﬂedmﬂmsafmj,mﬂmﬂmmh
is this rest mass of the body “m,’ which is considered throughout the motion and it is a constant quantity.
]fu-ﬁ-ﬁc.furanmﬁﬂnthcna]snm-—}mﬂ,ti:er:stmass.HenceLhcﬂemnianaﬁsumpﬁnnfor
constant mass is a good approximation for motion attaining velocity not comparable to the velocity of light.

Deduction : If u— ¢, thenm — . i.e. themassnfth:bodym]lbcmfimtclflnspos&hlcm
impart velocity of light ‘c’ to the moving body.

33 Equivalent of mass and energy OR _ Relativistic equation of energy

If m be the mass of a body moving with vclumty v’ {nutcunstant}wrt. an observer in an inertial
frame S.

If my is its rest mass then, we know that
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Pm =Y

k)
(]_ﬁ)z (1)

Let T be the kinetic energy of the body subjected to the action of the external force F applied for
the time interval dt. If during this time interval ‘dt’ the mass changes from m, to m_ + dm, then the work
done is given by

dT = Fdr.

"*dr’ being the displacement due to the applicationof F.

dr
= F—dt =
it Fv dt

. dr=vd(mv)=wd} "'""‘2




1....314.1’1
%
dl =my —E—C_dy

133
[-5)
me{l}and(i}.wegﬂ dT = ¢idm
T= c1I;d:u=c1{m—ﬂ’u}

= T+m,’ =mc?
= E=mc’
where E =T + m¢? :
= energy of the body due to motion + energy of the body preserved by it while it is at rest.
= total energy of the body. '
= energy of motion + energy at rest.
which is called the total energy. '
_' o E=mc? |
This is known as the relativistic equation of energy or Einstein’s equation of energy.
. From the appearance of the equation it is observed that mass and energy are equivalent i.e. they are
not independent. '
Mmmﬂmhwﬂm:
Let m and m" be the masses of a body moving with velocity wu,u,u) and v {u;‘_. u,‘.- u:J w.r.t.
S and §' frame respectively where S' moves with constant velocity ‘v’ w.r.t. S-frame in the direction of

x-mmméoﬁgmsma;&nsamepmiﬁﬂnattﬂ’:ﬂ.

Sem= ! i .ru"— s
f W f_?-_" )
1-"02 1 cz: :

where w=ul4+ u: +u?

- I 7 ]
w?=q +u”+u

3l .




_ c
m
N
[ =
¥ ‘ l*-E
: .
_ C
or, ke u” -
l——
pe
Now by addition law of velocit)
i no ey : poos
rt.wf 3 H:FH_HII u. VM,
L - Ed
u”
]_—'é?=l-—f(ﬂf.+";!+"'ﬂ)
n X
3 2
.,1-';1‘ 'Hi;v Y
l=—3

“:“—T h{(ﬂ: +v? +2u,;r}+ ui('“?)* “{1":;)}]

1
Ll eS|
(1-2)

| 1Y) ’
= -r———-nl—-?[c:[l_ zv:l" +"‘r :I )-{uz "Zwl +¥ ‘-v—‘]{ui +“:)}:|
¢=[1-&J g Leng t

S -
L v
= ] ﬂ':"ui*vzi-;?uz
of : vis, ' |
cll= 3
[ o




] 2 i
Vi c c
o B P 1
-%)
HZ u!
s J=is =5
]_"-F ¢ e
€ [qui,‘
P
2
-5 1-%
g g

Hence from (1)

which is the transformation law of mass

3.5 Transformation formula for momentum and energy :

Let m and m’ be the masses of a body moving with velocities u(u_, u,u)and ' (u',u’, ) wrt
two inertial frames S and S’ respectively where S/ moves with constant speed v in the dmunn of x-axis

relative to S.

Ifp(p,. p,. p,) and p' (p’, p,/, p,) be the momentum of the body w.r.t. S and S' frame respectively
then . :

pl" = m-"u:‘ P; - mfu!.r‘ P; - m.-u;'
& p,=mu, p, =mu,, p, = mu,.
o)
S
But ' = C
1 v ' (1)
|
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"‘,"V H'r [
and M= 0wl e
-5 ﬁ(l- ] ﬂ(l-ﬂ;“)
3 c
ol
L op= Y
[1_52_] - (using (1) & (2))
c c
=MH;-MV A
1
v
ar
roem e8]
c

mu, =p,
Similarly p! =p
{-3),
2 & —m
Now E'=m'c’= i ™ :’H ﬂ( v]
2 e E——
1—‘; Cl X
-t .EV
Ths prmuJ(p,- :J. P.=p, Pp.=p.

E'=B(E-vp,)
“’hwhmthcmafonnmwnlmofmmmmandmﬂgy
nmmmmﬁ:mﬂu&mmmfmmlawsnfmmmmdmmﬁmmm

e t=—
¢’

to those of Lorentz transformation as if, *t’ is replaced h:-r




3.6 Formulate the energy momentum vector of space-time continuum of special theory of
relativity and prove that it is Lorentz invariant.

Selution : If p(p,, p,. p,) be the momentum and E be the energy of space-time continuum then the

EZ y % E!
energy momentum vector in it of special theory ofrelativity is defined by 7 P (0" - M ?}
*. We are to prove that this energy momentum vector is Lorentz invariant.

Let S and S’ be two inertial frames of reference where S' moves with constant speed ‘v’ in 1!1:
direction of x-axis relative to S, the two origins are coincidental att =t = 0.

~ I p(p, p, p,) and p(p,’. p,, p,") be the momentums w.r.t. S and §' then
Ev
p ﬂ(pr'_:”)’ pi=P_~‘ pf:p

and E’ = B(E -vp,) where E is the energy and

S 2 2 o
?“F —*c;—ﬂ (E‘VP:] *{Pf"‘Pf"‘P:a)

E?(E"vp} ﬁ‘[p‘ VE] ~pl-p?

x f+

Al 1 2v 'I-"E.E: | 5 3
=ﬁ'[;(£ ~2vEp, +v'p})- [ P =z bp + ] —Py —P:

Hence the energy momention vector thus define is Lorentz invariant.
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3.7. A body of mass M while at rest disintegrates into two masses M, and M,. Show that the energy
Mz ) L) 2 M3 2 2 H
Dfﬂmtwnpansﬂlandﬁzar:?[ﬁf + M- M), ?{M +M; - M)
'

Sol. It E is the total energy of the body then
E=E +E, = MC? (1)

Bu M +M,=M (2)
Again from energy momentum vector of special theory of relativity,

2

we have — - [:I'1 = constant (i.e. invariant)
c g

(mgc?)’
c?

or,

0= constant [E = mc? + 0]

S0, Constant = m, ¢
]

8. L 2
TR Eme

<. For the two parts of rest masses M, and M, we have

Substracting

5 (B} -E2)= (M M)’

] ) 2
or = (E+E)(E, ~E)=c*(M; - M;)

or E{E,—E:}-—“C'{ME-M":} ['.'E=E,+EEI

4 2
EL_Eﬂz%[Mf_Mg}zFﬁ(Mf—Mi} {-‘-E:MCI]
Bu E, +E, =M (= E)
Adding, E1=%[ME—M§+MI)
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Substracting, E, = Zil;'l_(Mi - M} + M?)

3.8 Relativistic Lagrangian and Hamiltonian :-

Relativistic Lagrangian : In classical mechanies the Lagrangian is defined as

| | L=T-V (1

where T is K,E of the system and is the function of generalized momentum P or of generalized
velocities ¢, ; while potential V is the function of generalized co-ordinates.q_only. We also know from

classical mechanics, that
poOl AT-V) oT
‘A, A, %, i
. oV ' -

Since a_q”":ﬂ,because PE. does not depend upon the generalized velocity

Lo _d(om) _afon o
dt dtldq, ) dtldq,

But according to Lagrangian equation
dfeL)_ oL _,
dt{3q,) og,

- Equation (3) accomes

dp, oL
iy @
We have seen that the relativistic K.E of a particle of rest mass m_and moving with a velocity v is
given by
2 |
T=(m-my)e’ = mye| e = 1 (5

and relativistic momentum
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myy |

P=my =
o ¥ (6)
cz
By definition
aT _ aT _ aT _
ok Pss ay | L 5 P. (¥)]
We see that by actual differentiation of equation (5) it is found that
JT = aT aT
o il
ox v dz
donot give the respective relativistic momentum components i.e.
p =gk _dT
i \'1 a].l
o |
p=_ My _dT:
¥ ;
[ v % (8)
cl
P = Mz _ ;?T_.
x vz a.z
S

c —
Here T* denotes a function such that when differentiated w.r to x, yorz will give P, P or P,
respectively. -
AsKE. T* is a function of velocity components X, ¥ or %z, ie.,
T*=T* (x,¥,2)
* aT* .
or* = oT* 4T &

dT%e g+ S db &
3% % 0 o

(xdx + ydy + 2dz) (9) by (8)]

But v1=i’+:}3+f
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Differentiating we have 2vdv = 2kdx + 2ydy + 22d2 = vdv = xdk + ydy + zdz

this in equation (9) we get
dT*= "'d‘: (10)
v
g
- v
.Suhnmmg l-?=l
2
Differentiating we have —2:;“=d sovdv=—-Sdt
Equation (10) gives
r 3
oS
t? *
Integrating we get
2 :
T*=-mc’t2 +A, where A is a constant of integration
1 o |
= =m,C I—c—?+h (1D
2
since t=1-3;
c
We know that when
ve<ee, T"==—m,:,w"t~

Equation (11) gives

1 _ ,
Emﬁv1=—mﬂc’+ﬁ or A=%muv1+m.,c’=mﬂc- f-‘vi{f}

Substituting the values of A in equation (1), we get

1

T = —my* 14-:—._. +mye

1
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= m,c? {1—1/1—:—:} (12)

. The relativistic Lagrangian function
L=T*-V, V being potential energy
and T =T* in this case

. 1
. L=my’ {1-1!1-:—1}—»' (13)

Now we can write the Lagrangian form of relativistic equation of motion i.e., analogue to classical

equation {4)
From equation (12) and (13), we see that
AL _dT*
94, dq,
oL _ 3V
gqh =7 é-ll_ 3 i14)
*» The relativistic form of equation (4) is
oP. oV B
E i 3q using (14)

or, in terms of components

( Y
d _mx |. aV —
dt vi ox

1,1*—?

A c )

( R
Slomy 1. 2V
@l [ ¥ dy (16)

\ sz
CA T S

and dt lvi dz _
c‘.’




eratlvistit. Hamiltonian
Therelauﬂsncl-lamﬂ‘tmu an
- - :
- function H i
E is defined as

o
( +f+22)
=S
v - l-*w—2
e +V¥
l_v’ -‘mﬂcz{
= -7
| 3 +V
-m,',r.'l g
l_jr_z-“- l-f—
| - cl +V
-vﬂ
=mqt2 _2|+l_ﬁ
1_._1"_ -1{+V
i e
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2 1

fae s
{:1

Clearly H = T* + V from (12)
= Relativistic K.E + Potential Energy.
Thus like classical Hamiltonian, relativistic Hamiltonian also denotes the total energy of the system.
We have '

c
2.2 r I §
o TV ol TNE
Pt e
¢! c?
2.2
or P:+P:+Pf+mnc1=miz
-
1 P? +P? + P + mc’?
or 1—J 1 Mo (18)
v

A
cl

1
Substituting this value of ;1-§ in'equation (17), the expression for the relativistic Hamiltonian
c

P} +P! +Ff_+ mye®|
= mﬁc’N{ rmﬁc’ }—I}F‘J

becomes
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or, H=[CJ{P3+P:+Ff+m;c:}—-muc2+\-’] . (19)
This is the required expression for the relativistic Hamiltonian.

3.9 Particle with Zero mass :

Let m be the mass, u be the velocity and E be the energy and p be the momentum of a pamcie in
a coordinate system S. Then

2
E——p -m,,c where m, is the rest mass.
E’ E
If m, = 0 then C—I-p1=ﬂ Bt i (1)
"E b
Apiap=mus zu  (sE-me) @
Now equation (1) & (2)
E_E,
c cz

.. If rest mass is zero, the particle will move with a velocity equal to the velocity of light.
E E
Also its momentum and mass are given by p=~.~é—_and m'=c—2,
1

Ex. Show that %-wp’ =mgc’

1 2
Sol. f_ﬂ —pl= {_I:_:._}. —(p: +p, +p; )= m%c? ~ [(mu,)? + (mu )* + (mu )]

=m’c’ ~m® (! +u’+ 1’ = m%? - mi’




Ex. Show that E? - p’c? is Lorentz invariant.

Sol. We have,
EZ
c_i _ pz L mﬁc’
= E? = p’c’ + m}c* (1)
The relation (1) is Lorentz invariant because we have proved earlier

E" E’
St

1
2 - - -
= p" —— is Lorentz invariant
c
= c’p’ —E? is Lorentz invariant
But m, and ¢ are also invariant

= E? -c’p’ =mjc* is Lorentz invariant.




Unit 4
4.1 Introduction

In relatiristics mechanics space time continuum is to be characterized by four numbers {xl‘ le X X,)
The set of valles is said to be constitute the Minkowski's world of four dimensions. Minkowski defined
the corresponding line element as

dx? = (dx, ) + (dx,)? + (dx,)? + (dx ) (1)

which is 1o generate the Minkowskis World of 4 dimensions. But in space time continuum the
accepted metric is

ds? = (dx)* + (dy)* + (dz)* - ¢ (dt)? (2)
Comparing (1) and (2)
X, =X, X, =Y, X, =12, X, =ict

This shows that the time co-ordinate is imaginary which can not be measurud in the same scale of
the space co-ordinate. This space is termed as space time continuum.

4.2 Geometrical reprenentation of simultaneity, contraction and dilation.

Now we are in a position to explain geometrially more relativistic phenomena yiz. (1) relativity of

simultaneity, (2) length contraction and (3) time dilation.

1 Relativity of simultaneity :
Two events, p, and p,, occure simultaneously i.e. at
the same value of ct, [Fig 4.2(a)]. But the figure shows e ’
that they occur according to the - system, at two 4 |,/ 3 .
different values of ct'. This explains that simultaneity isa 3 + 2 " X
relative concept. In the present instance, there is 2 ]
simultancity in the S-system, but not so according to the i 7
S-system. i é 3: i é x;
Fig. 4.2(a)
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2 Length Contraction

Fig. 4.2 (b) shows that AB is a rod of unit length in
the S-system. But it appears to be shorter length about
0.8 according to §'. In otherwords, the lengths of the rod
appear to be shorter according to the S-system.
Corrrespondingly, a length A'B’ in the $/-system appear
to be shorter according to the S-system. This is the

phenomemenon of length contraction.

3 Time Dilation

Figure 4.2(c) shows that there is unit (ct) interval
between two events. C and D, in the S-system.
According to the S' system the (ct) interval appears to
be longer. Correspondingly, a time interval between two
events, C’ and [V, in the S'-system appear to be longer
according to the S-system. This is the phenomenon of

4.3 Space like and time like intervals—

In space time continuum an event is specified by
(x, y, z, ict) customerily by (x, v, z, t). Therefore an -
interval between two eyents characterised by (x . ¥, Z,.
t,) and (X,, ¥, Z,, 1,) is defined as

Fig. 4.2(b)

ct

Fig.4.2(c)

S[iz = C2(1‘2 = tt}z - [{51 = 31]2 + (}rz = Ft}l 3 {21 B Z;]l:] 0

in an inertial frame S.

In a frame §' (with usual meaning)

Suﬂ = CIU-; ol 4 [':-"‘::i T I‘Ir}z + ':]1"; = :"II1J')2 * (z!-f - zlf]i]
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From Lorentz Transformation, we get,

x/=px,-vt). y/'=y. z'=z, = %t"“—’rJ
VX,
=B, -v).  y=y, z'=z, t'=Hb "T.-T]
S8 = Cz[ﬁz{“l S t1}"£5'{"1 = xt}} :| ‘{ﬁz {(Iz -x,)=v(t, “’h}}z +(y, "‘3’1}1 +(z, -2, }2]
=‘-‘2_ﬂ2 I:{‘z - t‘l}z +£;{x2 o ‘t)z = %*"‘-{‘: _tl}("u:_ 11}:}

| B -x)" vt -1) -2v( %) (6 -4)] {y, - 5,) - (2 -2,

=Bt _:,]‘[p:—j]-w{xz-;;}’[:—:—-]—{yf—r.}’

=cl{tz 't:}! _[{11 "'1:)2 +(!"1 5 Yx}z +[32 s z|)2]
Sﬁ F=S‘fz =:-.S:1 =8,
This shows that the interval defined by (1) remains Lorentz invariant.
Time like interval :
IfS >0 |
e e~ > (X, = x P+ (y,-y ) +(z,- 2} (1)
in that case the interval is real.
This shows that if a light signal is emitted from the site of the first event moment it occurs reaches
the site of the 2nd event before it occurs.

Let us search for events in the moving frame S’ in which (1) holds good. Let us consider two events
in' §'-frame which occur at the same position but at different times, so that

! ! | - ! - ! I !
(A B but  x/=x/, Y, =y, z/=1z/

S;=c’(ty -1})-0-0-0 )]

VX " VX
B =t -22) =g[t i
.But 2 ﬂ(: o 1 T
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L 2 i -
So, {1.-1 "'tl) =ﬁ'[{tz'-[,:l"clz[?{1‘-x.}] >0
Since  S2>0 ie (t-t) >0,
"'”’{t:_h}:"g:'(xz“ln]
v
=¢c(t1-t,}}:[xz—x,]

= v
S Ve<e ie. —<<l
c

~et (L -t) > (x-x)
which is applicable since due to Lorentz transformation y,=y, & z,=z.

= The condition of real interval Le. S, ?>0 is satisfied by those events in S'-frame which occur
at the same position but at different times. Again this interval contains only time component and so it is
called time like interval, otherwise real interval is called time like interval.

4.4 Position, Four vectors, Four velocity, Four Forces and Four momentums.

The four-dimensional space of Minkowski is the set of points (x,, x,, X,, x,) and the corresponding
metric is taken as .

ds? = dx? + dx? + dx? + dx? ()
But in space time continuum are know that
ds? = dx? + dy? + dz? — cid? )
" which remains invariant subject to Lorentz transformation.
. To fit the metric as adoptable in space time continuum,we an get
X =X, X, =Y, X, =Z, X, = ict
Hence (2) is taken as the appropriate metric in space time continuum of special theory of relativity.
< (X X, Xy X )ie. (X, Y, 2, ict) or (x, ¥, 2, t) (customarily) is called the position four vector in space
time comtinuum.

If (u,, u,, u,, u,) are the corresponding components of velocity in the space time continuum, then it
is called the four-velocity.




dx, _dx, dx, ~dx, : s e
aT u, T u; = o u, = qT being the local time given by

dT = I—E;dt [frnmm‘-zﬁm and \/1—% m:ﬂ]
c ; C
dx dt u,
UI:—L.---—:
dt dT u?
cz
d _dx, dy & u,
* dT- & 4T 1“*
c!
dx d .
u; = e, == =—{ict)
ol dT  dt

This shows that 'u“=u?r =u,=0, u=0 .

This shows that if a particle or body is at rest in Newtonian sense of three dimension the
corresponding four velocity is non zero. |

Geometrically if a body is at rest in three dimensional space but it is not at rest in four dimensional

space. This is called the geometrical meaning.

45 Relativ’;stic equations of motion.
In Newtonian mechanies, the equation of motion of a particle of linear momentum p and rest mass
m, is given by . .
F=L=p=(myy) 0
As time t of particle vectors from one fnertial frame to another. Therefore this expression is not
Lorentz invariant. Here we try to generalise equation (1) so that it may satisfy the principle of velocity. In
Newtonian mechanics time t to plays the role of invariant parameter, but in relativistic time t is variable
and similar parameter is length ds, which is given by
ds? = c2de? — dx? — dx® — dy? — dz?

49




(&)@ ()]

=¢? - ?

where u is ordinary velocity of particle

u t1fuf+uj‘+u§
ds n’ ;
= -[=Jc2—-uz=c,|!l——, (2a)
-

:-ﬁ:t,l’l—% or . . . (2b)
c c .y

=ds=— (3)

(=78

Physical significance of ds is that apart from the factor c, it is proper time of the partide in a frame
in which it is intantaneously of rest.

The momentum componenis in cartesian co-ordinate may be expressed as

o dy
Similarly P,="1uc-:£
i

P. =My, s

In four dimensional space, the result may be generalized as four momentum
; H .
p'=me - @
Therefore in analogy with Newtonian mechanics, the equation of motion is relatively would become

o

p"=k" (5)

where » is four force or Minkowski force and dot means differentiation w.r to invariant parameter

[ )
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dx*
= — — |= K" (6

This equation is called relativistic equation of motion or Minkowski equation of motion.
Classical limit of Minkowski equation of motion—

v
In classical limit - << ]

As for function f, Bn s
s for any function f, g
d dx" ds
—_ —_— =K = T
e dt[m”': d.s]_ dt, &
Again writting
dx* dx" dt
D | e ] ak
= i e equation (7) takes the form
d gx” di] _yods (8)
dt dt ds dt

The space part of equation (8) may be expressed as

d dt dx. ds '
—_— — il :K— h_ I:],, 2.3‘
Jwﬁm]‘mwml . ®)

Comparing this with Newtonian equation of motion

d dx

—Im—|=F . (10)

d[[ dt) :

We note that

dt my i i

m=my — = using(2a) (11)
ds u

l_c_l
ds ds
and K —=F i.e. K—=F
e s de ' (12)

where K is spatial part of four vectors K*.
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Further in the limit

Lo, 8
: dt
and - K= F (13)
c

L. K and F are essentially the same. Equation (11) implies that mass varies with velocity of particle,
but there- is no intenal mechanism is increase the mass of the particles however it is due to equivalence
of mass and energy. Accordingly the increase in mass is due to increased kinetic energy of particle. This
xﬁggesu«' that we can correct the classical equation of motion by using a variable mass m in place of rest
mass m,. But the Minkowski form of equation is the fundamental relativistic formulation of equation of

MOAON.

4. 6 Covariant four dimensional formulation of the laws of mechanies.

If the form of a law is not changed by a certain co- Drdmate transformatioon, the law is said to be
invariant or covariant. If any physical law may be expressed in a covariant four dimensional form, the law
will be invariant under Lorentz transformations. The covariant four dimensional formulation of the laws of
mechanics has great significance in the development of the theory of relativity. Each law of nature expreses
a certain relation between physical quantities. Let A, B, .... be a set of such physical quantities measured .
in inertial S}fswrﬁs. Let some quantities among A, B,.... depend upon the space time co-ordinate x, in

systems. Thus a certain law of nature may be expressed by one or several equations of the form.
{
fkﬂ.B....,———.—— = (D
i)

Where f is a function of the quantities A, B and possible of their derivatives w.r. to the space time
co-ordinates.
Let the above mentioned quantities have values A', B' ..... when measured in inertial system §'. Then

the physical law expressed by (1) in system S can be represented in system S’ by the equation of the form
A a_szﬂ @

where x| are the space time co-ordinate in system 8.

According to special theory of relativity the function f in (2) must be the same function of physical
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quantities (A’, B'.....) as is the function [ of (A, B,...) in (1). That is any relation between physical
_ quantitics must be expressed by means of form invarient or covaniant equations.

As Lorentz transformations represents rotations in (3 + 1) dimensional space, it is natural to ;'il'tﬂmpl
to meet the requirements of covariance of the law of nature under these transformations by a generalization
of three dimensional vectors and tensors of four dimensions and to write the fundamental equations in four
dimensional form. ’

As an example consider the position vector of a point in four dimensions which is expressed as

r=Xi+yj+zk +pp

Taking its dot product with itself we shall get a world scalar and hence I_ﬂrenﬁ invariant i.e:

T.i=x"+y +2° +p’
but pt= ¢ 2
s P =x"+y +z° —c’t’ = Lorentz invariant.

As another example, consider scalar wave equation of the type

vig 12T o
c® ot
Like three dimensional gradient, we have a four dimensional operator called D’ Alembertian with
components.
d d @ ‘9 d e B o
— T T ; E '. *)e—tk—+D—
e raie el | B W E L i i
Taking its scalar product with itself weget a scalar quantity and hence Loreniz invariant, i.e.
. 2 + & + il i 1
- N a}rI " apl = Lorentz invanant
w_a_3+ aj +_a* 1 a:. ["p"'iC[]
O, [:l axl a}’j azz Cg at;l .
;¢ 1@ e
=V® ~— —5 = Lorentz invariant
¢ dt
FI I G S .
Thus V¥ - o _31 is invariant under Lorentz transformations.

From above example it is clear that “Any physical law will be invariant under Lorentz transformations
it may be expressed in a covariant four dimensional form.”
80
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Unit: 5

5.1 Introduction

Electrodynamics is that branch of physics in which the force acting between two moving charges
depends on their masses and valocities.

The force acting between two charges g, and q, is given by the Columb's law F :_‘IB%

5.2 Intensity :

. The force per unit charge ‘q" arou~.d a charged body Q of an electric field is called the intensity E
of the field.

5.3 Current density (Flux of fluid) :

The amount of charges passing across a unit area of cross-section moving with velocity “V" per unit
of time is called curreat density.

If *n’ is the number densiity and q is the charge, then
1 = total charge x volume

=(nQ)y = ov where 0 = nq is called the space charge.
5.4 Maxwell’s equation :

Orested has first observed that if there is a stationary electric field § and if an observer $' moves
with constant speed ‘v’ w.r.t. first observer in S, then the observer in S will experience, the presence of
both electric and magnetic field whereas the observer in S experiences the presence of the stationary

electric field only. The electric field £ and magnetic field § (or H ) are connected by a set of equations
which are formulated as follows by Maxwell.

In esu umnit :

V.E=4no (A)

V.B=0 (B)




VxB=——+—27J
¢ A ¢
In Gaussian units, they are
E=4no (1)
V.H=0 (2)
= 1 oH
VxE=s—— —
c at : G)
= 10E 4m-
VxH=-—+—]
cdt ¢ @
This set of equations is called the Maxwell’s equation for electro magnetic field.

Taking divergence of (3)
o g "
V(VxE)=--= (VxH)

19 “
D=_E§ {v.H}

which is equivalentto V.H =0 (V.H=C)
Again taking divergence of (4)

V.(Vx ﬁ}:%%(vxﬁpt—“(vj]

which is equivalent to V. E—4nao-

This shows that the equations (1) and (2) are recoverable from equation (3) and (4). This amounts
to saying that all the four Maxwell’s equations are not independent. Otherwise there are the independent
equations in the set of Maxwell’s equations.
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5.5 Q. Transformation relations of differential operators in correction to Lorentz

transformation.

Sol. From Lorentz ransformation equations we have

x = fi(x - vt), Y=y, =1z, [fzﬁ[l*;]
xI.l‘
or, x=p(x"+w), y=y. =z t—ﬂ[‘”‘{?) (1)
9 _99x 339y 9 9 &
ox' gxox' dydx’ dzax ot ox’
Sl Bud
_aﬁax+ﬂ+ﬂ+c1 =
g cxd
M & x [from (1)]
Also,
d g d
—=0+—_1+04+0=—
dy’ ay g dy
TR Y ]
Similarly ¥ 3
Again,
| 2_3m 0k 3k 2 n
o x ' dy H %z ax A
aiie. 9 I )
g +ﬂ+0+B_"‘{a.”m)
Hence,
i:ﬁ[i +lug] : i:i i =i
i ax ctat) dy! dy’ o' oz
9 _ EHE} |
at’ ot ox

which are the connection (transformation) of st order differential operator w.r.t. Lorentz
transformation.




5.6 D’ Alembert’s operator :

3% 0 96 1 &
= é?*ﬁ?*’é?”??
1 &
. |
c: at:]f¢

where (= ?I—EIT;_!

5.7 Transformation of § (E,E,E)and g(H_,H,H)

is called the D' Alemberts operator.

Let S and S’ be two inertial frames where S“mﬂvcswtmcunsmntspmdum!hcdrecumafx-

relative to S; the two origins coincide at t=t' = 0.
Also, we know that the Maxwell’s equations are satisfied by

H=Curld A
= L OK
PR | Pl
% gred 9= c ot
where A is the vector potential and ¢ is the scalar potential.
.. From (1)
i j k
4 .8 4
GH +jH +kH)= [3x Jy o
A, A, A,
s0 that
g =0A %A, =9A, _OA, 9A, _9A,
i dy oz Yooz oex oox oy
Also from (2) :
E ..__.ai_la‘q‘n
z gx c adt
with other two similarities.

But the transformation relations of & (A, A.,, A) and ¢ are’

Ai:ﬁ[ﬁ,—%’ap). Al=A,, Al=A,
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L. . o
o ﬂ(¢ c“"-*] 3)

m .
Lﬂ[Lu] 2 _3 2_3 Lﬁ[iﬂi)
x N\ ca) oy oy o 2 ¥ Axt'yx ©
Now
P aa;_aht_aa,_.
H"’ay’ 7  ay e’
¢ _OA, _0A;
Hr_az.i Eht’
d v 2 v g
b5 (A-te)-p (e a R
5(3ﬁ=_iﬁ=]+z[_3j_i%_=]
N9z ) el % c &
=B{Hr+§E¥]
e
Hi:B{H!—EEJ
C
Now E"=—'£—1ﬂ




E =——-= —t * =
o9x ¢ o b I-f-
C:
E'=E,
f__99' 10A]
S, A
m y ayn'- c ai.f
d i{fod d
="ﬁ$(¢—z .]—ﬁ— 5“-"6—3]-"*, [using (5) and (6)]

Similardy, ' EZ=B[Ez+1H,)
c
Thus the transformation relations of E(E,, E,, E,) and H(H,, H, H,) are

Bl =R " H'=H

| . v
E?=[Ey—zﬁl)ﬁ H;=B{H,+;EI}_

Ei:[E1+iHr]ﬁ H1=ﬂ(H;—1E,]'
c c

5.8 Show that Maxwell's equations of electro magnetic fields are Lorentz invariant.
Sol. The electric and magnetic field intersities § and | are corrected by the following Maxwell’s

equations.

divE =4no (1)

divA=0 - {2)
- 1 dH
1 E=--

cur o (3)
— 19E 4r-
1IA=-Z4+20]

cur 0 + - {4)

in Gaussian units.
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The cartesian equivalent of (2) is

aH,+aH,+aH -
| o o ' e @
From (3)

i j k|
d ad o iy
B - | AR RE LR
= B & (1, + 4, +4H,
E, E, E,

0E, 9E, - 19H, -

dy Oz c ot

dE, JE, 10H,

= m e - N

JE, _9E,__10H,

dx dy c ot it

2.2 i_ﬂ(ﬂﬂiJ
% & Aa @

v
O
e ,) (5)

aHi+'E“H oH, _, ' 2b
ox' 9y’ oz S

d v o d v ¥
a—x '—1"3")“ ﬁ——[H +— E] ﬁEE[H:__E_v]-U (6)

C
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3 v i . '
or, (P';Q]-F‘ . (7
m P aHa. aH! aHz
o x dy &
,.._l 'aH: EE! aEl:
e Tk Oy

Also from (3a), we get (for S'-frame)
1oH, 9E, JE,_

_C ati azf a}r.f _ﬂ
1.(0 d d v
or, *E%EE'PV‘E;]H"I‘ﬁE(Er*EHI]
-ﬁi(E +EH ]={} -
oyl * ¢ ? [using (4) & (3)]
[_1 oH, JE, 9E.)_ EH +3H oH,
o c ot dz ady c 3}' dz
lo-Ypl=
..(Q cp] 0 ®

" .
From (8) Q= = P . Putting this value of Q in (7) we get

P—%P:U

:;P[l—;—]ﬂﬂ
=P= ﬂ:ag-l:l—‘+% a;i =0
and Q=0= IS'H a:y a:; 0
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The first is equivalent to
divH=0
‘with two similar results of the second equation we can write

curlE=—l—a-l—-I-
c

which are two Maxwell’s equations. Since there are two h{depemdent equations in the Maxwell's set

of equations so we can show the other two equations to be Lorentz invariant.

Hence the set of Maxwell’s equations is Lorentz invariant.

5.9 Show that the following are invariant under Lorentz transformation.

(1) E* - H? (2) EH.

" Sol. Lorentz transformation for an observer $' who is moving with velocity ‘v’ w.r.t. an observer S
3
X=pfx-wv),y=y7==1

s VX
t —ﬂ{t—:{]

where

Taking the velocity of light to be unity i.e. ¢ = |, we have,

E, =E/ E =BE/'+ VvH),  E =PE +vH)

H=H' H = B{H;— vE)), H = ME'+ vE)) .
Now, .

() E-H? =EE-HH
=(E}+E+E)-H!+H?+H?

=(E-HY) + (B2 -HY) + (E2-HY

62




= E'~H' = (EZ - H2)+ B(E + vH)" - (i, ~vE,)' |+ B(EL - vh;)' (1. +vE} )]

= (E? - H2)+B*[E} + 2vE H. + v'H? = H” + 2vH'E, - vV'E?? +E —2vE H, +VH/
-H? —2vHEE;_-v1Ef ] '

=-(EF - Hf)+|3‘[E;’ (1-v*)=HZ(1-v*)- H?(1-v?)+ E (1= v")

= (E7 -HZ)+p*(1- sz[Ef -H?)+E?-H?) ]
1~

= (E? -H2)+(E? - H?)+(E? - H?) [‘-'E’=—l——]
= (E? +E} +E?)-(H? + H? +H?)
= E-‘!_Hﬂ

 @EH=EH +EH +EH |
E.H, +B(E| +vH):B(H, - vE) +B(E, - vH) .B(H. + vE')

Ll

E.H, +B°[E/H] — vE|E, + vH,H. — v'E,H, + E{H, + VELE/ —vH'H! —vE/H]
= E\H, +B°[EJH) (1-v')-E/H(1-v?)]

=EH] +p*(1- v*)(E(H] + E.H,)=E'H.+E'H +E!H. _ g'yy’

5.10 Show that D’ Atemberts operator [] is Lorentz invariant.

Sol. Let S and S’ be two inertial frames of reference where ' is moving with uniform velocity ‘v’
relative to S along x-axis.

Now D' Alemberts operator in S fram is
7 & & 1 &
e ——— —
D axz a}'! azl c! all
and that is §'-frame is

¥ PP P

A A
Lorentz transformation equations are

B.I'E
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& “F
x' = B(x - w), y¥=y, 7 =2z, I--B[‘j"'c_z]

Now the transformation relation of differential operators in connection to Lorentz transformation are

ﬂ[ ) N
El'x ax oy Yy’
: Bz' at’ ot dx
Now,
w3 (o)
ax®  ox' a9’
=-..a_..[ i.ﬁ.li]] =ﬁ3(i+lij(i+ii]
ax’ ¢’ at ax ctotlox clat
"ﬂz[ o - +l 3 +":.;|—2\‘:'}_2
c oxdt c’owdx ¢t o
(PP
ﬂ( x| ¢ &tz]
and
? _& 7 _a
ayﬂ a},Z' &La azz
7 w202 )(202)
x? ot dx /\dt . ox
Bz['a?+2\'a—l§t~+'f"'—7]
Now,




ox’ Iy’ oz’ ' ot I-Ii
; C:

e D'I'I=D:r

=0'=0

Hence D’ Alemberts operator [] is invariant.
5.11 Lorentz transformation of space and time in four vector form
Consider two systems S and S, the latter moving with velocity v relative to former along poéitive

dimctimnf}{ax_is.hhﬁnkumﬁspmnlmﬂ:m-mﬂinm:ufanmmbymwdbyﬂrﬁumﬁﬁes
(. y.zic) orx, (n=1,2,3,4) where

P
]
E.-

KL=I,. . K?=}r=' x]:z_ 4 : {1)
lmumfmmaﬁmufspmmmmwﬁmnas

F X—vi

Y=g whee  B=:

t—-g
3
Y=y =z, ad tl:;;l‘-ﬁ:
X —vi - g
x‘:=7.!l=:E=-=T{xj+’ﬁx#]' 12111!
ic[t—&,'] '
I e = (S x

Above transformation can be written as
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X, =YX, +0.x, +0.x, +ify.x,
x; =0.x, +L.x, +0.x, +0.x, 3)

=0.x, +0.x, +1.x, +0.x,

Xy = =ipyx, +0.x, +0.x, + X, N
T!'us results can be written compactly by a single equation.
xl=u““x? ()]
where
Y 0 0 ipy
ik 0 1 0 0 .
Tl s g (5)
-ify 0 0 ¥y

Equation (4) represents the Lorentz transformations of space and time in four vector form.
Similarly Lorentz transformations of any four vector A, (1 =12,34) may be expressed as.

A:: =0,A,

5.12 Transformations for charge and current densities.

In relativistic physics the current density and the charge density can not be distinct and completely
separable entities, because a charge distribution static in one inertial reference frame will appear as current
distribution in the other moving inertial frame. In Minkowski space the charge density p and the current
density j are grouped together by current four vector j or J, according to

j|.|. - [j’ icp}

which may be seen as follows :

Consider a volume element dt = dx,dx,dx,

Then the charge contained in this small volume is

dq = pdx,dx,dx, (1

Multiplying above equation by a four vector dx,, we get

dx -
dqdx, =pdx dx, dx,dx, =i}d—["‘ dx,dx,dx,dt {2)
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As charge is invariant (i.e.a scalar), the L.H.S. of equation (2) is a four vector, so R.H.S. of this
equation must be a four vector.

Further we know that four dimensional volume element is invariant
ie. dx]dxldxgdx‘ is invariant
or  dxdx,dx, (icdt) is ipvariant

or dxldxzdxa dt is invariant (or scalar)

Therefore for R.H.S of equation (2) to be a four vector, p % must be a four vector. Let this four
vector be represented by

ho=p2- | 3)

So that

——

h=PI=PIz 4)

._pdx3_ ‘
b dt PX,

mpZecp D iy
_ dt dt
i.e. the four vector L Iﬁmwnascummfmrvmtor,isrepr:smmdas
Ju = (vicp) &)
As j, has been specificd as a four vector, it must transform from one inertial frame S to the other
inertial frame §', moving with velocity vmiativctoﬂalmgx,uisunderlmun'ansfmmﬁonas

b =y 6)
where
Y 0 O ify
10 100
%=l 0 01 o V)
-ify 0 0 v
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So that

o _ T . . . .
h =0, ) =0,),+0,), +0,); +0,],

=, +0.j, +0.j, +ify,
=i +i2p0)
c :
Jo = 0y jy = @y ) + Qo fy + 0y + 0y,
=0.j,+Lj, +0.j,+0.j, = j, (9
B =00 =0y, + 0y dy + 0y + 0,1,

=0.j,+0.j, +Lj, + 0., = j, (10)

ji = Oy =00 00 + 0 J; + 0,0,
=—ifiy, +0.j, +0.js + 7.,
=y(j, - iBj;) (1)
o - iy
or, 1cp =T(WP‘?J:)

n_lj

: 24

ie. p'= = : (12)
1-p’ -

Thus the transformation equations for current and charge densities are
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g _ h=Vp g O =
ji= 11_ﬂ? & h—h. E=h I
—li:
Fl
and p'= (13)
: 1-p* -

- The mverse transformations for current and charge densities are obtained by replacing v by —v and
' s e add i iesic.
« f
. _h+vp g s g
Jr—jl-_sﬁl;._ Jz"’ﬁlf h=1

. g
P+

B 1-p* ; .

5 (14)
mmﬂm. : | | | N
(a) Equation of Continuity in Covariant form :
The continuity equation is

-

divi+=—=0

“'”at
This can be written as
a{ir:p):u
3(ict)
% O, g - i

2 ok T, o, 0 (Since),=icp and x, = ict

divj+

I "
ie. 3, = [15,=0 . (15)

d
where []j, = = is the four dimensional divergence operator.
i

Equation (15) is covariant equation i.e. its form is unaltered under Lorentz transformations. This
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equation expresses that the four divergence of the current four vector J, vanishes.

(b) Special case : When charge distribution is at rest in system S, then j = 0. Therefore the
transformation equations (13) take the form

j.l'__vp‘ j; -.;:ﬂ-‘ j;'ED
and p'= ﬁ _ (16)
[i:}ll“arianuof(‘harge
If dt’ = dx] dx; dx} is the volume element in system §/, uuﬂﬂ:cha'gemntanedmﬂuswlmm
system.§’ is
TN L s P _RZ
dt’ =dx/ dx) dx,-[ﬁ][mﬂh B?) dx,dx,
= pdx, dx, dx, =dq
ie. charpmudmsymn&’mdrmaslhﬁmsym&m ehm:ccharplsmvmamund:r
Lorentz transformations.

Facn B
As" " Ji-p? " the electric charge deasity is not relativistically invariant

5.13 Thmﬂulhﬂxg_mﬂrﬁé-mr_']’i =0="]"H.
Sol. For free space

=10
p
The Maxwell’s equation in free space are
' divE=0 (1)
divH=0 (2)
. o
|E=———
cur < % (3)
- 19E
1H=--"—= 4
cur = o (4)

Now taking curl of both sides of (3), we get

e 1 i
curl curl E-—"i{mrlH] |
c ot

19(10E
i | bv (4
cat[cal] (by (4)
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.t
c!

b

(5).
But, _
grad div E = V’E+cur curlE
= curl curl E = grad div E - V’E
-
= (5) = grad (div E)-?’E=-E’;—aat—f-
5 1 &’E :
:gm(u}-v*E:-;;? [using (1))
1 ’E
ca
1 & ) .
“[vi‘c_z'ét_zJE=q =[1*E=0
Again taking curl of both sides of (4) we get,

=VE- =0

curl curl ﬁ=1-§-{cuﬂ E)
c ot

i i s e . ing (3

(6)
But, grad div H =V*H + curl curl A

= curl curl H = grad divll - V*H
1 H

. (6) = grad (div H)- V’H=~— —
c’ ot

=V H-— =5 =grad (0) [using (2)]

"




SldshwﬂmﬁememuvaMnﬂﬂ&MamhrmHQﬂm
Maxwell’s equations.

Sol. in Gaussian units, Maxwell’s equations are )

v.Rans (M

V.H=0 : (2)
. 19H
VXE=——— 3
vxi=19E 475 @
: cat ¢
From (2),
V.H=0

sdiv(curl G)=0
Therefore H = curl (of some vector) :

From (3),

-+ curl (grad ¢) =0

whcreqlissmﬁc scalar function. Hence, there exists two potentials 7z (vector potential) and ¢
(Scalar potential) satisfying Maxwell's equations, as they consists of only two independent equations.
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Miscelenous Examples

1. Ifuand v are two velocities in the same direction and V their resultant velocity given by

iy 4 au e Ly ' " . :
tan '?=tﬂnh 'Z+ﬂm]1 ’;.mendedumlhchwnfmmpcsiﬁonofvclncmasfmmdmequaunﬂ.

Sol. Given that tanh™ - = taph™ % + tanh™' Y.
c - c

This equation is expressible as
1. ¢c+V 1 c+un 1, c+v

—lo ==1lo
-2 Ec-\" 2 sr.:—-sl 2 c—v

c+V_ c+u c+vV

c=V  Te-u ¢-v

or, log

:cdn‘f_c#-u c+~_.r=cz+{u+-\r]c+uv
c=V c-u c-v c’~(u+vcuv

4V _ t:.*+(u+'ir}c+|n_nr_'_I
c-V ¢ =(u+v)c+uv

=

LCHV—c+V ¢’ +(u+vjc+uv—c’ +(u+vjc—uv
c-V _ - —(u+v)e+uv

- 2V 2u+v)e

c=V. c=(u+vlc+uy

c=V _ c’~(u+vlc+uy 2 ¢ Ly
v (u+v)e v u+v c(u+v)

=

. : ;
c c uv uv

= —= -+ _=,£= £

V  u+v  clu+v) V clu+v)

'V celu+v
:-n—(!"—"")—#v:a
c ¢ 4uv c

c*(u+v)
? uv

1+2Y [Dividing both numerator and denominator by ¢*]

This is the required expression for V.
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2. Anelectron is moving with a speed of .25C in a direction opposite to that of a moving photon.
Calculate the relative velocity of electron and photon.

Solution. Suppose that the photon and electron are moving along positive and negative directions of
X-axis respectively. Suppose that the electron moving with velocity —85C is at rest in the system
S. Hence the system S’ may be assumed to have velocity .85C relative to S (electron). Thus

v=85C, v =¢c
Let V be the relative velocity.
Then
u'+v  85c+c¢
V=" = T
uv 85¢*
l+—c-2— 1+ =3
o c(1+85) "
(1+85

Hence relative velocity of electron & photon is c. .
- 3. The length of a rocket ship is 100 meters on the ground. When it is in flight its length observed on
' ﬂ:egrwndis?gmers,ca]culqmilsspeed.
Solution. By the result of Lorentz contraction,

,u!

I'=] 1*-?-'

—..-_l._
Gl 10000 10000
v} 199 v 199
of, 3F—— of —=—nm
C 10000 c 1
_ 199 s B
or, = = x3x10 m!s[. c-3x10’m.~'s]

or, u=4/199 x3x10°m/s or, v=423x10°m/s.

4. At what speed should a clock be moved so that it may appear to lose | minute in each hour,

Solution. Since the clock is to lose one minute in one hour. Hence the moving clock records 59
minutes for each hour recorded by clock stationary relative to the observer. Let ‘v’ be the required
speed of the moving clock. : :
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At' = 59 minutes, At = 60 mimutes.
Evidently A: > At/
Hence
mf
m:ﬂd[j:
1}1
==
=3
2713 . 2 2
v R 3
or, [1——2-] A=A o [1-32- 60=59
C C
- (2] EC )
L] 2 60 0‘1‘, cz L_m
or V. - 3600-3481 vioea 19
"¢ 3600 e 3600
or, v=018C '

or, U=54x10" cm/s (c=3x10"cm/s)

" v 3481
o 3600
Jii9
. V=¢
60

S. mmtmmmmmvdmchmﬁdymmmmmmﬂcﬂmumm,

Solution. By Lorentz contraction, we have
i v’
dx' = I—Fdx._djrzdy'
dz =dz’
Also by time dilation, -
dt
’ ——
dt' = i
o2
r
~dx’ dy’.dz'.dt' = dx J1- 2 dydz —n :
c v
| i
C:
= dx.dy.dz.dt
or, dx’.dy’.dz'.dt' = dx.dy.dz.dt
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6.  Show that x? + y* + z? — ¢%? is Lorentz invariant.
Solution. By Lorentz transformation equations,
x’=ﬁ{x-'ut]. .f‘}ﬂ zj=z¢

t :-B[t-u—:]wtwmﬁ= : =
Cc l-u—
c:

Now,
Py 4+ - c??

ko

=B (x=vt) +y’ +2° _CEﬁZ(t__‘lii)

2_2
VX 2ux
=p? 11+1.11t2—21.nt—{:2[t2+ 5 )+y=+zz]

¢! ¢
o 2 2
V v 5
=p’| 1-— K =c’t|1-— PB'+y*+2°
. ¢ ¢ :
2 2.2 2 2z F 1
=x'=c't' +y ' +z°|vp' = 7
v
i g
¢

=x+ y'+ 2! - ¢t
=x2+y'+ 2 - =x"+y + 27 - L

~ 7. Show that for low values of ‘v’, the Lorentz transformation approaches to Galilean.
Solution. Lorentz transformation equations are

X—ut

x'f= : ,y’:y,z“=z
UI
ZI“_"

# u .
It ‘v’ is small i.e. v < < ¢ so that [EJ =0 then the foregoing equations become

X=x-u,y=y,2=2t=t which are Galilean transformation equations.
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8.  Show that (ds)? = (dx)* + (dy)? + (dz)? — (cdt)? is invariant under Lorentz transformations.
Solution. By Lorentz transformation -

x'=p(x-vt).y' =y, 2’ =z,¢' =ﬂ(t-E)

c)

1

whertﬁ=. :
Jl-c

& -Ox zﬁtdx-udt},dt’ =ﬁ(dp-c31dx)'
dy =dy, dz =dz, ¢' = c.
(x')" = B[ (ax)” +v*(a)" ~ 2udixat] -

<

i

| (cat')’ = eﬂi[{m)" +§~{.ﬁf _i_:*m]

The last two imply that

- S sy

o £ 3 2__.:= 1
=(dx)" —c’dt’| B o PN

okl

c

- Also dy' = dy, &2 = dz. ... (2)
By (1) and (2) we have

(dx')* + (dy')? + (4} - (cdt')* = (dx)? + (dy)? + (dz)® - (cdt)?
This proves (dx)? + (dy)* + (dz)* — (cdt)? is invariant under Lorentz transformation.

9.  How much electric energy could theoritically be obtained by annihilation of 1 gm of matter?

Solution. We know that E=mc’, m=1gm, c=3 x 10° c/s.

S E=mc=1x(3x 10" ergs =9 x 10” ergs
But 1 electron volt = 1.602 x 10-"2 ergs.

0 12
# E59X 10%ergs = 9x10 _9x10

ev= ev = o
L602x10" 160z °" =3618x107 ev




10.  An electron and a positron practically at rest come together and annihilate eachother, producing two
photons of equal energy. Find the energy of each photon.

Solution. We know that
m, = rest . mass of electron = rest . mass of position = 9 x 107 gm.
Energy E of each photon given by
E=mg? =9 x 10 x 9 x 10® ergs.
= 81 x 10 ergs

_ 8Ixi0™®

= W E‘h'ir ('.' eV=16x ]ﬂ"zcrg}

81
=5 X10%V = 5602 x10*eV

i Calculate the velocity at which the mass of a particle becomes 8 times its rest mass,
- Solution. Given that m = 8m,. We have,

T

m = or,8m, = ) or,8=:
1 2 1
;1_“_ il...:':]._. i]_“_
. e ¢ kR

or 1_21—1 or l_u_i—i or H:::I-l::ﬂ
63)2 |
Gr.ﬂ=(a) c or, v =0992C =992x3x10"cm/s m,u-!ﬂ?ﬁxlﬂ"ﬂ_:nfs

: 4
12.  The rest mass of as electron is 9 x 10-** gm. What will be mass if it were moving with velocity re

times the speed of light. )
Solution. If “‘m’ be the mass of an electron, when its velocity.is

4c v’ _16 o
u=?sumatc—t=5 Also gives m, = 9 x 10
Now
m=—To __9X10™* 9x10™ 5x9x10°*
J1~“—: hit - |8 3 =15%10% gm
o 25 25 .
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13. MthﬂmMmmﬁaWﬁﬂﬂﬁM&nvﬂmﬂm
in the laboratory system.

E = m¢? AlsoE =T + m¢

Hence relativistic K.E. “T" is given by

T=E-muc’n=n:n1—-mncz ={m—mu)c’

8
'I'I‘..

£
i

c.
2 : ' 5
It is given that v = 0.98¢ so that E,—={.93}’ with this value, the last becomes

3 1 -1
T=my? ~1{=mg¢ [—--1]

[Jh(ﬂﬂl’ } e

801 301 !
=(E§J%c‘=ﬁ;x9xm‘“x{3x1ﬂ'°) =326 10 ergs.

wﬁmmw.mmamxﬁ.ﬂmemm'm'mm
i .
“velocity ‘v’ is m_;?_ whenv<<ec.

14. From the relativistic

Solution.  ‘We know that,

E =KE of maving' particle + energy at rest

o, mc’=T+ mgc? as E=me?, T = KE of moving mass.
o, T=cm-my)
. I. . 2\3 :
e -m, | =my? -1amet 1=} 21l o o]y o
1 MR i |G e b e 2
g ¢2
(neglecting higher powers as v << ¢)
v 1 _ L.
B BT
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MULTIPLE CHOICE QUESTIONS
e
I The value of the speed of light c is
a)3x10%cm/s b)3 x 10 cm/s ¢) 3 x 107 cm/s d) 3 x 107 cm/s
Ans. a) 3 x 10" cm/s _
2. Which of the following is not a Lorentz transformation?

a)x' =B(x-vt) b)Yy =y c)z'=z d]t’:(t—~%]

Ans. e)Y=p(x-t)
3. .The value of B is given by

) - 1 o
)= D)= OB ) B =
1+ JHC—z Jl-u—; ;;IHE‘T |
c v c Yy ¥

Ans. c)f=
-

i

cl

4. Lorentz transformation reduces to Galilean transformation under the condition.
a)v>c bjv<c cju>>c d}u-r:-c%:
Ans. d) v <<c
5. Speedoflightisa _ |
) a) Constant b) Variable c) Depends on the motion of the source of light
Ans. a) Constant
6.  The result of two successive Lorentz transformation is a
a) Lorentz transformation b) Galilean transformation
c) Not a transformation d) Both Lorentz and Galilean transformation.
Ans. a) Lorentz transformation ' .
7.  Lorentz contraction is given by

3 7 3 ?
a)t‘=f1’1+% b}f:f_Jl-:—, c}r’ﬂ#n% d}I’=f1/I—:—I
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1
Ans. h}f’:f,l’l—“—z
c

8.  Two events are said to be simultaneous if they occur at the

a)Sametime  b)Different time
c) Any time
Ans. a) Same time
9. - Time dilation is given by '
a) At = 28 A s il a) A =2
+— A== 19~ [iisting
c < LI v
At

Ans, b)At' =
;il-“—j '
: ¢ : : S

10. - Lorentz transformation form a :
a) Group b) Subgroup ) Normal Subgroup

Ams 2)Group ; '

1L Variation of mass with velocity is given by

| i}m=‘=J&—' b}m:-Jﬂ_ 7 2
: v
1_% 1+E;-_ c)m=m I—ﬁ:—z d)m=m, I+}£};
C e
(m,, = rest mass)
Ans. a]mé-ﬁ

: v

- €

12. Equivalence of mass and energy is given by

2
))E=mc® B)E=m’c ¢) E=cﬂz d) E,;.':_

Ams. 2) E = me?

81




13. Transformation formula for mass is given by along x-direction,

AL ] - ]
F < c d] m}_= N -

am = m = - c]m‘rz - :
U v w L)) I
1-— ‘ l—— — 1+—
" v
o ‘7{]_ 21]
Am- h] m"= Cc
2
N
cl

L}
5

14. pl—% is a) Lorentz invariant b) Galilean invariant c) net invariant
Ans. a)Lorentz invariant
15. Maxwell’s equations are invariant under

a) Lorentz transformation b) Galilean transformation ¢) Any kind of transformation:
Ans. a) Lorentz transformation
16. E°-His :

a}l.érmtzimrariant b) Galilean invariant c¢) Maxwell invariant d) Not ihvariant.
Ans. a) Lorentz invariant
17. []%is invariant under

a) Lorentz transformation b) Galilean wransformation ¢) Maxwell transformation
Ans. Lorentz transformation
"~ 18. In case of free space

'a}m3E=0 h]D*E;&G C}ETE}ﬂd}DIE{G
19. EandH remains unchanged under
a) Lorentz ransformation b) Galilean transformation ¢) Gauge transformation

-Ans. c) Gauge transformation
20., E.H is invariant under
a) Lorentz transformation b} Maxwell ransformation
¢) Gauge transformation d) Any transformation
Ans. a) Lorentz transformation
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1.

EF‘

GAUHATI UNIVERSITY

QUESTION PAPERS
YEAR - 2002

What are the circumstances that prompted Einstein to formulate the two postulates of $pecial theory
of relativity?

Done carlier

Hints : Galilias principle of relativity with the three experiments.

(1) From the observation of light coming from the binary stars.

(2) Fizeu's experiment. (Deduce all the three)

(3) Michelson-Morley experiment. | |

Derive the relativistic addition law of velocities. Hence find the speed of one electron relative to
another electron which are separated from the same sample of substance with equal speed 0.66¢
in opposite directions.

1st part : Derive.
ul +v u, b
- J'_.‘ PN i I O u, = -
R TR ()
c c c
Done earlier

2nd part : Proceed as example (2) of miscellenous examples.
Hint : v = .66c, v = ¢
Let V be the relative velocity.

I
Then V = - +:u _ .ﬁﬁcﬂ; ={.ﬁﬁ+1}c=c_
uv +.ﬁﬁc (1+.66)

o T

i+— 1
¢ e

State consequences of Lorentz transformation. Discuss (1) length contraction (2) time dilation.
Statement of consequences of Lorentz transformation '
(1) Lorentz-Filzerald contraction. ~ (2) Time dilation.
(3) It is impossible to send a signal with velocity greater than the velocity of light c.
2nd part : Discuss Lorentz-Filzerald contraction and time dilation.
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;™

Sol.

Prove mathematically by three different approaches that the speed of light ¢ is invariant.
Dissscuss the following as done earlier.
(1) From the observation of fight coming from the binary stars.
(2) Fizeu's experiment.
- (3) Michelson-Morley experiment.
Establish the formula

Hence calculate the velocity at which the mass of a moving particle becomes 8 times its rest mass.
1st part : Done earlier. ' |
Hints : Deduce variation of mass upto cﬁuat.ion (4). .
2nd part : Done in miscellenous example.
_ Hints : Question number (11).
Devine the expressions for four-velocity and four-force.
Done earlier.
Hints : Deduce the equations

ul. u)' Z o
7 W= 2 =7 Ty U= 7
u u u u
S | G 1~
c [ Cc

Establish the transformation equations for E (E, E,.E) and | (H, H,, H), the electric and
magnetic field intensities. Hence prove that £ _ ff? and E fj are Lorentz invariant.
Done earlier.

u =

I
ol

v IS (A v - e { 14 : R v
E;:ﬂ{E?_EH:)' Hr—ﬁ(l'l:.‘I +?Ez)‘ Ex—ﬁ!kEI'i"EHY] 2 H:wﬁ[H,—E’Er]
and then showthat ~ E'-H'=E?-H?and EH=F. H

Explain the background how to deduce Maxewell’s equations. Hence, show that all the four
Maxwell’s equations are not independent.

Done earlier.
Hints : Write all as-given in Maxwell's equation with deduction.

Hints : Deduce the cquaﬁcns El = E.. H*: =H
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GAUHATI UNIVERSITY
QUESTION PAPERS

YEAR - 2003
~ State the two pastcelates of special theory of relativity. Hence derive the Lorentz transformation
equations. ;
Postulates are as follows :

(1) All laws of physics (excluding gravity) must be invariant w.r.t. observers moving in n:lanve
uniform mmm. : .

(2}T'hcspwdnfhghtc(m mum}mmmw.ﬂobsawmmomgmmlauwmﬂbrmm
2nd part : Done earlier
Hints : Deduce the equations

x' = x (x - vt)

Y=y,Z=z

43

Define space-like and time like intervals of special theory of relativity. Exmmiumarsvﬂmy'
for point-events of space time continuum.

Done earlier..

Hints : Deduce all as given in space like and time like interval.

The leagth of a rocket-ship is 100 metres on the ground. When i s in light its length observed on
the ground is 99 metres, calculate its speed.

Done in miscellenous examiple.

. Hints : Question number (3)

V=423 x 10° m/s
At what speed should a clock be moved so that it may appear to lose | minute in each hour?
Done in miscellenous example
Hints : Question number (4)

V=354 x10"°m/is
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S.  Establish the formula

Hence formulate the energy momentum vector of special theory of relativity and show that it is
Lorentz invariant. ' “

Sol. 1st part : Deduce transformation law of mass.
2nd part : Deduce upto

En n E1 . |
S, My

6.  Deduce the Einstein’s equation of energy
E = mc®.
Sol. Done carlier..
Hints : Equivalent of mass and energy.
" 7. Abody of mass M disintegrates while at rest into two parts of rest masses M, and M,, show that
the energies E, & E, of the pants are

1
E, = oy (M7 + M} - M})

1
E, --‘:i(Mz‘fM‘:—M:}

Sol. Done in chapter 2.
8.  Show that the Maxwell’s equations of electromagnetic fields are Lorentz invariant.
Sol. Done carlier.




9, wmmw'smmmmmmmmMamm A and
a scalar potential ¢ satisfying these equations. Hence show that the d" Alembertis operator [7]? is
Lorentz invariant.

Sol. Done earfier

Hints : Deduce []7 = []?







