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NUMERICAL ANALYSIS

~ INTRODUCTION :

With the advent of high speed digital :du'q;;musfihcmnm'i:al solution of Mathematical problem
has come to be regarded as a viable alternative to the time honoured analytical solution. Numerical
Analysis is concerned  with the methods which give numerical solutions of problems like finding
function values (interpolation), differentiation, integration, solutions of equations, solution of
differential equations m:‘l'hsmuhndsmm involve development of algorithms, a sequence of
steps to solve a problem . In fact, the development of the subject has received an enormous impetus in.
the Jast four decades - not only from the Mathematicians but hlso from all users of Mathematics like

Unit 1
FINITE DIFFERENCES MD'HHTERPDMTIBN

1.1 Fimite Differences :

Let us assume that we have a table bfvaluu{x,-,y‘}, i-ﬂ.l,.....nufmy_Mhnyﬂf[x],ﬂr
values of x being equally spaced such that x,- xo=h , Xz X;= b, ..... K= Xey™ h . Suppose that we are
required to evaluate the values of f{x) for some intermediate values of x or to evaluate the derivative of
fix) for some values of x in the interval x; < x < x, .. The various methods to obtain the sohttion of
these problems are based on concept of the difference of a function .

1.2 Forward difference : )
If Yo, Y15 Ya dum:umofw.‘!msafnq:yﬁmctimy'ﬂn}.ﬂiNﬁ-h.Yr?: vores Yer¥ai BTE
called the first differences of function y. Denoting the differences by Ayo , Ay, -.... Ay We have Ay,
=YiYe. Ayi=yryi, AYr= Yr¥1, oo BYat™ Ya¥at : '
where A is called the forward difference operator . The differences of the first differences are called
second differences and denoting them by Aly, , Aly, etc. we have e
Alyo= By~ Ay =y ¥y - (Y1 -Yo) = ¥2- 251 + Yo
Aly(= Ayr Ay, =y; -y2 - (Y2 491) = Y3 - 2y, +y, ete.

In like manner, the third , fourth differences etc. are
Alye= Ay, - Alyo = (y3- 272+ ¥1 ) - (2 - 21 + Yo) = Y3 - 33’_:*'3')"1-1’1 '
A'Yo = yo- 4yy + 6y; - 4y1 + yo e1c. '




The following difference table shows how the difference of sll orders are formed .

. Forward Difference Table .
X Y Ay Aly Ay aly Ay
X Yo
Ayg
« Xy . A'ye
Ay Alyy
¥a ' Ay 1A' .
Ay Ay 1 &% V'
¥s _QE?: e Ay, |
Ay, - | aly;
X ¥a ﬁ’!h oyl
- 1 Ay,
+ X5 Ys

1.3 Backward Differences :

The differences ¥y = Yo. Y2 ¥1 » -+ Yo~ Yot When denoted by Vy, , Vyz, ... Vy, respectively,
are called the first backward difference operator . In a similar manner, we can define backward
differences of higher orders . Thus we have , -

; V‘h"?‘.\’rﬁh =y2=¥1- (1 - Yo) = ¥2- 21 +%
ﬁ:'f}"i’:"‘”n-?ﬁdﬁ.

These differences are exhibited in the following

_ Backward Difference Table .
X Y vy | Vy vy vy vy
Xa Ye 5
. . Vv .
X Vi I V¥,
Vv Vv
X3 ¥a “-"'1!1 : ?‘Y-I g2
; Vv Vye Vs
X3 ¥ Vs V'ys '
. Vs " Py,
. Xa Y4 Viys
Vs .
Xy ¥s




1.4 Shift Operator :

The shift operator E s definefiby E yix)=y(x + b)
A second operation with E would give E‘ﬂ:}.-){x-hm-
L, - E* y(x) =50+ )
1gmm'uW:

Webave, Ay(x) = y(xHyO)=E Y 900 = (€ -D) Y0 -

| s AwEd or E=1+A
Further y(x+h) - yix) = ¥ y(x+h) = VE y(x)
=.Eﬁx}-y{g]¥.vzﬁx]=ﬁ--1-v£

=V=1-E"

Interpolation
- 1.6 INTRIODUCTION

Interpolation i!heh:hiquc.nfmhthg.tbemhmohﬁmﬁmfuwmmnf ;
the independent variable from a set-of discrete data available. Suppose we are given the values of y
= f{x) fora set of values of x :

X Xg X i T

¥ LY }".1 ¥ oceeee Ya

~ Then the process of finding the values of y corresponding to any value of x = x; between x, and x, is
called the interpolation . If the function f{x) is not known explicitly, it is - required to find a simple
fnction $(x), such that fx) and §(x) agree at the set of tabulated points. If §(x) is & polynomal, then it
‘is called the interpolating polynomial and the process is called the polynomial intepolation .




1.7 Newton's Forward Interpolation Formula ;

, Lety=f{x) denote a function which takes the values yo.y1,¥2 ---... Yo for equidistant values x,
X1, X3, -.1eoee Xq OF the independent variable x such that x, - Xg=h, X; - X; = h etc. Let §(x) denote a
polynomial in x of!heﬁhdegrmﬂ:ispuljmmﬁﬂmybewﬁmhﬂw_fwm

$(x) = 8o + 8y{x-Xq) + Balx-Ke}(x-X;) + ByX-Xo) (K-R1) (X-X5).+ 2a(X-%g) (X-X1) {r-x;}
(x-X5) + ..+ 2y(x-Xg) {M;I (xx2) @n‘.l co (XeXaa) | A1)
We shall determine the coefBiciedt ¢, 8, 83, --..-8 mu.w.u-h |
=0, Hx) =y K= s K= Te:

Substi;!minﬁgdunmaiumnuu, Xi,%X1,... % forxin (1), at the same time putting §(xg) = ¥,
d(x;)= yi ete. tndnm:mbuingﬂ:ntx.-x.-h.xz-xu-zhﬁc..whw, '

2% = Yo
S A
¥1 ™= 8g + B(X-Xg) = Yo+ &b : Y 1‘-;-[“- = —:"—

ya= 80+ Bulkr¥a) + a(x-x)(xrXi) = Yo + 1‘—;-& (2h) + a5(2)n)

e L Ya=2ytyy _ Ay
e L 21

¥y = fg + 8y(X5-Xp) + 32(15‘10}(!:'1_'4} + l:(lrla_v]{!i K1) (X3-Xa)

e ?’l:fii (3n) + %ﬂ-{zhlmj + a,(30)(2b)h

= Yo + 3y1 - 3yp + 3yz - 6y; + 3yg + 6b’a;

' 3
¥3 =3y, +3y —¥e . Ay

,.u'ﬂj = ﬁ-hi xh:
5 d'_v, ﬁ’}"u o Ay,
5*!5“!_“[3"1. a, = 4Th' 5 5!]_-" - a, ‘_._.Jnfh'




Now since f{x) - ¢(x) is the difference between the given function and the polynomial at any given
point whose abscissa is x , it represents the error committed by replacing the given function by a
polynomial . Hence , we have the error E

{ni-l
R, = e {x-—xﬂ.:[x-—x,] f=-x) . A6)

where & is some valuie of x between xo and x, . This is the remainder term in formula (2) .
To.cbtain the remainder _mmmfmmhwmmﬁﬁn
X=Xg= by, x-x; = h{u-1}, x-x;-h{ur-z},‘ x-Xy= hiu-3)
............ U TR T ¢

Substituting these values of (x~xg), (x~%,) ...(X—Xg) in {§) . we have ,remainder term ,

o B 06 oo - 1) - 2)-fu - n).

Ra {n+l:l
1.8 Newton's Backward Interpolation Formula :
Backward interpolation formula can be obtained in the same manner as dooe in the case of
Forward interpolation formula . The formula is
¢(x)-y_+—i[x x)+ [x x Yx-x )+t

T2e (s e hle-x)

Introducing u =3'--'-;1—h- ie.x = x, +uh , weget

d{x] #(.t +uh} y, +uVy, _,_“{“"'I}v: r.lrl':t.=+1Iu~|-2i,FJ
n{u+ilu+lIu -rn—l]

n

(2)

This formuila is used mainly for interpolating values of y near the end of a set of tabular values and
also for extrapolating values of y a short distance ahead of y, .




" Note: This formula is used for interpolating the values of y near the beginning of a set of wbulated
values and extrapolating values of y a littie backward { i.c. to the left) of yo . '

Remainder term of Newton’s forward interpolation formula :

To find the remainder term of Newton's forward interpolation formula, we write down the

T N ) o 0 LA
=10~V AN YRS )
mﬂx}'MMHMMﬂx]nMIWW,WcmﬂmM

ﬁx}hmmﬁpmmm&mmduiu&vﬂqfﬂm%hthem&mm.

Now F(t) vanishes for all (n+2) values t = x, Xg, Xi, ....... Xo ;"20d since f{x) i§ continuous and
have continuous derivatives of all orders, the same is true for f{t) and hence for F(t) . F(r) therefore
satisfies the condition of Rolle’s theorem . Hence, the first  derivative of f{t) vanishes at least once
between every two consecutive - zero values of F(1) . Therefore , in the interval from xo to x, , F'(t)
must vanish n+1 times ; () , n times ; F*(8) (o-1) times etc. . Hence (r+1)th derivative of F(¢) will
vanish at least once at soine point whose abscissa is £ . '

Since #(t) is a polynomial Gf the nth degree, its (nr+1)th derivative is zero . Further , since the
expression (t-%6) (1-X1) :...... {t-xa) is a polynomial of degree (n+1) . it follows that its (n+1)th
desivative is the same as the (i+1)th derivative of ¢! which is (n+1)! . Differctiating (5) (1) times
with respect to t , we therefore have -

Fhﬂ'lﬁ} i H‘*”{:} -0 - [f(x) - 1'{*)1{'1 = I..;.Il(i :jl{x - X.u.j

But since F*'\(t) =0 at some point t=E we have, -

0 = £6) - 1) = oy iy

xoJx - Xp)- (% = %,)

s, Fal il f[‘”"

11 7P N, T

n+l




Herex = 1.2 and h = 0.5 . We take xy=1.0 and hence

G X=X _12-10 .
h 0.5

Applying Newton’s forward interpolation formula

F02)= £y vutty s Ve, WD)
=9.0+0.4(23.75)+ —i(-——l{zzs} M[‘H] =9.0+9.5-2.7+0.48
-16.23

Example 2 : Evaluate f{3.8) from the following data :
< | 0 T | 2 3 4
£ |.L.| 15| 2231 43

Solution : The finite backward -lifference table is
x f _ Vi | v vt v'e
0 Lo . :
< 0.5
1 L5 02
0.7 - 0
2 22 02 0L
0.9 0.1 -
3 31 0.3 '
- 12
] a3 .|
Herex=38,h=1 Wetskex, =40 andbece um>—>ea38-4_ 45

hpplyingﬂem'ahckwdimupnhﬁmﬁarmh,mhnw

7le)= flo,) s+ 22! ot f(s,)+ et s Do, )

n:u{ uz+1)[~u1+z}
6

u,z{ 0.2+ t}xﬂ oo

ie. f(3.8)=43-02(1.2)+— 0.1

=4.3-024-0.024-0.0048=4.0312
G%E xample : Given §(-0.1) = 0.4602, $(-0.2) = 0.4207, §(-0.3) = 0.3021, find §(-0.15) .

[Hints : Apply Newton's forward interpolation formula

il




Remainder term :

To find the formula for the remainder term in Newton's backward interpolation formula we write down

FU) = £(0) - #60) - fle) - el Eegt = Rt = Re)

= X Xx = xp ) (x = %)
* and differentiate it (n+1) times with respect to t and put F**""(t) = 0 for t = £ . We thus find

o) - ) = S e - xa = )b - 50

. [n+1) .
or, Emor =R, = E‘I:%l[x - x,Ix - Xy ) (x = x4) )

This is the rermainder term of the formula (1) .

The remainder term in terms of u.[- ‘—:h—"-j is

n+lgla+1) . ; : :
R. = h f !E! l.'l-[“. + llﬂ '|'_qu + 3}*“{“ + n] . ‘(4)
(o +1)
wl,cmﬁlllﬁmth:diu _
x: 1.0 1.5 20 25 3.0
£ 9.0 32.75 790 1 15525 269.0

Solution : Hmshﬁhrqdrdﬁmﬂhnnh{hw&:bqim&nguﬂhegﬁmhﬂh“lhﬂﬂwly
the Newton's forward interpolation formula to evaluate it .

The finite difference table is
x f Af A'f A A
1.0 9.0

23.75

1.5 32.75 - 22.5
46.25 1.5

2.0 79.0 30.0 0

. 76.25 1.5

2.5 115.25 31.5
113.75

3.0 269.0

10




From the relation (2), wehave  f(x,,x,,x, )=

1
X, [f{-‘uv’ﬁ }" f{-‘ls-“:};

L[ fle) |, flx) _ flx) _ fe)
[ J

{x,,_-x,} Xo=X, X=Xy Xy=X; Xy—-2X

= ALY, fx) ' flx,)
-_ [‘-tﬂ 'J‘llxo —11_}+ {I_l =X, le —I;}+ (xz -X, Ixz —x‘} """" {5}

Thus the second divided difference fxeXi,Xy) is symmeiric in its arguments Xo, %;, %;. The resuls
mﬂﬁtmﬁlthmhmdhi:bddifﬁtuuilhuwmmthiuum.m,

flxg, %, ox, ) — f{x‘} = + . = 7 5 +
i A (r,—x,Ix,—x,}--(X—I_] {x}}%}xﬂ‘:—-xz}"{% ""x.} :

”""+{x_—r,1x_ ey e e R (6)

It indicates that arguments of the divided difference can be written in arty order. Thus,
£z, %1, %3) = f{xgu %2, %) = %2, X1, %o}
111 Mﬂdddlﬂwrmmm“mwm.

HMWMWMMMWMB'#MHMHMW
ﬂumd&mwwnw.m.

f{’-'u!xn}f' &% = fx)

k()
Similarly it can be shown that

flozam)=2 G} flemn)= 2 s )
(r +1)arguments.

1.12 Newton’s divided difference interpolation fornsula :

We have, from the definition of divided difference

f(ﬁ%k%—_{;{x—"} o f(x) = flxg )+ (x-x, )f (=, x,) WY 4 &

13




Example : Compute f{0.29) using _
x: 0.20 1.22 0.24 0.26 0.28 0.30
fix): 1.6596 1.6698 16804 1.6912 17024 1.7139

[Hints : Apply MNewton"s baclevard interpolation formula .]
1.9 Divided differences :

hhmﬂﬂknﬂnupuﬁhh_wnbuinﬁlnﬂﬁh Mmﬁmwhﬂdhum.
In such cases, it is desirable’ to have interpolation formalas which are applicable when the finctional
values are given at unequal intervals of the argument, cne of such formulas is known as Newton's

1.10 Divided differences :

If (xo.¥a) {m.jq.} : {x,.yﬂ be given points , then the first divided difference for the
arguments Xe,X; is defined by the relation

f{luv x,) = ﬂ—)—*xﬁi 1)
Xg — Xj
mmmmmnm:@h'
f ; 3 oy x =
f(xg. Xy0 X3) = ﬂxﬁ?}-il x;) o o

And the nth divided difference for n+1 points is

£(Rq, Xy, -+ Xgy) = £lKys Xg. %)
. Xp = X4

Ladd)

Symmetry of divided difference :

We bave,

flx,.x,)= f(—'-'u} e f{-‘ﬁ f(xu) f{xI] f{xl} f{xn}_f(x %)

X, =X XX x, X, X-=X  L=X . e A4}
m“f[x&-xi} = flxi.x,)

12




Solve ; The divided difference table is :

*Tr)  [af() A’ f(x) A’ f(x) A" f(x)
4 148 i - -
100-48 y1-52_ o | 21215
5-4 7-4 10-14
5 100 4 — = - 1]
254-100_ .~ |202-97 | 27-21_
7-5 10-5 11-5
7 | 294 900-294 _ | 310-202 33-27 0
= ladm | ey =1
- | 107 T R i T
10 | 900 i —
| 1210-900 _ 1 409-310
11-10 13-10 :
1 [1210 : 2028-1210
: 13-11
IEREL

By Newton's divided formula are have
S(x)=48+52(x-4)+15(x-5)+1(x~4)(x=5)(x=-7) =2 (x-1)
. f(8)=8%(8-1) =64.7=443 -
f(2)=2*(2-1) =4.1=4
S(15)=48+52(15-4)+15(15-4)(15-4) +1(15-4)(15-5)(15-7) = 3150
mms;-.lrmﬂutmmmmmzA,g,iuofﬂzﬁmcﬁnu
f(x)=x-2x |
b) Find a polynomial satis fied by (~4,12,45), (~1,33), (0,5), (2,9) and (5,1335).
Example 6 : Using the following table find f(x)as a polynomials in power of (x-6)
x -1 0 2 3 71 10
fix) -11 1 1 1 141 561

1.13 Lagrange’s interpolation formula :

Ldﬁﬂdﬂmapol}rmninlufthtmhdcg‘wﬂkhmkﬁth:vdmhy.,yg. .. ¥a When x has
the values xg, %, X3, ..... X, respectively. Then (o+1)th difference of this polynomial is zero. Hence
f{x, Xo, X1, Xz, ... Xa)=0 which gives |

15 .




Agamn, f{x:x'-xlj= f{l,-'f.}-'f{xq,ﬁ} P I{I-xp] tﬂxn-xb]"'{; _xly{x-xﬂ;ﬁ]

x=%
Substituting this value in (1), we have

f{-"}‘ f(-‘u)‘*{I“I-}f@nxu}ﬂx-lulx‘x:m-‘-xmﬁ} wA2)

" Again, fxxy.x,x,)= f{x.xmx;}-f{x;.x,.x,}

x:—r,

< ﬂx-xlux*.]‘f(-‘l v Xy léll"'{-t__x:jf{"r-‘hxllx:}
Substituting this valve in (2) we gt
f{x} f{xlj*{x -"&}f{xu -'1)"“(‘ xnlx xl}f{‘hxhxz}
"'{-‘ Ix*-t.lr -":}f{-‘-xn X, -‘:)
Flx)= £l )+ (= 5, ) (oo )+ (=20 Mor =2 )7 (g 210, )+
(x5 X =5 ) (e=2, ) (0 For By 1meox,)

= flxg )+ (2= %, ) f(xp, )+ (2~ ) :llf(xuxnxz}
+{x x, Nx - I.II x:lf{xllxt X1 xi}“'{"‘ Inxx x, ) {x xr-l}.f{‘tl 2}

*H{r-x.)ﬂ(x ) L P — @)

This focmla is called the Newton's divided difference interpolation formula where the last term is
called the remainder term R. '

P § (PEPNV,FPRPI By PRI § () B— @
=0 L =

Examples :-4 By means of Newton's divided difference formula. Find the values of
£(2).£(8) andf(15) from the folloing table
‘x:4 S 7 10 11 13
fix): 48 100 294 900 1210 2028

14




1.14 Remainder term in Lagrange’s formula :

Theorem : If f‘“"{x}is continuous on an interval containing the distinct points Xg, Xy ...... X, then
the remainder term

R, = ) - #x) = Lo (o)

where §(x) i the interpolating potynocnial
Wix) = x = xoJx - x) - ) = ij}{: ~ /) and §is a poin i th incerval concerned.
FO)= 70406} o) o

where x is distinct from all x;

We observe that F(x)=0 and F(x;)=0 ie. F(t) vanishes at (2+2) dm:l:pmm . Hence, by Rolle’s
theorem F'(t) vanishes at least at (n+1) points, F”(t) vanishes at least at n-points and so on . Finally
F*"')(t) vanishes at least at one point, say £ .

Hence, 0 = Fe*I(z) = r*“"m ““ ) - o))

A0 st W)= () T, () e)= s 1)

If f{x) is itself a polynomial of degree < n, then ' (x) = ﬁ:nd fix) = $(x) .
LIS Advantage and disadvaniage of Lagrange’s interpolation :

In the Lagrange's interpolation formula one ofthe main advantage is that there is no restriction in
spacing and order of the tabulating Points Xe, Xi, Xy, ...... €tc. However this has the advantage that if
we want 10 increase the degree of the interpolating polynomial by cne more interpolating point , the
computation is to be made afresh . mmmﬂnmudlmwmmuﬁmcumt
mm&ﬂm:&wﬁdmﬁpﬂmm

17




¥ + Ya
(x — xq x - x, Y _—x,}u-[x—x,} (xg = xXxp = x, Xxo = %3 )+-(x - x,)
¥ b4l foane
(II 'xlx| _xllxl = x:t.}"'(xl. 'x-r}
+ N, =u
{xl "'III'-—IBII. e |)"'(1" & xq--i)

= ¥ - Yo : ”
l_{x-x,lx—x, I’*":‘l]‘”{-“-‘..) (2 ~x Jx -, le 'xf}“'(x- -x,) _
Fi P
5 (‘t_xllxl _xllxl. 'I:}'"{I.: ‘x.}+

¥a

= ey e e

T SR S ) R A, TP S ) R
{xn"-ﬁl"u _-‘:) (xu'x} {'tl *X-Ix:-xz} (I, -x,) .

(x zﬂl_x x{} {x_':l-l} ........ { I]
{1 qu" xl} {x xl--l) :

Thsﬁ:mﬂlmihnhﬂiﬂuu

)= (x— x5 Jx~x,)- (x-x,) & {I.-qu.t—;l}..{_;_.x.] Ty
" (SR SRR B P }f{x"} (x,-x"{x;""-*i};"{?} 1}:( : )
e e s e o

If we now set .

a(x)=(x~ . x, Nx—x)(x- x x-x Xx—x. ) (x-x,) | wied(2)
Then 7(x, )‘#—-—[Jr{x}L . . S g owm
u{x -":.I-‘- -"l} (%, lex =Xy l} {-' - }

sothat(l) becomes  y=f(x)= ):I x}w = SRR |
!

16




1.16 Central Difference Interpoiation Formulse :

Newton's forward and backward interpolation formulas derived in section 1.7 and section 1.8 are
best suited for interpolation near the beginning and end respectively of tabulated values .For
interpolation near the middle of tabulated values, central difference formulas are preferable . The most
important central difference formulas are the two known as Stirling’s and Bassel’s formulas . We shall -

derive them by first deriving thres different central difference formulas.
1.17 Gauss Forward Interpolation formula :
From Newton's divided difference interpolation formula , we have-

f{-"]‘ Slxg )+ (x- x.}ffx,,,x,]-l-{x-x;lxwx. }f{-"n-:lvx:)

+{x-xnl-t"I|Ix—1':}f(x.,xj_x!_;’]+......
Putting x: = Xeth , X3= Xo— b, X3=Xo+2h , Xy Xg-2h etc. , we have

f{x}" S (o Y+ (e = xg ) f (g, x5 + 1)+ (x = x Jx = x5 = )
Slxg, %o + b, x4 ~h)+(x-x, fx—x, - h)x = x, +h)x
S(xos%g + hyxg =y xy + 2h)+ (x = 2y )x (x - x, —)x

(= x + B)x = Xo = 2h)f (g2 o + 5o = B 2 + 2k, X, = 2h)+--
: siindd)

X=X

Putting u =

or X - Xg = uh we get

S(x) = £ (xo) + bus flxg, x5 + h)+ hulia = B)f(xg —h xg, %4 + B)
+hu(ku — B )Y+ h)f(x, = A, x4, %, + kX, + 2h)

+ hulhe = k) e + B )(hu — 2R)f (x — 2h,x, — B, Xy, X + By Xy + 2h)+ -
3

H&w.f{lu.lu-ﬁh}-ﬁ—:“
; I |I-'IF.'!"vl
flxg ~ b, x5, %y + h) = ———
(xo 0+ Xo + h) -
3
f(xo — h, xg, %, +h,x,,+2h}-£;1'l‘

aly_,
4nt

flxo - 2h, %y — h,xg. Xy + h, Xy + 2h) =

(0



Example 1: To what degree of accuracy the vale of 470 you obtain using Lagrange formuia for
fix}=Vx choosing the interpolation points x,=64, x;=81, xy=100 ? [GU '94]

Solution : By Lagrange's interpolation formula we have ,

[‘t-xtlx_-rz} % {-x'-’-'ulx'x!} y, + {-I"Iulx_xl]

[.I, =% Ixn "'J:]yn {x, +xﬂ1‘tl "x:} .I [x: _Inlx: =% )J":

}-‘:

Here xp= 64, x;= 81, x;= 100 and yo=8, y,=9,y;= 10.  Hence, From (1)

(70-81X70-100 {?u 64)Y70- 1m} {‘m 64)70-81)
H10)= 70 = (64- allﬁqulmj} I_-Mlsl-luﬂ) {m-ﬂ){m 81)

JA1x30 o 6(-30) o 1D 10 43137+5.0155-0.9649 =8.3643
17% 36 17{-19} 36x19 :

Actual valueof V70 is 83667 approximately

=10

Degree of accuracy is 8.3667 — 8.3643 = 0.24x10°

Example 2: Calculate using Lagrange's interpolation formula fmmthtﬁﬂhmnphu

x 0.3 0.5 0.6
fix): . | 06179 | 0.6915 | 0.7257
; Ans 05462
Example 3 : calcalate f{1.30), given
X 0.0 1.2 24 37
f{x): 341 2.68 137 -1.13
fuse Lagrange’s interpolation formmla] - [Ans 2.60
Example 4 : Given the values
5 7 il 13 17 . ]
-I fixk 150 In 145_?. 2366 5202
Fvaluate f9) using Newton's divided difference formula . -Ans ¥10
Example § : Determine fix) as a polynomal in x for the followng data
X 4 1 -1 0 S T
flx): . 1245 33 5 9 1335
[Use Newton's divided difference formula ] [Ans 3x'-$x™ Sx'-14x+5
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Ay,
flx, =2h,x, =h,x;,x, + h)= mm-
Ay,

44

Slxo =2k, %, = h,x0, %y + Xy +2h)=

andsoon.  Substititing thesé values into (3), we get

! —
flx)=y, +uby, + "{—‘;—[lﬂ’r.. +1'1"_.“—l}ﬁ‘r.:

+'l.'l{l.!3 _jilu +2}.ﬁ‘¥_‘= +“{JJ,‘-]51;JI _Iz]'&!}'-! ez 4)

" which is the Gauss backward imerpolation formula.

: Hoﬁ : It is used to interpolate the values of y _fur'lmiuiv:wlmofu!yingbﬂwm-l'mdﬂ.
Example 7': Use Gauss's forward formula to find the valve of y when y = 3.75 form the

following table.
x: 2.5 3.0 3.5 4.0 45 5.0
y: 24145 22043 20225 18.644 17.26216.047
Solution : Taking 3.2 as the orgin and 0.5 and the unit the value of y required will be vale
3.75-3.5
for u -T =05
Again Gauss's forward formula is

-1 i i+1 -1
Yo = Yo +udy, ""H{Lzl_ A’y "'{g—")-—:‘gﬂ_"_)‘ﬁlf-l_

(e Du(u-1)(u-2) ,  (us2){usri){u-1)u(4-2)
* 24 BBty 120 e

- ¥, =10225+5{-1,531};&£@{.13T}

+{.5+1]{.:)[.5-1}x[;‘ m.3}+(:+1](.s}{1.i—1}[-5—z}x (0009)

+{.5+2){.5+1]{.5)[5-i][n._i—z)x{_m)
: 120
=20.225-0.7905 +0.029625 + 0.00238 + 0.0023750 + 0.002106 = 19,40(approx)
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Substinuting these values in (3)

flx)= flx, )+ ua y, +ulu- l} +“(,, 3;-1
+u{u: "‘III.I'*r Z‘ﬁ y" + “{" -.lg;f “?I}ﬁsy.l_r
A
=:r_}#yu+uﬁ._}r‘+“{"_l} .!".¢+ (": }__%*;L
il -1y~ 21& v, , b -1Iu -2 }ﬁ, b

which is Gauss forward interpolation formula . .

Note: This formula is used to interpolate the values of y for u( 0 <u<1l)measured forwardly from
the origin . o

1.17 Gauss Backward Interpolation formula :
We have , the Mewton's dh&ﬂeddiﬁumiuupnhﬁmﬁumﬂ:

f{-"’} f[xn)"'{: -‘o}f(xnﬂ}*[-‘ xulx'xl]ﬂ-!n--’:n-‘;}
+{x-x,,lx--x.;lx-x,1f{x, x,..t.;,x,}+ o (n

Putting X, Xo~b , X3= X+ h, X;= Xe=2h , X4=xg+2h et , {I)hmm

f{x} f{xn}"' (I-Iumx.-l. - h)+(x- xﬁl"""’t "'"'}“ '
Sxor%o =By x, + h)+(x~x, Xz~ x, + k) —x, = 1)
© flxgxo + M Xg = h,xg —2h)+ - WA )

x -

Substituting u = % iehu = x - Xg, we have from (2),

F(6)= £(a)+ bt flxy = by xo)+ ' Sy = hu5auZe +B)
+h1#{u+llu ~1)fx, -2, x, = hixy. %, +h)+
+ b+ 1 = o+ 2)f (x, - 20,%, = ~h,xy, %, +h, :,+1&}+---. 3)

_ f{xu _&4‘]:99’_4

al
f[:‘l —h,x,. %, "‘h}‘ "'""_LZ::.




Again Gauss backward formulais  y, =y, +" Ay, +" c.A%y, +" " C A’y + o

ol o eleo) g, | QoD el ..

Or J"n'1T+u.5!7+lj;'jxj.y.t'sx'jx["ﬂ-s]xa

Or y, =y, +uldy,

+2.5:1.5:ﬂ.5x{—ﬂ..ﬂ _ +{2.5}x1,51[ﬂ..5]x[—05}x _10)
24 =T 120 (

=27 +3.5+ 1.875~0.1875+0.2734-0.11718 = 32.6484 - 0.30468 =32.3437 (thousands)

118 A Third Gauss formala :
To Mwﬁlﬁmhmummﬁwhcrhuf:m?wmgmhhhmm

fmmhnﬂpu_t u'-lni-;—lec.x'—xl-hth

These changes smount to advancing all subscripts in Gauss's backward formula by one unit and
replacing @ by (u-1). Thus we get ' : ' :

- ” _ _ 1_ g
f{x)- » +{u—l}ﬁf._+{” ﬂl}'ﬁ‘lyn + “'[" I3.I|" 2)413.4 +.['_‘_.1%£.!ulﬁ:‘r4 i (n

which is a Gauss third formula,

1.19 Stirling’s formula :

Wemmmmwmmmmmm

. wlu-1 ulu? =1 wlu? =1 u-2
y=y, +uly, +{_2!-_l‘f¥4 +._(_]I_lﬁ‘].-_l "‘i—‘ul—“lﬁ‘}’.;

-l -27) o
+ s Ay, +- i (1)
wlu+1) 5, ulw?-1
y-y.+uny_|+Tﬁ 4t - Ay,
2 1"‘1 1_ Al
+AL41|IL~+2)&‘}',;+U(“ %l 2 }5’]'4'* — {2}
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u |y, Ay, - | Aty | A, A'y, Ay,
2 | 24.145 -
-2.102
1 | 22,043 0.284
-1.818 0.047
237 009 .
0 |20225 . ‘ -038 ~|-.003
-1.581 006 -
199 -.032
1 | 18.644 ¥ .
' -1.382
167
2 |17.262
1215
3 |16.047

Example 8:- Use Gauss's forward formula to find y,, given that
yo, =18.4708, y,, =17.8144, y,, =17.1070, y,, =16.3432, y,, =15.5154.
© Example :- Findbyﬁmm’shmkwaﬂwthc sakshj.rnmncﬂn_ﬁ:r_tht year 1936

Year 1901 1911 1921 1931 1941 1951
Sale | i2 15 20 27 9 52
(ln thousands) '

Solution :- Taking 1931 as the argin and h=10 years as the unit, then sale of the concern is 10
1936 -1931
LI ————

be found for 5
10

The difference table is a under
8 ) i Y. Ay, Ay, | &y &' |4
1901 | -3 12

3
1911 | -2 15 2
; 5 0
1921 | -1 20 2 I % 3

7 3 -10
193110 27 5 -7

12 -4
1941 | 1 39 : 1

.13
195112 52




The Striling’s formula is

u(u —l} Ay, "‘45‘?"-; u” [u -—1)
b 2 24

Purting ¥ =-0.4 and thenhésufva.ﬁmsdiﬂ'umfmthetabh,m get.

¥, '}'|+“£L2&L ﬁ _'r"_ ﬁ, ¥

~1310-1080 [nm){ 230)+ t-ﬂ.d}[ﬂ.lﬁ-u_[-'m-sg) {0.16){0.16~ I}[ _21)

- 4T36+ [-'0‘ 4) 3 n 3 24

= 47236+4?3—I3.4—3.E_9_20+.11?6 ie.y, =47692.

~ 1.21 Bessel’s formula :

W:hwqrh:ﬁ:mfumwdﬁrmmhmdnﬂﬁrd(hwﬁmmhmrupwﬁ\dy.

y-y.q-uﬁy‘ ﬂ_lﬁly +L)ﬁr_' i"_-!l"_uz)

+ "‘E','z -11}&‘1' e @

uly—-1 -1 =2
y-y.+{n~l}ﬁr.+-i-l&‘n - 3: Jpoy,

S : |
Ll l!u Z!y,r +uu ‘IX';:ZI"'3}ﬂ=¥4+__, i)

4!

Taking the mean of (1) and (i), ke

:r. [ }:\ u{n l}&r,,_z&r. '{u"}” l}

_'~(~ —IIu-zi ayy+8'y, '{ “}(' - _2) &y +-(D)

2

Tlmumefmnnfﬂnui: funﬂ{nmhmmnlmmdlﬁuuﬂm Since Ays~Yi- Yo .
mﬁnmmmhmhmdmrwuﬁnmmbmﬂm
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Taking mean of the two formulas (1) and (2) we obtain

By, +8y, ¥ o ul’-1) Ay, +&y,

Y=y, +u 2 2 o L 3 2
+u’§u=d!yy.+“[£‘='II“:'2!).£I-=_.'£LL+--- (3)
4! - st ”

which is the Stirling"s formula. it is should be noted that it goes horizontally through yo.

Thpﬁufsm':fumhmlw:ﬁﬁ&mmblc is shown below :

Y Ay Ay Aly Ay Ay Ay
Y3
ayy
¥ Ay
ayg 1 -1 oy
Y Ayy {1 aly,
I i ..-r"‘ﬂ.,}'..t.-"‘ - . ”__‘-fﬂ-*f-l B 9
?‘-rf' ."ﬁ:!'-];:_ ; !‘1 ] 1 “-ig
. _—'_""“a;h _‘ﬁ’yd 3 A_v_; )
Yi A'ye ’ Ay '
Y2 A’y
: Ay )
¥i T

Note : This formula involves mean of the odd differences just above and below the central Ime and even
differences on this line.

Example -10 : Use stirling’s formula to find ), givén

Y =49225, v, =48316, y, =4T236, y,, =45926, y, = 4306

Solution : Taking x=30 uthco;ighmdh-iﬁtﬁmt.-nlﬁ_m find the value of y for

e 04

e : 1 3 3
x | “_x—:ﬂ ¥.. Ay, Ay, Ay, Ay,
20 |2 49225

: 909
25 |-l 48316 ©1-1T71 '
-1080 -59 .
30 |0 47236 -230 -21
j -1310 -80
35 |1 45926 -310 :
: -1620

40 |2 : 44306




Y Ay Aty Aly Ay Ay aly
¥Yi '
Ay
¥z Alyy
Ay.a Alyy
¥a 'ﬁ!j"_] .ﬂ.‘}_l ]
Ay Ay, ﬁ’iﬂ_
Yoo T TR a'yy
A% Ays " ~A'y;
W | Bl e B Ty - Ava
Ay % a’ Yo ﬁ-IY—L
¥ ay | A'yg
i Ay Ay
» ; A%y
2 Ay
Yi

1.22 Accuracy of Stiring and Bessel’s formulas :

For a given table of differences, the rapidity of convergence depends upon the magnitude of u in
Stirting’s formula and upon magnitud-, of v in case of Bessel's formula (IV). The smaller the values of
uﬂi,hmmpﬂyﬁsﬁqueMﬂmmmﬂzmm point Xg .
50 25 to make u and v as small as possible. In most cases, it is possible to choose the starting point 50 a3
tomake —~05.< u < 0.5and— 0.5 < v S 05. '

As:g:wﬂnﬂ:hmyhmwdlhnﬁﬁsd‘:.fumh_wﬂimtmemurmmm
interpolating near the middle of an interval say from 0.25 to 0.75 (v = —0.25 to 0.25); whereas
Stirling’s formula will give the better result when interpolating near the beginning or end of an
interval form u= - 0.25 to 0.25, say. ' -

1.23 Remainder term In Stirfing"s formula :

Ta.ﬁnamcmmﬁmins'mmmfmh.mmmuﬁmnmﬂ .

(8 - xg)e — x Yt = xy) -t = x Yo - x_,)

= fit SRR | |
F[‘] {j *{t] [ﬂ:‘} "{ H( ‘-ul‘- = xll" 7 l..|} {K ™ ’_'Ix ’:i [,
This formula vanishes for the (n+2) valuss of t = X, Xo, R\ oeveionXay Ky Xz, o0ivXg . We assume that
f{x) is continuous and has continuous derivative of all orders upto 2n+1 . Hence F(t) satisfies the
conditions of Rolle’s theorem . Also since §(1)is a polynomial of degree 2n , its (2o+1)th- derivative is
zero. Hence on differentiating (1) (2n+1) times and putting F** (1) = 0 for some value t = § , we get.
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: 1
M- u-ﬂ
-1) Aly, +A '{ 2)(
.vnyuwny.f"{"ﬂ ). ""*'2 _ L :

o) ity AR
A }.M-:; a2 By 4 (D)

'ﬁ!)"—l

which is the general form of Bessel's formula. Putting u = %En(l[}.m:ﬂ

y-y‘+}'|_l+ﬁlf_! *ﬁl_v!_'_l.ﬂ‘f_:"‘ﬁ‘y.l* 3 'ﬁi?-!+-§‘y-=+_" {Ifn
5.8 . B 128 2 1024 2

Formula (TII) is also called the *formela for interpolating balves'. It is wsed for compoting the
values of the function midway between any two given values.
A more symmetrical and convenjemt form of Besscl's formmla is obtained by putting

u-l—ku-v-r-!n
2 ; 2

Mﬁ;&mﬁm}.m;ﬁ

. 1 75 o <
Yo+ ¥ [,,,z_z) Aly, +4&y '{v _74) '
}rt—"-'-“-*_‘i ‘*—Vﬂ_ﬂ‘i-. > - y"'z' .-lr 3 ﬁ}}'_l. . .
) PO 1 )
" 4 4 .&‘y_,_+ﬂ.‘y,,+ g 4 Byl
4 2 ! i
(2= -%)
Vv = ¥V =_—y == & &
a2 4N 5'.4 4 ._ﬂ.v.;;&.v.zh_ vy

mﬁmmmupmﬁmimhm:mﬁ&m@h




from which we get

[flx) - #{x)] = i:n;flg{‘ = ln!’_‘ - % )Jx - "-!]"'{1 = xgJlx = x_gJx - fgei)

or

Error=R, = %:ﬂz%} {I‘. i "II‘ == _:R‘III "‘i--I}'"{“ = xll‘ = l‘-l.ll = "lﬂl
Putting

TR ki x-x, = hu,webave o
o x=x, =Mu-1), 3-x =hlu=2),, 25, =hu-n)
and .r-x_,-x*(x,—ﬁ]-;—x!'q_-h-ﬁu+b-h{n+l}
x=x,=hu+2), - x-x, =hu+n)
as in the case of Stirling’s formula, we get

R,. = 51—';:‘%1#9 (s = u +1u - ﬂ---{; ~afu+nfu-n-1)

which illhrmuﬂﬂ'w ilﬂeﬁel"l ﬂ:rlmh

Example 1 : Uumnmuphuﬁmhhhdfwhmgd.ﬁ from thé data given below
x: | 585 | 590 | 595 | 6.00 6.05
y:| 346 | 8.22 | 9.64 | 6.00 | 2.86

mmmmmymmmmmmmm [Gues

Solution : The difference table is
X N Ay Ay | Ay _aYy
5.85 yo~3.46 : ; o
4.76
590 | y.~8.22 -3.34
e Ay.;=1.42 | Aye~—172 A
xe=5.95 | yo=9.64 " Aly=-5.06f Aly=728.
| Ayp=-3.64 A'Y.=5.56
. - -3.14
6.05 yr=2.86

Here wetzkex;= 595 and yp=9.64, h=005. Givenx =596




R L e =y e =y =

which gives

Ute)- ol e o= 2.l 2 - 2.)

(2n+1)

H,Ermr-l_-‘r;:“l (e =2, Yx = x, Y =x_, ) {x xlx x_)..42)

Putting ’;"‘ =h ie. x-x,=hu,wehave
x=z whly=1), x~x, =k (©~2),-,x~x, =h (u-n)
and  x-x_, =x=(x,—h)=x—x,+h=hu+h=hu+l)
' x'—.t_,q-k[n +1]_, XX, = hlu+n)

s fom@)weges R, = %;@ u? - tfu? - 2%)-fu - o)

where £ is some value of x between x. a0dx, .
1.4 mt‘:l'-il Bessel’s.formula :

Toﬁﬂhmmﬁnhﬂuﬂ'l formula mmmmmm

Fl)= .f”{r] i{rl-* w)- ﬂxﬂ(f—?]l;:' ﬁ; ?.}) {Ex xx}i

-Xx At-x
X=X AX=%X. )
mmmummapmt-x X0 » K1 5 K 3 suvnsreranes o v Ko Tt Smuﬂt}ua
polynomial of degree 2n+1 , its (2m+2)th derivative is zero. Hence on differentiating (1) 20+2 times
wi:hruputtntuﬂpﬂih;Fh;n{!]-ﬂh_!ﬂm:ﬂhe t-_!,,iu_p:

0= 1 2()-0-[1(e)~ Mol oy Lk S EAP.

x Nx=x_ ) lx- .r} (x=x Nx-x..,)

18




ie 0.25 £u=0.75 . Hence we apply Bessel’s formula which is given by

1
"{H—il ‘51]’-1 "'ﬂ]yn ‘{"_E}H*I) :
7 2 3 5
+u{y1 -LIH'2}+§‘J}-I :ﬁ.}."‘z gpran U‘}

¥ n_n-d-uﬂyn +

Substituting the values of y , Ays , AY.; , Ay etc. ﬁnmﬂ:ediﬂ'wmni?hhhh{l}mgﬂ

- ﬂ.{ﬁj—-}(ﬂj-t}
y{li]=ﬂ+l},5x2+u‘s[u;_l]scaﬂ-r 2 x(-2)

2 - ¢
L 0(0.5* ~1)Jo.5 - z)x(:_g)
TR 2

=(0.668 approximately.

Em::t&unmmmm_mmﬂiﬁﬁmﬂummu

below :. i
x 3 4 3 6 ;¥ '8
fix): | 628 892-| 1650 | 12.62 | 735 5.37
[GU'%6
 Solution ; The difference tsbleis
X Y Ay Aly Ay WAy o Ay
3 28 ' ;
2.64
4 ly.~8.92 | - Ay ~4.94
Ay.;=7.58 ' A'y==-16.4
[xg=5ye=16.50 - |AYyy=-11.46 A'y.=26.47
Aye=-388 | 10.07 Alyy=~31.86
6 [y=12.62 Alyg= -1.39 Aty =-5.39
-5.27 4.68
7 w135 3.29-
- -198
i 5.37 |

Here we take xo= 5, yo= 1650 . h=1 and x = 5.6 {given).

X-X% _36-5
h |

S o= -ﬂ.ﬁ_

3




X=Xg _ 5.96 -5.95 _ 001 _
h 0.05 0.05 -

LU=

0.2
Here, —0.255u £0.25, hence we apply Stirling's formula which is given by

Ay, +8y, u ule® 1) A'y, +4'y,
Y=Y +u .}'42 °+*;ﬁ’h+ {“3! }-- “‘2 .

+u1!u= —l!d'. %

al Ya T (1)

Using (1) and the values of the differences Ayo , Ay.: , A'y.i, 'y, etc., we have

#5.96) = 9.64 + 02 x 142 : 364 {ﬂif ¢ sidis u.z[a.zﬁ]— -1 5.55; 172

+£—th 0.2 ~1 = 7.28

24
= 9.64 - 0.222 —0.1092 - 0.06144 —0.011648  =9.224 approximately.

Example 2 : Given the-data set

X: 10 12 N T 16 18
¥ r i 1 0 2 5
Compute y for x=15 . {Gu'R2
Solution : The differéncetable is
X Y Ay Ay A'y - aYy
10 =2
-1
12 =1 |0
Ayt | Aly=3
=14 Ay.=3 Aly=—5
Ayg=2 | - jAlyy=2 |
16 [y=2 : Alyg=l
g 3
3] y=5

We take xo= 14 and yo= 0, Hereh = 2 andx = 15 (given)

X - Xg 215—14“
h 2

0.5

30




Example : Apply Bessel’s formula to obtain yxs g:wn yo= 2854 , yy =3162,
¥a™ 3544 | y,y=3992. [Ans 3256.78
1.25 Linear Interpolation :
Suppose a function f is linear in its argument x ie. it is of the form
fx)=As+ Ax, A.-.A;mm-_

Forx=xeandx, wehave X ActAda fu)=ActA

Sothat fix)-fx=A(x-x)  ie. £lx) - f(xo) A, , which is a constant .
- X —X

Th:hmhtiﬂnﬁmummﬂy“mtmnwumnhimﬂn

lm:p&mth:tﬂnnm
filx,) - f!"g) . _ '[.1}
X| = Xq T
ie. the first divided difference f{xe.x;) of f relative to x and x, is independent of xo and x, . So the linear

L3

_ lp;lmiunmjrbeﬂlprmed'm the form
f{xa.x) = fXa.X1) - s ey ,(i}

This leads to the approximation formula ~ f(x) = f{xs) + (x-Xo)f{Xe,X/)

= Bx) = f{xe) + (x-o) ﬂHﬁ} @)
l = -

ﬁx.—xJﬂx.}+(x—:.){ﬂxJ-f(x-}H
}]_ 1 {x-) Xy j

X=X,y f{xl) -
1.26 Error in Linear Interpolation :

A simple formula can be derived for the error involved in linear interpolation . The formula
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Thus 0.255u <0.75
We apply Bessel's formmls which gives

"{“ a2 ﬁ’r.i + Ay, "{" ‘—](“ -1
2 2

o *11;‘.-1],*5»‘?“1 +&y. '{"-%)(uz ~1)u-2)
a -

2

y= .v +udy, + Ay,

Ay y+--()

Substituting the values of vy, Ays . AY. » Ay etc. from the difference table in (1) we get

£(5.6)=16.5+0.6( 333} ﬂ.ﬁ{ﬂiﬁ-—l) ~u,-a:—|.39
' 0.6(0.6-0.5X0.6-1) 0.6(0.36 - 1)0.6 - 2)
= (10.07)+ -
2647539 GG{DG 0.5)0.36 - 1){&5 2)
2 Sl

(-31.86)+-

= 15.1245 approximately .

Example : The following table pmthewhmnﬂ‘ﬁxwumupudmvﬂm of x. Find the value
nt‘c’nrl:mx-ﬂquwhﬁrmﬂn

x 0.61 | 0.62 | 0.63 | 0.64 | 0.65 | 0.66 | 0.67
1.840 | 1.859 | 1.B78 | 1.897 | 1.916 | 1.935 | 1.954

[Use Stirling’s formula ] | [Ans 1.9045
Example : the function
o4yl- sin* ﬂ.'liq' y _
a 0 5 10 15 20

Kia) 1.5708 | '1.5738 | 1.5828 | 1.5981 1.6200

Compute k(9) by Stirfings formula [Ans 1.5805




Example: What is the maximum error of linear interpolation for logx with04<x<0.57
[GuU'93

Example : The fimction /N is tabulated in Barlow's tables af unit interval from | 10 12500 . Find the
possible error in the linear interpolation - of this funstion when N=650 . '

Soton: . fN)=w SN

Takingh =1, N =650, and substituting in

1
L R T M A LA
3 4x(650) 1098500000

ie. Esl0”

oo

a5




f{x}=f{x,:n+:'_’j; [(x)-£(x)
can be written as :
S@)=fla )+ 200 (5) = ye + =2y e ()

The formula (1) is the Newton's forward interpolation fumhmmm‘ng_m-mmuuﬂ--
i

The error term in Newton’s forward interpolation formula is

A LR
R = e

X, <&<x,

Putting 0= 1 , the error in finess imterpolation is
R, .{_‘:ﬁ%ﬂd f'(.l;} Xy <& -c.:,

Taking u==22, webave

R =2 (e)elu-1) i
R = o € =1) = Ml -1) = M )

where M is the mean sbsolute value of £(x)in any interval b. For maximum errir we bave,

T
& WM
du

= (a-1)=0 which gives v= %




Atx = %, u=0. Hence putting u = 0 we have

dy 1 1 1

(&), “slore-3overione] @
Again differentiating (1) with respect to x, we get

d’y _dfdyldu 1{2 ,  6u-6, 11

o B P e D o L Ay, +---| =

& du[dx]dx h[zl LN
Putting u = 0, we obtain

a! 1 11 j

[fi-l% = B—J[&1Y| ~&y, + Eﬁ‘ Yot "'] -+(3)

*(II) Derivatives using Backward Difference formuia and Ceotral difference formaula :
Proceeding in the same manper as that in §2.2 (T), derivatives for backward and Central
difference formula can be obtained as follows:

f ' !
N Moy +lvdy olow ol 4.
&) "% }"-_-I-Zv Y.+ ‘le?]r_+4? Y.+ ..{4)

\ 2 3

(dly 1 ey -

il =]l v —rt :
\Lh:]l_. __h] { yl + yl. +12 F- + ] {5}
( dy 1| Ay, +Ay, 1A'y, +A'Y

ot ] i goonn -.(6).
\dx J),yy b 2 6 2

d‘]r 1 [ 1 Lowa: l . ]

L 4 =—f Aly . ~—Aby | 4 —p%y .
[I J]I“a h? ¥a 12 3’4. 90. Ya (N

[*Fox details, soe any stadand book on Nunerical Analysis].

(4) and (5) are the derivatives using Backward difference interpolation formmla and (6) and (7) are the
derivatives using Stirling"s foroula.

Example 1 Compute £ ‘(D.1) frﬁm thc following data :
Xx: 0 1 2 3 .4
f.: 1 0 1 10 33
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Unit 2

Numerical Differentiation and Integration
1.1 Numerical Differentiation :

It is the process of caiculating the value of the derivative, of a tabulated finction at
some assigned value of the independent variable x from the given set of values (x;, yi)
To compute gxz, we ﬁ:st replace the exact relation y = f{x) by the best interpolating
polynomial y = @(x) and then diﬂ:rentht;:thehIMas many times as we desire. The :hoiﬁ: of
ﬂwinle:rpulatinnfommb to be used, wmdepmdmthemignodvmenfxatwh#h %E- is
desired.

dy

chcvahwsofxmaqlﬁspundmﬂa-i.srnquirednenrthebegimhgnfth:mbh,we

employ Newton's forward formula. For finding derivative near the end of the table we use

Newton's Backward formula. For values near the middle of the table, «'g—:is calculated by

means of Stirling’s or Bessel's formmula.

2. 2 Formulae for derivatives :
Consider the function y = f{x) which is tabulated for the values x(=x, + ih), i=0,1,2,..0
(0 Derivatives using forward difference formula :

Newton's forward Interpolation formula is

u(u—T)
2

ulu—1Wu-2)
3l
Differentiating both sides with respect to u, we have
dy 2u-1
1

—==Ay, +
du .

I
Ay, +- wheré u = 2

Aly, +

y=Yy, tudy, +

1 —
RSt SO

e, %=dyj_:“=%[ﬁh+2u 1,  3u’-6u+2

== o7 AYe+—; a‘w---] m

where u=
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we have

1 1 1 1 1 1
(%) .:E[v}'l "‘Ev:}'- +Ev]yu * Iv4FI +;F’]r‘ + _vly. +"'] 1)
=Ry H

6
a2 1 1t 5 137 .
[a"‘:'r] - LT[?:?I + vj}"n 12 v‘rl 6 \?’y lm v‘?l } ()
wwiy E :

Hereh =0.1,%, = 1.6, Vy, = 0281, - ¥y, = 0.018 etc.

" Putting ﬂﬁuvahuhﬂmd[iijmp
(QJ --L[o 23+—{—u.ulsl+-mﬂuﬂ+ (-0: mn-»-(-o mn:+-{um11]
d: =l ul
' -2727
dy) ! o.msw.nﬁh-(-umn-r -{-u.um}+£{—ﬂﬂ°3}]
d* ) .. {a l}‘l_
' --1.703

1. Findy'(0) andy "(0) from the following table :

x: 0 ° LRI T4 408 :

y: 4 8 15 7 6 .2 [Am.-279,117.67)

' 2 Fumﬁummmﬂmmmuw st the point x=1.1: -
x: 10 12 14 16 18 20

f: 0 0128 0544 1296 2432 400 [Ans.0.63, 6.6)

3, ﬁumtkﬁlhwmgubh.mdmmufdymdh atx=2.03

x:196 198 200 202 2.04 _

y: 07825 07739 0.7651 0.7563 0.7473 [Ans. —0.06, 0.5]
4. Compute f'(6) and £*(6.3) from the following table:

x: 60 61 62 63 64

£: 11750 0.8002 0.777. 0.7578 0.7404  [Ans.7.5492, -2.6633)
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The difference table is
x £ .Af A% NKf AT

0 1 |

1

1 0 2
i 6

- 8 0
9 6

3 10 14

4

Hushel unizle %120 a1
h 1

Af=-l, A'%=2, A'%=6, A'%=0.
Hence from formula for derivative using forward difference formala is

.fr{u_n.'._h_{Mz—l)xz%.{0.03*:.ﬁ+2]“6__0‘3ﬂ i -

!‘.nwlei Given that:
x: 10 .11 12 13 14 1S5 16
f: 7.989 8.403 8781 9.129 9.451 9.750 10.031

) 2
ﬁdguﬂ l—f daald

Solution : The difference table is
T x ¥ Vy v’y ?’r?‘yv’y vy -

1.0 7989
g 0414
1.1 8403  -0.036
0378 0.006 :
12 8781 -0.030 -0.002
_ 0.348 0004 - 0002
13  9.129 0026 - 00 -0.003
0.322 0004 . -0.001
14 9451 0023 -0.001
0.299 0.005
15  9.750 -0.018 .
0.281

1.6 10031
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which is the general quadrature formula We can obtain different integration formulae by
puttingn=1,2,3,4,5,6, ...etc. ’

2.4 Trapezoldal Rule :
Setting o = 1 in the general quadrature formmia (1), alt differences higher than the first will
become zero and we obtain,
1g+h 1 o -
I}d:a‘. "I{h ""i"ﬁ)'a]'n[?l"‘i[ﬂ '}"u]']"-ify,&]r,] ...{Q)
Ly

For the next interval [x,, x;] we deduce similarly
Jix =21y, +.] o
K
and so on. For the interval [x,.1,X.] we have
- .
.I}‘h --E[FH.‘-YI.]
combining all these expressions, we obtain the rule,
!]Yd!=%[h+1{h +¥3 4o+ Y0)+y,] which is the trapezoidal rule,
Xy
Error in Trapemidal rule :

Let f be continuous and possess contimuots derivatives in [Xg , X.]. Expanding y(=f{x))
in Taylor"s series around x = x,, we get

j’d"( = I [¥o +{x~X,)¥e +£l:23;—°}—y; +]dx
] iy

H .hl . h] 4 g
'h?."'“?)"a"‘?h*'": ' (1)

AR, 2ly, +y,1= 2] yq + (v + byl +£y'+---
* 9 LI A 2,1 [ ] 7 o

h? . K,
=hy, 3 Vet Yo ¥ il

; . - .. h gl
~.Error in the interval [xs, x1] - J}'dx -E[}'u +yl= "Ti'.'!’n
.
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2.3 Numerical Integration
‘Numerical Integration is the process of computing the value of a definite integral from a set of
tabulated values of the integrand fix). The process when applied to a function of single

variable, is known as quadrature.
The problem of numerical integration is solved by representing the integrand by an interpolation
forrmula and then integrating this formula between the desired Jimits. iy

Thus to find the value of the definite integral [£(x)ix , we replace the function fx) by
! ’ b :
an interpolation formula and then integrate it between the limits a and b.
Leti= j‘ydx-[f(xm
] b

Where y takes the values yo ;1 ,.++,Ys fOr X = Xo Xi ,...,Xe respectively. Lét the interval [a,6]
_hedtvidediwmoqiulnﬂ:&uu-vﬂlofwﬁh hsothat xp=a x, =x+h x=x+2h .. X =
xg+ nh. Then

= JI‘]l‘;{xll-d.vr.
x 7

-:.&!{y. +udy, +'f'(';;1}ﬁx . +H{I—;K!n—2]ﬂ;y. i =H{H-l};.::£—u+l}ﬁ_y'}&

l'xg

where u=

n’ a* 2* |A'y, [n® Aly,
-h[ll]r.-l-..?ﬁf.-i- —i--? —2'*{- -;-‘n’d-n’ -Tl_'-l----

: . _ i
= nh[y, + Piﬁy. + —-—-—nu:; 3) d’h + _n{nuz} ﬁ"y, +

o a 3 2 Al 5. : 3 ennt 5
n je +11n —Jn‘a&r“+ I1—-—21:1‘+3'5IlL 2o +12n ay,+
5 2 3 ) 4 6 4 5t

¢ $ 3 2 £ i
[n 150° .00 _2250° 2740 -ﬁnn}”ﬂ] W

4 3 6!




Also A= area over the first strip by Simpson’s 1 rule

h
';h’n +4y, +¥,] --(2)

Also from (1) of §2.4
R e
e At Ot 2O 2o

Again putting X = Xo +2h and y = y; in (1) of §2.4 we have

. 4]11 L sh! = g
Y2 = Yo+ Mo+ Yot Ya b

Substituting these values of y, and y; in (2) we get
h S T
A’l"_E[]"u+{h+h}’u+ajr_;+—iy,+m]

: 4h] '. ghi 2 .
*["“”"”3*?“-*?%*"-

g o IRt L S '
-2hy9+2h1yu+. 3 Yot 3 Yo+ 18 Yo« +eer : k)]

- Error in the interval [x,, x;] = dex_ﬁl

xg

4 5 "
) [E.‘ﬁ Y e [(1-E)]
iLe. the principal part of the error in [x;, x,]
_[_":_*_?__ se_ D
15 18) 7° T Tgp7°

Similarly, the principal part of the error in [x;, x,]

¥
'--—-—*}';"lm:l&um

90
Hence the total error

vl W o
E"“:ja[yn +y," 4ot Yy )
Assuming y"(X) as the largest of

G R K
Yo +¥2 5" Yagup We get
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3
Le. principal part of the error in [Xo, Xi] is —%Z-Yo

3
Similarly , principal part of the error in [x,, X2] is -?—zyfmdsnnn_

hs L] L -
< Total error Eﬂ-—i—i[y,+y,-_1-~--+y‘_,] o LY

Assuming that y*(¥) is the largest of the n quansities yg,Y},-.»¥g—j» We Obtam
: -a
E< -—r'fi) ’h‘y’ﬂ A8
Hence the error in Trapezoidal rule is of the order b’.

1.5 Simpson’s one-third rule : :
Simpson’s ‘}mhnohuuudbypumngn-Zmdneakcmgth:ihrdmmghﬂ

differences in the general quadrature formmla (1). Wchnve, thcn,

X

h ;
Im = Zh[y, + Ay, "'%ﬁ!h]';[!"u +4y, +Y,] 1)
xg ?

For the next interval [x2, xi]
h -

‘]'yd: ";{Y: +4y,+v,] (i)
L :

and finally ]m:%[y__,+4y_,,+y.]. Summing up we obtain

X
h :
I)"h' =‘j‘h’n +A(y, + Y3+ Y ea) + U2 +Ya+e+Ya2)+Yal (1)

: whmh is Enuwnu’ﬂh:pwn’s 1 rule or simply Simpson’s rule. Heren 'u_n multiple of 2.

Error in Simpsoa’s rule :
Expnndingjr#f(x}abm:tx-hhyhyh‘ssujq.mgﬂ
zgrlb an 1
I+{x Iﬂ} Y;"!'"']dx

Trix= [ o+ Goxdve+ 2

T L | G
=2hyy + Yoty Y¥e b Ye t weel1)
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Example 1. Compute Il:‘d:llu'ﬁ (i) Trapezoidal rule and (ii) Simpson's rule. Verify that
-1 ' :

Simpson's rule give more accurate value.

M:Wemnﬂunfn#hmuhlmﬁnly-@:ﬂ,li . The values of y = f{x) = ¢*

comresponding to x = -1, -0.75, -0.50, -0.25, 0, 0.25, 0.50, 0.75 and 1 are given below

x: -1 -8 050 025 .0 25 0% 075 1
fx)y=y 03679 AT71 6065 7788 1 1284 16487 21170 2.7183
¥ »n Y2 »- b /] ¥ Y ¥ b ]

1] By Trapezsldal rale .
1 :
f h P ) F -
I'Btfh ‘.‘E[Yu FUY i +Yr +Ya+ Y+ Ys +Ys +¥:)+Y,]
-1 ' ‘

-%[ﬂjﬁﬁq-ltﬂjﬂh 0.6065+.7788 +1+1.2840 + 16487+ 2.1170) 4 2.7183]

=23638
@) By Simpson's rue,

_‘ = =
fo'&x '%Ih A HYs Y5 Y H ANz + Y+ V) +Ya)
- ‘ . :

= E?{umu(u.ﬂ‘:n.ms+um+ 2.1 1&0)+2{ﬂ.$ﬂ65+1£437]+11133}

=2.3520
1
The actual value of je‘dxﬁlmmamwwmmmswm.
v o
Hence Simpson's rule gives more accurate result. |
EXERCISES

: *
1. Evaluate Iihhyﬁhmm’: rule taking 8 sub-intervals. [Ans. 1.099)
1

2
2. Evahuste [V/xdx umericaily. [G.U. 1995)
1
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]:Ihs i - [h*l]h'
E<-S0 7 ®=""Tg

y"(X)-2oh=b-a
Le. error in Simpson's 1 rule is of order b
i.ﬁSlmpm': srule:
Simpsoa’s 3rule is obtained by puting n = 3 in the general quadrature formula (1) and
peglecting all differences higher than the third. Thus

] 3 : 1.,
ydx =3h{y,+—ﬁyn+ —A'y, +—A y,}
d 2 4 8

3 3 : ; :
'3h[1"u +-i-{r. _'.'I"u}*'I{!"z -2y, + h]""%'[?: =3y, +3y, + Yu}]

-TE--[y. +3y, +3y; + ;] i)
Si 3h .
imilarty, yd:r.--i{y,+3h+3y,+y,}mﬂnm (i)
x3 :

mmmmmnmnmuh;mmnﬂ.mm ;

.]..“&"%Uq +3y + 0+, +ys 4+ V) + 200 + s +~--+y“3}+_?,_] )

Xy

which is known as Simpson's { rule.
2.7 Weddle's rule :

Putting o = 6 in general quadrature formula (1) and neglecting all differences higher than the
sixth, we get the Weddle’s rule as

h
.])‘d" ':—u[h +5y, + Y2 +6Y; +Ya+IYs + 2¥6 + 2y + Yy +]
% :

Which is known as Weddle's rule.

anndlﬂc‘lﬁﬂewmﬁrsﬁqmlthﬂ:mﬂinlﬂmmmt&ﬁ‘aﬁﬁm Soit
hmpwdlhﬂﬂ:;mm]qudmmﬁmmhhwﬁuminmmmﬂdmymindnﬂeupuum
the sixth differences. Otherwise, Weddle's rule may be derived in detail, in stead of simply giving the
formula.




where uy, U3,...........,U , &r¢ the points of subdivision of the interval betweenu=-l and u=
1 and W, Wy .................W , are the weights which are symmetrical with respect to the
middle point of the interval

In equation (2) there are altogether 2n arbitrary parameters vizz. Wy and u ,i= 1, 2, 3,
-..n and therefore the weights and abscissa can be determined such that the formula is exact
when F{u) is polynomial of degree not exceeding 2n - 1. Hénce, we start with

- F(u) =co +equ oo’ +. Ao u™ .{3)

'We then obtain from (2),

1 i
IF{u}du = _f{«t:n,'+t::,!.1+r;:;t'uI +omek Cgp 02 )iy
3 4

=2¢, +%u1 +%v.:Jl 4o ...(4)

By setting u = u, in (3), e obtain
| F{lli} =gtou+t Cjui: +, .l -
Substituting these values on the right hand side of (2), we obtain
1
JF(u)du = Wil(eo +¢u, +c,u)% +- 4 ey u, )]
-1
+ W(co + ety + 60,7 + oo b 0 uy " )40+
+W,l(cp +cqu, +'=Iul.z """"““h-tu:h_l}]

which can be written as

1 ;

IF(“H“ =Co[ W) + Wy 44+ W, ]+¢,[Wyu, + Wau, +--+Wou, ]
-1

+1:,[‘_«!|"gn,It +Wou,? +--+ Wou, ]+

+c!._|[wluih-l +w1uzh-l+'“+w.“‘=._}} ...[5}

Now, equations (4) and (5) are identical for all values of ¢; and hence comparing the
coefficients of cq, ¢, c; etc. we obtain 2n equations.
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P

: : 2 1 i 1
3. Evaluate dx s 's — rule h=—
ﬁ{l+12 using (i) Simpson' 3 taking 2

(ii) Simpson's -:-mletnlm:ls h= lﬁ ' [Ans. (i) 0.785 (ii) 0.785]

! .
s - 1

4. Use Simpson's %nﬂewiﬁ;h-ﬂ.ihmlﬂm deFuﬂﬂlmbﬂnﬂmdﬂ:mnl

0

£ITOr. [Ans. 0.694, 0.0083 < Error < 0.0003, -0.0013)
5. Calculats = the wvalue of ismxdxhjr Simpson's % rule, using 11 ordinates.
. ] .
[Ans. 0.999]
13&:nf1QmMnnmmannh
Let us consider the integral
b b
I= [f(x)ax = [ydx A1)
[ 1 L .
~ In Simpson's and Weddle's fornmilae the-ordinates are equally spaced. Gmid:m'dl formula
which. uses the same pumber of function values but with different spacing and gives better

ACCUracy.

b-a a+b

Clnchmgmaﬂumubhbﬂhembmmm x=Tu+T
the limits of integration become u=-1 andu=1.
b-a't{b-2a a+b
o L
== Jf[ 3 u+ > ]du |
! b-a {b-a a+b
=, = L+
-IIF(u)du. where  Flu) 3 f{ > 2 )

According to Gauss,

| -iwiF{ui]
=i




wrlg) )

Example 1 Use Simpson's rule with three points and Gauss quadrature with two points to

]
evahuate | f'il . Comment on the accuracy of the results. [G.U 1994]
ix

Solution : According to Simpson's rule

3
& By _ 522
= !x:+1 5{r.+4(rll+r=1 (1) whereh T-LS
- 4 i
= =0.2, = ———=0.07547, = =0.03846
Yot =Gl Y255

s o= -lié[ﬂ,z +4(0.07547) + 0.03846) = —1-3{{[!.31393] = 0.270 up to three decimal places.

Byﬁmfwnpoimqnm\:refumh.
5

ax 4 | 1
I szﬂ i[n;m.x. ﬂﬂ"'t!n

1
We take x:ﬂtuﬁnilul :.I::ijk{iu+1
2 23\2 2

2
worcfroa-fgll-g)
o )3 )15 1) 33 ) S

G ETR BT SR

1=%[r{4.aeeu}-+ [(26340)]  from(2)

' ' 3(3 7
-{F(u}d.u,- | F{u'jai_f[iu +_]

3 1 1
W | 5 +
1[; +(4.3660)" 1+{z,ﬁm}1]
=0.264 correct to three decimal places
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W, +W,+--+W =2
Wu, + Wu, +---+Wu, =0
W, + W,  +-#W,u ' =0 A
W, + Wu, ™ 4+ Wou ™ =0)
&mmwmammumm_mhmmwzﬁ
quantities i, v, ...,Us &nd Wi, W, ....W,.
We shall do this-for n = 2 which is the Gauss quadrature formula for two points. We
consider, |
L= WiF(u) + WaF(u:) (D
hr&ﬁm{ﬂmm4mm4uﬁﬁmbﬂmm&amm
can b obtained such that the formula is exactfor ll polyowials of degree not cxcosding 3.
Let F(u]-_cp-_l-clu-_bo,u‘-i-c.,u’ oW .{8)

1 1
Iﬂﬂ}dﬂ = I{'-‘-n."' cu + ¢ u’ +c3u’)du
- =1 ;

=2tz .9
Also from (8)
Fu,) = co + i +eauy® e uy’
F(uz) = co + cit +ea” +03 w7’
. 1=W,(co +Cyu; +¢,u," +c5u;’)+ Wy(co +¢4u; +cyu,’ +65u,°)

= (W, + W)y +<i (7, +u,7) + ¢, (0, T, +uy W) + ¢ (W, +u,Wy)  ..(10)

Comparing (9) and (10)

' W, +Wy=2 D)
ﬂ;w. + Wi = 0 i (l.l.']
wl Wit Wy =2 @
u’ wl'l"l.lijw;-ﬂ. .. (TV)

Solving (1), (i), (iii) and (iv) we get




a-=l

Adding all these we get  F (x )-F(Xo) =)_£(x;).......(1)
=l

Now  AF(x)=f(x)

= F(x) = A f(x) = (E-1)"1(x) =(e*® -1) ' 1(x)

It 3 imd e . .1 1 =
-l(1+m+h; R L ]-l] £(x)=( hD}" [1+E'5-+h;1’ +] £ix)

3! 21

- i =§
-%D" I+—+——+...] f(x) -

2! k1 21 3!
1 1 AR
3 =2 f)+ = S @ - ST (e))

Putting x , for x and X, for x and then subtracting we get

e 1
F(x)-F(xo) = Ej‘““"‘“ﬁ[“"' ~£(xo)]

hiin s W ... ;
+ S - ()= o (1) = £ (R )] # o B)
From (1) and (3)
=t ]I l
3 fx) == Jeoaodx- 2 [ex, ~£xy)]
SR ke
)~ £x ) ~ F7(x,) - £ (x )]+
12 120 . -

Srx)= ﬂr{xm + 3, -t )l SR -k

¥ e .
-ﬁ[f (%)= £7(x0)]+... .(4)
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By actual integration,

i ;
I= | f‘" =tan”' 5—tan”~' 2 =0.266
$x°+1 '

The value of the integral obtained by Gauss tio point quadrature formula is nearer to the exact value:
Hence Gauss two point quadrature formula gives better accuracy than that of Simpsou's rule.

EXERCISES

05 '
1. Compute _[e’dxus‘mg two point Gauss formula and Simpson's rule with 3 equidistant

0.4

points. Which one of th result is more accurate?  [GU 1992]

Z,Uscﬁmquaduhn:fomhtuwam-‘[s'm xdx [ GU 1997]
H :
: i
3. Use Gauss quadrature formula to evaluate Im xdx with two points. [Ans.
-5
1.676)
4. Evaluste !ﬁ‘-{ bytﬁnpomﬁmshnm [Ass. 0.692]
2.9 Euler’s summation formula:

It is the approximate relation between integrals and sums which is stated as given below:
3 1) =%‘Jf{x)dr eLiry e U~ b gl - el
where f{xg), f{Xu)s-oeiieernn Jf{x,) are the values of fx) corresponding to XoXi.......X » Which
are equispaced with difference h.
Proof Let AF(x)=flx)
5 F(x) - F(xo) = AF(x4) = f(x,o)
F(xa)~ F(k,) = 8F(x,) = £(x,)

.....................................

F(x,) = F(x o) = AF(x ) = £(x,.0)
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Unit-3
Solution of Algebraic and Transcendental equations.

3.1 Introduction _

_ An expression of the form L{x]:a,_.r"+a,x"'+ ‘+a,x+a, where 'a's are
constants and n-h:mimegu;hﬂidmbéapulwdqialhxufdegm:nprpvidrnda.alﬂ.
The values of x which make f.(x) tnzmmuﬂadumuiunhemﬁoﬂhepntymmiﬂ
f(x]md:verypnl)mmulufu thdsgrn:has n zeroes.’

Theequamnafﬁmformf{x}ﬂﬂmcaﬂadﬂacbmmm:tdmtﬂuwrdmgu

£.(x) h'pmelynputymnﬁui‘m:ormmhssom:mhﬂﬂm:mnmhuhgﬂm.
exponential and trigonometric functions etc. eg. The equations x" +7x* +5x’ ~10=9 and
8% +log(x+2) +e” cosx=Oarc called algebraic and transcendental  respectively. By
obtairiing the solution of an equation £, (x) = -0, we mean to find roots or zeroes of f,(x).
Gerometrically, nmﬂofqmmnuthﬂuheafxuhuumhofy:f{x}msmthex—
'lmmdmemcmufmﬁgmcmnuofmmmnmuumhmnufﬂu
'mﬂﬁ[x}hnmmmahM'WWﬁmmuf
| equations are available. Bﬁﬁmeduﬁummh:highrd&pu-nfmmlnqmtbm
for which no direct methods are svailable. Such equations can be solved by approximate
‘methods.

3.2 Some properties of equation:

() If f(x) iuxﬂydivisﬂ'hy;-a.mm.ahlmmuff{x}-ﬁ. '

(b) Every equation of the nth degree has only n foots (real or complex) and conversely if

@, @yyenen @, 2re the roots of the nth degree equation £, (x) =0, then
f.(x)=A4(x-a,)...(x~a,) where A is aconstant.

Further, If a polynomial of degree n vanishes' for more than n values of x, it must be
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which is the Euler's formula for summation

Example Apply Et_ller'a summation formula to evaluate
| | A 1

— e —i— — e esrn e ——

-1 53’ 55‘ 99*

Solution: .Tmm-—’f’!—, %o=51, h=2,n=24 we have

f'{x‘;n-——-— f'{x}u—-?i
I
-ThmEuh‘smtbnfnmhgivﬁ
P B PR O g 8 'lLL]'
e s Tt gg z,[x*d-“z %9 ' 55
,2[ 2 ,.2] 2 [aa 2_4]
*Tz'[_ﬁ'rfﬁ’-] 120[?9’+51’ e
qfsy 3]l Il H=t o1
=E['E+§i]+'£[ﬁ+ 51‘]+3[99’ +51’] |
_4f_ 1 -
" [ggf 51,]-1» =0 00499 = O 005 approximately.
EXEECISES
1. Apply Euler summation formula, to evaluate
e
L b e i ok [ Ans. 0.0008)
(“) (201 (103}‘ {ms]‘ 299 .
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4 3 1

Then 13 (lJ +lﬁ[i] +4(l] -s('—"-)ﬂl-n
m m m m i

=13y +m(16y* )+ m* (4" )-m* (y)+m* (11)=0
which is same as multiplying the second term by m, third term by » and so on in (i)
(i) To find an equation whose roots are with opposite signs to those of the given equation
change the signs of every alternative term of the given equation beginning with the second.
() To find an equation whose roots are reciprocal of the roots of the given equation.

Cﬁange xto (1]
X
3 Reciprocal equations : If an equation remains unaltered on cha.nge xto [x) If is called

nrectpmcalequamn.
'}ﬁm:wrmcnl eqmmnofannddd:gr:: hnvmgcoefﬁcmtsnf:mmcquﬁmm
from the beginning and end equal and has a roots = -1

n}ﬁmmcﬂmmufmoﬁdmehvmgm&mafmm
ﬁ*nmth:bemmdmduquﬂhnnppusnemsmhu arpots=1

iii) A reciprocal equation of an even degree having coefficients of terms equidistant
from the beginning and equal but opposite in sing and has two roots =1 and -1
The Substitution :+l=y redmesth:dcgw:ofthnqwnntheha!t‘mﬁurmﬂdemc

() Synthetic division ofa polynomial by a Bnear mluu.

The division of the polynomial
S(x)=ax" +ax"" +ax"" + i+ @, X+,
By a binomial x @ is done by synthetic division as follows
a a, a, Bvvnsprinnins s a,
ab, abonnn. ab, _, ab, |
a, a+ab, a+ah.... a_+ab_, a +ab,,

(=&) (=8) (=B)wui=b.) (=R)
Hence quotient = b x" +b,x”+,..,.,.f.,+h

., while remainder =R .
Rule i) Write the coefficients of the power of x supplying missing power of x by zero and
write & an extreme left. ' '
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(¢) Intermediate values property :- If f{x) is continuous in the interval [a, b] and

f(a)- f(b)have different signs. Then the equation f(x)=0 has at least one root between

x=a and x=b.

(d) In an equat_iun with real coefficients, imaginary roots occur in conjugate pairs, it if a +if

is 2 root of the equation f(x)=0, them & ~if must also be its second root.

Similarly if @ + /B is an irrational root of an equation. Then @~+/b must also be its second

root.

Note :- Every equation of the odd degree has atleast are one real root.

(¢) Descart’s rule of signs : The equation f(x)=0 cannot have more positive roots than the

changes of sign in f{x),and more negative roots than the changes of signs in f(-x). For

example. Let us consider the equation f(x)=12x"-x'+4x" -15=0....(]) sign of
f(x) are + — + — Hence f(x) has three changes of sign. Then (i) cannot have more

| than three positive roots.

Also, are have f.{—szlz[.-x}j-{-x]’+4{—x}’-l5 =-12x"+x2" -4 -15  (j)

ie 3 two changes of signs. Hence (ii) cannot have more than 2 negative roots,

(0 Existance of imaginary roots: If an equation of the nth degree has at the most ‘p’

positive roots and at the most ‘q’ negative roots, them the equation has at least n-(p+q)

(g) Relations between roots and coefficients :- If a,, @, @y............ @, be the roots of the

equation  a,x" +ax"" +a,x™ e a,_x+a,=0

a, . d, =,
Then ) g ::-;L, Yaa -E:-, Ya o a -—i. a, @y Ay ¥y =(=1) s

(h) Tramsformation of equation :- To find an equation whose roots are m times the roots
of the given equation:

Muttiply the second term by m third term by »r' and so on (all missing terms. supplied
- with zero coefficients).

Let the given equationbe  13x* +16x +4x’ —8x+11=0...connnimnnrinnnn. (i)

To muktiply its roots by m, let us put yﬂmx{(:‘.e .r=-:;}in(l'}
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That f(x,)f(x)<0 ie. ifit lies between x, and x, and .t,——-ﬁ-%ﬁ- provided that

f[x,}f{x,}cﬂ- Further x, =£‘-’-¥l provided that f(x,)f(x,)<0 andsoon.

Thus — in each iteration we either find the root with desired accuracy or we narrow the
(6-a)

range to half the previous. The length of the subinterval containing h is . If the error is
b-a
g b g~
<g then {b—ql-:lxnl'}b 2orn > 2
2 t log2

Example- 2 Solve x* ~9x+1=0 for the root between x =2 and x =4 by the method of
interval having or Bolzano bisection procedure.

Solve:- Here f(x)=x"~9x+1 sothat f(x) is continuous in 2 < x <4

Further- f(2)=-9, f(4)=+29 and f(2)f(4)<0. So that a root lies between 2 and 4
Now xl-uh%ﬁ;z*z’—‘-a Also f(3)=1so that £(2)f(3)<0 Thus the root lies

between 2 dind 3 me,xﬁz—xlz_%ﬁ=15 Further, f(2.5)<0 so that

rG)r(25)<0 .. .r4_=3+22'5=1.'?5

Similarly x, =2875, x, =29375and so for higher iteration, so that the process can be
continued as long as required.

3.4 Iteration method -

Let f{x)=0 be an equation of which the roots are to be obtained. We rewrite the
equation in the form x = p(x) el T

Let x = %o be an initial approximation of the desired roots c. Then the first approximation x, is
given by x1= @{xo) :
Now treating x, as the mitial value , the second approximation is Xs = @(x;)
Proceeding in this manner the nth approximation s given by

Xa= QX o1) R 17 J |
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ii) Put a,(=b,) as the first term of 3" row and multiply it by @ and write the product under
a,and add giving a, + 2, (=) |
iii) Multiply & by o and write the product under a,and add, giving a, +ab, (=b,) etc, and

continue this process, till we get R

Example:- For the polynomial /(x) =22 -6x+13find f(2). f(2). /"(2)and £°(2)
Solution : using the method of synthetic division we have

2 0. 6 13

2 4 8 3
2 4 2 17 =£2)

2 4 - 16
2 "8 w':ﬁf*{z]

T :
2 : 12-;{_“{2]
z;lf"{zj
3!
~(2)=12

Hence fi2)=17, f(2)=18, f*(2)=24, f~(2)=12

33 Bolzano or interval Halving or Bisection Method |
This method of solving a transcendental equation consists in locating the roots of the
equation f(x)=0 between two numbers say x, and 'x; such that f(x) is contimious for
X $x5$x and f(x) and f(x) are opposite sings so that the product f(x,) f(x)<0ie,
the curve cross the x axis between x, and x,. '
Then the desired root is approximately
g :&-%ﬂ ;,_af“%l- provided
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Example 1 Find by method of iteration a real root of 2x - log,,x =7
taking 3.8 as the initial approximation.
Solution: We rewrite the equation as

xeZlopax+T)=oe) D

i 1{1 1|1
Hete |‘P {1*“!_. - 'i’|;l°’$m=| -Eh X 3.4344 <1

=31

-.Condition of convergence is satisfied

The st iteration is given by X, -%{m;us.s +7)  [Here xo=38]

-%(u,smsnj-a.mss
Similarty the 2* and 3" iterations are,

e g3 7894 7y 3708

x= %ﬂogwlﬁﬂa- 7)=13.7893

.. The root of the equation is x=31.789

EXERCISES
1. Find the positive root of the equation x* —x ~10=0 by iteration method. [Ans.1.856]
2. Find the root of the equation x- tan™x-1=0 [Ans. 2.132]

3. 1h=equa:ion4x=e‘hasmmuts_,amnmrﬂ.3mdthn other near 2.1. Find them by
iteration method. [Ans. 0.357,2.153]

3.5 Graphical method :-

To solve the equation f{x)= o, we draw the graph of the function y =f{x) w.r.t.x and y-
axis and then obtain x co-ordinate of those points for which y- co-ordinates are zero. This x-
co-ordinate will then determine the real roots of the equation fx)=0. In other words, the real
roots may be interpreted as the x-coordinates of the points of intersection of the curve y=fx)
with x- axis. In case, f{x) involves difference of two functions etc, then we usually write f{x)=0
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Note The initial approximation is obtained by locating the interval in which the roots of fx=0
lie. If fx)is a continuous function in the interval [a ,b] and if fa)and fib) have opposite signs,
then the equation f{x)=0 has at least one real root lying in the iterval [a , bL.If fla)<fib)
numerically , then a is taken as the initial approximation of the root otherwise b is taken as the
mitial approximation.

Condition for convergence of iterations:

_ Under certain conditions to be stated next, the sequence X, X;. X COTVEIges 10 the
desired root a.
Convergeﬁce theorem: If
(i) abe a root of the equation fix)=0 which is equivalent to x=e{x),
(ii) I, be any interval containing the point x=a,
(i) e l<l forallxml,
then the sequence of approXimations Xo,Xi,Xa,. ..+« x, will converge to the root a provided the
initial approximation xg is so chosenin I.
me since a is a root of x =¢(x), we have, a = o(a)
[f;x.andxn..'betwosuccessiveappmﬁmﬁﬂnsmmwehaw Xa= P(Xet)

S X = @ (X -@(a) Bt | |

by Mean value theorem .

'P{——-——-—u-—x““} — () = p'(E) where x,, <€<n
X, ., =0

al
Hence (1) becomes X 5 - @ = (%a1 — @)@'(5)
If | '(x )| SK<Iforallithen |x,-al sKlx -l
Sirrﬁlady‘.x..ratsﬂm-ul

ie. Ix—alsKxa—<l
Proceeding in this way

| | xe-a2] < K %0 —cd
Asn—m,th:ﬁghthan&side tends to zero

. The sequence of approximations converges to the root a.
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We can derive an equation to find successive approximations to. the root from the above

figure. From figure, we have
JICARTAC J 1)

X =% % - %
O wmes _ ) x - x)
T fR)- (%)
or  x oBfO0)-5f(x)
' Stx)-f(x)

xS ()5S,
f[-'-'.']"‘f{.l’,’,l] ’

Or in general x_;

3.7 The Secant method :

The method is quite similar to that ﬁf Regula Falsi method except ﬁ;r the condition
£ (x).£:(x) < 0. Here, the graph of the function ynf{x}mthem:ghbmn-hoodafthemuth

tppmxmndbynmhm{churd} Further, the interval at each iteration may not contain

‘the root. Let initially the limits of interval be x, and x,. Then the first approximation is given

by

N €T VY ACN)
U )~ f(xy)

Again the formula for successive approximation is
Sy e e )

In case at any stage f(x,) = f(x,_,) this method will fail. Thus, this method does not converge
always whereas Regula Falsi method will always converge. Only advantage in this method lies
with the fact that if it converges then it will converge more rapidly than ﬂae'msguh Falsi
Gmmnmlhrmthﬁnuthﬂdmmphcctheﬁlmuonﬂx}byammhhmmnchmd
passing through the points (x,_,, f,_,)and take the point of i mmmm of the straight line with

nzl 3.1)

' x axis as the next approximation to the root- (fig. D It the nppmxmwns are such that
ff,. f,u<0, Then method (3, l] is known as the Regular- Falsic method. The method is

shown graphically in (fig. 2). Since (x,.,, f...), (x,, f,) are known before the start of the
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as f,(x)=f,(x) where f(x), f,(x) are both functions of x. To solve the above equation
we draw the graphs of the two function y= f,(x) and y= f,(x) on the same axis. The real
roots of the given equation are the abscissas of these two curves, at these points y,= y, and
s0 fi(x)=£(x).

3.6 Themndnfrm Position or Regula Faksi :

The bisection method guarantees th the iterative process will converge. It is, however slow.
Thus, atternpts have been made to speed up bisection method retaining its guaranteed
convergence. A method of doing this is called the method of false position or regula falsi. This
ptmndmhﬁmdbyhmiﬁg two points x, and x, where the function has opposite signs.
Then the two points f(x,) and f(x,) are connected by a straight line to find where it cuts the
x-axis. Let it cut x-axis say at x,. Then again f(x,)is evaluated. If f(x,) and f(x,) are
found to be of opposite signs then x, is replaced by x,and a straight line is drawn to connect
the two points f(x,) and f(x,)to find the new intérsection point at the x-axis. On the other
hand If f(x,) and f(x,) are found to be of same signs then x, is replaced by x,and
processed as before. In both cases the new interval of search is smaller than the initial interval
and ultimately it is guaranteed to converge to the root.

-
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Example- Use the scant and Regular-Falsi methods to determine the root of the equation
cosx—xe =0
Solution.-: Taking the initial approximation as x, =0, x; =1, we obtam for the secant

method.

f(x)=cosx~xe" If x=0, f(0)=1and If x=1, f(I)=cosl-e=-2.177979523

-

X, =x -[ﬁ:ﬁ] £,=0.3146653378  f,= f(x)=0.519871175

I L]

X, =3, -{ﬁlﬁ] f; =0.4467281466

L=

Now, for the Regula Falsi Method, we get

it

X = ‘[5_“51]-;', =0.4467281466

£, = f(x)=0.203544710, x,=x, ,.[,{a.:,fa

1

]}', =0.5317058606

£, = f(x,)=0.203544710

X

Since f(x)+ f(x,)<0fe(x, x,) therefore x, =x,-[}-‘:—ﬂ,q =0.4940153366

The computed results are tabulated in Table-1

3 i

K. Secants Method Regula -Falsi
&l Method
Fia, S (%) Xl § [IIM}

1 |0.3146653378 0.519871 0.3146653378 | 0.519871

2 | 044672814466 | 0.203545 0.4467281446 - | 0.203545

3 | 05317058606 | -0.429311(-01) | 0.4940153366 | 0.708023(-01)
4 |0.45169044676 | 0.259276(-02) 0.5099461404 | 0.236077(-01)
5 | 05177474653 | 0.301119(-04) 0.5152010099 | 0.776011(-02)
6 | 0.5177573708 | -0.215132(-07) |0.5169222100 | 0.253886(-02)
7 105177573637 | 0.178663(-12) 0.5174846768 | 0.829358(-03)
8 | 05177573637 | 0.222045(-15) 0.5176683450 | 0.270786(-03)
10 s - 0.5177478783 | 0.288554(-04)
20 < - 0.5177573636 | 0.396288(-09)




iteration, the scant and- the Regular -Falsi methods require one function evaluation per

In the Figure, upper one is for Secant method and the lower one is for Regula Falsi
' method
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This shows that the subsequent error at each step, is proportional to the square of the previous
error and as such the rate of convergence is quadratic.

Geometircal Interpretation: Let x; be a point near the root a of the equation f{x)=0. Then
th:Ethnufthcmngmnathn[xnﬂxg}]u?_.hnwnhr:ﬂwﬂmis

¥ - flxg) = £'(xo}(x - xo)

It intersects the x axis &t x; =X k0]
f'(x,)

Mﬁ:hfunﬁnlapiﬁuxﬁuutinntothnmta.lfﬁ.;iaﬂm,puinmnespundh:tommthe
ctuw.ttmt!u:mgmtutA.wﬂ!htcmnﬂth:x—axistux;whi:hismtuumdhtbcuﬁam _
'hett:rappmxhn:innmt}mmo;. Repeating this process we approach the root a quite rapidly.

~ Example 1 Find by Newton's method the real rot of the equation’ 3x-cosx —1 =0
Solution Let f(x) =3x- cosx-1 . £ (Xy=3+sinix
- we have f{0)=-2<0, f{1)=1.4597>0
-.The root of the equation lies between x=0 and x=1

Let us take initial approximation x;=0.6




3.8 Newton Raphson method; Let x; be an approximate root of the equation f{x)=0. If x,=x,
+h is the exact, root, then f{x;)=0 i.e. {x,+h)y=0 where h is small.

Expanding f{xs+h) by Taylor series -

Since h is small , neglecting h* &nd other higher powers of h, we get

fixo) +hf'(x)=0 .=h= -Mm
f(xy)

. A better approximation to the root is given by

L7V
X =X f'(xu}
Similarly starting with x,, still better approximation x; is givenby x;=x; - :_':{i';
1
: . f(x;) |
In general, - "“'""HL]’ 0=0,123,........
xl

Which is kriown as the Newton Raphson formula or Newton’s iteration formula.

3.9 Rate of convergence of Newton --Ihplllou method:
Let us assume that x , differ’s from the root a by a small quantity e,so that x ,=a + &,
and Xe.) = @ + Epe ' .

o f(x,) fla+e,) fla+e,)
2 = el = 22 o :
Ao =Tn f'[x.}bmm o o Sy i f'la+e, bt L a+e,

£(a) +&,f"(a)+ El;a:f'[u.) .

= — T . 1
S f'la) +e,f (@) + ... o aﬁmf o o

g flla)+ %s:f'}{q] i
[+ fla)=0]

T T @)+ e (@) F o

» eXf '{{1}
2|f"(c) +£,£(€)]

[neglecting third and higher powersof &, |

. af'@
2f'(a)




Example: Find the double root of the equation x -x'—X +1=0 taking initial approximation
as xp = 0.9,

Solution : Let flx) = x*x’-x+1 So that f'(x)}=3x’ -2x -1,  f'(x) =6x-2

f(xo) o 0.019

We ba -2 9-2x 2913 ) 003
o B e T
fi(xg) .. =037
Also 21 =09 - =1.009
i s~ v 34

The closeness of these values implies that there is a double root near x=1
~.Choosing  x; = 1.01 for the next approximation we get

=x; -2 '-*—-—f.(lll ) =] Sare

X2 01 -2=——= =1.0001
£'(x,) 0.0403

£(x,) 0.0403 . .
Also =% 2-1 _._..J..*-l_m ——=] 0001
e }f"[xl} 4.06

This shows that there is a double root at x=1.0001 which is quite near to the actual root x=1.

EXERCISES

1. Find by Newton-Raphson method, a root for the following equations correct to 3 decimal
places:

D x-3x-5=0 : [Ans. 2.279]

(i) x':5x+3=0 [Ans. 1.834]

{E] x*x-13=0 [Ans. 1.967]
2. Find the smallest positive root of x tanx-1 =0 using three iterations.[GU97]
3. Find a root of the equation x’-2x’+x+5=0 [GU90]
4. Use the iterative method to find a root of the equation x*+3x-1=0 [GU 93}
5.

Starting with the initial solution x, =1, find the repeated double root of the equation,
X +3x*+225x=0 [GU96] [Ans-15]
6. -Find the double root of the equation x’-2236x*-5x+11'18=0  [GU 91]
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Form Newton's formula

_f(x,) i _3x, -cosx, -1
fix)y ° J+sinx,

. -Hﬂli

_X,sinx, +cosx, +1 ﬂ]
Seany, e

Putting n =0, the 1st .approximation is x, is given by

= xusm:u +cosx, +1 {ﬂﬁ}m06+cm{ﬂﬁ)+l

3+sinx, '3 +5in(0.6)
_06x0.5729+0.8253+1 _ o <o
3+0.5729

?utﬁnan-lin{ll.thel"upprdximﬁmh

nﬁmnm(a 6071) +cos(0.6071) +1
3 +sin(0.6071) e

Hence the root of the equationis  x= 0.6071

3.10 Generalized Newton's -ﬂhﬂﬁrﬂhw
Hnuamnfth:qumlﬂ-ﬂwhﬂumpmdmmtm

e mM

f'(x,)
which is called the generalised Newton’s formula. It reduces to Newton-Raphson formula
when m=1,
‘Note: If @ is a root of fx) =0 with multiplicity m, then it isalsoa  root of £'(x) =0 with
multiplicity m-1, of f "(x) -uwi:hmnbﬁciim-zmdmon o

£(x,) _ £'(x,) o f°(x,) -
Tasx-mar y W Dpgy - - e
will have the same value




X =%=....=X,=0 if det(A4) =0, thereforc consider the system in which a
parameter A occurs and are determine values of A, called eigen values, for which the system
has a nontrivial solution. Such a solution is called on eigen vector and the entire system is -
called an e@m value problem or the characteristic value problem. The system (4.2), (b = 0)
may then be written as

Ax=Ax (4.4)

=(A-Akx=0 (4.5)
In order that equations (4.4) have a non trivial solution x# 0the determinant of the
matrix (4 - A7) must be zero.

Det (4- A/}=0 (4.6)

. The equation (4.6) is called the characteristic equation. The n roots 4,4, .....4, are -
* called the eigen values of A and may be district o repeated real or complex. The largest cigen
value in modulus is called the spectral radius of A. Corresponding to each eigen value 4,, there
exist an eigen vector ,, which is nontrivial sokution of (4~ 4,1}k, = 0. |

The method ‘of solution of the linear algebraic equations (4.2) and the methods to
determine the eigen values and eigen vectors of the system (4.3) may broadly be classified into
two types.

‘®  Direct Method : These method produce the exact solution after a finite

numl:etof.:tcps‘
@ . Introduction Method : This methods give a sequenct of . approximate
" sohutions, which converges when the number of steps tend to infinite.

43, DhutMetﬁods

Thuystemufaquamn{d-n Jx:bcmhedmbmhmdmthefnﬂowm;m

M A=D
The equations (4.2) becomes
ay, X, = b
ap X, . = b:
a_x,=b
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Unit 4

Direct Method for solving system of linear equations.
4.1. Introduction :
A large number of methods of solving the system of linear equations and a variety of
computers are available to solve such equations. We give below a few direct as well as indirect
or iterative method for the solution of system of linear equation:

4.2. Linear system equation :
Consider a system of u linear algebraic equations in n unknowns
| Q% + B % *evreennmn O X, =y
R —
........................................... 4.

A%+ B Focurnm ALK, =b,
where a, (i, =1,2,...n) are known coefficients, b, (i, =1,2,-) are the known
values and x, (i=12,...,n) are the unknown to budem.'mmﬂd. We introduce the ﬁ:-lhwml
notation definitions. '
(42)
The matrix {4|B] is calied sugmented matrix. It s formed by sppending the colum b

In the matrix notation the system (4.1) can be written as Ax =b

to the mxn matrix A.

If all B, are zero then the system of equation [4.1]isgaidtuhqhnmasm§nd if at
least one of b, hmtm&mtkmﬁtﬂhh—hnmmmhhmwm
(4.1) has a unique solution if and only it the determinant of A is non zero.

ﬂ“ au .-..1 ...... q’.
Gy Gp e a,,
ie, det{A) =f.ce e s cnnad =0
a, 4, a,
The solution of the system (3.3) may be written as X2 Ao (43)

The homogenous system (b, =0, i=1, 2, ..., n) possesscs only a trivial solution:




The unknowns are solved by back substitution and this method is called the back
substitution method.

44. Gauss Elimination method:

Here, the unknowns are eliminated by combining equations such that the n equations in
n unknowns are reduced to an equivalent upper trisngular system which is then solved by back
substitution method. Consider the 3x3 gystem

a5 + Gy X, +aX, = b
By + 8%y + s =B, @a.n
@, X, +ap%, +apx, = b
In the first stage of elimination multiply the first row in (4.1) by -.Eln. and ::L
s : d i 1
We get :
0% +a, M, =5,)
----- (4.8)
ay™x, 4 ay,Px, =5,
where - @y =ap-"la,, ﬂn”'_-ﬂn-i""‘?u
1 i 1
o =ay - a,, " m gy —a,
ay =1
5 -a,_--ann. e
an B

a5

2 {2}
hmmmgenfmml}ftbqﬁumwhﬂ.lﬁ}hy[%]m

subtract from the second row in (4.2).

weget  a g =b0——nem -(49)
6) | @ _ag” @) o m aa .
Where a,’ =ay, ':uﬁfﬂn . b =b, --;:m-b,
. -} 5

Collecting the first equation from each stage. i.c. from (4.1), (4.2) and (4.3) we obtain

T




(HA=L
The equation (4.2) may be written as
X, =b,’
A% +apx, =b,
ayXy *apX, ¥ dnXy - b,
By Xy + T yy Xy F e +a_x,=b,
Solving the first equation and then successively solving the second third and so oa,
are obtain
wed  puliax) (b-ax-enn)
A, L - T ayn
L . x, -(ﬁ..aiﬂ]
P

‘where 4,#0, i=L2,..n
Since the unknowns are solved by forward substitution, this method is called the
forward substitution method.
(if)y A=U
The system of equations (4.3) becomes

Byttt Fact ¥ T pacpia®a = b,

a_x, =b,

Solving for the unknowns in the order ., x, ., ...... x,, We get
e e ¥
'x.l:_-’ x._t' = = ] & - -"'rlz‘ bl*L
' ﬂl-rt.l—'l. T




Solution ;  Eliminating x, from the last two equations, we get
L+I,+x, =6
::,-a-x,-'!'
-z ez, =t
Here, the pivot in the second equation is £€ which is & very small number.
If we do not use pivoting then are get
L +x,+x; =6

&, +x, =2

[1+l]x’ = 1+£
& &

) (2)
) ; ; 1+ — . 1+) —
This solution is x, = *:‘ , Xyl 35 : S g
1+ —| - o 1+ = s
& &

However, this solution may be very imaccurate if £ is of the order of the round —off
error. This situation can be avoided if pivoting is done at the second step. In this case we have.

L+, +x,=6

—-x,4x,ml
(e ek, =2+«
m.- lﬂh. - " Xy = 2+£ Xy ﬂ"'l"flti mi X -6-"1*:'.

l+s I+&
Example 2: Solve the equations

Wx, -x;,+2x, =4 . x+i0x,+x,=3 2x, +3x,+ 02, =7

Using the Gauss climination method.

4.5,  Triangulsrization Method
This method is also knawn as the decomposition method or the factorization method.
In this method the coefficient matrix A of the system of equations (4.2) is decomposed or
factorized into the product of a lower triangular matrix L and an upper triangular matrix U.
We write the matrix A as
' A= LU ——(4.13)

T3




a:ilxl +“umx:! +a‘(;‘x, - b}“

ddx, + dx, =5 p——--(4.10)
a,"'x, =b"

Where ' sa,, b"=b, i,j=123

The system (4.4) is an upper triangular system and can be solved using the back
substitution method. Therefore, the Gauss eimmation method gives

[Albl*ﬂ—P'f‘”‘t—ntuutl

Where [A | b] is an sugmented matrix. The elements d\, 23 anda}) which have been
assumed to be non-zero are called pivot elements. The elimination procedure described above
md:tnmincﬂn_mhnmhmﬂnd.ﬁnusueﬁrﬁnatinnrcﬂmi

* 'We now solve the system (4.1) in n unknowns by performing the Gauss climination on
the augmented matrix [A | b). Denote
5 =g Lk=l2,..n  (4.11)

The clements a,*' with 1, /2 k are given by
: )
g =a - g:-ma,"' ----- (4.12)
i=k+1,k+2, ....n and j=k+1,...0,0+1

Where a," =q,

The :hrmnlmu is performed in (n-1) setps, k = 1, 2...... n-1. In the elimmation
process, if any one of the pivot elements f_',d_,i'.......a'f vanishes or becomes very small
comdmammmmumhmm“mmmwmhmmm
suumnbtahanonmhh‘mgptﬁtmwnwﬂ&mmhipﬁcatinnbyahrgcnmuh&.fh’u_
strategy is called pivoting. '

Example 1 : Solve the equations
LEE enm6
3x,+(3+ ), +4x, =20
2x, 4+ x, +3x, =13

Using Gauss elimination method where £ is small such that les’ =l.

12




Next we find the third column of L followed by the third row of U.
Thus the relevant indices § and j , the elements are computed in the other

[ Y PO AP T AN TR
Having determined the matrices L and U, the system of equation (4.2) becomes-

LUx=b (4.20)

We write (4.20) as the following two system of equations
Us=z {4.21)
Lz=b (e.22)

This unknown z,, z, ......... z, n (3.33) are determined by forward substitution and the
unknown x,,x,,._.... I, h(4.21}ﬂ¢oh:h&dbyh:kmm&yﬂﬁ:ﬂ g
and U toget z=1""p and x=U"z

Th;mnfﬁm:huhedmmd&nm A'=UTL™

Thinﬂhﬁﬁﬂsii‘myoft&'dﬁpmhm:, or w, is zero. This LU
decomposition is guaranteed when the matix A i positive definite. However, it is caly a
sufficient condition.

Example 1 : Find the inverse of the matrix

3 21
A={2 3 2
1- 2.2

Using LU decomposition method. Take 4., = uy, =uy =1
Solution : ' |
We write
32 1] {4 0 O}L wy m,
23 2l={t, 4, Oll0 1 u,
v 2 2f {4ty Wjlo 0 1
And obtain as in the previous example
L,m3, 0, =20, ="
: 1 5 4 4

My =— N : fn:-u ,fu.-..-l— )

3 3

W
e

75




(4, 0. 0..0] ETE” ", |
e Iz 0.0 0 n, ... uy,
where L= f“ ln I!\.'I ..... u U = ﬂ 'ul ﬂr_u e Hh
| Iy Iy lgeeds] |8 0 0. u,

Using the matrix muitiplication rule to multiplication the matrix Land U and comparing
the elements of the resulting matrix with those of A are obtain

fnu,‘,+r,,u,‘,'+.........+if_u‘,_=g,, j=1{l)n (4.14)

where [,=0,j>i and. u,=0,i>}

The system of educations nvolves n’ +n unknowns. Thus, there are n parameter
family of solutions. To produce a unique solution it is convenient to choose
cithery, = 1 or 1, = 1,1 = 1(1)s . When we choose.

(D 1, =1, the method is called Doolittle’s method
() «, =1, the method is called the Crout’s method.
When are take 4 = 1, i 1 (1)1, the solution of the equations (3.26) may be written as

-
‘l' -ﬂ', —tflﬂ._i‘Z}
]

!"I*le“h-}
U, =- o i<j

¥ I. *
u, =i _
We pote that the first columm of the matrix L is identical with the first columm of the
A Thatis/ =a,, i=1()n (4.16)
 We also note that .u..:.";lblt, J =2(1)n @.17)

' The first cohumn of L and the first row of U have boen determined. We can now
pmmdmdmmm:méﬁodhmqumd&mdrﬁwufU

ly=a,=lyug, - t=2()n (4:12)
uy, =£"_’L‘I:LL"”, j=30)r  (419)
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Now, let u, =1,15i53
A=LU
11 =1 (4, 0 OYf1 wy wu,
=2 2 S|=|l W OO 1 wy
32 -3) Wl W00 1
(b . by _ by :
=|ly b ¥ly | byl
by by tly by +inuy +hy
1* columm 7, = 1,1, =2,1;, =3
1* row .I'“uu-l:euu-l fn"n - -1= Sy =)
2 column :,.,,u,.:nnu,,.zqr,-n
. Luwmnmthndﬁihmthm:lhn.
Wethmﬁmm-ﬂtmmmﬂth
.dommpmnumt;umud.
Hnwm nfmmmwrhemn
3 2 -3} 5 j
22 5lix|= -3
1.1 =1f{n] 2] :

"Now A=LU
32 -3Y (4, 0 OYf1 m wuy
i, X =1 L L e 0 |1
h Ly byt

Iy by +lp by tigsn
‘fn bty +yy Loy + Lot + 1

;!mhnm I, =3, _i',,-z,_ L, =1 :

1% row. ' ﬂl"u‘lﬁhuil.ﬂﬂn?% l“#u-"-]n=- Juy, ==-3= w, =-1
2 colurmn 1w, + Iy =1= 2,%1-13_.1; i .1_%,_}_




X 0 0 1 <% X%
L' =|-¥% 0 U'slo 1 -
X =% % aoerc: NS B Y I

1 =% Xl[X 0 0 X ¥ A
= I -%l{-% % Ol=-¥ ¥ -
006 1]|lK <% % K =K X
Example 2 : Show that the wmm fuils to solve the systen of equations

R

Solutlen : lot [, =3, i <¥6')
A=LU

: l 1 =1 L, =1 ¥ R r_i., uy )
212 2 5 |=| k Cdp=1 0 | 0wy my,

fwm iy
=l by, Ly tun byt 40y
bty bty +lgiin bk + ity duy
1* column
el ol el =2, Loty =33 0, 83

; l.mtu =1 w,==]

2* column Iatyy vy =2 Dag=2=2m0 lLug+lw,=2

~ The LU dectmposition method fitils a3 the pivot », = 0.




Example 3 : Solve the system of equations Ax=b

211 -2 -10
4 0 2 1 B
Where 4 = » b=
3220 7
¥ ¥ 1 -5

Using the LU decomposition method. Fake all the diagonal elements of L as 1. As find
A

4.6. Cholesky Method
This method is also known as the square root method. If the coefficient matrix A is
symmetric and positive definite then the matrix A can be decomposed as

&-11.’——-_.__;.{413]
where L={,}  1,=0,  i<j isalower triangular matrix.
Alternative, A may be decomposed as
A=UUT-—-—>(a.2)
Where U is a upper triangular matrix.
For, then the system Ax= b becomes
IL'x=b---->(429)
. We take L i oo 3 (005
2=b ~--—>(4.27)
Alternatively  z = L' -
CxaliT)'s
-(L"Tz
Now A=LL' :
h 0 0.0\ 4 & hds) (& 4 —a,)
b . ha Gl 0 Iy lh..dy) |loy ag o a,
Sl L LN 0 O kdslslon o .
b ba TawiduiN 0 0 0., ) la, & = a, )

19




2™ row 3" column
L +lquy, =5 Gy + lquy +1, = =1
2 1 21
:}.l(-l}q-iun =4 == l{-ﬁl}-lr;‘T-lrfn =~]
3 2
=T — | .
ﬂﬂ.‘n !2 1 = n
2 3
390 0 .5t
21
SL=l2 = D U=sf- 1 =
3 2
1 1 .2 it L RS
.3 2) ¥,
r 3
319 olfz) (6) | 31:2 5
Now Lz=b =2 % 0 fla]=|-3|=| 2a#3n |=f-
| &2 2J: 43z 4{-1} ,
3 73 S T

2 3 21 7 7
==r3:,-i:z,-!:;:,--3-—4a:,--?x-z-;--—i-ﬂ-:,«f-i-ld-i
2
=z, =-1 zm *-—1—1
- R + :
- .
Now Ux=z
=g
1 = =1 ey
3 . In 2
=lo 1 2 x jaf=22
2 |17 2
10 0 1 i\x -1

Xy =]
SEyml i =2-]m]

L=l x, =0, x, =-=1|




["U'Z"n u,)
Du, = Soiet J=i4li+2,.. =1
u
8
ay =y, U bty
L
; 3 I i=l 2. .21
i '["'"2,,"'] u,=0,i> j
Example 1 : Solve the system of equations

1 2 3\(x 5
2 8 22{x|=| 6

13 2 82)lx) \~10

Using the cholesky method
- Solutien:  Weknow
' A=LL

*1 2 3"'”\1.“' 014, f:: Iy
.=:i-2_8 D=L, L, 0 D_fn Iy
3 22 82) 4, Iy L)\0 O U,

f1 2 3) rf“j' R 4,
=|2 8 2|=|Ll, Iu'r;-:""fn’ !HIH‘_‘_%..
¢ 9 22 82) by bdn+lhy B+ #1050

1 columa

sl L gk =2 iy =3

h=1 Iy =2 4, =3
1* row

I =3 -
2* column

2 2 2
by +ly =8 =44+h, =8 1y w2 &1, 4140y =2 232.40,2=22 = Iy =8
2nd row

b+l 1, =82 =3 +8 41 =821} =_32-?3='&I; =9 1, =3




cmm&mm

1
: = A
fl-[di—gf':J |f-111uuu"'
AT -

Fori>j
u,.!;ﬂi""!'f"_"!l'"-.ﬂ‘“"ﬂ] l’ﬂ’!ﬂ"‘."ilj“‘u'"u)
=y +lddp +..tld =0
e !“n"g’!‘#!
o Sy 41y eyl Bl g5 Bori<)y Jy=0
- : ¢ B
Lt A=UU" > WU T=A
2 :
ly My e W), 0 0 . 0 (@ G -t )
6 o dlnee 8. 0 Oy O =iy,
=N (I | SRS co  NeTmmmT
s Sl frm = (65 S -
el JAMy, Wy, s e Wy \ Gy Ty = Oy )

_ a"#.(ﬂ,ﬁ,... Uy, Uys _Il;.] Yy
U
\ Y0

SSugty 4y plly g+, g2 Yy pete oMl = %

= Juatiy ¥y =4y
Eajsl




1* column

by =134, =10, =14, =2

2* column ‘

L+l =4l =3=1,=3 L +Iﬁfn.=ﬁ=}ﬁ_ﬂ+fn\{iﬂﬁ:‘$fnn%
3" cotumn

b4k b =29 4+%+I,,’ =29 =1, -rzs-%-% =l =

s

A
w0 Fuel 2
slefirofl - n larale ff -2
, B A 31%
SR RN 4 0 0
a )

Let the nverse of L be a lower trianguley matrix.

~LX=1
1 0 0 {fx, 0 O 1 00
=(-1 3 J‘u_ Xz Xp 0 |=|0 1 0O
8 11
EE TR 001
2 7; -:E- 1| : *n
| Ry 0 0 100 Q
= _x|:+*ﬁ-r1| _J'i 0 =t0 1 ﬂ.
8 J::71_1 J1 001

2::“-.# E‘.x:ﬂ+ “x,, Xy + x. lx,

TR B R Ee
=1, =1 & ==1+J35, =0>x, = l & 8 11
u=l- 1 i TJ =:r2x,1+7§-.r1,+-3-3 xy, =0

g8 1 V11 V11 6+8 -14 14
=21 s =) = — X, = =
..+:h F3+ B Xy =“T3 o iy 3 Xy, ° TT” 3 "3""33

&ﬁ&ﬂl#&:;};
3 8

' 3 o 8 1 Ji . 8
and + =0 —— - —— =
B BT AR ARYRTTRRAE A
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=5

.-21."‘2:_‘:‘5:‘ :I--—:

& 37,482,432, =10 = 32, =~10-15 +16 = 33, =9 =2 =3

5

Lz=|—2

-3
Now L'zxmz
1 2 3)\x 3

=0 2 Bi|x|=|-2

0 0 3/{x,) \-3

D> x5 +2x,+3x, =5

= x, =1

2x, + 8z, m =1

Iz, = -3

o X --=+%‘3 & 5, =S5+3-6=2

LE =2 =3z -=]
»

. 1 -1 2
Example2: Findinverseof |~1 4 6 Using cholesky method
2 6 2
Solwttom: Wehave A=LL'
(1 <1 2) {5 0 OYh kb b
;'*l_l 6 o {=jiy; in “-‘illrr:’r in Iy
2 6 29) Uy in W )\O D &
,ﬁ: III‘JI lIIJJI
=L 'fn: "'In: by +lply

by By +1gly ,nl "'fnl + '!nl




14 -1.0 0Ojjx
2 -1 4 -1 0j|lx
: Solvethe =
Example 3 equations &8 % «alle

1 ﬂ' ﬂ'.-"l “ 14.'

oo O -

Using the cholesky metfiod. Also determine A™

4,7. Ierative Methods
: A general linear iterative method for the solution of the system of equations (4.2) may
'- be defined in the form X @V = Hx") 4 C, & = 0,1, 2, .. = == =(4.28)

where ) and x%) are the spproximations for x at the (kc+1)® and k * iterations,
respectively. H is called the iteration matrix depending on A and C is a cohum vector. In the

XasAb~-=m=—- > (429 )

s B gl o i

AT BRI e e - - (a30)
The éokimn vector,¢ ié given by
oy o C=(-H)A™S e > (42T
We now determine the iteration matrix ‘H’ and the column vector ¢ for a few well known
iteration metbods. '

4.8.  Jacobl Iteration Method

We assume that the quantities 4, in (4.1) are pivot elements. The equations (4.1) may

t,e'wrimn as
8%, = B3, + 8%y # it G5, )b
Bk =—{a1r].'1 Lal 2 T 2 +ﬂ1-'r-)+bl __{432}

B L LI LT T T P T e P L

Gty =% + 8y e+ 85 D,

The Jacobi iteration method or Gauss-Jacobi iteration method may now be defined as




S

& m.‘l’,’ =I :ﬂxn-
ek

A=LLF 2 A = (T =) =) T

-14
-8
3

25

41
-14 -8

|
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1 . |
Y -:(a.rxz“’ ra5+ ...+ 8,5 -5)
]

el o xWea Wy ... 4 s -,)
ﬂn i
= -i—l (a,,x,m +dnx=“:' Kol a__,,,x__.m —b,)
K=0,112,...... (4.33)
Since, we replace the complete vector x(*)in the right side of (3.69) at the end of each
iteration, this method is also called the method of simultaneous displacement.
In matrix form the method can be written as
N DL+ U B +D D - — > (4.34)
= Hx"'+ ¢, k=D, 2,. .
where H--D"{L+Uj.c-n"b md L and U are respectively lower and upper
wmmmm@nﬁm;nhmmmmmm
A=L+D+0U.
Equation (4.34) can alternatively be writtenas
240 fap(L+ U+ D8
=x"-D'[D+L+U]z*'+D"'%
L D"[& - Ax¥]
VUl D) e > (4.35) :
Where y#) o x*)_ x@)is the error in the approximation and r) = 5 - Ax) is the
residual vector.
We may rewrite the above equation as DV ) = p*)
We solve for V*)and find %+ = x®) 4 y®)
These equations describe the Jacobi Iteration method in an error format.

Example 1 : Solve the following system using Jacobi iteration method
4x+y+2z=4

Ix+S5y+z=1T7, x =0=

(=T - I~

2+ y+3r=13

B6




e e PR —

aﬂxl“‘". +-...-.,.+M" ?“.:-L. ——>(4.36)

Since we replace the vector x“?htheﬁghlﬁeuf{ijnmmhmﬂmdhnhn
called the method of successive displacement.
In matrix notation (4.36) becomes

©@+Lye -Uz®es
Or .;‘”' #T{D+L]*Ih['i;6tﬂ+L]*

| -HaWac, k=0,1,2,......(437)
where H=—(D+L)'U ;m__c% (D+L)'s
Equation ( 4.34) can altematively be written as

20 = ~[r+@+Ly Ul +D+1) s

=¥ (D+L)'(D+L+UR® -;-{D+L)"b

B9




s =H"=C
0 -025 -05)(0) (1 1
=| -06 0 -02{jo)+14|=|14}
-0333 -0333 0 Jloj L1 3"
J‘iﬂx‘-'c‘ . | .
(0. -5 -0s\(1) 1’
= -06 0 -02|14]+ 14
-0333 -0333 -0 A1) (1)

-085) (1) fo.x
=|.-080 [+|1.4]|=| 06}
“\-07999) | 1) (02

-0 - =025 -05){0.15) (1
= -06- 0. ~02}/06}+ 14
~0333 0333 0 J{0z) !

o =025Y (1Y (75
= -013 |+]14]=127

~024075) { 11075

 Example2: Use Jacobiiteration method to solve

10x+4y~27 =12
x-10y-z=-10, X =0=|0
: 0

Sx+2y~10z2==3
Perform 3 iterations '

49. Gauss. Sﬂdd Il:znﬁnn Method

~ We now use on the right hand side of (4.33), all the available values from the present .
iteration. We write the Gauss- Seidel method as '




=%=1 =n::=l
& Ja+4b=0 & d4e=1
= 4bu=3 Demas
5 4

PRk 0
..m'
& ral
1 '
-5-_" 0 0
; : 1
~(D+L) = 5.7 0
' . -1
20 5

91




=x - (D+L)" A +{m L)'b
A (D) p-A)
Wewrite VW =(D+L)*'A

Where V) = 0 _ 31 and ,®) = b~ Ax*) is the residual vector.

We may rewrite the above equations as (D + L)V®) = r® - —co- > (4.33)md
solve for V) by forward substitution.

The solution is then found from x**) = x®14 4
These equations describe the Gauss-Seidel method in an error format.

$ 1 2%x] (2
Exsmplel:- |3 4 =l1j|x|=]-2
2 -3 S5|ix] |10

Using Gauss Seidel Method-
: ' s <) .3 : 0 0 0
Solutiom: - Here A=|3 4 -1}, L={3 0 0}
k1-35 I—EDJ
(s 0 0 (0 1 -2
D={0 4 0, V={0 0 1
s 00
~(L+D)={3 4 ©
' 2 -3 §
a-ﬂe'ﬂ
Let b ¢ 0| betheinverseof D+L -
d e f
5§ 0 0\fa 0 O 1 00
13 4 of|p ¢ Ol=I=|0 1 O
2 -3 5)ld ¢ f 001




K=w2,x"=Hx'+C

o -1 2.
35 51 1.104 0.4
- ﬂ' —— gy —ﬂ. + —'ﬂ.ﬂ
20 20 .
g ﬂ _32 0.9656 1.36
100 100,

0.58384 04 0.9838
=|-0.19648 |+| 0.8 | =| ~0.9965
0.351424 1.36 1.0086

Example2 : Solve the systemn of equations
2x, =%, +0x, =7
-5 +lx;-x =l
Oz, -5, +2x, =1

Using the Gauss-Seidel method and ifs exvor format.

4.10. Successive Over Relaxation Method (SOR).

- - ‘The method is a gencralization of the Gauss-Seidel method. This method s often used
when the coefficient matrix of the system of equations is symmetric and has property A. We
define an guxiliary vector & as |

A% o LD LV pAYR® e D —m e > (4.39)
The final sohstion is now written as

.,ft-l'll =x®) e W(R0 - ,‘.t-J]

;_-. ;**'*’- (-Wh®ew 20 oo 5 (4.490)
mm{l}hﬂ}

“xb = (- Wk + WDLx "= D-ux® 4 D)

T-:—‘;\’D"L:“":H{I-W-WD"U}"&WD"E

= Dx® e WL+ [1-W)D-WU]x® 4+ W‘b.

=2 D+ WLE"=[(-WD-WUK"™+ W
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H=~D+LJ]'U

1
- 0 0
53 " o1 2
3 e R
L 100 20 5
[ 1 2 1 2
60 - <==| o -= =
53 15 35 51
=% % w|"|1° % "2
o 3L 1B o 1L B
L 100 100 100 * 100
C=(D+L)'b
A ' 2
A 0 et
T il : 0.4
Ci7 3 1fue) fuse ) U136
00 20 5 100 )
Now x'*'=Hxz'+C
l-ﬂ.;_‘-'ﬂ:'ic
1 2 )
0 —=— -
5 sl 0\ (04 0.4
-lo ':ii % 0|+|-08]=|-08
o A1 _3110) \136 1.36
100 100,
K=lx'=Hs'+C
1 2 )
0 —-=— -
35 51 0.4 0.4
. 20 29 iss) L13e
1 ) ﬁﬁ;
704 0.4 1.104
=| -0.188 |+|~0.8|=|-0988].
-0.3944) |136) |09656




. Solve the following system of equations

22 1)} 11
4 2 3||x|=|2
1 1 1fl= 3
Demmh:tthU_&cmﬁnﬁmofthemﬂi:
2 =6 lﬂ
1 5 1
-1 15 -5
Sﬂthﬂ{’}:,-':.{h'}-,-l,ﬁil}a;-z(hr)_.,-z.’:-Lz.a :
Sohuﬂ:emnfm
4_ -1- 9 x,' 1
-1 4 _—1 X =0
0 =1 4}x]| {0
By the cholesky method
Find the necessary and sufficient conditions on k, so that the (i) Jacobi method (i)
mmsﬁnlmmodmﬁrmhhgpfm&mh-ﬁ.m
1 0 k]
A={2 1 3| adbisarbitrary.
k01
GivenA=L+1+U
1 2 =2
A=j1 1 1
2 2.1

LanﬁUmsmtbh“uﬂuppnﬂmguhm:upeﬂMly &andedwhﬂhu
{t}]mbamd{h)wmhu:hwm:hemhmufﬁx=b

; SMMM&&:(I}J@&MMM&{QWMHM&M:&:
mﬁiu;th:syﬂmufuqm

2 3 1[x] [~
3 2 2|[xl=l1
1 2 2)ix] |6




=x =(D+ WL [1-W)D-WU]x™ + WD+ WL)'b

CHI®4Cke0,1,2n ~===> (4.41)
Where H=(D+ WL [1-W)D-WU
C=WD+WL)'b
(4.41) =X =x¥ —(D+ W) [D+ WI)~(1- WD+ WU x™ + W (D+ WI)'b
= WD+ WL

Where %) = b~ Ax") is the residual are may write
v“_-W(D-r-WI.)"rN_"

Or (@+WL)®aw® - =es> (4.42)

The equation describes the SOR méthod in its errot format. For computational
purposes, it is convenient to use this equation.

When w =1, equation (4.42) reduces to the Gauss-Seidel method. The quantity w is
called the relaxation parameter and x*') is a weighted mean of %0 and x), Fromthe
equation (4.40).

We find that the weights are non-negative for 0Sws1. If w> ] then the method is
called an over relaxation method and if w <1, then it is called an under relaxation method.

EXERCISE
1 - i 7
1 ‘The matrix A-[ :’ ]':)'ugirvﬂ:.ﬁhuhmpandththnt

A’ = pA + gl and determine o




8. For the system of equations

3 2 0 5
6} 2 3 -~1|x=|4}
0 -1 2 1

4 -1 0] [3
@ |~1 4 -1|¥=2

0 -1 4 3

Find the optimal relaxation pararfieter ,, for the SOR iteration scheme.
Determine lh:rﬂeufmmoflﬁsm




