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Unit 1

1.1. Introduction : Graph theory is the study of some set of 2-tuples. Graphs arise in many
settings and are used to model a wide variety of situations. Lets consider several problems
and concentrate unfmﬂhgnméelsmumg'ﬂwscpmblmmurmnwunyhgabnm
Example.1 _ | .
. Suppose that we are given a collection of intervals on the real line, say C = {I, Ly....... L}-
These intervals may or may not have a nonempty intersection. Suppose that we want a way
to display the intersection relationship among these intervals. What form of model will easily
display these intersections? '

. One possible model for representing these intersections is thcﬁ:]lown:lg
Let each interval be represented by a circle anddmwahmbatwcmm circles if, and only if,
the intervals that correspond to these cirgles intersect. For example, consider the set C= {[4,
21, [0, 1], [-8, 2. [2, 4], [4, 10]}.

The model is shown below:
o]
Eﬂ- 1-]
[4.19)
[2.4] 5
. Fig. 1.1.1
Example.2.

Suppose there are three houses (call them h,, h,,; h,) and three utility companies (say gas (g),
water (w) & electricity (e)). Our problem is to determine if it is possible to connect each of the
three houses to each of these three-utilities without crossing the service lines that run from the
uilities to the houses, We model this puzze by representing each house and each utility as a circle
and drawing line between two circles if there is a service line between the corresponding house
and utility. We picture this situationn fig 1.1.2.

* .




Suppose you are the manager of 8 company that has four job openings (say Ji. /3, J; .- and
J,) and five applicants a,,a,,4,.4, and a, that some of these applicants are qualified for
more than one of your jobs. How do you go about choosing people to fill the jobs so that
wuwﬂlﬁ]lgsmyopmhgsupauﬁh?%phﬁnmhaﬁnmimhﬁgmt 1.1.3. Again,
each job and each applicant can be represented as a circle. This time, a line is drawn from
a circle representing an applicant to each of the circles representing the jobs for winch the
applicant is qualified. Fig- 1.1.3

Fig. 1.13

A solution ta this problemn would be a set of four lines joining distinct jobs to distinct
applicants, that is, one line joins each job to a distinct example, the lines joining j,and a,,
j, and a,, j, and q, and j, and a, constitutes a solution to this problem. Since lines only
join jobs to applicants, this i clearly the maximum number of lines possible: Can you find
another solution? The real problem is, how can we find solution in general?

1.2. Graphs: '

Despite the fact that theabowpmhlmsemvuydiﬁ'erem,wehweusaduhﬁhr
type of diagram to model them. Such a diagram is called a graph. _
A graph G consists of a finite nonempty set V=V (G) of p points together with a
4 ;




prescribed set X of q unordered pairs of distinct points of V. Each pair x = {u, v} of points
in X is a line of G and x is said to join u and v. We write x = uv and say that u and v are
adjacent points (sometimes denoted u adj v); point u and line x are incident with each other,
asmvandx.lfhwuﬂisth:tlhﬂ'x'mfi}rm incident with a common point, then they are
adjacent lines. A graph with p points and q lines is called a (p, q) graph. The (1,0) graph is

¥
Fig- 1.11A graph 1o iflemrate adjaczoey.

It iscustonﬂryturepracﬂtlgmphbymnsafadhgrmmﬂiu refer to it as the '_
graph. Thus, in graph G of Fig. l.!.l,th:poh:suandvmndj&mmhutﬁmd#ammt;
linnsxandynn:adjacmthnxandzmm:.ﬂﬁﬁughtheEnEixandzhtcmcthth:
: dhmﬂmirhumhnkmtapohofﬁngmphThuemmmmufgmﬂﬁ
whichdesewcn‘mﬁimeuteﬂﬂlhﬂdeﬁnithﬁufgmphpﬂnﬁuﬁoimp,thﬂiﬁ,mline
joining a point to tself. In 2 multigraph, no loops are allowed but more than ope line ca join
two points; these are called multiple lines. If boti loops and multiple lines are permitted, we
have a pseudo graph. Figure lJ.I'lhowsnmﬂﬁpnphaﬂapseudographwiththesm
"underlying graph”, a triangle. '

A A,

Fig. 1.2.2A muhigraph and a pseudograph.

A directed graph or digraph D consists of a finite nonempty set V of points together
with a precribed collection X of ordered pairs. of distinct points. The elements of X are
directed lines or arcs. By definition, 2 digraph has no loops or multiple arcs. An oriented graph -
'is a digraph having no symmetric pair of directed lines. In fig 1.2.3 all digraphs with three

5




Fh.i.lj'lhﬁp-a.:ltuu-i:h three potats and three arcs.

ponints and three arcs are shown, the last two are oriented graphs.
Agraphﬁishbcladwhmthbpuintsmsisthguishadﬁumummthmbymm
, v,.. For exmaple the two graphs G, and G, of Fig 1.2.4 are labeled but
G, is not. .
Two graphs G and H are isomorphic (writtea G = H or sometimes G = H) if there
ﬁiﬂsa_mmnmmﬂespunq:mebﬁmtheipuﬁﬂmwhthpmmadjmm For
example G, and G, of Fig 1.2.4 are isomorphic under the correspondence, v, «» u, and
incidentally G, is isomorphic with each of them. It goes without saying that isomorphism is an

equivalence telation of graphs.

An invariant of a graphs isomrphictn_ﬁThusthcnumheﬁpmdqmmiﬂy
mvarianrs.ﬁmt:pktesuqfhmﬁaH5dﬂmmagm;ﬂ1upmhumrphism For example
mgmmﬂ:cnpandqmmm;mmhamﬁmnmmmmmmmmm
complete set of invariants for a graph is known.

Fig. 1.2.4Labeled and unlabeled graphs.

Complement G = (V, X) ofa graph G = (V, X) has the same point set as G and its line set is
the set complement X of X; i, uvisalineof G ifand only ifuvisnotalineof G -
Agraphﬁissaidmbe'seﬁmmplemuryifﬁgﬁ. ;
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1.3. Subgraphs : A subgraph of G is a graph having all of its points and lines in G
If G, is subgraph of G, then G is a supergraph of G, the induced subgraph <s> if a only if
lhuythGhFlglﬂlﬁlnspmmgmbgaphuthnG 'is not, is an induced
subgraph but G, is not. :

: ﬁ; 1.3.1 Agraph and mm

The removal of a points v, from a graph G results in that subgraph G-v, of G consisting
nfaﬂpoﬂﬂaofﬂnmptvandlﬂhn:smtmcﬂcmwhvpmusﬁ-v is the maximal
mbgrnphofGmmvpmmeotbwmmemdmahz;&nﬁwmm
mgmhgtaphﬁ-:gmmmgnﬂhnnofﬁnccptx?ﬁusﬁ X, is the maximal
mbplphofﬁmtmnmhhng.Therﬂmvﬂofsﬁ-nfwmmﬁnﬁf_mmﬁisdeﬁnedby
: thémﬂbfshgtckmmuhmontheﬂn&hnd.iﬁandv are not adjacent
m{}.thcaddm«mﬂn:vvjmmsmthcmllmwaphoﬂ}mutmmgthﬂmw
'Ihueconncpumﬂhstmedhﬁgtlz




A -7
-

Fig. 1.3.1 A graph phst or sines 2 specilic pait or line

" There are certain graphs for which the result of deleting a points or line, or addinga .
line, is independent of the particular point or line selected. If this is so for a graph, G, we
denote the result accordingly by G - v, G - x, or G+ x; see Fig 1.3.3.

ONUEQR;

Fig. 1.3.3 A graph pius or minus & point o¢ line.

1.4. Walk, Paths, Cycles and Compontnts :.

Awl&ufamhﬁhmmmgsqmafpnmaﬁm VX Yy eeannes Vo Ko Vg
mﬂmmmmmwmhmmhmmwmmmw
preceeding and following it. This'walk joins v, and v, and may also be denoted v, v,v,......V,

(the line being evident by context);

o—L——0 O -
K- . WL N o

it is sometimes calleda v, =v, walk. Itisclosedifv. =v, audnpuinthu'ww: It is a trailifall
ﬂrﬂnﬂmdntm:mdnplthlfnﬂthepom(mdthusmﬁyaﬂth:haes}mdhﬁlctlf
ﬂnwnlkﬁclusadﬁnn:nsuyclepmvﬂndusnpomumdmumtmdnzli The vertices v,

andv, are called the end vertices of the path and the other vertices are called the inner vertices

nfmcpath.lnthclahehdgmphﬁafﬁg i1, vlvzv,vzv!nnwlk,whmhumumuv AR

v,V, v, is & trail which is notapath. v, v,v,v,isapath and AAAS isacycle.
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v, v,
Fig. 1.4.1

Wedenote by C, rhegnphnunmsmgnf:cychwﬂhnpolﬂ:lmdby? apath with npoints; C,
is often called a triangle.

Emmnmmmmdmh,anymn.hngcstpﬁhahawamnpuht.

Proof: P
. - 1 ,
& >
: : B
oo Y w “‘:_._-ff__:ﬂM
N B
- .._._,_...__._._'_...\,..T"' il_._..-....hnh—-—-—‘
o w wWa o }‘I‘_ Vser - T'”
2 Pas Faa e
kR
: Fig. 1.4.2
Consider any two longest paths P, and P, mamnmﬁudmphﬁl_ﬂ? b-edmtedbythe
sequence
Vo W3 Vg wnmsaay Wy
- and P, by the sequenice
e i, J——

Assume that P, and P, have no common point. Since the graph G is connected then for
m:ﬁ:i.ﬂﬁi'skandﬁ:trsuunj,ﬂijsk.th:m:ﬁstsa v,- v, path P _,such that all points of P,
other that v, and v, are different from those of P, and P,. The paths P,, P, and P, may be as
shown in the Fig.-15.

Let .t =lengthofv —v pathP

t,=lengthofv —v, pathP ,




v = lengthof v, - v, path P,,
t'=length of v/, — v/, path P,

t =lengthofpath P_
Note that
t|+r.:mt',+t’fhlgthufalmgwtpathinﬁmdtgbﬂ.“ﬁﬂ:nutanyhssnfgarmﬁty,
ket % '
t, 2t
t', 2t sothat

tHv 2t =t
Now it may be verified that the paths P, , P_and P, together constitute a v, - V', path with its
lmsrhcqualw
LR >,
Th:smntmdntaﬂmt +t¢uthebngthof:bugmtpahmﬁ.'rhnmu:phtsﬂ:prmt
I\wududnctpointmandvnfagmphﬁmsaﬂmbemnuted:fﬂﬂenu —vwalk
nG Bycmmnapomnmmmedtumtfﬁgnphnmdmbemmd if every two
of its points are connected; otherwise disconnected.
mmmnmmdm ﬂnmhﬂonnfmnmchdnmnmeqm
relation onﬂnpumtset?nfagm_phTh:gmphsmhmdonthuqumkmechmofthn
relation are called the components of the graph or equivalently.
A maximal connected subgraph ofa graph G is called a component of G A component
which is K, is called a trivial component.
Amnwmlufﬁwihmnﬁ(m}mnﬂmuﬁﬂﬂskmﬂadmuﬂﬂm}mnuﬂ

- of G

A disconnected graph has at least two components. The graph of Fig-16 has 10

T AAY

Fig. 1.4.3
The length ofawak v v,.....V, is n, the number of occurrences of linesinit.

The girth ofa graph G denoted by g (G), isthe length of a shortest cycle (ifany) n G
" circumference ¢ (G), is the length of any longest cycle. Note that these terms are undefined if

G has no cycle.
The distance d (u, v) between two points u and v in G is the length of a shortest path
10




joining them ifany; otherwise d (u, v) = o. In a connected graph distance is a metric; that is for
allpomtsu, v, w

(1) d(u, v) 20 withd (u, v)= 0 ifand only ifu=v

() d(u, v)=d(v,u)

(i) d (u, v) + A (v, W) 2 d (u, w).

A shortest u— v path is often called a geodesic. The diameter d (G) of a connected
graph G is the length of any longest geodesic. In the graph G of Fig-14 girthg =3, ¢ (G) =4,
d(G)=2. '

The square G* ofa graph G has V(G*) = V{G}wthuvadpmtmﬁ’whemmd{u,
v}simﬁ.ﬂmpowmﬁ-‘ s of G are defined similarly.

1.5. Intersection of graphs :
'LctSbcasetandFr:{S ...... S}ammemptyfamﬂynfﬁtmtmmmhscts

nfSwhﬂsetmm:sS ie,ScSst uS =9,

Thcinter:ecﬂungrnphomedenutedﬂ{F)nndd:ﬁmdbyV{ﬂ(F}) =FwithS &S,
ad;acmtwhmrvcntjauds NS *¢. Agrathmmintenmﬂnnp:phnnSﬂlﬁmﬂy
Fofsuhsetsofﬂﬁarwhmh(}=ﬂ(l7) :

Theorem 1.5.1.: quygﬁphfmanimmﬂi}ngmph
Proof: For each point v, of G, let S, be the union of {v} with the set oflines incident with v..
8= {v} U (v,x), if v, x adj
S={v}u(v 1 %)
Ifv, &v.areadjthen S & S wﬂlhawd:nlmnmmummnandmmaqm!}rs r"uS #¢. Sowe
cangdaonenmmrrﬁpundmceberwmthepuuﬂsv of G and the points S, anwhere
F = {8,} which preserves adjacency. Thus G = Q (F). SnGlsanmtmnngrapb._

Ex l.:
v v i ’ 5

Vg

Fig. 1.5.1
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S8 ={v, Vv, vV}
S, = {vy V¥, V,v,}
S, = {vy vyVy ViVo V.
S, = {v, v,v, V.V,

Si- . {vi" vjvj}

Vsl

F= {Su }?—1
Ex.2.: v, " Se
S={x,%,x}
S, = { Xy XI}, My { ﬁ}r
S,={x,x}, S, ={x]}
u, L ts
Fig.1.5.2

In view ofthis theorem, we can define another invariant, the intersection number w(G)
ofa givmgmph&whichhth::ﬁhinmmnumbernfclmmnmmﬂ:mSmﬂhmG is an
intersection graphon S. '

Corollary 1.5.1. (a): If G is connected and p Z 3, then w (G) s q.
Proof: In this case, the pohnscudbeomﬁed'ﬁamth:sﬂsﬁimedhthemenftheﬂmm
1.3.1, so that S = X(G). %o :

Corollary 1.5.1(b): If G has p, isolated points and no K, componeat, then w(G) < q+p,

Theorem 1.5.2: Let G be a connected graph with p>3 points. Then w(G)=q if and only if G has
no triangles. .
Proof: We first prove the sufficiency. In view of cor. 1.5.1(2), it is only necessary to show that w
(G)=2q ﬁ:ranymmrctudgmphﬁwﬁhathasﬂpohﬁhavﬁgmuimgks.
By defimition ofthe hﬂm@nmnﬁ&,ﬁhhﬂmrphbwﬁhmﬁnmbnmﬁlﬂmmam
S with | S |=w (G). Fareachputﬁt v,0f G, let S, be the corresponding set. Because G has no
triangles, no element of S can belong to more than two of the sets S, (because otherwise those
sets will be mutually adjacent and thus forming a triangle m C(F) =G)andS,N Sj#¢ﬁ'a:ﬂunly
ifv,v is a line of G Thus we can froma 1 - 1 correspondence between the lines of G and those
elements of S which belong to exactly two sets S,. Therefore w (G) =.1$ |zqsothatw(G)=q.
" To prove the necessity, let w (G) = q and assume that G has a triangle.

Then ket G, be a maximal triangle free spanning subgraph of G By the preceding paragraph

w(G)=q,=|X(G)]}

12




Suppcseﬂmﬁ =Q (F), where F is a family of subsets of some set S with cardinality q,. Letx
‘be aline of G not in G, and consider G, = G, +x. Since G, is maximal triangle free, G, must have
some triangle, say u, u,u,, wherex=u, u,. D:mtcbys,, S,, S, the subsets of S corresponding
tou,, u, u,. Now if u, is adjacent to only u, &u,inG,,replace S, by a singleton chosen from S,
M S, and add that element to S, .Otherwise, replace S, by the union of S, and anyelementin 5,
ﬁSl.lnmth:rcasethmgrvﬁafannlyF' of distinct subsets of S such that G,=Q (F). Thusw .
(G) <q, while| X (G| =q,+ 1.if G, =G thereis nothing to prove (then G hasa triangle and
w{G):-’.qL{IX{G)Fqﬁlcomadhtingthehypnthﬁiﬂhatwfﬁ}#qandhﬂre(}mﬂmt
have a triangle). But if G, = G, then let

I X@[-1X(G)I=q,

It fnﬂnwsthntﬁﬁanmmmngnphonamwnhqﬁquehm:m Howwcr, q,+

q°=q-l_,'l‘husw(G)-=:qmn:n;detmgm=prm£

Sa wi RN 7 ¢ VRN
"4\ ' v\
5‘3 $+ ‘ u.a, "

Fig. 1.5.3

1.6. Degrees :
The Degree of a point v, in graph G, denoted d, or deg v, is the number of lines incident with
v, A point is called odd or even depending on whether its degree is odd or even.

Since every line is incident with two points, it contributes 2 to the sum of the degrees of the
pomnts. We thus have the following theorem.

Theorem 1.2.1: the sum of the degrees of the points of a graph G is twice the number of lines
Fdegv, =2q- ;

Corollary 1.2.1(a): In any graph, the number of points of odd degree is even.

Proof: We have by theorem 1.2.1 the sum of the degrees of the points of a graph is even. Let us

consider this number as the sum of two parts: omufthmnisthemufﬁwwendegmc'mﬂ&:

other is that of the odd degrees. The former is nbmuslye:ven, so that latter must also be even

since therr sum is even. Butﬂ:esmnnfnddnuniam:sevenonly:fﬂwmarcanmnmmubcruf
them. Therefore the mumber of points of odd degree iseven.

13




Ina(p, q) graph 0 < deg v < p— 1 for every point v. The minimum degree among the
points G is denoted min deg G or 5(G) while A(G) = max deg G is the largest such number. If
&(G) = A(G) =r then all the points have the same degree and G is called regular of degree r.
We then speak of the degree of G and write deg G=r.

A regular graph of degree 0 has no lines at all. If G is regular of degree I then every
component contains exactly one line; if it is regular of degree 2 every component is a cycle, and
conversely of course. The first interesting regular graphs are those of degree 3; such graphs are
called cubic. : ;

Fig.
Corollary 1.1. (b): Every cubic graph has an even number of points.
The complete graph K_has every pair of its p points adjacent. Thus K_has p__ lines -
and is regular of degree p — 1. The graphs K, are totally-disconnected, and are regular of
degree 0.

Theorem 1.2.2. (Problem of R;:mse_f}: For any graph G with six points, G or (G contains a :
Proof: Let v be a point of a graph G with six points. Since v is adjacent either n G orin G to the
other ﬂvepo'mtsaf(lwemnasmwﬁhmtbssc;fgmﬁﬁwmmﬁcmﬂm points u,, u,,
u, adjacent to v in G Ifany two of these points are adjacent, then they are two points of a triangle -
whose third point is v. If no two of them are adjacent in G, then u,, u,, u, are the points ofa
triangle in G . ' '

Fig.
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The result of theorem l.2.2mggwtsth=gmﬂquﬁhn:whmisthemﬂeﬂhﬂegur
(m, n) such that every graph with r (m, n) points contains K_or K, ?
The vahues r (m, n) are called Ramsey numbers. Of course r(m, n)=r(z, m).

Theorem 1.2.3.: The maxinmmnumber of fnes among all p points graphs with o triangle is

1%
4 |

[As usual, let fr] be the greatest mzcgﬂmtmmdh]gthcmﬂlmmherr,ahd {r}=-[,
the smallest integer not lessthan r.]
Proof: The statement s obvious for small value of p. Anmducu\mprmfmybegwmscpammiy
for odd p and even p; suppdse the statement is true for all even p < 2n. We then prove it forp =
2n+2.butheagmphwithp-h+2puhﬁmdmmghﬁ.smqismmwnydhcuumad.
there are adjacent points u and v. The subgraph G’ =G - {u, v} contains (2n + 2)—2 = In points

g 2
and no triangles, and by our assumption G’ has atmost [13_]:“1 lines.
How many more lines can G have? There is no point w such that both u and v are adjacent to w
because then u, v, w will form a triangle in G. Thus ifu is adjacent to k points of G*, v can be
adjacent to atmost 2n—k points. Then G has at most
n'+k+{2n-k)+ 1 Imes

ie, w+2Zn+ 1 lnes
ie, (@ +20+Dlines

ie., -{g-(-%:ll lines = % = [PT:'] lines

p={(2n+2)

To complete the proof, we must show that for all even p, there exists a [P- ] graph with no

riangles. Take two graphs V, and V, of £ points each and join each point of V/ with each pt of

2
V,. For p=6, this graph is of Fig-19.

15




The proofis similar for p odd

* Abigraph (or bipartite graph) G is a graph whose point set V can be partitioned into
two subsets V, and V, s.t. every line of G joins V, with V, or inother words a bigraphis a graph
whose pomts are divided into non- overlapping sets so that points in the same set are not connected

byln:s. A LW

o, o
Fig. 19.
For example the graph of Fig-20 (a) can be redrawn in the form of Fig-20 (b) to display the fact
that it is a bigraph.

If G contains every line joining V, and V, then G is a complete bigraph. If V and V,
haw:.mnnt_l_npnhts,wemﬂ:(i=K“==k(m,n}.(31em‘tyi(___hasnmlhlm.1husifpiawm

T

Ex. L. Let Gbe a(p, q) graph all of whose points have degreesk ork + 1. If G has p, >0 points
of degree k and p,, , points of degree k + 1, then '

P,=(k+l)p-2q
Solution: We have
idﬂg."’i =24-.

=l P
There are p, points of degree kand p, , , (= p - p,) points of degree k + 1, so
| P +(-p)k+1)=2q

16




or  p(k+1)-p =2q.
or p,=(k+1)p-2q.

Theorem 1.2.4.: A graph is bipartite if and only if all its cyclés are even.
Proof: IfG is a bigraph then its point set V can be partitioned into two sets V| & V. so that every
line of G joins a point of V, with a point of V,. Thus every cycle v,v.......v v, in G necessarily
has its oddly subscripted pomts in V , say and the others in V., so that the length n is even.
Conversely we assume without loss of generality, that G is connected (for
otherwise we can consider the components of G separately). Take any point v, € V,and let V,
consist of v, and all points at even distance from v,, while V,=V-V,. Since allthe cycles
umeevﬂanqrimoprmapﬂmme wrlhapumtoﬁ" For suppose there is a line
uvpmmgtwupomtsu&vofﬁ‘rhentt:unmnnfgmdesms,ﬁﬂmv tuvmdﬁ-umv tou
together with the line uv contains an odd cycle, a contradiction).
**[Smnce, the points of V| are at even distances, so the geodesic ﬁ'um'v tov{whjchlsthtshortest
" v,~vpath) and v, to uare even and hence their union is also even).

Fig.

1.7 Degree Sequence : :

Ifd, 1<i<n are the degrees of the vertices of a graph, in any order, then the
sequence (d, )] is called a degree sequence of the graph. An N-sequence (d, ) is called a
degre sequence if it is a degree sequence of some graphs The graph is said to realize the
sequence. The set of distinct non negative integers m:mgmadcgr:csaqucmmfagmph
is called its degree set. A set of non negative inteqers is called a gegree set if it is the degree
set of some graph. The graph is said to realize the degree set. Two graphs with the same
degree sequence are said to the degree equivalent. -

It is customary to denote an integer sequence by the elements of its sat raised to
appropriate powers. This is called the power notation. Thus a gegree sequence of the graph

17




of Figure 1.7.1 is 2,2,3,3,4,4 and this may be represented in power notation as 2%, 3%, 4°,
its degree set being {2, 3, 4}.

" Fgltl

| If the degree sequence is arranged as an non decreasing positive sequence
A5 i d A 2 :a-..;...::»d*-} then the sequence y,_.m, ..... . is called*the
frequency sequence of the graph. : :
1.7. Let D =(d,)'be an N sequence and k be any interger i<k<n. Let
D' =(d;) be the sequence obtaived from D by setting .d, =0 and d;=d, -1 for the
d, lergest elements of D other than d,. Let H, be the graph obtained on the vertex set
V =(vw.....,v,) by joining v; to the d, vcrtm:sourrﬁpﬂndmgtoﬂ:deiﬂnemusmm
obtain p and H, is called laying off d, and and [y is called the residual sequence and H, the
subgraph obtained by laying off d, .

Theorem 1.7.1 (Wang and Kleitman)

An N sequence is degree sequence if the residual sequence obtained by lyng off say
non zero elements of the sequence is a degree sequence. '

Proof : (i) Sufficiency Suppose d, is the non zero elements laid off and the residual
sequence (n" | is a degree sequence. Then ther exists a graph G* realizing () in which
v, has degree zero and some v, vertices, say Vy, ‘:s;sdkhave degree d, - 1. By joining
v, to these vertices we get a graph G with (d,)] as its degree sequence. (Obeseve that the
subgraph obtained by such joining is precisely the subgraph H, obtained by lyng off d, ).

(ii) necessity We are given that there is a graph realizing D= ( ) Let d, be the
element to be laid off, First we claim that there is a graph lealizing D in which v, is adjacent
to all the vertices in the set S of d, largest elements of D—(d, ). [fnot G be a graph lealizing
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D and such that v, is adjacent to the maximum possible number of vertices in S. Then ther
is a vertex v,in S to which v, is not adjacent and hence a vertex v;outside S to which v, is
adjacent (since d{v,}=|5]. By the definition of S, d; < d,. Therefore, there is a vertex v,
in ¥ =(v,)adjacent to v,, but not adjacent to v; (See Fig 1.7.2) Note that v, may be in S.

'Fig. 1.7.2 ° AnEDT

Now contruct a graph H from G by deleting the edges v, and v,v; and adding the
edges v;v, and v, . This operation does not change the degree sequence. Thus H is a graph
realizing the sequence, in which ¢ne more vertex, namely v, of S. is adjacent to v,;t]man.
This contradicts the choice of G and established the claim.

To complete the proof, if G is a graph realizing the given sequence and in which v, is
adjacemnt to all vertices of S, let G' = G-v,.Then G* has the residual degree sequence -
obtained by laying off d. _

Suppose the subgraph H on the vertuces (v,,v,,V,.v, ) ofa multi graph G contains the
edges v,v, and v,v,. Thmtt:upcmuunufdeletmgthcseedgﬁa:ﬂmm&mmgiparofmw

{vv and v;v )ur (vu, gndvjv,)u-. called an elementary degree preserving
u‘amﬂzm:ﬂ.tnn{nndEDTﬁxshmt]

Remarks (i) The result of an EDT is clearly a degree equivalent mukigraph.

(ii) If an EDT is applied to a graph, the result will be a graph only if the latter pair
ufedges{v,v, andvv)or {vv and vv, )dﬂﬁnmcmmﬁ

Theorem 1.7.2. (Hakimi)

- If G, and G, are degree equivalent graphs then one can be obtained from the other

by a finite sequence of EDTs.
Proof Superpose G, and G, such that each vertex of G, coincides with a vertex of
G, with the same degree. Imagine the edges of G, are colourd blue and the edges of G, are
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coloured red. Then in the surperposed multigraph H, at every vertex, the number of blue
deges incident equals the number of red edges incident. We refer to this as blue red degree
parity. If there is a blue dege v;v,;and ared dege v;v; m H, we callita blue red paralle] parr.
Let K be the graph obtained from H by deleting all such paralied pairs. Then K is the null
graph iff G and G, are label isomorphic in H and hence originally isomorphic. If this is not
the case, we shall show that, by a sequence of EDT's we can create more parallel pairs and
delete them, till the final resultant graph is null. This would establish the theorem.

Let B and R denote the sets of blue and red deges in K. If v,; € B we-want to show
that we can produce a parallel pair at v,v; so that the pair can be deleted. This would
establish the claim made above. Now. by construction, there is blue red degree parity at every
vertex of K. So there are red edges vV, , ¥, inK. [f v, #v, (see Fig 1.7.3(a) and EDT
in G, switching the red deges v,v,, V;V, 10 positions V;V,,V,¥, pmdmcs_ahhe ppdpmli:]
pair at v,v;.

If v, =v, again'by degree parity. at v, there are at least two b'tueedgﬁ Let v,v,
be one such blue dege. Then v, is distinct from both v,and v;, for otherwise there would be
blue red parallel pair v,v, or v,v,. But then there is another red edge v,v, v, distinct from v,or
v;. Suppose v, # v,. The two subcases, ¥, =V; and v, =V, are illurstrated in Figs 1.7.3(b)
and 1.7.3(c) respectively. In the former case, and EDT of G, 5wm:hmg vy, and vy, to
positions v,v;, v,v; products a blue red pair at v,v, and vV, :

In the latter case one EDT of G, switching v,v, and vy, 10 positions v,v,, v 2
produces a blue red parallel pair at v, v, (whmh can be deleted). Another EDT of G,
switching the blue red pair v,¥,, ¥;¥, to positions V;V,. v,V wi].lprodun:a blue red pn:r at
v,v, (see Fig 1.7.3(d))

y - v, . ';l.
—— - = -2 L - -
v t \‘-.. .-'",
| o
<A
. 0 Sl s
==l =, ¥V,=¥,
- )
i
u'f >
‘.-P}'I. ';
%
1|"1\; i s X s
= W, 3
Ve, B -
t = ‘ b \'»._L
i t.\‘ ~
.
= ‘.ll'
¥ ¥,
% @ Ly =]

Fig. 17.3 lllustration for Hakim's theorem
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Since in both cases we get a blue red pair at v,v; position our claim is established

and the proof of the therorem is complete.

1.8 Trees :
Msnmmhmmmwofgmphcaﬂedmﬁmhmmﬁrmmamb
cations to many different fields..

A graph is acyclic if it has no cycles.

A tree is a comnnected acylic graph

Any graph without cycle is a forest. Thus the components ofa forest are trees.

Theorem 1.8.1: The following statements are equivalent fora graph G
{1)Gisatree :
' [I)Evcrytwopomtsufﬁmpmedbynumquepmh.
(3) Gisconnectedand p=q+ 1
4)Gisacyclicandp=q+1
{1}Gﬁncylxnnd:fauy mmmdpmrupumnfﬁnpmedbylhtx,thmﬁ+: '
has exactly one cycle
(ﬁ}Gumuctad.nnmk,ﬁxpza md:fanyhnom-dpmmmofﬁmpmd
~ byaline x, then G +x has exactly one cycle.
- (NGisnot K, UK, or K, UK, p=q+ 1, and iftwo nonadjacent points of G are
joined by  line x, then G + x has exactly one cycle. '
Proof: (1) = (2)
Smﬁucommdcvcrytwe pnmﬁufﬁmpnﬂby:pmh. If possible, let us
assume that there are two distinct paths p, and p, joining the points u and vof G. Let w bethe
first point ofthe path p, (as we traverse p, fromu to v) which liesonp,.

Fig. 1.8.1

Letw, hemcpumt next to w, on path P, which lie on P,. From the above selection, we

see that thcpunmnufﬂu.hmh}amswlandv.:alongwﬁhthepmtnnnf’l’] which joins w, and
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w, froms a cycle. This contradicts the fact that G is acyclic. Thercfore every two points of G are
' jomed by a unique path.
2)=0)

Since every two points of G are joined by a unique path, clearly G is connected, we
prove p=q+ | by induction. It is obvious for connected graphs of one or two points. Assume
it is true for connected graphs with fewer than p points. If G has p points, the removal of any line
from G disconnects G, begause of the uniquness of paths, and in fact this new graph will have
exactly two comﬁom each components consisting of fewer than p points. Ifn(<p) is the
number of points in one component of G - X, then p - n will be the number of points in other
component of G - xﬂmﬂ:mmﬂmsmmbcmfhnﬁmn landp-n-1 mq:mmly
Now for graph G,

g=n-l+p-n-1+1

or q=p-l=p=q+1l.
Hence the result is true for all values ofp.
(3)=(4)
' Asnmﬁlnsnmhoﬂmgthnﬁmﬂrmmnpummdnﬁnmmﬂu:)&mdﬂr
each of the p - n points not on the cycle, there is a distinct line on the shortest path connecting
these points to a point of the cycle. Hence any point of G cotresponds to a distinct line of G. So
qu,whnchmacmm-ndﬂnntntheﬁﬂﬂntp#q+l Th:rl:ﬁ:-m{inmstb:aqcit
=) - ;

Since G is acyclic, each component of G is a tree. Let there be k components of G
_Sh:eﬁchmmmnthamthenmnbémfpoinﬁh-itisoﬂemmthmm:mmbﬂufﬁm.
Then considering the totality of number of points and number of lines inall the components we
see that p = q + k. But from the hypothesis we havep=q + 1, therefore k = 1. Hm:ccils
mmectedmdnamﬂu&mrwmﬂyompaﬂ:mmmymmmmfﬁmmw
x joins two nonadjacent points uand v ufGThmd:sa:glepnthmmmgudenGtogem
wimdae]‘nexfronsmlywéychhﬁ
(5)=(6)

Gﬂmﬂ:ntbypmmgfwomn—adjﬂﬁ:ﬂtpumsuandvbyalmcx,weptnmhmﬂ+
m‘Sutthmn-ndmpomuandvumbemmadbyapmh,mG. other than x. Hence
Gismmeet:d.h{nwifﬁ‘EKP,furpﬂ,thmﬁmﬂmmahacyck.bmﬁh'acytﬁc,suﬁis
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not K, forp 2 3.
(6)=(7)

We shall prove that any two points of G are joined by a unique path. Since by joining two
non-adjacent points u and v by a line x, we get a cycle, so uand v must be connected by a path
other than x. Hence G is connected. Ifthe points u and vare connected by two paths then G has
acycle. Ifa cycle contains 4 or more points then we get -

r4
mncychnut_oﬁtbyjcriningaﬁmxtuil.Thisismtthe K fx
case by hypothesis. Hence a cycle of G is K, Since G # ? /
K, forp23 if it ext t be
o forp , therefore K (if ﬂ_exssts}ums a proper Fig. 1.8.2.

subgraph of G Since G is connected we may assume that
there is' another point in G which is joined to a point of this K_. Then it is clear that a line x may
be added so as to form at least two cycles in G + x. This is not the case by hypothesis. There-
fore Ecﬁmutb:amupambgrnphafﬁandnl&oanytwopohﬂsofﬁmcemt:d bya
unique path. Then this imphes that G is connectedand p=q+1.
lel)*K,‘unﬁtapmpermbgraphhplicﬂhat
| G=KuUK, or KUK, |
(M=) '
If G has a cycle that cycle rmust be a triangle which is a component of G by an argument
in the preceeding paragraph. This component has 3 pomts and 3 lines. All other components of
G must be trees and in order to make p=g+ 1, there can be only one other component. Ifthis
tree contains a path of length two it will be possible to add a line x to G and obtain two cycles in
G+ x. Thus this tree must be either K, or K. . So G must bé K, U K, or K, U K, which are the
graphs which have been excluded. Then G is acyclic. But if Gisacyclicandp=q+1 then G is
connected since (4) = (5) = (6). So Gisatree. .

Ex.1: Every non-trivial tree has at least two end points.

Proof: Let uand v be two points of a tree at maximum distance. [f possible let v be not an end
point. We know that a point which is not an end point in a tree is a cutpoint. So v is a cutpoint and
there is a point w in a different component of G - v _than u. Hence d(u, w) > d(u, v) which
contradicts the fact that u and v are at maximum distance. So v must be an end point of the tree.
Similarly it can be shown that u is also an end point of the tree.
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The ecentricity e(v) ofa point v in a connected graph G is maximum d(u, v) forallu in

The radius r{G) of a graph G is the minimum ecentricity of the pomts.
The diameter d(G) ofa graph G is the maximum ecentricity ofthe points.
A point v is called a central point ofa graph G ife{v}%{G].

The set of all centraFpoints of a graph G is called the centre of G

Fig. 1.8.3. The ecentricities of the points ﬂf.l tree
r(G) =4, d(G) = 7. Central points are u, v. Centre is {u, v}.

Theorem 1.8.2: Every tree has a centre coumstmg of either nmpoﬁl ﬁr two adjacent points.
Proof: The result is obvious for K, and K,. We show that any other tree T has the same central
points as the tree T* obtained by removing all the end points of T.

We see that the maximum of the distances from a given pomnt u to any other point v of T
will occur only when visanend point of T. Thus the ecentricity of each point m T  will be exactly
omkssthnﬂxm:nn'icityofthatpuw in T. Therefore the pomts of T which possess minimum
ecentricity m T are the same pumts having minimum ecentricity in T'. Herice T and T' have the
same central pomts. Ifﬂ:cpmcessafmmgmdponﬂxsmpmmdmnhummm
having the same centre as T. Since T is finite we eventually obtain a tree which s either K, or K.,
lneiﬂrrcascallpotmsofﬂﬂsukhuﬂemmnstimmthecmt;eufﬁ;ﬁhichmmof:ﬂwm
pointuﬂ;(l or the two points of K, '

A branch at a point u of a tree is a maximal sybtree containing u as an end point.

The weight at a point u of T is the maximum number of lines in any branch at u.

Centroid point ofa tree is apoint v if v has minimum weight. The centroid of T 1s the set
of all centroid points.
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ce=4
w=5 w=4 w:j : 4

e=4 e=3 u e=3 _
re=2 " . e=4
w=35
Fig. 1.8.4. The weights and ecentricities of the points of a tree.
Central point u, centre {u}.

Centroid points u, v, Centroid {u, v}.

Theorem 1.8.3: Every tree has a centroid consisting of either one-point or two adjacent points.
Block-cutpoint graph: e :

For a connected graph G with blocks {B, }and cutpoints {c,}, the block-cutpoint graph
of G denoted by be{G) is defined as the graph having point set {B }u{c,} with two points
adjacent if one corresponds to abinck B, and the other to a cutpoint ¢, contained in B, '
Remark: Every be(G) is a bi-graph with v,={B }.v,={c}. ' '




Theorem 1.8.4: A graph G is a block-cutpoint graph of some graph H ifand only if it isa tree m
which the distance between any two end pomts 1s even. .
In view ofthis theorem, we will speak of the block-cutpoint tree ofa graph.

1.9 Spanning Tree : We shall now consider trees at subgraphs of lager graphs. consider a
comected graph G =(V,E). which contains a subgraph which is the tree T =(F",E"). The
deges nfTarccnlhdhmhesand:hcdegesowahmhmmtmTareca!}edchmdsfboth
relative to T). If I = 7, then T is said to be a spanning tree of the graph G. A collection
of spanning trees of graphs G, one for each component of G, is termed as spanning forest.

Proposition 1.9.1
Every connected graph has a spanning tree.

Proof : If the connected graph G is not a tree it has atleast one cycle C. If e = uv
is any edge of C, G - ¢ (where P..... is the symmeditric difference). Continuing this process of
removing cyclic edges we end up with an acyclic connected subgraph T of G, which is also
spanning, since no vertices have been removed.

Piopodti&n 192

lﬂvbemy?mﬂfa_mnw:tndwhﬁ Then G has a spanning tree T preserving
the distances from v.

Proof - Ruquntdtuﬁndaspmnmg h'eeTomemhthat foreachu ¢V =V (G)
= V(T), d (v, u) = d (v, u). _

Consider the neighbourhoods N(v) = {u eV1 d (v,u) =i} of v, | sige wheree =
e(v). Let H be the graph obtained from G by removing all edges in each {N(v)}. Clearly H
is connected. Recalling the definition 2.13, let {B,(v)},, does not contain any cycle. If {B,(V)},,
contains cycles, remove edges from [N (v), N,(v)] sequentially, one edge from each cycle, till
it becomes acychic. Proceeding successively by removing edges from [N (v), N,_ (v)] to make
{B,, (), acyclic, for 1 gige - [ we get a spanning tree of H and hence of G Since, in this
procedure one distance path from v to each of the other vertics remains intact, we have
d(v,u) = d (v, u) for each u e V, as desired.

i+l

1.10. Cycles, Cocyles. Cycle Space and Cocycle Space :
We describe two vector spaces associated witha graph G: its ‘cycle space’ and ‘cocycle
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space’. For convenience these two vector spaces will be taken over the two element field
.F,={0, 1} in which 1 + | =0(mod 2) (even though the theory can be modified to hold for an
arbitrary field). _

In particular the E, which occur repeatedly in the following definitions are always either 0

or 1.
- As usual let G be a graph with v,,vg,,...,v, points and X;,X,.,..., X, lines.
A O-chain ofa graph G is a formal linear combmations Y e,v, ofpomnts of G
A 1-chain ofa graph G is a formal linear combination ¥ ¢,x, -oflines of G
The Boundary operator & maps every 1-chain to a 0-chain according to the following

- (i) 2 15 linear

(i) fx=uvthendx=u+v. _ _
On the otherhand the Coboundary operator 5 maps every O-cahin to a 1-chain according to
the following rules:

(1) & is linear :

(u) &(v)= Le,v, where g, =1 whmcvcr;lisimﬂen:withv.
I-chsin ,_ h'e Y
O, =X, +X, +X, +X, '
00, =0x, +0x, +0x, +0x,

“m (v, v, )+ (v, # vy ) (v, + v, ) (v, + v, )

-{l+l}{r, +{(I+Dv, +v, +v, +v,+V,

SV HV HV Vg

O-chain
Oy =V, +V, +V, +V, a Xy Vs X Y%
50, = 5V, +8v, +8v, +5v, Fig. 1.10.1

Comy xR xg X ) (g g ) (G Fxg X Fxg )+ (x4 )
=X, + X, +Xg + X, +(1+Dx +(1+Dx, +(1+1Dx, +(1+1)x,
=X, HX, +X, + X,
A l-chain with boundary zero is mn“m asa cycle vector of G{and can be regaraed is
asetof lirle-dis_inﬁlt cycles). ' .
The collection of all cycle vectors of a graph G forms a vector space over F, = {0,1}.
called the cycle space of G. A cycle basis of G is defined as a basis for the cycle space of G
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which consists entirely of cycles. We say that the cycle vector Z depends on the cycles
z,,2,...,z, and it can be written as Z!éﬁ.-l ' .

A cutset of a connected graph G is a collection of lines whose removal results in a

A cocycleofa graphis a minimal cutset.

ACoboundary of G is the Coboundary of some O-chain in G. The Coboundary of a
collection U of points is just the set of all lines joining a pomnt in U to a point not in U. Thus every
coboundary is a cutset. Since we define a co-cycle as a minimal cutset of G and any minimal
cutset is a coboundary, we see that a cocycle is just a minimal non-zero coboundary. the collec-

- tion of all coboundaries of G is called the cocyele space of G, and a basis for this space which
zonsists entirely of cocycles is calieda cocycle basis for G =. .

Z=(Z,-Z)u(Z,-Z)
=Z8Z .

Fig. 1.102

Wemmdmmmmﬁt for the cycle space of G a basis which corresponds to a span-
- ping tree T. In a connected graph G, a chord ofa spanning tree T is a linc of G which s notin T.
The subgraph of G consisting of a spanning tree T and a chord of T has exactly one cycle
and that cycle is formed by the unique path joining u and v and the chord uv.
Hence given a spanning tree we get a unique cycle corresponding to a chord of T. Let
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Z(T) denote the set of all cycles obtained by the chords of T as mentioned above. Z(T) is Imearly
independent because a chord belonging to one cocycle is not in any other cycle in Z(T). Also

everycycle Z depends on the set Z(T), for Z is the symmetric difference of the cycles determined
by the chords of T which lie in Z.

Acycl:mmrcanberegardedas aset of cycles having no mnmnsﬂeshememmy
two. Therefore any cycle vector can be expressed asafommlsmofcychs?.(n ngwen
a spanning tree T of a graph G we geta tyclehast{T}afﬁ

Thus if we define m{(G), the qrr.le rank, to be the number of cycles in a basis for the
cycle space of G, we have the following result. .

Theorem 1.10.1: the cycle rank of a connected graph G is equal to the number of chords of any
spanning tree m G
Corollary 1.10.1(2): IfG is a connected (p, q) graph then m(G) =q-p+ L.
Corollary 1.10.1(b): If G isa(p, q) gx@hwthkmnpums,thm
m(G)=q-p+k : :

Similar results are true for the cocycle space. Thc cotree T ofa spanning tree T ina_
comnected graph G is the spanning subgraph of G containirig exactly those lines of G which are
notin T, Acotree of G is the cotree of some sparming tree T. In Fig-3.8, a spanning tree T and its
‘cotree T+ are displayed for the same graph G The lines of G which are not in 7+ are calledits -
‘twigs. The subgraph of G consisting of 1 and any one of its twigs contain exactlyone cocycle. The
" collection of cocycles obtained by adding twigs to T+, one at a time, is seen to be a basis for the
cocycle space of G It is illustrated in Fig-3.9 for the graph G and cotree T+ of Fig.3.8 for G




S . i
e
~
.JXT
B .——-l-r-

%

1) : - (3

Fig. 1.10.4
Co-cycle basis for G

Coboundary x, + X, + X, +X, =(2)+(3)+(4).

The cocycle rank m"(G) is the number of cocycles ina basis for the cocycle space of .
G

Theorem 1.10.2: Thecuc}thmknfawmtedgﬂphﬁm&:nunm ufrwn;s nmy
spanning tree of T.

Corollary 1.10.2(a): If G is aconnected (p, q}graph,thmm (G)=p-l. -
Corollary 1.10.2(b): IfG is a (p, q) graph with k components, then m’ (G;;p k
 Ex1. Determine the éycle ranks of

@K,

('31"'-;.
{c)nnummtadmhcguphwﬂhppnm

Ex.2. a cotree of a connected graph isa maximal subgraph containing no cocycles.

1.11 Connectivity :
_The connectivity £ ofa graph G uth:mmmmnnmrbuofpumtswhuscmmovalmuhqs
disconnected or trival graph. Thus the connectivity of a disconnected graph is zero. On the other
hndthcmnnmnmofammadgmphwuhacutpumlﬁl

_ Byremvuxganynumbcrofpomts at graphcannutb:madcdmnnndudbmby
¢ anovig p-1-points ncanbemdncedmthemmlgmph,thmfnmthewnmcIMyépr} P
L ¢ '

The line connectivity A of a graph G is the minimum number of lines whose removai -

multsinadisuunna:tndgmphnr;uiviaigmph.ThusMKI]=ﬁmd]m=mnm¢ﬁﬁtynf; -
dhmnmedwhkmwﬁh&mafammadwhﬁﬂuhﬂgeiﬂl
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Theorem 1.11.1: For any graph GG,

~ K(G) S MG) < (G).
Proof: If G has no lines then A(G)=0=5(G). Whenall the lines which are incident with a point
are removed the graph is disconnected because the particular point remains isolated, therefore
removal of the lines which are incident with a point of minimum degree makes the graph discon-
pected. Therefore A(G)< number of lines incident with the point of minimum degree = §G) ie.

MG=HG 00 ... () '

Now we show £ (G) < MG).
Case 1: Let the graph G be disconnected or trivial then £ =0=A.
‘Case 1: Let G be connected and has a bridge x.

Fig. 1.11.1.
Theni=1. lnthmmectdmthcgmphhasacmwmlmdmtwnhthemcxorﬁnl(, In

eithercase £ = 1. _
~ Case 3: Suppose that A 2 2. luthhcasemmlaf'l -1 lines out ufthe'lh@assuciatudmﬂr
number A, producesa subgraph with a bridge uv. For each ofthese A -1 lines select an incident
point different from u or v. The removal of these points also removes these A -1 hnes(possﬂ:)]y
more). Again the above mentioned subgraph with the bridge uv can be made disconnected by
removing either u or v. Therefore by removing A points from the graph G as mentioned above
either G can be made disconnected or G s reduiced to a trivial graph. Therefore
£(G)SMG) .. (2) '

combining (1) and (2) we get

E£(G) MG <HG).
Remark: For all integers a, b, ¢ such that 0< a <b< ¢ there exists a graph G with £(G) =1,
MG)=b,8(G) = c. '
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Theorem 1.11.2: If G has p points and 8(G) 2 [%] then A(G) =&G).

Proof: Since A(G) < 5(G), the proof will follow if we show that A(G) 2 5(G). Suppose M(G) <
&(G). Then there is a cutset S such that A(G) =| s| < 5(G). Let the lines of S be incident with q
points in V, and p points in V, [V, and ¥/, are the points sets in the two components).
Supposctvll=q:'i'h¢nmh point of V| isan end point of at least one line n S.
If we denote by G, the induced subgraph of G on the point set V,, then G, has atleast

m, =1[a8(G) - A(G)] tines.
[because the q points has minimumn degree 5(G)and A(G) lines are removed].
* Since ; : :

;‘tIG}-cﬁ{GLwesﬂ
m, > %[q&[d}*—ﬁ{ﬁ'}}'
=28GXa-1)

or m, >%q{q-'-i}asa{G)QL(G}iq.muanmmmﬁmmsmk mm
cannot be more than q[q—-% lines connecting q pomnts. Therfore| V,|>q. Ina similar way we
'_c;nmmhat IViP3s i
o Ii‘lVJ:quﬂ1?lpﬁ,ﬁénthmﬁthhm¥lam V, which are sdjacent t0
onl:,rpoi:ms.invlmd V, respectively. Thus each of V, and V, contains at hstﬁ{G}ﬂfl‘he
"po*n*nv,mﬁ,wmammmupémhvimﬁmmmmﬂﬁ)
Lé.mmnmum_pum&mmufmmhv,w‘w?,]pummﬁ

has at least 25(G)+2 pointsi.e. 2(5+ 1)=ppoints. But

ps'i_ata}+zzz{§]+2>p.

leading to a contradiction. Therefore there is no cutset S with § |<8(G). Hence
 MG)2(G).
Weconcludethat ~ A(G)=G)

32




Theorem 1.11.3: Among all graphs with p points and q lines the maximum connectivity is zero

-J.rhenq{p-lnndﬂ[zq]whenqu 1

Proof: Case, wheng<p-1:

The number of lines in a connected graph with cycles may be more than the number of
lines in a conmected graph® without cycle, both the graphs consisting same number of points.
Therefore the number of lines in a connected graph is minimum when it has no cycle. Agam a
connected graph without cycle is a tree and ina tree = p-1. So ifq <p-1 the graph must be
disconnected and hance the connectivity of the graph in this case is zero.

Cm whenq2p-1 2 _
Since the sum of the degrees ot'an;.r(p q) graph is 2q, the mean degree is - .T_hcreﬁ:re

a{ms[?ﬂ,m : E£AG)< E{G}i[%]

Tn.shnwtha:ﬁmmhgmactuﬁﬂybemahed an appropriate family-of graphs can be
constracted. The same constraction also gives those(p, q) graphs with mininum lne connectivity.
For example, consider K . Here ;

_plp=1)
R

[9} P-1=£ (G).

Connectivity pair: A connectivity pair of a graph G is an « rdered pair(a, b) of non-negative
integers such that there is some set of ‘a’ point and ‘b’ lines whose removal disconnectects the
graph, and there is no set ofa -1 points and b lines or ofa points and b-1 lines with this property.
(£ 10) (8, ) are examples of connectivity points where £ is the point connectivity and ) is the
Iinccmmﬁvity. ltiﬁéasymsuethatﬁtmsf +1mnmctivitypai${a, b)where o <a<s.

Connectivity function: The connectivity pairs of a graph G determine a function f fromthe set
0,1,2,....5 mto thc non-negative integers such that fis stnictly decr:asmgam fl£)=0.The
function fis called connectivity function. fis strictly decreasing because if (a, b) is a connectivity
pair b>0, then(a+1, b-1) is also a connectivity pair.
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A graph G is said to be n~connected if the connectivity of the graph G s greater than or
equaltonie £ (G) 2n. _ | ; '

A graph G is called n-line connected if I{(G)=n _
I A non-trivial graph s comected than obviously x(G) 2 1, i¢. aconnected graphis -
connected. ' : '

Conversely if & (G) 2 | jmples that the minimum number of points to be removed from
the graph to get a disconnected graph is one and hence the graph must be connected.

Hagrnphﬁﬁabbckwﬁhmmthmomﬁm,thmﬁismn—scpnrablci.c.ﬁiﬁsgmm
cutpoints. So in this case £ (G) = 2, i.e. G is 2-connected. '

Conversely if £ (G) 2 2 hnpﬁe#ﬁhasmcurpuh:smdofmmw(] must not be
K (because inthis case £(G) 22). S0 £ (G) 2 2, implies G is connected having more than one
line and has no cutpoints. So G is ablock.

Theorem 1.11.4: IfG is n-cummédand n22, then every set of n points of G lie ona cycle.
Proof: We use induction on n. We know that any two points of a connected graph bie on a
cycle(because in this case the graph is a block). Suppose any -1 points of a n-1 connected
graph lie on a cycle. Let G be ah-connected graphand v = {v,,......,V, } be any set of n points
of G, by removing one of the n-poirits we get an-1 connected graph. Hence by the induction
hypothesis there is a cycle C passing through v, ......,v, , - Ifv, also fies on.C, there is nothing to
prove. If not we have to consider two cases: - : '

(i) There are v, paths p ={p,,p,,P, } it G which have only v, in common. Then the
points v,,v,,...,v,_, divide C into n-1 segments and one of these (including the end points)
should contain the end points of two of the paths in P. Adding these two paths to C and
removing the segment of C between thier end points we get a cycle ¢ of G containg all the points
of U. ;

Fig. 1.11.2.
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(ii) [fthere are no such n-paths as m (i), then there is aset S of n- 1 points not contaming v, which
meets all the v ¢ paths. Now G being n connected, G-S is connected and hence every point of
C can be joined in G-S by a path to v, contradicting the nature of S(i.e. S meets all the v <
paths), except when S =V(c)= {v,,....v,_, | - But in this exceptional case, since d(v_) 2 n [as
£ > p and & < 3(G)] we can find n-1 v -c paths having only the point v, in common. Adding
two of these paths which connect neighbouring points of C to v_and deleting the line of C
between these neighbouring points we get from C a cycle ¢’ containing all points of U.

Theorem 1.11.5: The minimum number of points separating two non-adjacent pomts sand t is
the maximum number of disjoint s-t paths. '

Proof: [fk points separate s and t then there can be no more than k disjoint paths joining s and
t .

It remains to show.that if it fakes k points to Separate s and t m G, there are k disjoint s-
t paths in G This is cértainly true if k= 1. Assume that it is not true for some k>1. Let hbe the
smaﬂcstmchk.andl:tl:bcagraphwﬁhtirnﬁn&mmmnbernfpniﬁﬁjrwhichﬂwﬂmmm
faills for b, We remove lings from F until we obtain a graph G such that h points are required to
separate s and { in G'but for any line x of G, only h-1 points are required to separate s and t m G-
x. We first investigate the properties of this graph G and complete the proofof the theorem.

By the definition of G, for any lime x of G there exists a set S(x) of h-1 points which
separates s and t in G-x. Now G-S(x) contains at least on s-t path, since it takes h points to b
separate sand t in G Eaﬁhsuchs-tpathnmstcuntahltheliner—*m: Since it s notapath in G-
x. S0 u,v s(x) and ifu=s,tthen s(x){u} separatessandtin G

If there is a point w adjacent to both s and t in G the G-w requires h-1 point to separate
sand tand so it hash-1 disjomt's-t paths. Replacing w, we have h disjoint s-t paths inG: So we
have shown: :

Case | : No point is adjacent to bothsand tin G _

Let W be any collection ofh points separating s and t in'G Ans-W path is a path joining
s with some w, € W and containing no other points of W. Call the collections of all s-W paths
and w-t paths p, and p, respectivily. Then éach s-t pathbegins with a member ofp, and ends with
a member of p, because every such path contains a pomnt of W. Moreover the paths mp and p,
have the points of W and no others in common, since it is clear that each w is in at least one path
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in each collection and if some other point were in both an s-w and a w-t path, then there would
be an s-t path containing o point of W. Finally either p,- w = {s}or p; w= {t}, since, if not then
both p, plus the lines {w ¢, w.t, ...} andp, plus the lines'{swh. sW,, ...} are graphs with fewer
points than G in which s and t are non-adjacent and h connected, and therefore in each there are
h disjomt s-t paths. Combining.the s-w and w-1 portions of these paths, we can construct h
disjoint s-t paths in G, and thus have a cogtradiction. Therefore we have proved. '

Case 1 I: Any collection W of h points separating s and tis adjacent either in 's'orto't'.
Now we can complete the proof of the theorem. Let P = {s, u,, u,, ..., t} be ashortest s-
tpathinGand let u,u, =£. Note that by (1) u, # t{bm:sethenu willbead]anem tnl:mhs
and t). Form s(x) = {v,,V,,..;,V,_; } 8sabove separating s andt in G-x. By(I) I.I,IEG (then
u, will be adjacent to both s and ), so by (D), with W = s(x)u{u, hsv, € G, foralli Thus by
M vitﬁﬁ,ﬁ:raﬂi'lhmifwtpﬂ.w = s(x)fu, | instead, we have by (II) that su, € G,
contradicting our choice of Pasa  shortest st path and completing the proofof the theorem.

Theorem 1.11.6: A graph is n-cnnnecmdﬁ'mdnnlyﬂmparnfpnmm}umdbyathst
n point disjoint paths.

Pmor.Lmﬁua.graphmacm(m}pammmcmmmhmim-l.snm ;
need to prove the theorem forn 2 2.

. Necessary part:

If s and t are non-adjacent then the necessity of the theorem follows £rom theorem
1.11.5.

Suppusethatsmdtma@m;ndmﬂtherematmostmlpnmtdnjumt:s-tpaths
in G Lete= (s, t). Consider now the graph G'= G -e. Since there are at mostn- -1 point disjoint
s-tpatbsmath:mcmmtb:mthann-zpumdspmﬂpmhsmﬁ . Thus there exists a set
A c v—{s,t} ofpoints with

|Alsn=-2
whose removal disconnects sand t in G'. Then
|V-ARIV|-|AR (n+])=(0-2)=3
and therfore, there is a point u in V-A different from s and t (as the number of points in V-A 2 3).
Now we show that there exists a s-u path in G’ which does not contain any pomnt ﬁfﬁ.
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Clearly this is true if s and u are adjacent. Ifs and u are not adjacent tltnthm:arcnpoiﬂ_._t disjomt
s-u paths in G(as G is n-connected) and hence there are n-1 pomt disjoint s-u paths in G, Since
|jAlKn-2,

at least one of these n-1 paths will not contain any point of A.

In a similar way we can show that in G there exists a u-t path which does not contam any
point of A.

Thus there exists in G a s-t path which does not contain mypomt ofA.Th:s,huwtm
contradicts that A is a s-t disconnecting set in G'. Hence the necessity.

Sufficiency:

G is connected because there are npoint disjoint paths between any two distinct points
of G Further, m:mmﬂmmofmpmhsm'u of length 1, since there are no parallel lines
mGTlmmmnot‘theremammgn—i paﬂrsmstmmamatbast{n-l}dmmwmmhﬁ'ﬂnns
andt. chr:e :

v (n-1)+2>n. :
Suppose in G there is a disconnecting set Awith | A j< n. Then mnsxkrdw:mbgaphﬁnfﬁm_
the point set V-A. This graph contains at least two distinct components. If we select two pomts
s and t from any two different components of G/, then there are at most | A |< n point disjomt s-
t paths in G Thiis contradicts that any two point mmmectadbyupnmt-chqomt pathsinG
Hence the suffenciency.

Theorem 1.11.7: For any two points of a graph the maximum number of lme disjuinf paths
joming them equals the minimum mimber of lines which separate them. '

Theorem 1.11.7: A graph with at least 2n points is n-connected if and only if for any two
disjoint sets v, and v, of n points each, there exists n disjomt puthsjuinh:lg these two sets of
points.

Note: That in this Theorem these n dlspmt paths do not have an:f points at all in common, not
even thier end pomts. .
Proof: To show the sufficiency of the condition, weﬁmttrgraphﬂ’ﬁumﬁhyaddmg two new
points w, and w, adjacent to exactly the pomts ofv,i=1,2. Since G is n connected, so s G/
and hence by theorem 1.11.5 there are n disjoint paths joining w, and w,, The restrictions of
these pathsto G are clearly the n disjoint v,- v, paths we need.
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Fig. 1.11.3.

To prove the “other half”, let S be a set of at least n-1 points which separates G, and G,
with point sets v; and v/ respectively . then since |
|V, 21|V} 21 and
[vi+]vy|+|sHvR 2n,
there is a partition of § into two disjoint subsets s, and s, suchthat
|viwvs, 20, .
|viuvs, 2o
Picking any n subsets v, of v| us, and v, of v, Us, , we have two disjoint sets of n
point each. Every path joining v, and v, must contain a point of S, and since we know there are
ndisjoint v - v, paths we see that | s 2 n and hence G is n connected.

Hall's marraige problem:

Given a set of boys and a set of girls where each girl know some ofthe boys. Under
what condition can all girls get married, each to a boy she knows? In this context we are going
toy prove our next theorem 1.11.9 which may be reformulated to produce what is often referred
toas Hall’s marriage problem: ifthere are n girls, then the marriage problem has a solution if
and only if every subset of k girls {1 < k < n) collectively know at least k boys.

Theorem 1.11.8: There exists a system of distinct representative for a family ofsets S, S,.....S 5
ifand only if the union ofany k of these sets contain at least k elements, for all k from 1 to m.
Proof: The necessity is immediate, For the sufficiency we first prove that if the collection {s, }
satisfies the stated conditions and |5_ |2 2 then there is an element e in s such that the
- collection of sets s,,5,,....5,, 1,54 — {e } also satisfies the condition. Suppose this is not the
case. Then there are elements e and fin s and subsets Jand K of {1, 2, ..., m-1}, such that
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(s )tea-teh

<J+1

(s o (s.-16))

But then

<|K|+1.

.|J| +|K13’[1}Js,)u(s‘ -{c})+(1ijs:, )u{s_ -—{f}.}l

2|(ge)x.

2| JUK|+1+|InK[>|J|+|K
[ o{A UB)=1a(A)+n(B)-n(ANB)]
which is a contradiction. The sufficiency now follows by induction on the maximum of the mumber
|s; |- If each set is a singleton, thmismtingtdpmﬂ_:. The induction is made by
application(repeated if necessary) of the above result to the sets of largest order.

+

Us,
gl 4

1.12. Cut verties, Cut deges and Blocks :

Some connected graphs can be disconnected by the removal of a single point called
cutpoint or by single line called bridge. The fragments ofa graph held together by ts cutpoints are
its blocks. These concepts are developed in this chapter.

A cutpolnt or cut veﬁmofaﬁhh_apﬂﬂmmmthemmmf
components. ' .
Example: Here u, is a cutpoint, others are not.

u
™ i

"3 . P “3
e .
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A bridge of a graph is a line whose removal increases the number of components.
A non-separable graph is connected, nontrivial and has no cutpoints.

®h_,.

Blocks of G
Fig. 1.12.2. : Fig. 1.12.3.
Ablock ofa graph is a maximum non-separable subgraph.

Theorem 1.12:1: Let v be a point of a connected graph G, then the following statements are
(1) visacutpoint of G
(Z}u:rcenstpomtsuandwdﬁm from v such that v is on every u—w path.
{B}IhmexHapmumnnfﬂnmnfpomV {v} numumwmmt‘m
everypointsue U,we W, ﬂu_pumtvpﬂnmyu—w path.

Proof:(1)=> (3)

Sm*tmamtpamafﬁ, G—v is disconnected and has at least two components. Form
a pmmuofpom\f {v} by considering two subsets U and W such that U consists of the
points of one components and W the points of the others. Then the twopointsu € Uand w €
W e in different components of G —v: Therefore every u— w path in G must containithe point v.
A=Q) '

'I'tnsuuh\nnushocmmem:sapnmmhrmsc of (3). Here U may be constructed as the
set of points whnhmmmmdmu € G-vand W as the set ofpmntsWhmhare connected
towmnG-v.

@=() - \

Ifv lies on every path in G joining two points u and w distinct from v then by the removal
ofthe point v every pathconnectinguand win G is disconnected and v and w will be disconnected
in G- v. Therefore G~v must have at least two components. However, G has a single component
because it is connected. :I'I'lerefcrm v must be a cutpomt of G
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Theorem 1.12.2: Letx be ahneofacommd gmth'I‘hefullowmg statements are equivalent

(1) xisabndge of G

(2) xispotonany cycle of G

(3) there exist points u and v of G such that the line x is on every path joining u and v

{4}umreexiﬂsapmﬂinnuf?ﬂn subsets U and W such that for every point u & U and

w € W, the lme xisnneve:}rpaxh-jﬂimng uand w.
Proof: (3) = (2) :

Let v, v, denote the end points of the line x. Then v, and v, must be two points on every
path joining u and v. Ifx lies on a cycle then v, and v, arc connected in G — x, therefore u and v
are connected in G — x via the path joining v, and v, in G —x; this contradicts that x lies on every
pathjoininguandv.

(2Y=(1)

Let v, and v, be the end points of x. Since x is not onany cycle of G thén v, and v, are
connected by x only. Then in G — x, v, and v, are not connetted and hence they lic in two
; mmsofG—x Therfore x is a bridge of G
(1) =) ; :

Since x is a bridge of G, G ~ xis disconnected and has at least two,components, Forma
partition of V by letting U consist of the points of one of these components and W the pomts of
the other. Then any two poinis u € U and w € Wlie in different components of G~ x. Therefore
everyu--w path n G contains x.

@=0)

.. {3) is a particular case of (4). So bythe chain N=2@=3N=D=(1) the

emmakmeuﬁtabhshcd.

Theorem 1.12.3: Let G be a connected graph with at least three points. The following statements
are equivalent.

(1) Gisablock

(2) Every two points of G lie on @ common cycle.

(3) Every point and a line of G lie on a commeon cycle.

(4) Every two lines of G lie on a common cycle.

(5) Giventwo point4 and oae tine of G, there is a path joining the pomnts,which co ntains. <
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the line.
_ (6) For every three distinct points of G there is a path joming any two of them which
contans the third.

(7) For every three distinct points of G, there iS a path joining any two of them which
does not contain the third. . |
Proof:
(H=1(2) d
Letu and v be distinct points of G nndbtchﬂrmtﬂfpumdﬂuﬂﬁmuwhnhb:m

agckmummmguSmG!msakaﬂmpommdmmmﬂthmbrﬂgeﬂ:mﬁm.
every point adjacent to u is in U. So U is not empty. ' '

Suppose v is not in U, Let w be a poinit in U for which the distance d(w, v) is mmimurm.
Let P, be ashortest w-v path and ket P, and P, be the two u-w paths of a cycle containing u and
W. Smwamtacﬁtpomt,ﬂ:erenau vpnthP"m:mtmmmgw Let w' be the pomnt nearest
uin P’ which isalso in P, and let u’ be the last point of the u - w‘suhpathuf?'mmth:r? orP,
vﬁr}nuthasnfgemhtywcasmu smP,.

Let Q, be theu - w’ path consisting ofthe u - u’ sub-path of P and the v’ w‘snb-mth »
of P'. Let Q, be the u - w’ path consisting of P, followed by the w - -w' sub-path of P, Then Q,
and Q, are disjoint u - #pﬂhstngethu‘ﬂmyﬁurmamh,sn#&mu Since W’ is on a shortest
w —v path, d(w', v)<d(w,v). This contradicts wchureofw.pmvngthﬂ vand vdo lieona
cycke.
2)=03) -
Lﬁtubeapnmtandebcahncnfﬁlathcat:}Ckcnutammguandv AcycleZ'
containing u and vw can be formed as follows. If w is on Z, then Z’ consists of vw together with
the v—w path of Z containing u. [f w is not on Z there is a w —u path P not containing v, since
otherwise v would be a cutpoint. Let v’ be the first point of P in Z. Then Z' consists of vw
followed by the w - u’ sub-path of P and the v’ ;_vpathunz contaning u.
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Fig. 1.12.5

G)=>@ :

Consider the lines u v, and w,v, n G Let Z, denote the cycle containing u, v, andurz’_
denote the cycle containing u, andulv

“Ifv,liesonZ orv, liesonZ, therctsnnthmgmpt'wc.SLtppmev does not lic Z and
v a:'.i:mstlw.‘.lthost:mZJ :

. Letu’, be the nearest point to v, unZlandv -u parhofz Lety’ beth:nsamstpnmt
iuvwhmhh;qnz andu, —v, pathof Z,. '

Let us take the cycle consisting of u, — ', path 6 Z, followed by w', ~ v, path of Z,,
followed by v,u, line followed by u o, pathof Z, followed by u', v, path of Z, then followed by

\AY line.

Fig. 1.12.6
- @)=

JAny two poﬂsumemeﬂhom hmeach,wlrnchhcunac}tl:h)'(il} Hence
mytwopomnfﬁhemacychandwetmvcﬂ]snaho[i%}]

Let u and v be distinct points and x is a line. Then there isa cycle Z, containing uand X
(by 3) and there is another cycle Z, which contain v and x. IfvliesonZ, oru lies on Z, there is
nothing to prove. Thus we considerve Z andu € Z,, '

Fig. 1.12.7




Begin with u and ptoceed along Z, until reaching the first point w 0f Z,, then take the path
on Z, joining w and v which contain x. Th'mwatke_émstimesapathjumhgﬁandvmatmnmiﬂ
5 :
(3)=(6)

thu,vwbe:hstnctpoﬂsufﬁmdlﬂxbcmylmemcﬂmlwﬁhw By{i}tharc:sa
paﬂlpumguandehmhounnmsxmﬂhﬂmem:mnmmw
=)

Letu,v, wbed:stm:tpumtsuf(iBy(ﬁ)theremau—wpathPcmammgv.Thcu—v
sub-path of P does not contain w. ;
(M=)

Bjr{?)ﬁ)ran}rrwupomuuandvmpomﬂmmmu vpath.Hancc,Gmutbea
block.

" ‘Theorem 1.12.4: Every non-trivial connected mhmsmhwtmmmwhﬁmmw

Proof: Lmumdvbepamua:mmmndmamemﬁandasmnmvuacutpamrhmthﬁts

ammwmad:ﬁmntmmpomﬂcfﬁ vthanﬂ.Hencnvumwcrypnth]nmmguamiwm
_ d{u,w}::-d{u,v],wh;chnmmoas{blc,’ﬂ:rcforcvnpdmnﬁﬂyummmnpumafﬁ

Block-graph: Let the blocks of G be denoted by G,, G,.......G,. Let S be the set of points and
lines of G, S, be the set of points and Iines of G, and F= '{SL,S St}_.Then_ih: intersection
£r2ph (F) s called the Biock-graph of G and is derioted by B(G).

. Remark: Eurybhcknfﬁmmmnmtoapunmfﬂ(ﬁ}animmPQmmB{G)ﬂrcadjment
_wl:mwuﬂnmespondmghhch containa mnnnunmnpoﬂof&

Fig. 1.12.8.
Cutpoint-graph: Letv ,v,’...... v, be cutpoints of the graph G. Let S, denote the union of all
‘blocks of G containing the cut point v,
LetF= z[SI, T o S,)




_ Then the intersection graph Q(F) is called the cutpoint-graph of Gand is denoted by
" C(G).
Remark: Every point of C(G) corresponds to a collection of blocks of G which contain a
common cutpoint. Two such points of C(G) are adjacent if the cutpomts of G to which they
 correspond lie ona common block [mrrcq:ondingco]bcthnafbhdcscmtahacommnpuh}.
C,={8,.5,5,8},C,=({85,5]

C,={S, 5}
& — —s
¢ & Ca
c(&)
Fig. 1.12.9

Theorem 1.12.5: A graph H is a block-graph of some graph if and only ifevery block of Hiis
Proof: Let us first assume that H is a block-graph. Then we get a graph G such that H = B(G).
Let us assiume that there is a block H, of H which is not complete. Then there are at least two
* points in H, which are non-adjacent and lie on a common cycle J of length at least 4..

Let v, v,, ...V,, k 2 4 be the points of H, whichlieon J. Let B, B, ......B, bethe
blocks of G which correspond to the points v,, Vj, ...V, respectively. Then B;U B, UB, UB,
U ......UB, in G is connected and has no cut point [Because H, isablockand B=B, UB,U

- contained in a block B (Now each B B leads to a contradiction to the fact that every B, s a
block). Therefore every block B, isa proper subgraph ofbiock B. This contradicts the maximality
ofablock. Therefore H must be complete. . : |

Conversely let H be a given graph in which every block is complete. Let H , H,, .......H,
be the blocks of H. Then every point of B(H) corresponds to same block H,. Then we may
denote the points of B(H) by H,, H,, ......., H,. | |

Now to each point H, of B(H) add end lines equal to the number of points of the block
H, which are not cut point of H. Then we get a new graph G from B(H) by adjoining such end
lines. We see that every end line is a block of G and corresponds to a point of H whichis not a

cutpoint. Again if two blocks H, and H, are connected m H through a cutpoint v then the
corresponding points H, and H, of B(H) < G are adjacent.
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Fig.1.12.10

Then the line H,H. of G is contained in a block B of G Now we see that the block B of G
mmpon:ls:nmecmpomt vofH. Inth:swarywcgctammnaspnndﬂwcbﬂwwnﬂt
blocks of G and the points of H. Hence H is a block graph of G

1.13. Connectivity Parameters :
In this section we introduce the golbal connectivity parameters x and { and their
" Ifa graph cannot be disconnected by the removal of a single vertex (that is if it has
0 cut vertex) or a single edge (that s it has no'cut edge) we ask for the minimum number
of Vertices (edges) whose removal results in a disconnected or trivial graph. These are
precisely the parameters x and 1. However, tuchmythurmhmnarem &umamore
general points of view. '-'
AsubsetSof VUE ua@mnﬂectmgset{nrmﬂmgsﬁnfﬂxmph{} (V,E)
if H{G - S))(G) or G~ s:sthetnmlgmph.lfadmmmmgs:tSmambsdanus
mlledavmutcm'ofﬁ:f:muubmtnfﬁtucalhdmddrgtmtnfﬁlfammﬁmg
: mSmmdeegsﬁmcamdemtﬂmHMnmmmmn _
cﬂ!edgenﬂsnnnmnlﬂmmmb&ﬂofnhasmpmmandthtlumf
nhashﬂarﬂmhtymngnﬂmhnmrmlm
(jAmntvenexcutumﬂedakmtmdnmmmmvmmacmt The
mdhnahyufchtmlhdthumtexmnmﬂm_mﬂrnfchtmmi)unfthegmph{imd
is denoted by x{(G)
{u}ﬁmmn‘ldegccutmcaﬂedabondmdammmmcdg:cutaband.m
cardinality of band is called the edge connectivity number of band number of the graph G
andis denoted by A(G)- |
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(iii) The minimum cardinality of a mixed disconnecting set is denoted by o{G) .

If S is a disconnecting set of the grph G = (¥, E) and vertices s and t are m the same
mmpnmmofﬁhthdiﬁemmommnfams,ﬂmnmsmlkdaﬁdh;sepamting
set in G |

{h)hihﬁmls—rmﬁngmm{edgcmm)mmﬂud s — ¢ knots (bonds) and
minimum s -7 separating vertex cuts (edge cuts) are called 5~ clots (bands).

(iif) The cardinality of an 5— :cbtlscaﬂedﬂu; :chtmnmuauiism:dhy
x(s, 1) and the cardinality of an (s—f)band the (s—)band number and is denoted by
A{s,1) . The cardinality of minimum s — t separating mixed cut is denoted by ofs,?)

The followng results are obvious.

Proposition 1.13.1
x{k,)=n-1. If G is incomplete x{G) Sn-2

Prnpuil.hu].l;’d :
x{(G) =minx{s,1) A(G) = min A(s,1) o(G) = min A(s, 1)

:.hlr
IfAnmymnurptymbmofﬂ:emsﬂ‘fnfngl%i:y(}:{VE}ftheset[d :I]
of all deges of G with ont end in A and other end in { = ¥ 4 is called a cut of G
_ This is a concept intermediate between that of and dege cut and a bond. Every cut
is clearly and dege cut but the converse is not true as seen from Fig. 1.13.1 (). Also every
bond is a cut (see Proposition 5.10 below) while every cut is not bond as seen from Fig
1.13.1 (b) '

Fe=len, @2, 0, o0 03 A=l 234 -
4 an edge cut which is oot & cut AR 1= a cut which is not = bond
1a] 1]
Fig. 1.13.1.
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Proposition 1.13.3

Everjrmjnimalcutisabond and every bond is minimai cut

Proof (i) If C=[4, 4] is a minimal cut, no subset of the edges of C is a cut, and this
means that G — C has only the two components (4) and (4) and C is a bond.

(i) If F is abond, G— F has only two components C,and C,and if ¥, ¥, are their
vertex sets, then F={V,,l’1} with ¥, ¥, = ¥, . Thus F is a cut and a minimal cut.

Proposition 1.13.4.
Every cut is a disjoint union of minimal cuts.
Proof = :
Let C—==[A.Z] be a cut of G. If is not a minimal cut, {A4) will have components say
GG C,G,...........C, with a1 least oné of 7 and s being greater than one. Consider the
simple coalescence H with C coalesced to vertices ¢,1<i<r and the'C] coalesced to
vertices ¢, 1— < i < 5. Then H is a dipartite graph. If we can partition the dege set of // into
a disjoint union of bonds of H, the deges of G . Tc achieve such a partition of E(H) we first
take the cut deges of H as-members of the partition. If F is the set of such cut deges, for
the remaming members of the parmnn we take the stars at the remaining (non isolated)
vertices ¢; (ar q}, It is easy to see that these meet the requirements.

Lemma 1.13.1 If s, tg E then x{(s,r) =min {x{s,7)=A(s,7)}.
Proof : | .
Since an dege cut is a special case of a mixed cut it is enough to prove that
x{s,7) < o{s,r) . To this end we prove that from any mixed s ¢ separating set we can get
and s— separating veriex cut with no more elements. Let S be a minimum mixed s — ¢
separating set. If if is an dege in S both / and j cnnot coincide with s and r,since s7 ¢ E:1t
i=s, additoSmdremoﬁelfmmS aﬂdcgeswithiasancudvmax.lfi;es,addjms
and remove from S all edges with j as an end vertex. The resulting possible mixed set is
clearly and _;-;'s‘:pamingsetwithnnmvt clenrntéthan:i'. We can repeat this process
and remove all edges ﬁ-um'S' and obtain a vertex cut §* with at most |§] elements. Since
x{s,1) €515 8= of s, 1) the proofis complete.

Corollary If st ¢ E, then x{s,1) < A(s,#) . Observe also that if 51 ¢ £ then x(s,1)
is not defined.
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Proposition 1.13.5

For any graph G,o0(G) =x{G)

Proof Case (i) G=K,. Then x{G)=n—1 and A(G)=n-1. Let S be a minimum
mixed disconnecting set of G . Let §=Tw F with TV and FgE and |Ti=n, and
|[Fl=m,. Then G—Tisa K,_, and so \FI2 (K, ,)=n-n 1. |

Then o =|Sl=m,+n 2n-1=x. Since always g <x we have o=x.

CASE (ii) G is incomplete. If possible let there be a minimum s — ¢ separating mixed
. set §=MuU(st) with o =|S]{x . As shown in the proof of Lemnia 5.4, M can be replaced
by a set of vertices T (a subset of the vertex set of the induced subgraph (M) to provide
a vertex cut of G* = G — g¢ With cardinality ar most | of. Let C, and C, be the components
of G- §to which s and ¢, respectively, belong. Suppose there is another component C, of
G- 5 ‘ane let v be a vertex of C;. (see Fig. 1.13.2). Then Tu(s)isa v—¢ separating
vertex cut of G. But then | T'u(s)|€]S)< », a contradiction. Thus C, and C, are the only
components of G- §. Also if u € ¥(C,) and u = s,then TU(s)is a u—¢ separating vertex
cut of G again leading to a conradiction. Thus C, =(s) and similarly C, =(r) and G has
| F{M)1+2 vertices and if incomplete. Hence x{G) < n—2={/{M)|<x , ¢ contradiction.
Thus o ¢ xand hence o=x.

“<M>

Theorem 1.13.1 (Whitney)
For any graph, G,k SA<6
Proof Let G be a connected graph.
(i) If v is a vertex of minimum degree §, the set of deges incident with v is an edge
cut of G. Hence 1< &
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(i) Toprove J <Swe observe that if G=K then x=A=n-1. Lt G be an
incompelte graph. '

If G)=0; G s daconpmstad 3ud «( G) =0 wolk H x{G) =1,G has a cut edge
and bence also-a cut vertex, so-that {G) =1 '

Solet x{G) 2 2 dnd F'bea setof 4 deges disconnecting G . Removing any set of
i —1deges from this set leaves a connected graph with a cut edge (the remaining deges of
(F) e=uv say, For each of the 1 — 1degunrmnnedabwenhmsenn=mdvmexwhmh
is neither u nor v LﬁHhﬁth:gmphnlnmd be removing from the original graph G set
S of vertices so chosen {at most 1 — ] in mumber), If / is disconnected, x{G) < i-1.
1fnot ¢= v is & cut edgs of.H and lience » is-a cut vertex-of H.But then SU(u) is a vertex
it of'G of cardinality.at-most 1 , so that &{G) = 4(G). Thus inany case x{G) < A(G)

1.4 A'thread between vertices s and £ of a graph G i a set of paths between s and
¢ which have pairwise-no vertioes in common except s and ¢ The numbes of paths in the
thread is the ply number of the thread. A thread with ply number g will be called a g thread.
Tlmmamunplynumberafashrcadbenweens and ¢ is called the s—; number and is
dmtndhyp{s,r) The minimum value of p(s,r) for all pairs s,:EVsuchtlm steE 15
denoted by p{G)and is called the ply number of G .

A lace between vertices s and ¢ of a graph G is a set of paths between s and ¢ which
are dege disjoint but need not be vertex disjoint. the maximum number of paths in a lace
" between s and ¢ is the s -7 lace number and is denoted by /(s,¢) . A lace with lace number
g will be called a g /ace. The minimum value of I(s, ¢ } for s,i eV is denoted by E[G} and
is called the lace numer of G

Note :

If the graph G to which the numbers ralate has to be specified in a context we will
use notations like p(s,f|G),{s,7G), etc. It is intuitively clear that vertex pairs (s,) with
higher ply or lace number are more strongly connected than other vertex pairs of graph and
that it should be more difficult to separate them by removal of vertices of edges. There should.
therefore be some réhthnbﬂwmﬂﬂrsemnﬁaﬁa;nddrmtmpmmm;—: clot
number and s — band number introduced earlier. The celebrated theorems of Menger to be
proved below simply assert the equality of these (respective) parameters.
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Theorem 1341 Menger's Therarem : Vertex Fram

For any pair of non adjacent vertioes s and 1 of 2 grapl; the clot aumber equal- ¢+
ply number. That is x{s,) = p(s,) for every pair s,reV suchthat w g F

Prosof : We prove the statement by induction on the number of deges in G . The
statement is obvious for a graph with 51 =1 of m = 2. Let us then assume that the staternent
is true for all graphs with less than m déges and let G be a grph with m edges. Suppose
the m-is false for G . 'Il'hen we should have _

P5.4G) <x1(s,1|G) = g(say) (1)

s.;nuefurauygmphwcubviorusi}rha\t As,t) Sxs,1)

Let e =uv be an dege of G. since the deletion graph G, = G- ¢ and the elementary
contraction graph. G, = G|ehave less fumber of deges than G , the industion hypothesis
appﬁntuthuﬁandwehavﬂheﬁaihwhgequaﬁu:ﬁ. | o

AsG)=«(5.4G) ard p(s.1G,)=x(s1G)) = @

i1 is 8 (s,f) clotin G, and J is an (s,f) clotin G,we have

UEAs\G)=As1G)s(sr1G)<q '

and |J}= x{:,l[.G,)a:p(s dG}SP[s‘:IG}ﬁq using (2) and (1)

Therefore |Jj$ g~1. To j there corresponds and (s,f) vertex cutJ of G such ahta
| 1<|J}+1 since by an elementary contraction x{s,r) can be decreased by at most upeand
misdmmscmnymﬁm eeﬁ({J}.} : _ o

'Iaﬂsrjlﬂ-cq ~1+1=q : 3)

But thén ¢ <|J|< ¢ stBm {s 7) vertﬂcutmG

Thus |J]<q and I-ﬂ'{'

and ¥,veJ by (3)

Now let H, ={w e/uUJ) there exist and s=w path in G . vertex disjoint from
IuJ—{w}and H‘;{w eIuJ‘l}th&t exists ;—Fw. path in G , vertex disjoint from
1oJ-{w}} :

Clearly H, and H are (s,r) separating vertex cuts in G._
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Hence |H,|2¢q and |H/|Zg

Obviously H,wH, g \wJ. We now verify that H nH <InJ. For this let
w & H, " H, . Then there exists an s—wpath Fand w—tpath £in G vertex disjoint from
fu..i’—{w},.ﬁuﬂtlnﬁ cnu!ains a path P If egpP we would have
u,v € V(P)J  {w) which is impossble. Therefore ¢ ¢ P and o P G-e. since [isan
(s—1) separator in G—¢ and Jisan (s—1) s:pﬁmmrhﬁ‘. P has a vertex common with
I and also with J. Therefore welnJ T-h-llvcnf}‘l:lgtbechm

Cumhmmg {4], (5] i:mithe above an& have

Zqﬂﬂ FH H | =, G H M H, O H S EOJHINT] ={1HJ1<q+q =29

giving a contradiction.
Thus (1) is false and we have «{s,G) = s, :ja}mmhtmsthmdnm

Theorem 1.14.2 Menger's Theorem : Edge form
Furmypwufvmmsmdmfngmph&thebminmﬂ:ﬂequabthchmmmm
Thst is A(s,t) =X{s,7) fm'wpm steV

Proof
%us:mmunmﬂ:mmhnfdegcsuﬂi For m=1 urz,ﬂ:ﬂnomnnbmus.

%mm&ﬂmmnmﬁrﬂmmmmnmdmwhﬁham

with m edeges. Let A(s,|G) = k. We distinguish two cases.

Case (i) Suppose G has an(s 1) band F such that nma]ldeges of F are incident
wiht 5, nor all deges of F are incident with 2. Then G- F consists of two non trivial
components C, and C, with s eC, and t€C,. Let G, = G||£(C,) and G, = GII£(G,).
That is G, is obtained from G by contracting the edges of C,, i=1,2(see Fig. 1.14.1)
Sirice G, and G, have less edges than G, the induction hypothesis applies to them. Also the
edges cormesponding to F provides an (s-t) band. in Gand G,, so that
A(s,11G,) ='A(s,1|G,) = k . Hence by induction hypothesis, there is k lace between s and t
in G, and so also in G, . The section of the paths of the k-lace in G, which are in C, and
the section of the paths of the k lace in G, which are’ in C, can now be combined to get
a k lace between s and tin G

Case (i) Every (s—1) band of G is such that either all its deges are incident with
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s or all its edges are incident with 7.
Ithasanedgeewhichiﬁnntinmy:-rbundufG.thcn_
Als,|G—e)=As,AG) =k and since the induction hypothesis is applicable to G-, there
“isaklace between sand 1 in G-¢ and hence m G
Thus we may assume that every edge of G is in at least one (s~ /) band of G. This
implies that every s —¢ path P af{?iseitherash:glcedgcorap.airofcdgﬁ.an}rmhpadl
P can therefore contain at most one edge of any (s 1) -band. Then '

=22 A =3 Suid Fela.a.a.8 Ci={z.a b e duw)
C={tfshiuw

Mgl.141Graph G

G- E(P) =G, isagmphwith 2(s,¢/G,)= k-1 and to which the induction hypothesis
applies. Hence there is a (k~1) lace between s and 1 in G, . Together with £, this gives a
k lace between s and f in G t

1.15 Exercises :

1. Draw all graph with five points.

2. A closed walk of add length contains a cycle.
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E.WMMﬂhMSIMMﬂMEMMW
itilit is degree sequence. .
D vzaas67 G) ' (i) 1'2%3's79 ﬁi'i"{" (v) ¢ (vis* (viiij 2°3°
4, Give an example of a graph which cannot be genierated by the wang kleitman alogorithm,
3. For what values of k is 3§ a degree sequence (k en)?
6.Prove that the following four statements are equivaleqt
(i) G is unicyclic (i) G is connected and p=¢ (iii) for some line x of G, the graph
G—x mirueiv) G is connedcted and the set of lines of G ‘which are not bridges
from an cycle
7. The intersection of cycle and cocycle contains and even number of lines,
8. G is a block if and only if every two lines lie and a common cocycle, Prove
9. show that x = 1 for any comnected cubic graph,
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UNIT 2

Introduction 2.1 _

One feature of graph theory that has hefpod to pepularize the subject lies-in its applicasionto
the area of puzzles and games. Often a puzzle can be converted into a graphical problem; to
mmﬂMWWﬂdﬂﬁﬁmﬁ‘qﬁmu&ﬂ‘ura‘hﬁaﬁhﬁmmﬂ.wﬁhnm
The conceps of an eularian graph was fsmmulated when Euler studied the problem of the *Konigsberg
bridges. _ : .

In this unit characterization of eularian graghs are presemted. Some necessary conditions and
some sufficient conditions for graphs to be Hamiltonian are ako givea.

2.2. Eulerian graph :
2.2.1 Definition : Eulerian graph

A graph 6 Iscalled Enlerianif there exists walk which traverses each lines exactly once and
goesthrough all the points in and ends & the starting point

A closed trail containing all points and lines in an Evlerian graph is called an Eulerian trail.

Fig. 2.1.
2.2.2 Theorem :

The following statements are equivalent in a connected graph G:
(DG s Eulerian. '
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(ii} Every point of G has even degree.

{iii) The set of lines of G can be partitioned mto cycles.
Proof: We proced to show the results in the following order:
(i) == (u)

Let G be any Eulerian graph.

To show that every point of G has even degree let T be an Eulerian trail in G Suppose, we
travcrscTstanmgﬁ'uva(s.ay}mGnmikthcv =X,0 KeX,..€ XeX =v,, where all the lines ¢,
are distincts while the points S x_ﬁgngrnt_}tbeauchstm, It is clear that any two succesive lines ¢,
ande,_,i=1,2,..,r- 1 contributes 2 to the degree of the point x,_, " Also, in addition to this, the point
v, gets a contribution of 2 to its degree by the nitial and the final lmes ¢, and ¢, thus, all the points are
of even degrees.

(i) = (i)

Let all the points of G have even degrees.

To show that G can be partitioned into cycles.

We have G is connected and non trivial and let all points have even degree each. So all the
points have atleast degree 2 each. Thus, degree of each point of G is greater than 1. We also know that,
hamnuﬁialmtb:remmmmoﬁeiﬁwﬁhdegmel.m,ﬁmmotbcauec.ﬁo,ﬁnm
contain atleast one cycle. let z, be a cycle of G Then the removal of the lines of Z,, results a spanning
subgraph G, of G in which every point have still even degree. If G, hasno lines, then G=z, and the
result(iii) bolds immediately. Otherwise, G, has atleast one cycle z(say). Then we repeat the argument
applied to G, to get a graph G, in which again each points have even degree. Now, proceeding in this
way,wh:uatm:eiiljrdisoumctcdgaphﬁ_isohaimd,welwveapudﬁonnfﬂulhmofﬂmnmks
say, i

X=Z Z1 u.uZ

Thﬂshows!hnttt:hnﬁofﬁmb:partmmdmuqch
(i) = (iv)

Let the lines of G be partitioned nto cycles.

To show that G is Eulerian.

" Letz, be one of the cycles of the partition of the lines of G 1fG consists only of this cycles, than
G is obiviously Eulerian. Otherwise, there is another cycle z, with a point v(say) in common with
z (since G is connected). Then the walk begining at v(say) and consisting of the cycle z, and 2, in
succession is a closed trail T,, containingall the lines of these two cycles once. If G has only these two
cycles, then T, is the required Eulerian trail that traverses all the lines of G exactly once showing
thereby that G in Eulerian. Ifit is not 50, there exists another cycle z, such that there is a point v '(say) '
common to T, and z, where 2, is different ﬁ'umbmhz' a.w:lz_.! Then the closed trail begins at v and
traversing T,,and Z, smmmnmhhmﬂmaﬂﬂ:hmsofthcmlcsz' z,,z,. By continuing this
process, we can ultimately construct a closed trail that contains all the lines of G and contains all the
pomnts of G

56




This implics that G is an Eulerian graph.
Thus, all the three statements are equivalent to each other.

Corollary 2.2.2.(a) : Let G be a connected graph with exactly 2n odd points, n 2 1. Then the set of
lines of G can be partitiones into n open trails.
Proof : Let G be any connected graph with exactly 2n number of odd pomts, n= 1.

letr,and s, | Si<nbe the 2nodd degree points of G Now to G add n-new points say w,, w,,
.» W together with lines (r, w) and (s, w,), for | <i<n In the resulting graph G’ every point is of
even degree and so G is Eulerian. It may be noted that, any Euler trail of G/, the lines (r,, w) and (s, )
forall 1 Si<n, appear consecutively. The removal of 2n lines will then result in “n’ Eine disjoint open
tmlnf('isuch&mt:ﬂchlm:ufﬁlspmsmtmpmuﬂyontnﬂhcﬂmﬂs Mopcnmlh give the
rnqurudpnnmnofﬂmlm:sofﬁ

Comlhryl 2.2.(b): l.cthcamnncctcdgmphwuhmctlymuddpumis Then G has an open
trail containing all the points and lmes of G
This corollary is a special cuse of the above corollary 2.3.(a)

2.2.3 Definition : Hamiltonian graph and Hamiltonlan cycle.
[fa graph G has a spanning cycle z, then G is called Hamiltonlan mph.

Hamiltonian graph
Fig.2.2 .
The spanning cycle z is called the Hamiltonlan cycle.
A path containing all the points of Hamiltonian graph is called a Hamiltonian path.

Graph contaming Hamiltonian path but not containing
any Hamiltonian cycle
Fig. 2.3
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Theorem 2.2.4: Let G have p = p pounts. If forevery nl<n -:15—1 the nummber of points of degree

-1
not exceeding n is less than n and if for odd p, the oumber of pomnts of degree atmost PT does not

-1
exceed pT.thmGhHanﬁlm
Proof: Assume that the theoremn deesnot bokd and ket G be amaximal non-Hamiltonian graph with p
points satisfiying the h}mmuummm&nmmlmﬂaﬁhom so the addition of

any line to a graph satisfying theconditions of the theorem results in aHanﬂtonmgraph,nuiassuch
any two non-adjacent points must be joined by s spanming path.

We first shuwmnmqpomofmm-% is adjacen: tovery poiat of degree

gﬂ:ﬂtﬂ'thmgg—l Assume without lossof generclity, degree ¥, EE— ﬂﬂdﬂﬂ'ﬂ-‘"’:z ,butv,

and v_are mu—ﬁdpoent.‘n:m.Mnampﬂi&_vm...v,cpnmmV.aﬂv,men:pnﬂ
adjacenttov,be v, ,V, ..V, , where r=degree v, and2 =i <i, <...<i,. Clearlyv cannot be

adjacent to any point of G of the form V; , , for otherwise there would be a hamiltonian cyele,

V VeV eV Vg v,}_,v v, G

but, since n'-‘:g‘ii,w:mrm
4 Sdegreevr ﬂLpulj—u-r:'%
which is impossible. |
So v, nmsthendp:mmv

It follows that ifthe degree ¥ 2, for all poiass v then G is Hassibonimn. For the showe

mmmmmlm ﬂﬂtumypuutpummﬁmadpcmmﬁmﬁﬁmnmkt: But it is a contradic-
tion since a complete graph k is Hamiltonian for all p 2 3. Therefore there is a point v in G withdegree

< % anbet]?emhmﬂtgretmngaunuchpom,mﬂcbuumvl so that deg v, =m. By

hwodﬁisth:mn:ﬂ:uofpnhu of degree not exceeding m is atmost ™M < % . Thus, there must be more
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than *m’ points having degree greater than m, and hence atleast -g— . therefbre there exists some pomis

sayv of degree atleast % not adjacent to v, (since degree v, < % ). Since v, and v, are not adjacent;

u::rc'nupamingpathvlvz...vF.Ahn,asabuvemwmﬂupnmts V2 Vi, s ¥y, asthe points of G
adjacent to v, and note that A canmtbcgdjactnt to any of these m points Vierr fori<j<m

Since, v, and v, are not adjacent and degree Vv, EE,mnmstbelmsthan P-;—! (by the first

part of the proof).

p

[aeg:uv,={b-1}~mz_-1- p

]
2
thus by hypothesis, the number of points of degree atmost miis less than mand so atleast one

:mi{p—l}-g—c

ofthem pﬂmts V,.p» S8y V must have degree atleast 2 . We have degree v’ 22 for otherwise, the

"
oumber of points with degree < mwill be greater than m.

2"

We have thus exhibited two non-adjacent points v, and v each having degree atleast % -But

this is a contradiction to the fact that any two points with degree atleast % arcadpcﬂu

Thnmu'plctcsth:pmaf.
Corollory 2.2.5.(a): [f p 2 3, nndua:dvmmu—adpcempomﬂafﬂwgmphﬁmhﬂ:m
degu+degvzp, thenG is Hamiltonian.
Proof: Let G be the maximal non-Hamiltonian graph. Therefore addition of the lines uv makes the
graph Hamiltonian and hence between u and v, there is a spanning path. Let ube adjacenttow, ,u, ...,
u_ and v cannot be adjacent to any pofnt of the formu, (2 €1, <i, <... <), otherwise we should get
aHamilonian cycle.
. uv,,..u, Iv...'u‘u.
degu+degv<m+(p-1)-m=p - | <pcontradicting the hypothesis.
Hence, G must be Hamiltonian.

Corollary 2.2.5. (b) : Iffor all points v of G, deg v 2 £ 5 »Where p2 3, then G is Hamiltonian.

Proof: Case I: If G = K, then obviously G is hamiltonian.
Case I : Suppose G is not complete.
Let u and v be two non-adjacent points of G Then
+ P P/ =
degu + vz /2/ + /2/ = P
So, G is Hamiltonian by corollory 2.2.5 (a),

39




Fheorem : 2.2.6 Every cubic Hamiltonian graph bas atieast three spanning cycles.

2.3 Factorization :

A factor of a graph G is a spanning subgraph of G which is not totally disconnected. We say
that G is the sum of factors G, if it is their line disjoint mhnnndmhgunhnkcalhda&ﬂm of
G v

G, G, .. G, (n22) e lne disjoint &xctors of a graph G such that U x(G, )=x(G) then
G=G, Gﬁ D..00,
Ann—ﬁmumfnWﬂummhnmmnfwwhm&wofmh

of its points being equal toni.e. an p-factor is a regular graph of degree n.
If G is the sum of n-factors, :hmmmnumﬂednnn—ﬁcmmmmuﬂﬂmlfnn-m

0 / A
N 1

" 1-facter of G 2-factor of G

Fig. 24.

(i) A 1-factorisation of K, is given below :

Kg= Ko
Fig. 2.5.




_ ‘ Py 24,
X(K) = X(G,) U X(G) UX(G) wX(G)UXG)
G —» 1-factor of G,. :
G, is a spanning subgraph of G and hence
V(G )= V(G) = p(say).
 Let the number ofines in G, is g. Degree of eachpoint of G, s 1. So the equation fa(v,)=2
gives o .
P=2q
ﬁhsmﬁni:unfpohs.

Example : disphya 1-factorisation of K.
" Solutlon : The following is a display of a 1-factorisation of K, :




X, = Vvl (Vv v, AN

X, = {v,ve} v {vv, Vv, vy}
X, = (vvy) V{9V, VY ViVl
X, = vyl v vy, vy, vV}
X, = {vyvg} v vy, viVe VoY,
P AERLAATURLA S A M AS
LR AAA R LARMAAY
Theorem 2.3.2. : The complete graph K__is 1-factorable.
Proof : We need only display a partition of the set of lines of K, into (2a- 1) 1-factors. For this
purpose, we denote the points 0f G by v,, V,V,..., v, and for eachi=1,2, 3, ...., 20~ I, we define the
set oflines : :
X={vvtviv v, ;i=L2..n-1}
where each of the subscripts i - j and i+ j is expressed as one of the numbers 1,2,%,..,2n-
1 modulo(2n - 1). [e.g. ifi=1,j=2then v, ,=v, as- I =(2n-2)mod (2a- 1)].
The collection (X, :i=1, 2, ..., 2n- i} is easily scen to give an appropriate partition of X and
the sum of the subgraphs induced by X, is a 1-factorisation of K,,. :

[ For K, we have, : y '

X = (v,Vp ¥ Vyv,} - X, = {vpVe ¥ V5 VeV, X, = (Vv Vo vV}

X, ={vve v,ir,, Vit x:.z AAPAAPANRS j

' 9. : %

2.3.3 Definition : A set of murually non-adjacent lines is called independent.

Here{v,v,,v,v,}, {v,v, v,v,} are non-adjacent. Byanodd
component of G we mean one with an odd aumber of poisits.

v = Wy
Fig. 2.6.

Theorem 2.3.4. : A graph G has a one factor if and only if p is even and there is no set S of points such
that number of odd components of G - S exceeds | S |. '
Proof : Let S be any set of points of G and let Hbe a component of G - S. In any one factor of G, each
point of H must be paired with either to another point of H or a point of S. But if H has odd mumber of
points, then at least one point of H is matched with a poirit of S. let k, be the number of odd compo-
nents of G - S. If G has a 1-factor, then | S| 2k, since in a |-factor each point of S can be matched
with at most one point of G - S and therefore can take care of atmost one odd component. That is, the
number odd components can’t exceed | S |. This proves the necessity of the theorem.

Conversely, for a subset D of V((G), denote the number of odd cu'mponcnxs of G-Sby K (G
- S). Hence the hypothesis for G can be restated as k (G-S) <| S|, for every proper subset S of V(G).
In particular,
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k(G-4)s|9i=0
= k(G- §) =k (G) =0
This means that G has only even components and therefore bas even order p.
mew#mmﬁrn:hmpﬁw&ndSuW{G] ﬂtumi:anfnddmmmmf
G- Smdlﬂmafsmmsmpum%pmcwdhymdu:muonmpomwwcgm
p. lfﬁsagmphufnrderp-lsuduha: k(G- -8) <| S| for every proper subset S of V(G), then G
=K ,andGhasal- -factor.
Assume for afl graphs H of even order fess then p(where p 2 4, p is even) that if
k(H-W)£|W|
for every proper subset W of V(H), then H has a 1 -factor.
- Let G be a graph of order p{even). Assume that
k(G-S)<|S]
for every proper S of V(G). We consider two cases :
: Cml:Suppnuk,{G-S]-=:l5Ii:riwerypmpusubmsan[G}wiIhZSIStﬂpmk,;{ﬁ-S‘i
and | S | are of the same parity, s0 '
'k(G-8)s5-3
for all subset Sof V(G) with2<| S| <p.
Let e =uvbealine of G and consider G-u - vLetThupmpcrsubutuW{G u-v). It
follows that
k(G-u-v-T)<|T]
For suppose, to the contrary that
k(G-u-v-T)>|T|=|Tw {u,v}|-2
so that k(G-(Tw {u,v}))2|Tw{uwv}}
which contradicts the hypothesis of our assumption. Thus by the induction hypothesis G - u - -vhasal-
factor and hencesodoesG.

Case 11 : Suppose there exists a subset R of V(G) such that k(G - R) =| R|where2s|R|<p.
Among all such sets R, let S be one of maximal cardinality where k(G- S)=|S | = n. Further let
G, G,, ..., G, denote the odd components of G - S. These are the only components of G - S, for if G,
were an even components of G - S and u, € V(G,), then we have,

k(G- (SU {u)) 2n+1=|SUfu}l

k(G- (Su {u}))=n+1
which contrdicts the maximality of S.

Fori=1,2,3,....n, kt S, denote the set of those pomts of S adjacent to one or more points
of G.. Eachset S isnun-emy;n&rmﬁemﬁlwouﬁhemnddcommmufﬁmmnuﬂ
ofthe sets 5,5, ... 5, contains at least k pomts foreachk with 1 <k <n. For otherwise there exists
k(1 < k < n) such that the union of T of some k sets contains less than k points. This would however
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i:mbrthaxk.(G—T}?-FTI,whichishmﬁialc,Thuswtmy'mphrmtl-mmn{whichstatesﬂm,ﬂm
exists a system of distinct representative S for afamily of sets S, S, ..., s, ifand only if the union of any
k of these contains at least k elements, for all k from 1 to m) to produce a system of distinct represen-
tatives for S, S, ..., s, . This implies that S contains pomts v, V;, ..., v_and each G, contains a point u,
EGi,lﬂiﬂnsudithuuﬁﬁx{G}, fori=1,2,3,...,n Let w be a proper subset of V(G, - u), 1 <
i< n. we show that o '
k(G,-u-W)s|W|.
For, if possible let k (G, - u, - W) > | W/, sine G, - u, is of even order for eachi, ky(G, - u,- W)
and | W | are of same parity and so
k(G,-u-W)2|W|+2
Thus, :
k(G,-(SUWU {u})=k(G,-u-w) +k(G-S)-1
2[S|+|W]+1
=|SuWu {u}
This however contradicts the maximal property of S. Therefore, we must have
k(G -u-W)s| W] _ s .
as claimed implying by the inductive hypothesis that fori= 1, 2, ..., nthe subgraph G, - u, hasa 1-factor.
This fact together with the existence of the line uv(1 <i<n) producesa | -factor in G
This completes the proof

. 2.3.5 Definition : 2-Factorable Graphs : Since the degree of all points in a 2-factorable graph is
" even, so the complete graph K. is not 2-factorable because the degree of each point of K., is (20- 1).
the odd complete graph are 2-factorable. :

Fig :2.8

Theorem 2.3.6. : The graph k, , | i the sum of n spanning cycles.
Proof ; In order to construct n line disjomt spanning cycles n K, _ , first labelits pomts by v, v,,..., v

2. - hf
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V.., I'hen we construct n-paths onthe points v, v,,..., v, s follows:

P =YV Vs aaVi-e

i=1,23,..,0
Thus the j* point of p, is v, where

k-i+{+1}‘“'{%]

and all subscripts are taken as the integers 1, 2, 3, ..., 2n(modulo 2n). The spanning cycles Z is then
constructed by joining v,, |

We exphain the technique by taking K. 2s an example :

=
P. AAA AR AR

to the end points of p,.

P1 A AR AR A

Py = vy, Vv, vy,

Fig. 2.9.
L_E."f. Theorem :

The complete graph K,, is the sum of a 1-factor and n-1 spanning cycles.
Dﬁmum,evmy@hrgtwhofdegrulhhﬁ‘n 1-factor and every regular graph of degree
2 is a 2-factor. If every component of a regular graph G of degree 2 is an even cycle, then G is
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also 1-factorable since it can be expressed as the sum of two 1-factors. 1f a cubic graph contams
a 1-factor, it must also have a 2-factor, but there are many cubic graphs which donot have 1-factors.
The graph of Fig. 2.9 has three bridges.

A cubic Graph withno| factor

' ik Peterson Graph

Theorem 2.3.8. : Evcrybndgchss cubic graph can be expressed as the sum of a 1-factor and 2-
factor. . | '
Proof ; Peterson proved that every cubic graph that fails to cml‘.am a 1-factor possesses bridges. It is
sufficient to show that every bridges cubic graph has a one-factor(since the remaining lines forma 2-
factor).

Assume to the contrary that G has no 1-factor. Thcn by theorem 8.4., V() has a proper
mlbﬁttssunhﬁ‘ﬂtﬂwmmberufodﬂmmpﬂnemsufﬁ-Si:xccedsl51.l.etk=|5!a.ndktﬁl,ﬁz,...,
G,(n> k) be the odd components of G - S. Then there must existsatleast one ine joining a point of G,
to a point of § for eachi= 1, 2,3, ..., n, for otherwise G, is a cubic graph of odd order. On the
otherhand, since G contains no bridges, there can’t be exactly one such line ie. there are a least two
lines joining G, to S, foreachi=1,2,3, .., 0. '

Suppose that forsome i, 1 1< n, there are excatly two lines joining G and S. Then there are
an odd sumber of odd points in the components G, of G - S which can't happen. Hence for eachi, 1<
i <, there are atleast three ines joining G, and S. Therefore the total mumber of fines joining gv[c..‘)
and S is at least 3n. However, since each of the k points of S has degree 3, the total mumber of lines
joining !E{V{G. ) and S is at most 3k. Therefore 3k 2 3nie. k2nwhichisa contradictionto k < n.
Hence n; such set S exists and so by theorem 8.4., we conclude that G has a 1-factor.

This completes the proof "
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Exercise : Express K as the sum of 4 spanning cycles?

-
1“'I V VY, VYLV,

Py=vy vV v vy,

Py=vv, Vv, vy,

P, - '\l‘.‘il" ‘H"‘FI ?"H’I‘u"?\ft

Fig. 2.11

2.4. Coverings : ,
2.4.1 Definition : Apu?mmdalhemsaidmmm::d:mhcrﬂ':hqmimindmﬁrmb
x=uv, then xcoversu and vand u and vcoverx.

u v
F 4

Fig. 2.12.1.
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Aset of pomts which covers all the lines of a graph G is called a point cover, while a set of fmes
which covers all the points is a line cover.

-4, ¢, e, f} - pomt cover

{a,c,d, ¢} - poink cover

{b, d, g, f} - pomt cover

{a, c, &} - minimum point cover

{b, d, f} - independent set of points
{e.e, t,} - independent set of lines

{e,, e,, ,} - minimum line cover

_ The smallest number of points in any point cover for G is called a point number and is denoted
by a,(G) or &, Similarly a1, or a,(G) is the smallest mumber of ines in any line cover of G and is called
a line covering mumber.

A pomnt cover(line cover) is minimum if it contains u“{al}em
A set of points in G is independent if no two of them are adjacent.

" An independent set S of G is maximum if G has no independent set S’ with 19|12|8|. The
number of points in a maximum independent set of G is called the point indepence number of Gand
denoted by B(G) or B, |

Analogously, an independent set of lines of G has no two of its lines adjacent, and the maxinmm
cardinality such a set is the line independence mumber B(G)or B, |
For example, for the complete graphk

pull, J=1(x, )| &
Ba(E, )=p.Bo(c. )=[ 2 ]
B(K, )=0.8,(c.)=[ 2]

Fig. 2.123.

Bﬂ{k-.- }= m{mi.“}! Bl{in,- }= mm[m,n}
Fork, , Bk, )= 2, Bk ) =3
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Theorem 2.4.2. : For any non trivial connected graph G
a,*B=p=a,+p, _
qur:Lﬂbdnbewm‘mqepemscmfpuhts.Suih*{pl=ﬂﬂ.3im¢mtwnpuimsM,m
adjacent so the remaining (p - B,) points constitute a point-cover for G 50 that
a,Sp-P, S () '
On the other hand if N, mmummpomtmvufurﬂthﬁumlmﬁmpmanymouftm
mmmgofth:p-ﬁupomafﬁSnﬂmﬂmst-Nuumdepcndcnlmdhme
B,sp-q, _ ) .
From (i) and (i) we have a,+B,=p
To obtain the second inequality; let us consider an independent set M, of B, ines(i.e., Ms the
maximum independent set).
Alm:mmYmh:npmducedbyta]ng=M quhcrePlsth:satofp 2B, lines.
I..ctxsth:sﬂﬂfpumlsufﬁwhmhmmtmhll,thmiXiﬂp-iﬂl.
Now for eachpoint vin X. Selecta point which is incident on v and adjacent to a line in M, . Let
pb::hemofp-!ﬂtﬁmsns:&md.
IY|=B,+p-2B,=p-B,
1Y|z2a,=p-B, 20
o +P<p o)
EuurdﬁmslmwmnqualnymmeoﬂmdmcmnlﬂuSMammmhumwN of G
ChwlyN,nanmtmmnmnhmbmhMmdpumﬁmmmﬂmtwthhmalm mNI.'Ihum:phﬁ
that N is the sum of stars of G If one line is selected from each ofthese stars we obtain a independent
-~ setoflines W.
Now  |NJ+|W|2p
=a,+B 2p : V)
From (iil) and (iv) we have
. e +p=p
Hence
a+p=p=a +P.
Amﬂmﬁnnufﬁdcp:n&mrﬁmis some time called a matching of G

Theorem 2.4.3. : If G is a bepartite graph then the number of lines in a maximum matching equals to
the point covering number i.e. B, = o,
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Prmf:thM‘beamﬂmmmmhmganduuapommvcﬁngnun‘berammlk'l=aﬁmabipmi1e
graph G(X, Y, E) where V=X Y and E inthe set of linesin G

Consider any subset A of X. each line e of G is incident on either a point nAorapontin X -
A

Furthcranyﬁaim:‘tdmtonapointhhisa!som;:idn:nttuapaintin!_a,th:sntufpoin:s
adjacent to those in A. Thus the set (X -A) U | A isapoint cover of G and hence
CIX-Al+ [Al2e,
Be M I=min{ X-Al+I[KI[2e, ..1)

Again at least B, points are required to cover the lines of M, the point cover k™ must contain at
keast B, points. Therefore we have

B,sa, s
Frome (1) and (2) we have '
a,=B, Hence proved.
b ‘: %3 o ke
E: ' & e‘
" Fig. 2.13
K 't % €
ali
&ﬂ‘ ﬂg EI.O
¥y
G

Thpmbhnufﬁ:dhgaunthmnﬂchhg.ﬁwmmlhdmdﬁ]ngMEcmw'mhmd
to that of finding a minimum point cover.
Let M < X(G) be a matching. [n an alternative M-trail exactly one of any two consecutive
linesismM > _
M={e,e}. [From Fig. 2.13}
Anaugntntth-mﬂismnhmdnngﬂwhmemdpnmmmtiﬂdﬂwﬁmh
ofM. _
An augmenting M-trail {e,, g€, , ¢, e,,,} which begins at u, and ends at v, which are not
points of M= [e, e }.
Consider M= {e, e, ¢,}.
M has no augmenting M-trail. the matching is unaugmentable and it is maximum.
Thlsmwnnxi{lmmmahingismgmmmbl&
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Theorem 2.4.4 : Every unaugmentable matching is maxinmum.

Pioof : Let M be unaugmentable. Let M’ be a maxinum matching for which | M - M|, the number of
lines which are in M but not in M’ is minimum. [f this number is zerp, then M =M, Thus the result is
obvious. Otherwise let us construct a trail w of maximum length whose lines alternate in M - M and M’
being maximum is imaugmentable and hence trail w cannot begin and end with lines of M - M (other-
wise M - M will be unaugmentable) and has equally many lines in M - M and M. Now we form a
maximum matching N from M’ by replacing these lines of w which are m M’ by the lmes of WinM - M’

Then | M- N'| <| M- M | contradicting the choice of M'. Hence M must be maximum *

2.5 Critical Points and lines :

2.5.1 Definition : If His a subgraph of G, then t,(H) < (G). Inparticular this inequality holds when
His G-vorH=G-x for any point v or line x. If (G - v) < & (G) thenv is called critical point. If
a,(G - ) <a(G) thenx is called critical line of G
If vand x are critical, it follows that
o (G-V)=a(G-x)=a,-1.

Theorem 2.5.2 : Apoint v is critical in a graph G if and only if some minimum point cover of G contain
L S
Proof : If M is a minimum point cover of a graph G which contaim v, then m - {v} covers G- {v}.
Hence
a(G-vIsa |M-{vii=|M|-1=a(G)- 1.

Sovis a critical point of G .

Conversely suppose that v is a critical point of G Consider a minimum peint cover M for G -
{v} then the set M' U {v} isa point cover for G and since it contains one more element thanM 'so it is -

If the removal of a line x = uv from G decreases the point covering mmber, then the removal of
u or vmust also results in a graph with smaller point covering number. Thus if a line is critical both of its
end point are critical

But if a graph has critical points, it need not have criticallines. For example, every point of C,
is critical but no lines of C,. is critical

A graph in which every point is critical is called point critical while one having all lines critical
called line critical. Thus a graph G is a point critical iff each pomt of G is lies in some minimum point
coverof G '

Every line critical graph without solated point is point critical.
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is a line critical graph and 50 is a point critical graph

1.6. Exercise :

1. The graph K, has a unique 1-factorization. Find the the number of |-factorizations of K, 5
adofK, - - '

2. The number of 1-factors in Ky, s

=y
(2": !}

3. If an n-connected graph G with P even is regular of degree n, then G bas a 1-factor.
4. Is thé Peterson graph hamiltonian? :

5. Prove or disprove. Every point cover of a graph G contains a minimeum point cover.
6. For any graph G, @5(G)25,(G) snd @,(G)2B,(G)

7. Find a necessary and sufficient condition that «,(G) =§,(G).




Unit-3

3.1 Introduction :

The Concept of planarity revolves around the possibility of drawing a given graph in a
plane such that its edges do not intersect. It is very important that we have an efficient way
Dfestathwhﬂhnornof a given graphs is planar. In administering a test of planarity for
any graph, we can consider its components one at a time.

3.2. Subdivision of graph :

A subdivision of the edge ¢ = uv of a graph G is the replacement of the edge eby a -
new vertex w and two new edges uw and wv. This operation is also c2led an elementary
. subdivision of G -
' A graph H obtained by a sequence of elementary subdivisions from a graph G is said
to be a subdivision graph of G or to be' homeomorphic from (or a homeomorph of) G Two
graphs H, and H, which are homeomorphics of the same graph G are said to be
homeomorphic to each other; they are also said to be homeomorphically reducible to G A
gﬂphﬁﬁhnmmﬂrphmnynﬂhmhtfwhmﬂuagmphﬂuhomnmphunﬁthm
H is homeomorphic from G

The graphs H, and H, of Fig. 3.1 are homeomorphs of K K, itself is
homeomorphically ireducible. '

A A

Fig. 3.2.1. A pair of homeomorphic graphs

It is eassy to see that 'being homeomorphic to each other’ is an equivalence relation in
the set of all graphs. It can be further proved that each equivalence class contains a unique
homeomorphically ireducible graph which may therefore be taken as the representative of the
class.
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33. Identification of vertices :

Let U be a subset of the vertex set V of the general graph G = (V,E). Let H be the
general graph obtained from G by the following operations:

() Replace the set of vertices U by a single new vertes u.

(i) Replace each edgee=abwithae Uandb ¥ — U by a corresponding edge

e'=ub-

(i) Replace each edge e = ab with a, b e U (b possible b:mg the same as a with a

loopatumn H.

Let K be the multigraph obtained from H by dropping all loops and L be the graph
obtained from K by replacing each multiple edge by a single edge. Then HK,L are
respectively said to be obtained from G by a genemlfum]tiphfsimﬁle identification of the
vertices of U. We adopt the notation H=G : UK=G:U,L = GU.

Remark : (2) Th: operation in (ii) may result in the generation of multiple edges, and that
m{m’}mthcgmeﬁtwnnfhnpaevmwhenﬁmmardmmm

(b) Forb#uin H, qH[u,b]={qG[a,b] |a ¢ U}.

qH[a,b] = number of edges between a and b in H.

3.4. Plane and Planar Graphs :
ﬁgraphissaidtube¢mbaddcdinamnﬁce5whcnitisdmwnonﬂsu&mtm-mu

edges intersect. We shall use "points and lines" for abstract graphs, "vertices and edges” for
gt_:omen'icgrapl'ﬁ(embeddadinsomc surface). A graph is planar if it can be embedded in the

plane;
. - (B}
d il

Fig. 3.4.1 A planar graph and an embessing.

A plane graph has already been embedded in the plane. For example, the cubic graph
of fig. 3.4.1 (a) is planar since it is isomorphic to the plane grapk in Fig.3.4.1 (b)
Wewi]lrcftrmtheragbnsdeﬁmdbyaplanﬂgmphasﬁsfam.ﬁtunbomxied_rcgi}n
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being called the exterior face. When the boundary of a face of a plane graph is a cycle, we
will sometimes refer to the cycle as a face. The plane graph of Fig. 3.4.2 has three faces f,
f, and the exterior face f;. Of these, only f, is bounded by a cycle.

Jr,‘r‘fu

Fig. 3.4.2 A plane graph

The subject of planar graphs was discovered by Euler in his investigation of polybhedra.
With every polyhedron there is associated a graph consisting only of its ve:. "ces and edges,
called its 1-skeleton. For exampls, the graph Euler formula for polyhedra is one of the
classical results of mathematics.

Theorem 3.4.1 : A graph is planar if and only if each of its block is planar.
Pmn_f:E'Im;rh'ag:mthisphmifaniontyifeachéﬁummmmisphmnSo,wemy'
assume G to the connected. _ ;

If G is planar, then cach block of G is planar. For the converse, we apply induction on.
the number of G If G has only one block and this block is planar then of courv G is planar.
Assume every graph with fewer than n (2 2) blocks each of which is planar, is planar, is a
planar graph and suppose G has n blocks all of which are planar.

LetBbeanmdbluckafGanddgnutebyvthccutpommfG common to B. Delete
from G all vertices of B different from v calling the resulting graph G". By the induction
hypothesis G is a planar graph.

Fig. 3.4.3

Since the block B is planar it may be embedding in the plane so that v lies on the
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m::iurr:giun.lnanyrcgjuuufa.phuﬁmwufﬁ* containing v, the plane block B may
now be suitably placed so that the two vertices of G’ and B labeled v are identified. The
results is a plane graph of G

R

I_'hm:w:imql’ﬁ'. Planar version of B'

Plane Graph G
Fig.: 344

Hence G is planar.

Theorem. 3.4.2 Every 2-connected plane graph can be embedded in the plane so that any
specified face is the exterior. '

Proof : Let f be a nasexterior face of a plane block G Embed G on a sphere and call some
point interior to fthe "North Pole". Consider a plane tangent o the sphere at the South Pole
and project G onto that plane from the North Pole. The result is a plane graphs isomorphic
to G in which f is the exterior face. _

Corollary. 3.4.2(a) Every planar graphs can be embedded in the plane so that a prescribed
line is an edge of the exterior regions.

3.5. Quterplanar Graph :

A phanar graph is outerplanar if it can be embedded in the plane so that all its vertices
lie on the same face; we usually choose this face to be exterior. Figure 3.5.1. Shows an
outerplanar graph (a) and two nutg.:rplam embedding (b) and (c). In (c) all vertices lie on the
exterior face

w o ©

Fig. 3.5.1. An outerplanar graph and two outerplane embeddings.
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In this section we develop theorems for outerplanar graphs parallel with those for planar
graphs. : '
Theorem 3.5.1 A graph G is maximal outerplanar if no line can be added without losing
'mhm.mmmmﬁhmmmmhmﬁm line can be added without
losing outerplanarity. Clearly, every maximal outerplane graph is a triangulation of a polygon,
while every maximal plane graph is a triangulation of the sphere. The three maximal outerplane
graphs with 6 vertices are shown i Fig.3.5.2.

SR

Fig. 3.5.2. Thrée maxinal outexplansr graphs

Theorem 3.5.2. Let G be a maxirhial outerplanar graph with p> 3 vertices all lying on
the exterior face. Then G has p-2 interior faces.

Proof. Obviously the result holds for p = 3. Suppose it is true for p =n and let G have
p=n+ | vertices and m interior faces. Clearly G must have a vertex v of degree 2 on its
exterior face. In forming G — v we reduce the number of interior faces by 1 so that m~ 1
=n- 1 = p -2, the number of interior faces of G. Thus by inductions, the result is true.

Theorem 3.5.3. Every maximal outerplanar graph G with P points has

(a) 2P - 3 lines, ' -

(b) at least three points of dégree not exceeding 3,

(c) at least two points of degree 2, '

(d) k(G) = 2. '

Theorem 3.5.4. A graph is outerplanar if and only if it bas no subgraph homeomorphic
K, or K, ; except K, - x. ' 3 s R

Proof. Two graphs are homeomorphic ifbuthmﬁénbuimﬂﬁ'umth:smgmphhy
a sequence of subdivisions of lines. For example, any two cycles are homeomorphic, and Fig.
3.5.3. shows a homeomorph of K.

(a) G be a maximal outplanar graph with P points.

- The no. of interior faces of G is P — 2.
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By Euler's Pohyhedron formuls, V~E +F=2
F=P-2+1
V=P
~E=V+F-2
=P+P-1-2
=2P - 3.
‘ie. 2P - 3 kines.
(®) £ deg Vi=2q=2 (2P -3)
-4P-6
=4P-3)+6
Thus G has 2 points of deg 3 or 3 points of deg 2.
(c) Also G has atleast two points of degree2. :
(d) As G has a point of degree2, say, v be a point of deg 2. So the removing of the
point incident with the fine which incident with v makes a disconnected graph.
Thus K(G) < 2.
Also here, 5 (G) =2
~K(G) = 2.

Fig.3.5.3. A homeomorph of K,
~ Theorem 3.5.5 Every outerplanar graph with at hﬂﬁwhﬁhnmmuphm
complement, and seven is the smallest such number. '

D @@'@

Fig.3.5.4. The four maximal outerplanar graphs with seven points. -
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Proof. To prove the first part, it is sufficient to verify that the complement of every
mmaximal outerplanar graph with seven points is not outerplanar. This holds because there are
exactly four maximal outerplanar graphs with P = 7 (Fig.3.5.4) and the complement of each
is readily seen to be non-outerplanar. The minimality follows from the fact that the (maximal)
outerplanar graph of Fig. 3.5.2. with six points has an outerplanar complement.

3.6. Euler's Polyhedron Formula :
For any spherical polyhedron with V vertices, E edges and F faces, V-E + F=2.
Before proving this equation, we will recast this in graph theoretic term.

A plane map is a connected plane graph together with all its faces. One can n:statc
theorem 1(}1ﬁuraphmnmpmtumufthemnﬂ:ﬂpofvmms,q:}fedegﬁandrafﬁm

p—gq+r=2 S

Huwmthmupmtmhasakmdybeenpmwdwhcrenwasemblnhedthanhemb
rank m of a connected graph G is given by, ;

m=p-q+1l.

Since it is easily seen that if (1) holds for the blocks of G separately, then (1) bolds for

G also. We assume that G is 2-connected. | |
Thuseveryfaccafapﬁmmbeddhgﬂf(}isacycle,

A graph is 2-connected

« it is a block.

[if G is n-connected n > 2, then every set of n points of G lie on a cycle.]

we have just noted that, p =V, q = E for a plane map. It only remais to link m with

F. We now show that the interior faces of a plane graph G constitute a cycle basis for G, so

that they are m in number. This holds because the edges of every cycle X of G can be

mga:d:dasasynmen'icdiﬂbrmccufthefamofﬁmutamdinzmemwfmfmeisﬂm
the sum (mod 2) of all the interior faces (regarded as edge set).

[The plane graph of G has three faces, f;, f; and the exterior face f;

f, = f, + f, (mod 2) o0

=0,i] £,

Fig.: 3.6.1
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The result will be either 0 or 1. But for any bounded region, the exterior of the region
can be regarded as 1.

m=F - 1.

Hence, m=q—p + 1 gives

F-1l=E-v+1

= V-E+F=2

Corollary 3.6.1. (a). : If G is a (p,q) plane map in which every face is an n-cycle, then

' § ﬂ{:::}

Proof "Since every face of G is an n-cycle, each line of G is on two faces, has o-
edeges. Thus the no. of lines in r faces is nr. But since while counting the line in each face,
each line is connected twice, hence

or = 2q
2q

=>r=—
n

p—q+r=2gives

2q_,
n

= pn—-qn+2q=2n
= (p-2)a=(a-2)a

p-2)

Maximal planar graph : Maximal planar graph is onc in which no line can be added
without losing planarity.

p-q+

=9




In any embedding of a maximal planar graph G having order p > 3, the boundary of
every region of G is a triangle. For this reason maximal planar graphs are also referred to as
triangulated planar graphs.

Corollary 3.6.1. (b). : If G is a (p,q) maximal plane graph with p> 3, Lhen q=3p-6.

Prmf:Letrbctbclnumbcrufmghnnfﬁ,mt:thaﬂh:boundarfufwwy&cenf
G is a tringle and that each edge lies on the boundary of two such faces. If we sum the number
of edeges on the boundary of a face over all faces, we obtain 3r. We note that the sum also
counts each edge twice. o

. ~3r=12q

Applying Euler's formub.

2q
—-—g4—=72
P—=q 3

=3p-3q+29=6
=q=3p-6.
Corollary 3.6.1. (c) : If G is any planar (p,q) graph v;rith-p >3, thenq=13p g 6.
Proof : Let us add edge to G until it is maximal planar. Let G be such maximal planar
graph obtain from G Now let * be a {I;'.Q'} graph, wher p'=pand q’' 2q.
Lq' =3p'-6
=3p-6=q'2q
=3p-62q.

. q=3p-6.
_ Corollary 3.6.1. (d) : If G is plane graph in which every face i a 4-cycle then q =
2p - 4. : )
Proof: Let r be the number of regions of G Here the boundary of every face of G is
a 4-cycle and that each edge lies on the boundary of two such faces. If we sum the number
of edges on the boundary of a face over all faces, wie obtain 4r. We note that the sum also
counts each edge twice =
~4r=2q.
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3 |

Now -

q
-q+==2
qu

=2p-2g+q=4

=q=2p-4.
Corollary 3.6.1. (¢) : The graph ks and k; ; are non-planar.

Fig. 10.5. 5

Proof : Suppose if possible k, ; is planar. Let g be a plane embedding ofk, ;. Since
ks, bas no triangle, (in fact no 0dd cycle) every region of G must contain at least 4 edges.
Then q < 2p — 4. ' '

Hcrcinkuq-ﬂ','p-ﬁ

_ 22p-4=8

So, qg2p-4

which is a contradiction. So k; ; is not planar

A,ga&l;uppnseifpnssiblek,isphnar.L:thcaplanchhgof&,.

Then q< 3p-6
Here q=10,p=5.
. 3p-6=9
Q<3p-6
which is a contradiction
k; is not planar.

3.7. Kuratowski's Theorem : ;
" A graph is planar if and only if it has no subgraph homeomorphic to ks or k; .

82




Proof : Since ks and k, ; are non-planar by corollary 3.6.1.(¢), it follows that if a graph
contains a subgraph homeomorphic to either of these, it is also non-planar.

For the converse,” Assume that there is a non-planar graph with no subgraph
homeomorphic to either k; or k; ;. Let G be any such graph having the minimum number of
lines. Then G must be a block with 8{(G)2 3. Let x, = ugv, be an arlitrary line of G The
graph F = G — x, is necessarily planar. |

[Lemma 3.7.(a) There is a cycle in F containing u, and v,.

Lemma 3.7.(b)- There existsa u,—v, separating outer pices meeting Z(u,, v,), say at
u;, and Z(vg,u,), say at v,, such that there is an inner pices which is both u;—v, separating
and u,— v, separating.] .

n

Fig. The poruibilities for nocpiasar subgraphe

Let H be the inner piece guaranteed by Lemma 3.7.(b) which is both u;—v, separating
and u,— v, separating. In addition, let w,,wg,w,, and wjbe vertices at which H meets
Z(ug, Vo), Z(vg, ug), Z(uy, v,) and Z(vy, u;), respectively. There are now four cases to
consider, depending on the relative position on Z of these four vertices.

Case 1. One of the vertices w; and w} is on Z(ug, Vo) and the other is on Z(vy, ug).
We can then take, say, wy= w, and wj =w|in which case G contains a subgraph
homeomorphic to ky 4, as indicated in Fig 3.7.(a), in which the two sets of vertices are
indicated by open and closed dots.

" Case 2. Both vertices w, and w] are on either Z(uy, V) or Z(vy, uy). Without lﬁss of
generality we assume the first situation. There are two possibilities : either v, = w) or
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v, =w. If v, #w}, then G contains a subgraph homeomorphic to k; ;, as shown in
Fig.3.7.(b) or (c), depending on whether w}, lies on Z(u,, v,) or Z(v|, u,), respectively. If
v, = w}, (see Fig.3.7.(d), then H contains a vertex r from which there exist disjoint paths to
w,, w! and v,, all of whose vertices (except w,, w| and v,) belong to H. In this case also,
G contains a subgraph huﬂ:u_mbrphk: to kj .

Case 3. w, = voand w} = u,. Without loss of generality, let w} be on Z{ug, vp). Once
again G contains a subgraph homeomorphic to ky 5. If wj is on (Vq, Vg), then G has a
subgraph k; , as shown in Fig. 3.7.(¢). If, on the other hand, wy, is on Z(v,, u,), there is a
K, , as indicated in Fig.3.7.(f). This figure is easily modified to show G contains K, ; if
W=V, '

Case 4. w, = v, and w} = u,. Here we assume w,=u, and wj = v, for othérwise .
we are in a situation covered by one of the first 3 cases. We distinguish between two
subcases. Let P, be a shortest path in H from u, to v,, and let P, be such a path from u,
to v,. The path P, and P, must intersect. If P, and P, have more than one vertex in common,
then G contains a subgraph homeomorphic to K ;, as shown in Fig.3.7.(g); otherwise, G
contains a subgraph homeomorphic to K; as in Fig.3.7.(h). |

Since these are all the possible cases, the theorem has been proved.

3.8. Genus, Thickness, Coarseness, Crossing Number :
In this section four topological invariants of a graph G are considered. These are genus
- - the number of handles needed on a sphere in order to embed G, thickness : the number of
planar graphs required to from G, coarseness : the maximum number of line-disjoint nonplanar
- subgraphs in G and crossing number : the number of crossings there must be when G i drawn
in the plane. We will concentrate on three classes of graphs— complete graphs, complete
bigraphs, and cubes— and indicate the values of these invariants for them as far as they are
known

Fig. 3.8.1. Embedding a graph on

an orientable surface,




As observed by Koing, every graph is embeddible on some orientable surface. This can
easily be seen by drawing an arbitrary graph G in the plane, possible with edges that cross
each other, and then attaching a handle to the plane at each crossing and allowing one edge
to go over the handle and the other under it. For example, Fig. 3.8.1. shows an embedding
of K, in a plane to which one handle has been attached. Of course, this method often uses
more handles than are actually required. In fact, Konig also showed that any :thg of
a graph on an orientable surface with a minimum number of handles has all its faces simply
connected. . '
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Fig. 3.8.2An embedding of K on thetorous ~ Fig. 3.8.3 A toroidal embedding of K.,

We have already noted that planar graphs can be embedded on a sphere. A toroidal
graph can be embedded on a torus. Both K, and K , are toroidal: in fact Figs. 3.8.2. and
3.8.3. show embeddings of K, and K, , on the torus, represented as the familiar rectangle
in which both pairs of opposite sides are identified.

The genus ¥(G) of a graph G is the minimum nurmber of handles which must be added
- to a sphere so that G can be embedded on the resulting surface. Of course, y(G)=0 ifand
only if G is planar, and homeomorphic graphs have the same genus.

The Euler characteristic equation, V — E + F = 2, for spherical polyhedra. More
generally, the genus of a polybedrom* is the number of handles needed on the sphere for a
surface to contain the polyhedron. Theorem 3.6.1. has been generalized to polyhedra of
arbitrary genus, in a result also due to Euler.

Ex.1. Show that if a plane graph of order n and size m has f region and k components,
thenn-m+f=k+1.

_ Proof. Suppose the components are G; with ni vertices and mi edges and f; faces
(i=1,2,.....K). Then for eachi n.—m + £ = 2, i=1,2,.....k The extension region is the same
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for all components. If the extension region is not considered, then o, — m; + £, = 1, for each

i

On summation, we get
k
Z(ni._—m.+f.)= Tl
i=i - I'.mwuﬂk
:an -Zm‘ +Zf._

=n-m+f=k

So, with the inclusion of the common extension region, we obtain the relationn—m +
f=k+1.

Theorem 3.8.1. (Euler's Formula, Generalized) :
LcthengmphwithgenmT,andl:tn,mandfdmtc.respmtwﬂy,thenumhcrs
of vertices, edges, a:uifammancmbcddmgufﬁmuur&seufgmusf Then
n-m+f=2-2y
Note : gwaﬁrpmmmmmmmrmMmmmﬁm
formula. This theorem gives us a lower bound for the genus of a graph.
Corollary. 3.8.1.(a) : Let G be a simple graph with n vertices and m edges. Then the

genus T(G]_ of the graph G satisfies. °
v(G)2 [%{:In- 3n) ;1}

where [x] denotes the smallest inteqer greater than or equal to X.
We can conclude from this corollary that the genus v(K,) of the complete graph K,

(k)2 (}55{“"”“}”]
=[i(.=.= -7n#11]=[]iz[n-3)(“'4)] =-k-ﬂ“*)*[%]=

12

=

Hence K4 cannot be embedded on a torus.
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Ex.2. The vertices of a certain graph G have degrees 3, 4, 4, 4, 5, 6, 6. Prove that
G is non-planar.

Solution : p=7, q=-—Ed¢gv = 16
5 3p-6=15<16=q
=q>3p-6

For a planar graph, 3p -6 = q.
». G is non-planar.

Ex.3. Is there any nﬂn-p!anar graph of order 4.

Solution : No such graph exists, because, if it so, then it must have a subgraph
bomeomorphic to K 5 or K, which is impossible. Both thickness and coarseness involve
constructions which factor a graph into spanning subgraphs (planar and non-planar
respectively). Ky , or a‘homeomorph theroof is a most convenient subgraph for coarseness
construction. Figure 3.8.4. shows four line-disjoint homeomorph of K ; contained in K;q

& i ¥ ¥ ¥ 4£.¥ iy 2

k1 LT 1

] 1 r 7 9 g 4 5 6§ 4 i :
Fig. 3.8.4 Four nonplanar subgraphs of K,

- The crossing number ¥(G) of a graph G is the minimum number of pairwise
intersections of its edges when G is drawn in the plane. Obviously, Y(G)=0 iff G is planar. .
eg

‘A drawing of K5 with one crossing.
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Ex.4. Show that the crossing number of K3, 5 is 7(Ky23) = 2.

Let ¥{Ky25)=C

Since K ; is non-planar &id Ky, © K1 it follows that Ky ; is non-planar so that
G2 1: Let there be given‘a drawing of K, , ; in the plane with C crossing. At each crossing
wemn&meamwvmmpmducmammpmgmphnfﬁofmdﬁp=‘?+-Cmd
size q = 16 + 2C. Since Guphnﬂr s0q g Ip-6.

Let u,u, and v,v, be two mn-ndpcr:m edges’ nﬁcmthu cross the given drawing
giving rise tQ 2 new vertex. HGisa manguhnun,thm Cyuyyvya, vau, :sacycl: of G
implying that the induced subgraph ({u).u;.v,,v1}) i K, is isomorphic to K. However,
Ku‘,mnﬂﬁsnusuchsubgmphmﬁismtnmmguhtbnmtbmtqs Jp-6.
© 216+2¢<3T+c):6=15+36

=C>1

=>C22 _

The inequality C >2 follows from the fact that there exists a drawing of K ,  with two
crossing. Hence C = 2 =y (K, ;). ;

3.9. Exercise :
I. Ifa(p.q) g'ljaph'and a fp;.q:} graph are homeomorphic then pj+ q; = P2+ 4-
2. ' Find the genus and crossing number of the peterson graph. _
3. Prove or disprove : A non planar graph G has y =1, iff G —x is planar for some
hine x.
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4. IfG is outplanar with triangles, then

qs<(3 -4}2/‘

5. Prove or disprove ; A graph is planar iff every subgraph with atmost six points
ufd:pnﬂhﬂ!ihmhi:mlwqfxi+h.

3.10. References :-
- 1. Graph Theory, F. Harary. _
2.  Basic Graph Theory, KR. Parthasarathy.
3.  Graphs— An Introductory Approach,
Robin 1. Wilson and Jhon J. Watkins. -
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UNIT4

4.1 Introduction : Algebraic graph theory is a branch of mathematics in which algebraic
methods are apphed to problems about graphs. lnﬂl'ﬂm.iw:hcgi_nbyd:ﬁningamkw&hwﬂl
play an important role ha!g&r&whﬂxw.%mwﬂsnﬂthﬂmufﬂﬂm
mﬁnfawhmmﬁmmhmtymmcwhandhspmmmm“
shall apply spectral techniques to the vertex coloring problem, using inequalities involving the
eigenvalues of a graph.

4.2. Adjacency matrix

4.2.1 Definition : The adjacency matrix A = [A;] of a !abehdgmphﬁwﬂhppnmnthe
'px p matrix in which a; = 1 if v; is adjacent with v; and a; = 0 atheririse. Thuse there is a one-
mcummmunh&bdgaphwﬁPmmﬂpxpmﬁwmﬁm
zero diagonal

1
0
1
I
0

P =
"'Qn—n-ga

>

H
#-Q-—l--_ﬂ
oo - o =

Suppose 3, Emmvahleoflmmﬂ.lfﬁmmdlﬂs}mm:t&hmﬂml is real
and the multiplicity of A as a root of the equationdet (AI-A)=0 :s:qultath:dmcmmof

the space of eigenvectors corresponding to A .
4.2.2 Definition : The spectecum of a mphﬁmthcsﬂofnunﬁanwhmhmmmﬁ

of A(G) together with their multiplicities. If the distinct eigenvalues of A(G)are A, >4, >...> A,
and their muliplicities are m(Xy) m(1,) ....m(A,), then we shall write

A B a W
S G" o 1 *1
peet = mie)  m(x) .. m(h)
. For example, the complete graph K, is the graph with P points in which each distinct pair are
adjacent. Thus the graph K, has adjacency matrix
0

el
— e O
— o =
o o e

and an easy calculation shows the spectrum ofk,
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3 -1
s K, =
k= 3 7]
4.2.3 Theorem : We shall usually refer to the cigenvalues of A= A(G) as the eigenvalues of G Also,
the characteristic. Polynomial det (AI— A) will be refeured to as the characteristic polynomial of G
‘and denoted by X(G; ). Let us suppose tha the characteristic polynomial of G is
X[G;l}-l'+Cll'"'+C,l“+ ...... - {-3‘.
_ Inthisfu:mjn:knnwthat—C_.isﬂ:cmnf:ms,ﬂmis,thcsumufthecigmlu:a.m
is also the trace of A which, as we have already notéd, is zero. Thus C, = 0. More generally, it
" is proved in the theory of matrices that all the co-efficients can be expressed in terms of the principal
minors of A, where a principal minor is the determinant of a submatrix obtained by taking a subset
of the rows and the same subset of the columns. This lead to the following simple result.
4.2.3. Theorem : The co-efficeints of the characteristic polynomial of a graph G satisfy.
1.C, =0 '
2. —Cilsthanumbﬁofodgcsnfﬁ
3, - G, is twice the number of triangles in G.
Proof : For each i €{1,2,...,n} the oumber (-1)'C; is the sum of those principal minors of A which
have i rows and columns. So we can argue as follows—

1. Since the diagonal elements of A are all zero, C; = 0.

2. A principal minor with two rows and columns and which has a non-zero entry, must be of
the form
01
1 0

There is oe such minor for each pair of adjacent vertices of G, and cach bas value 1. Heace
2 .
(-1)°'C, =-{E(G), giving the result.

3, There are essentially three possibilities for non-trivial principal minors with three rows and

o
|
0

=T =

0 011
0}l 1 0 0}
0 1 00

and of these, the only non-zero one is the last (whose value is 2). This principal minor
corresponds to three mutually adjacent vertices in G, and so have the required description of C,.
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These simple results indicate that the characteristic polynomial of a graph is an object of the
kind we study in algebraic graph theory; it is an algebraic construction which contains graphical
mformation '

Suppose A is the adjacency matrix of a graph G. Then the set of polynomials in A, with
::omplr.x co-efficeints forms an algebra under the esual matrix operations.

4.3 Definition : mmmnryﬂmﬂufamphﬁuﬂ:nlgebraufpnmmhmmew
matrix A = A(G). We shall denote the adjacency u]gebra of G by A(G). '
Since every element of the adjaccmyalgehm:salnra:mmbmmn of powers of A, we can
obtain results abculA{G} from a study of these powers, We define a walk of length lin G, from
v; to v, tub:aﬁnnesaqumcufvmmcsofﬁ '
V; = U,V =1,
5uchthatu,_landu.,areadja¢mtﬁarl <t <e.
4.4 Theorem : The number of walks of length | from T, is the entry in position (ij) of the matrix
V; 10 V. . . '
Proof : The result is true for ¢ = 0 (since A® = 1) and for ¢ =1 (since A! = A is the adjacency
matrix). Suppose that the result is true for 1= . The set of walks of length L+] flrom v; to v;is
in bijective correspondence with the set of walks of length L from v; to verticis v, adjacenct to.v;.
Thus the number of such walks is . :

OS> (ORSIC)

It ﬁ:-l]ﬁwstﬁatt&mm:bernfmllm of length L+1 joimng v; to v;1s ( Lﬂ] Tnagmcn]mmk
follows by induction.
4.5 Some Additional Results :

1. A reduction formula for X :

Suppose G is a graph with vertex v, of degree 1 and let v, be the vertix adjacent to v,.

Let G, be the induced subgraph obtained removing .v, and G,, be the induced subgraph
obtained by removing {v,,v,} '

Then x(G;A) = -AX(GA) - x(Gp.h)

This formula can be used to calculate the characteristic polynomial of any true, because a tree
always has a vertex of degree 1.

2. The cimrnlcteristin polynomial of a path :

Let Pn be the path graph with vertex set {v,,V,,....,v, } and edges {vi Vi) (1Si<0-1)
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For o >3, we have

x(P,:A) = AX(P, ;)= x(P, ;1)

3. The spectrum of a bipartite graph :

A graph is bipartite if its vertex set can be partitioned into two parts v, and v, such that each
edge has one vertex in v, and one vertex in v,. If we order the verticis so that those n v; come
first, then the adjacency matrix of a bipartite graph takes the form.

A ( 0 a]
B' O

If x is an eigenvector corresponding to the eigenvalue ), and c is obtained from x by changing
the signs of the entries corresponding to vertices in v,, then x* is an eigenvector corresponding to
the eigenvalue 2. . It follows that the spectrum of a bipartite graph is symmetric with respect to the

4. The derivative of X : .

Fori=1,2,...,n, let G,denote the induced subgraph (V(G)/V;).. Then

x'(G:A) = gx{ﬁl:h}

4.6. Vertex partition and the spectrum :

A color partition of a generni graph G is a partition V(G) into subsets called color classes,

V(G)=V,UV,u...UV,

such that each V,(1<i 1) contains no pair of adjacent verticés.

In other words, the induced subgraph <V > have no edges. The chrematic oumber of G, written
V(G), is the least natural number | for which such a partition is possible.

We define a vertex-coloring of G to be the assignment of colors to the vertices, with the
property that adjacent vertices have different colors, so clearly a vertex-coloring in which ¢ .colors
are used gives rise to a color-partition with ¢ color-classes.

If V(G) = 1, then G has no edges.

If V(G) = 2, then G is a bipartite graph.

4.6.1. Theorem : Suppose the bipartite graph G has an eigenvahie 3 of multiplicity m(2.). Then
~3 is also an eigenvalue of G, and m{-2)=m{A). _
Proof : If G is a bipartite graph, then G has no odd cycles and consequently no elementary

subgraph with an odd number of vertices. It follows that the characteristic polynomial of G has the
form '
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X(G:Z)= 2" +C,2"? +C,Z*+..= Z°P(Z?)

[thr.-retgm odd cycles, so C,=C; =C; = .... = 0]
where §=0 and P is a polynomial function. Thus the eigenvalues, which are the zeros of x,
Example : Find the spectrum of K, ;.

0

AG):

= = D9

1
|
0
0
0

e e
SO D - -

Now the characteristic polynomial is
X(Kyy) =Zy+ CZ¥2 =0
2 BIHC) =0
L= Z-ﬂ,ﬁ.ﬂorZP;Cz-ﬁ
= 8=-C,=6
=>Z=1J1_5

Spectrum of K, 5 is [h:’g ':; ‘Jﬂ

Note : The spectrum of the compléte bipartite graph K, ,, can be found in the following manner,
We may suppose that the verticies of K, , are labelled in such a way that its adjacency matrix is

()
o

where J is the 8 x b matrix having all entries + 1. The matrix A has just two linearly endependent
rows and so its rank is 2. Consequently 0 is an eigenvalue of A with multiplicity a + b — 2. The
characteristic polynomial is thus of the form

s P By
The cigenvalues are obtained by showing the above characteristics polynomial
Zub-:{z: +Cz}={] '
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=2Z2=00..0 'or
[
a+b-2
F-rcg=mofdgﬁofnhnﬁ
= Z=%ab
So, the ciginvalues arc \[ab . 0, —fap With multiplicitics l,at+b=-2, L
Hence the spectrum of K, s
Jib 0  -ab
1 a+b-2 I
Tt&mhmmmnspmmofabim&:whhsym&mm_mpmmh
4.7. Cos‘p-lttﬂlﬁl]}h!.
Twommnumuphngrapmmsa:imbemspmmhﬁh:ﬂmwthesmmgmmﬁmwxh
them:mkplﬂ:ls.

- DK

Two cosectral graphs
Example : The graphs K, , and K, U C, are cospectral graphs. Since the trace ofa squarematrix
'nqualmlh:sumnfﬁsmgmmhmmdﬂuagmnhmofﬁmﬂrﬂhmof&mgmwhm
of A, we see that trace of A is determined by the spectrum of A. :
Mspecmufadismmeﬂedgnphisﬂﬂmiﬂnuﬁh:spmmuﬁscmm.
Almost every tree has a cospectral mate . '

4.8 Exercise :
1. Find the adjacency matrix of K.
2. Find the spectrum of K, and K, ,.

4.9. References :
I. Graph Teory: F. Harary.
2. Algebraic Graph Theory: N. Biggs.

a8 9
95







