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‘ ' Unit 1
Topological Vector Spaces

1.1 Definition :
Let X.be a set. A topology on X is a collection T of subsets of X such that

1. both X and ¢ belong to T.
2. for every subcollection of T, the union of the elements of the subcollection also belong to T.
3. for every finite subcollection of T, the intersection of the elements of the subcollection also belongs

tol. .
The set X with the topology T is called the topological space (X, T).

Directed Set :
A directed set is a non-empty set 1 with a relation < such that

(1) @ £ o whenever a € L.

(2)ifa<Ppand <y thena sy, va, B,y el

(3) for each pair a, P of elements of I, there i5a g’u_n, in I such that
o<y ,adp<y, ,

That is, a directed set is a non-empty preordered set that satisfies (3)

Net :

A net or Moore-Smith sequence in a set X is a function from a directed set | into X. The set [ is
the index set for the net. _

Iff: [ = X is a net, then for each « in I. the o™ term f{c) of the net is often denoted by x_, and
the entire net is often denoted by (x_)__, or just (x ). By analogy with sequences, it is said that x_precedes
X, in a net when, '

o<p

Examples :

1. (N, <) is directed set, so every sequence in N is a net.

2. (R, <) is a directed set. So a function f: R —» X 15 a net,




Difference between sequen& and nets :
1. A sequence has a first term which cannot be preceded by any other terms.
2. But in a net, there is no first term, that is a term can be preceded by infinitely many terms :

Example :
(R? <) is a directed set defined by
(o, B) < (a,, B,) henever a, < a,
Then (x,,,,) is & net in R, where x_; = o + B
v (o, B) € R*.
This net has no first term.

If possible let x| . = a, + j be the first term.

o B
[f{]‘ = u‘.u:- {U_, 5] < |:I:|'.n1. E,} a'nd'
X ] o xlfﬂ.:,. ]

jea+f<o,+p

- There exists infinitely many e s.fa < o,
=> Infinitely many x . preceds X o, pi

=X g 15 not the first term.

g f
Note :

In a partially ordered seta < B, B =

=qg=f
But in a directed set it does not happen.
In (R, <), (o, B,) < (e, B,) if 0, < @, v (e, B) € R?
i=1,2
Then (1, 2) < (1, 3) and (1, 3) < (1, 2)
But (1, 2) # (1, 3).

Finite Net :

Let I be a three-element set {u, v, w}. Define < on I by letting these be all of the corresponding
relations :a <aforeachamu<wand v<w :

Then (I, <) is a directed set. Define a net (x,) in R with index set I by letting




x,=0,x =% and x, = 3.

(a) The index set {u, v, w} is finite.

(b) Nets -can have last term.

u<w=>x =0 preceds x, = -3.

v € w = X = 7 preceds x, = 3.

Thus -3 is the last term.

(¢) Nets can have more than one first term.
Here 0 and = are first terms.

(d) The index set for a net need not be a chain.

An important Net :

Let (X, T) be a topological space and that x € X. Let | be the collection of all nbhds of x with the
relation < given by declaring that U < Vwhen U2 V.

Then I is a directed set, If x, € U for each U in I, then (x ) is a net in X.

Convergent Net :

Let (x.) @ < I be a net in a topological space (X, T) and let x be an element of X. Then {x )
converges to X, and x is called a limit of (x ), if for each nbhd U of x, there isan @ _in I such thatx e U

whenever a < o .

This convergence is denoted by x, — x or

mx =x

[= 3
o

Example 1 :

The net (x, x, x_) converges to Swhenl={u, v whus<uy vSVyWEW, USW,VSWSL

X =0, x =mnx = =3,

¥ w

asx €(3-¢g-3+tg vy wsa.

Example 2 :
The net {x_: Uis.anbhdofx}. U<VifU2Vand x € U. We can show that X, — X.
Let W be a nbhd of x, so x, € W
Now, WsU=2UcgcW=x eUc W

=x €W

nx, €W,y WsU




:>xu—>‘.'{.

1.2 Subbasis : _ ;
Let X be a set and let  be a collection of subsets of X. Let B be the collection of all sets that are
intersections of finitely many members of . Then the topology generated by the subbasis  is the topology

generated by the basis B-.

Proposition : :
Suppose that G is a subbasis for the topology of a topological space X, that (x )__ is a net in X,

and that x € X. Then x_ — x if and only if the following is true
For every members U of G that contains x, there is an o, in [ such that x_ & U, whenever

o, s o

Proof ;
First suppose that

X, >X,and U € Gand x € U.
So U is a nbhd of x, and hence 2 a, [ such that x, € U whenever o < a.

Conversely let, for every members U of G that contains X, there is an a, in I such that x, €U

whenever o < o1,
be a finite subcollection of .

LetH={U,U, .., U}
X €U whena <a(l£igk)
Let o, = U.B of (CLJI, Qs oos IIL.K}

,'.mﬁiu:auiu{liiik}
=x e€lU(l1sigk

k
= X, €S ﬂU.
i=1

Let Ube anbhd of x =2 %= (U, U, ..

k
s.f mU

'
=1

c U

=>x elUfo, za

=X —r X
a




1.3 Product topology :
Let {X_ : @ € I} be a family of topological spaces.

Let 5 be the collection of all subsets of the cartesian product I1 X, of the form I1 U; , where each

awel

U, is open and at most one U, is not equal to the corresponding X . Then the product topology of IT X4
is the topology generated by the subbasis G .

Proposition :
Let {X“: & & I} be a family of topological spaces and let X be their topological product. Suppose
that {Xﬁ}pﬂ is a net in X, and x is a member of X. Then X, >X if and only if

xﬂ"ﬂ — %' for each o in L.

Proof :
Let z be the usual subbasis for the topology of X, that is, the collection of all subsets of X of the

form I1 U™ such that each U is open and at most one is not equal to the corresponding X',

. @l
Then X, — Xin I1U!
asl

& For every member U of @ that contains x, there is a f,, in J such that

X, € U whenever B < B

Xy € Iy«

el

(@) =~ | [al
= X, e U

© x,@— xfor each a € 1
Theorem :
A topological space X is a Housdorff space if'and only if each convergent net in X has only one limit.

Proof :
Let (X, T) be a Hausdorff space. We have to show that every convergent net has a unique limit.
If possible suppose a net (x_) converges to two different limits x and y.
Now, (x_) converges to X = For each nbhd U of x, there is an e, in [ such that

x €U whenever a_< a.

(x,) converges to y = For each nbhd V of y, there is an o, in 1 such that




X, € V whenever o < a.

ThenZana,  inlsta, 2 o, and a,,.

Thenx, e Uand x_e V fa=aqa, 2o, anda,.

- UV # ¢, which is acontradiction, as (X, T) is a Hausdorff space.
So limit of a convergent net in a Hausdorff space is unique.

Conversely, suppose that every convergent net in (X, T) has a unique limit. We have to show that
(X, T) s Hausdorff.

If possible suppose (X, T) is not Hausdorff. Let x and y be distinct elements of X that cannot be
separated by open sets. If U, and U, are nbhds of x and V, and V, are nbhds of y such that

ulguzmvl;vj_

Define, (U, V)) < (U,, V) if U2U,V,oV.

For each nbhd U of x and each nbhd nbhd V of y let Xy, D€ an element of UNV. Then the net
(%, ,) converges to both x and y.

This is a contradiction to the fact that every convergent net in (X, T) has a unique limit.
Hence, (X, T) is a Hausdorff space.
Remember :

[n a metric space (x, d), x € A <> 3 a sequence () Astx —»x forAc X

Propsition :
Let S be a subset of a topological space X and let x be an element of X. Then x € S < some net
in S converges to x.

Proof :
Let(x)beanetinSstx —+xesS.
To show that x € §S.
For this we have to show that every nbhd of x intersects S.
Since (x_) converges to x, so for a nbhd U ofx.
7o, €lstx e U whenever i, < o
In particular, X, € U and X, €S
=5n U =
R _ _
Conversely, let x € S.. Let I be the collection of all nbhds of x directed by declaring that

8




UsVwhenU V.
For each U in L, let x, be a member of UNS.

Then (x,)isanetin S converging to X.

1.4 Definition :
Let S be a subset of a topological space (X, T). An element x in X is called a limit point of S if and

onlyifx € S - {x}.

Proposition :
Let S be a subset of a topological space X. Then an element x of X is a limit point of S if and only
if there is a net in S — {X} converging to X.

Proof :
Let S be a subset of a topological space X.
Anet (x ) inS — {x} converges to x.
=X e S - .ix}
<> Every nbhd U_of x intersects S\ {x}
e UNn(S-{x}=¢

<> X is a limit point of S.

Proposition : )

A subset S of a tnpu'lﬂgical space (X, T) is closed if and only if imit of a mnvergerit netin S is n
S.
Proof :

Let S be a subset of a topological space (X, T).

Now S is closed & § = S. '

Now, xe S=S<>3anet(x)cSst

X =X

. S is closed <> limit of a convergent net in S is in S.

Proposition :

Let X and Y be topological spaces. A function f: X — Y is continuous at x, € X ifand only if x,
- %, = X)) - £X).




Proof :

Let f: X — Y be continuous at x, € X.

Let (x ) be a net in X converging to X,

Let U be an open nbhd of f{x ). By the continuity of f, f'(U) is a nbhd of x_.

Since (x,) converges to X, 50 F &, € I st

x, € FY(U) whenever o, < o

= fix ) € U whenever @, <a

= flx,) — fix).

Conversely, suppose that fix ) — fix)) if x, — x,.

To show that fis continuous at x, € x.

If possible suppose that fis not continuous at x. Let V be a nbhd of f{x ) such that no nbhd U of
- X, has the property that {U) ¢ V. .
Let I be the collection of all nbhds of x, directly by declaring that U, < U, when U, = U,
For each U in I, let X, be an element of U such that f{x ) e V.
Then the net (x,,) converges to X, but (f{x,)) does not converges to fix ), a contradiction.

Hence f must be continuous at x, € X.

Corollary : .L::l X and Y be topological spaces. A function f: X — Y is continuous in X.if and only if
fix,) — f{x) whenever (x ) is a net in X converging to x in X.
Proof : Let f: X — Y be continuous

<> fis continuous at each x, € X.

< fix ) = fix ), whenever x_— x_

since X is an arbitrary point of X, it holds for allx e X.

Subnet : Suppose that X is a set, that [ is a directed set, and that f: [ — X is a net. Suppose furthermore
that J 1s a directed set and that g : ] — [ is a function such that.

1. g(B) < g(B,) in [ whenever B <, in J.
2, g(J) is cofinal in L.
Then the pet fig : J — X is called a subnet of f.
Definition : A subset J of a directed set [ is cofinal in | if for each ain I there is a B,mJsuchthata<f .

Proposition : Let (x ) be a net in a set X,
(a) The net (x_) is a subnet of itself.

10




(b) Every subnet of (x ) is a net m X.

(¢) Every subnet of a subnet of (x ) is a subnet of (x ).

(d) If X is a topological space and (x_) converges to an element x of X, then every subnet of (x_)
converges to x.

(e) If X is a topological space and there is an element x of X such that every subnet of (x ) has a
subnet converging to x, thenx_— x.

Proof : (a) Let [ = {a} be an index set of the net (x ). where fla) = x_

LetJ=Iandg:J = I, gla) = a.

g =1L
Since [ is a directed set, for @ € I, 3 B € I, such that a < p.
. g(1) is cofinal.

So, (fo g) (o) = flg(a)) = fa) =x,.
. (x_) is a subnet of itself.
(b) Let f: 1 - X be anet and g : ] — [ be such that
(1) g(B,)) = g(B,) it B, =B, -
(i1) g{J) is a cofinal in L.
and fo g : J — X is a subnet, J is a directed set.
Now,u&l;[::-cxﬁu I
o, pyel=ashpfsy=asy
Fora,pel=>apel
=3yelsta, Ly
= R Pyelsty<fly
Soa, BBy :
So, J is a directed set anﬂ hence £ g is a net.

(¢) Let (x,) be a subnet = (x ) is a net.
Now, every subnet of the net (x_) is a net
But we know that every net is a subnet itself.

Hence, every subnet of a subnet is a subnet.

(d) Let (X, T) be a topological space and the net (x,) converges to an element x X.

To show every subnet (x )

Let U be a nbhd of x. Then 3 0, € 1 s.t

), of (x) converges to x.

11




X =X eUforalla 2 aq
Now, o, E[=>[3 Elstau‘fﬁ

» € U whenever B, < a < B, when g(B )53“31
‘.KHE—}X

() Suppose X s a topolgoical space and that x is an element of X that is not a hmit of (x ). Then
there is a nbhd U of x with this property.

For every o m the index set I for (x_), there is a _in I such that a < and x; & U

LetJ={p:Pel, x, & U}, a cofinal subset of [, and let (x,) be the restriction of (x_) to J. Then
(x) is a subnet of (x ) that clearly has not subnet convergmg to x.

This proves (e).

1.5 Technique of construction of a subnet :

Suppose that (x ) and (y,) are nets with respective index set I and J. It is often usefill to be able to
find subnets [xg.) and Ulu"] of (x_) and [yﬁj respectively that have the same index set K. To-do this, let K
=1 x ], directed by declarig that (o, B) (o, p,) whena, <o, and f < B,. Letg: K—landh:
K = J be the projection mappings, that is the mapping defined by the formulas g{w, B) = o and h(a,
P)=P. Then (x gy and (Vya) are subnets of (x ) and (y,) respectively having same index set.

If (x ) lies m a topological space, then (x 1u.m} converges to some X ifand only if (x ) converges to
x and similarly for {thn.ﬁr} and (¥,)- ;
Accumulation point :

Let (x ) _, bea net 51 a topological space X and let x be an element of X. Then (x ) accumulates
at x, and x 1s called an accumulation point of (x_), if for each nbhd U of x and each o in [, there is a
B, mn1suchthata <p_ andx e U.

Proposition :

Suppose that (x ) is a net in a topological space X and that x € X.

(a) If (x ) converges to x, then {xq] accumulates x.

(b) If (x ) has a subnet that accumulates at X, then (X ) accumulates at x.
Proof : (a) x, —> x means if U is a nbhd of x, & «, € I such that

x, e Uifa, £ o

Ifa €1, then 3 B_ e I such that

a<p  andx .U

12




-, X is accumulation point of (x ).

(b) Let, (x,) bea subnet of (x_) and (X)) accumulates at x.

To show (x_) accumulates at X,

If U be a nbhd of x and f € J. Then 7 B, 2 P such that x, € U.
Let o, I, 3 B, € J s.t o, < P and hence o, < B, and x;, < U.

- (x,) accumulates at x.

Proposition : A net in a topological space accumulates at a point < the net has a subnet converging to
that point.

Proof : Let (x)__, be a net in a topological space. If (x ) has a subnet converging to a point X, then that
subnet accumulates at x, so (x_) accumulates at x.

Conversely suppose that (x_) accumulates at x. Let J be the collection of all ordered pairs (c, U) such
that ¢ | and U is a nbhd of X contammg x . -

Define a relation on J b}r' declaring that

(e, U) = (o, U,) when a, = o, and U 2 U,

If (o, U)), (e, U,) € J, then the fact that (x_) accumulates at x assuries that there is an a, such
that a, < o @, < «, and

X,, € U, n U,, which imples that '

(o, U) £ (o, U U) and

(a,, U) < (@, U U,).

It follows that this relation defined on J makes J into a directed set.

Let g(a, U) = a, whenever (a, U) € L.

Then (x_,.) is a subnet of (x ) converging to x.

Corollary : A subset S of a topological space is closed.
& § contains every accumulation point of every net whose terms lie in S.
Proof : A subset S of a topological space is closed.
& S contains every limit of every convergent subnet of every net whose terms lie in S.

& § contains every accumulation point of every net whose terms lie in S.

Proposition : A subset S of a topological space is compact
<> each net in S has a subnet with a limit in S, that is, if and only if each net in S has an accumulation

13




pomt in 5.
Proof : Suppose that (x ) is a net in S with no accumulation point in S.

For each x in S, let Ux be a nbhd of x that excludes the entire portion of the net from some term

onward.

Let = {U, : x € S} be an open covering for S. Since every finite subcollection of  excludes the
entire net from some term onward, it follows that  cannot be thinked to a finite subcovering for S, so,
S is not compact.

Hence 5 1s compact = each net in S has an accumulation point in S.

Conversely, let S is not compact. Then S has an open covering ¢z that cannot be thinned to a finite
subcovering for S. [t can be assumed that 5 is closed under the operation of taking finite unions of its
elements. It follows that 5 can be made into a directed set by declaring that U < V when U ¢ V.

For each U in , let x be a member of X — U. Then (X)) is a net in S with the properly that ,
g U, when U < U.,.

It follows that (x ) has no accumulation point in S.

Hence, each net in § has an accumulation point in S.

= S is compact.

1.6 Topological Group :

Suppose that X is a set with a group (multiplication) operation, that is, an operation (x, y) — x.y from
X x X into X such that

L. (x.y).z = x. (y.z), whenever x, v, z € X.
2. there is an identity element e in X such that x.e = e.x = x, whenever X € X.
3. each element x of X has an inverse x™' in X such that x.x'=x"'x=¢

Then (x, .) is a group. Suppose furthermore that T is a topology for X such that the mappings (x,
y) = xy from X x X into X dnd x —=» x™' from X into X are both continuous.

Then (X, T.,.) is a topological group.

Remark : Let X be a group and that x € X, and A, B ¢ X.
Then 1. x.X = {xg|g € X}
2Ax={ax|ae Acg X}
JxA={xalae Ac X}
4 AB={ab|ac A, be B}
5A"={a'|ae A}

14




Proposition :
i (a) Suppose that X is a topological group and x, € X.
Then X = XX, X = X.X, and x = x' are homeomorphisms from X onto itself.
Proof :
Let f: x = X be defined by fix) = x,.X; X, € X
1. f is one-one : Let p(x) = f{y)
= XX =X '
= x = y [By Left c.Law]
- f1s one-one
2. f is onto : Let y € X (codomain). Then
x,' ¥y e X.
L =Xk Y) = (X XY =Y
. fis onto and f'(y) = x,"'y
3. f is continuous :

Let W be an open nbhd of x:x. By the contmuity u.f (x,, X) = %,.X at (X, X), for a nbhd W of X,
5 a nbhd U,L':I x V_of (x;, x) s.t Ulu VW

=XV, e U Y ewWwrne U*u]

=fiv)cW

.. 1is continuous.

Similarly f'(x) = x,™ .x is also continuous.

Hence fis a homeomorphism.

Next let f: X — X be defined by fix) = x.xﬂ;iﬂe X.

1. f is one-one :

Let fx) = f{y)

= XX, = ¥X,

= x =y [R.C. Law]

.. f'is one-one.

2. fis onto :
Let y € x. Then yx," € X
-~ flyx, ) = (%, ') xg
=y (xx,".x)

=Y

15




and f'(y) = yx,
.. fis onto.
3. By let x € X be any point. Let W be an open nbhd of x.x .

By continuity of (x, x,) — X.X, at (x, x_), for a bhhd W ofx,xw 3 anbhd LI:I ® ‘u’t“ of (x, x) such
that Ux. "r"_m oW

=Uxx,c W[ x,& "v’xﬂ]

=fU)g W

.. Tis continuous.

Similarly f'(x) = x.x"! is also continuous.
Hence fis homomorphism

Next let & : X — X be defined by ¢(x) = x*
1. is one-one ¢(x) = ¢(¥)

— x—': — }rl — {x_-l;]-l — (Y l'}-'l

=>XxX=y
S ¢ 1s one-one.

2.is onto : Let € Y codomain X. Theny! € X.
Ly =y =y

~. @'is onto.

3. By defimition of topological group
$(x} = x! iscontinuous.
Also ¢ '(x) = x!' is also continuous.
Hence ¢ is a homoemorphism.
(b) If X 1s a topological group. Ac X, Bc X.
Then (i) A is open = x_. A is open and A™! is open.
(ii) A is closed = x,.A is closed and A™' is closed.
(iii) A is compact = x_.A is compact and A™' is compact.
(iv) A or B 1s open = A.B is open and B.A is open.
Proof : '
(i) We have f: X — X defined by f{x) = x,x is a homeomorphism.
We know, that homomorphic image of an open set 1s open.
Nc_:-w, A 15 open = f{A) = x.A 15 open.
Again, we have ¢ : X — X defined by ¢(x) = x' is a homeomorphism.
" Als open = ¢(A) = A" is open. '
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(ii) A is closed = f{A) = x.A is closed
A is closed = f{A) = A" is closed, as fand ¢ are homeomrphisms.
(iii) A is compact = f{A) = x. A is compact
A is compact = ¢(A) = A™' is compact, as fand ¢ are homeomorphisms.
{(iv) Let A and B be subsets of X and B is open. '
Then AB=U{aB :a € A}
Now, B is open = a.B is open, where a € A.
= U{a.B : a € A} is open
= A.B is open. .
Again, BA=U{B.A:a e A}
Now, B is open = B.a is open, where a € A.
= U{B.a:a e A} is open.
= B.A 15 open. .

(c) Fer each x_ in X, the nbhds of x, are exactly the sets x .U such that U is a nbhd of'e, which
are in turn exactly the sets U.X such that U is a nbhd of e.

Proof :

If U and U_ are nbhds of ® and x0 respectively, then x,.U and x,”". U, are nbhds of x, and e
respectively, which together with the fact that U_WI = X(X, '.U_‘ﬂ] easily yields that x .U is a nbhd of x ;.

Similarly, U.x, is a nbhd of x.
(d) For each nbhd U of e, there is a nbhd V of e such that V= V"' and VVc U

Proof : Let U be a nbhd of e. By the continuity of (x, y) — x.y at (e, ¢), for nbhd U of e.e = e, 3 nbhds
V, of e and V, of e such that '

V,V,cU

Let V=V NV, V™" "V, another nbhd of e.
Then V' =V. Ao VVC V.V, c U

= V=V and ‘u_’."v’ il §

Proposition : A subset S of a topological group X is relatively compact (ie S is compact) if and only if

each net in S has a subnet with a limit in X (not assumed to be in S); that is, if and only if each net n

S has an accumulation point in X. '
[Remark : S is relatively-compact =§is compact. ]

Proof : If S is relatively compact, then S is compact, so every net in S has a subnet with a limit in 5

and therefore in X. '
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For the converse, suppose that every net in S has a subnet with a limit in X. Let (x )__ be a net
m S. It is enough to show that (x ) has a convergent subnet.

For each a e I and each nbhd U of the identity e of X, let ¥, vy D€ 2N element of (Jltn_uj ™ S. Then
(Y, is a net if its index set J is preordered by declaring that (o, U)) < (@, U,) when o, < o, and
U=2U,[J={(a,U)'a €l, U is a nbhd of ¢]

Furthermore, a corresponding subnet (x ) of (x ) is obtained by lettig . T for each (o, U)
in J.

[t is enough to show that (x ) has a convergent subnet. Since the net (y,, ) has a subnet (y,) with
a limit x, it is enough to.show that the corresponding subnet {xa} of (x ) also converges to x.

Suppose that U, is a nbhd of e. Let a, be any element of L.

If (o, U < (a, U), then

le g TS (a U, so
-
i Yaw € U{:.'
e
It follows that x' .y _ -—>eand

therefore that x™' . y, — e. The continuity of the group operations then assures that
V= .y ael=e

and that Xy =Yy (¥ 'ﬂ . X;) — X.¢ = X as required [-- Y, — x and Yﬂ" s el

Cauchy Net : Anet (x ) inan abelian topological group "X’ is (topologically) cauchy if for every nbhd
U of the identity element 0 of X, there is an o m [ such that

X, = Xy € U whenever o, < fand o, < ¥.
Invariant metric : A metric d on a group X is left-invariant (right invariant) if d(z.x, z.y) = d{(x, y)
[d(x.z, y.2) = d(x, ¥)] wheneverx, v,z € X.

[fd is both left-invariant and nght-invariant, then d is invariant.

A metric d on an abelian group X is invariant ifand only ifd(x +z, y+2z)=d(x, ¥) v X, h. Z €
xX

Propesition : If a topology for a group is induced by an invariant metric, then the group is a topological
group when given this topology.
Proof : Suppose, that a group X is given a topology that is induced by an invariant, metric d. Let ¢ be
the identity of X. If sequence (x ) and (y ) converges to x and y respectively in X, then

d(x.y, xy) =d (x'x_.y, . ¥', x'xy ¥,")

=4 (X, vy )

€d (x'x,e) +dle, yy™)
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=d(x, x) +d(y,, ¥)

— IU asn —» o« -

Thus d{x .y, x.y) = fasn— =

Again, d(x ', x") = d(x_x, "X, X .X7".X)
=d(x,x) > 0asn— x

Hence, x .y, — X.y and X' — X",

If follows that group multiplication and inversion are both continuous. So, X is a topological group.

Definition : An abelian topological group is complete if each Cauchy net in the group converges.

1.7 Vector topology or Topological vector space :

Suppose that X is a vector space with a topology T such that addition of vectors is a continuous
operation from X x X into X and multiplication of vectors by scalars is a continuous operation from F
x X into X. Then T is a vector or linear topology for X and the ordered pair (X, T) is a topological vector
space (TVS) or a linear topological space (LTS).

If T has a basis consisting of convex sets, then T is a locally convex tﬂpGIE}g}' and the TVS (X, T)
is a locally convex space (LCS).

Theorem : (X, T) is a TVS < (X, T) is a topological group w.r.t addition and multiplication of vectors
by scalars is a continuous operation.
Proof : Let (X, T) be a T.V.S. Let x, = x and y, — y clearly (X, +) is a group.

Now,x —»xandy —y

=X +y =Xty

. Addition is continuous.

Again, since (X, T)isa TVS,s0

X — 0X is continuous for a € K
= X —» —X is continuous.

. Multiplication of vectors by a scalar is continous. Converse part is similar.

Proposition : Every norm topology is a locally convex topology.
Proof : Let (X, T ) be a norm topology.

Let x, — x and y, = y in X. Then

H{x +y)—x+Vil=|x,-x+y -yl
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shx-x|+lly, -yl

—0asn— x

= xn+yn—b Xty

= Addition is continuous,

Again, leto. = aimKand x = xin X.
Then ax —ax|=flex ~ax+ax - ox ||
Sflax ~ax| +| ex-oax|

=lo |llx,—x||+]a -x|| x|
—0asn— e

= oX — 0X

= Scalar multiplication is continuous.

So, (X, T)isa TVS.

Let, B = {x:]|x| < i}. If G is an open set containing 0, then 3 £ > 0 such that

B(0, £) £ G Then we can choose n € N s.t

'#Hﬁmmm#gﬂmm;ﬂ

Hence {B } is a local base at the origin.

Ifx,yeB soux“{i fyll < 1
] 11, 14 n L] n

Then |[x +(1 -t)ylist|[x[[+(A -t ]yl

ﬁtl +{l—t]l=l,f0rl)<t{l
n n n

=>tx+(l-tlyeB_.
- B_1is convex.

So, every norm topology is a locally convex topology.

Definition : A subset A ofa TVS is bounded if for each nbhd U of 0, there is a positive S_such that
A c tU whenever t > S .

Note : A locally convex space is not a NLS.
If X # ¢ is a vector space, then {X, ¢} is a LCS, but {X, ¢} is not a NLS.
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1. Addition is continuous :

X is the only nbhd of x + ¥

X is the only nbhd of x

X is the only nbhdof y.

and X + X =X.

So, addition (x, y) = X + y is contmuous. -

2. Scalar multiplication (o, x) — ox is continuous.

X is the only nbhd of a.x

X is the only nbhd of x.

Lett e B, )= {x.|[x—-a|<sg}

Then tX = X.

So scalar multiplication is contmuous.

Also {X} is the unique local base of x € X and X is convex.
Hence {X, ¢} is a LCS.

But it is not normable. In fact X is not Hausdorff. So an LCS is not NLS.

Example : If a Cauchy net in an abelian topological group has a convergent subnet, then the entire net
converges to the limit of the subnet.

Proof : Suppose (x_)__, is a Cauchy net m an abelian topological group X and that (x_) has a subnet with
a limit x. Let U be a nbhd of 0 in X, let V be a nbhd of 0,
such that V + V < U and let a, be a member of 1
such that Xy = X; € V whenever a, <y and o, < i .
Since (x_) accumulates at x, there is an a. inl
Suchthat ¢, < o and x e x +Volfa, <a,
thenx =K —x_ ) +E &V Hix+ V)
=x+(V+V)
=t T )

= X, =~ X,

Example : Every convergent net in an abelian topological group is Cauchy.

Proof : Let X be an abelian topological group and let (x_ ) be a net in X converging to some element x,
of X. Let U be a nbhd of 0 in X and let V be a nbhd of 0 such that V=-Vand V+V c U. Leta
be a member of I such that x, € x, + V whenever U.fo <aanda, sy, then
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%X €X+V)-(x,+V)=V-V=V+VU

- (x,) is Cauchy net.

Theorem : Suppose that X is a topological vector space.

(a) Let (B_) be a net in IF and let (x,) and (y_) be nets in X such that all three nets have the same
index set and B, — B, x, — X, y_— y. Let ¥ and Z be elements of F and X respectively. Then

D x, +y >x+y
(i) B,x, > px
(lii)x +zox+z
(iv) yx, = yx
(v) B,z = Pz
Proof : We know that £: X — Y is continuous at X
X X = fix,) = fix).
MmaTVS, +: XxX>X, (x,y) > x+yis
contmuous
S LY) 2y inXxX
=Xty >xty
Thusx, > X, y, 2 y=>x +ty > x+y
(ii) Ina T.VS, -+ FXX = X, (o, X) = o.X is continuous.
S (B, x) = (B, x) in FXX
= px — Bx
Thus, B, = B, x, > x = Bx_— Px.
(iii) For a nbhd W__.. 3 a nbhd, Ux of x and v ofy
such that
U, +v,c W __ [Definition of continuity of addition]
=U,.,cW._,
=T, (Ux) c Wk
R u:ﬂﬁtinuuus.
"X, 3Xx=>T {'xu) =T (x)
=X, PX+Z
(iv) For a nbhd Wh,x, Janbhd U ofx and anbhd (, ) of , such that
yU < Wk,x [Definition of continuity of scalar multiplication]
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= M:l U)yc W gx
Mh’ is continuous.
LX XS M, (x,) — M}, (x)
= yx, - YK
(v) For a nbhd W, 3 a nbhd U, of z and anbhd B(B, &) of p such that B(B, &) U, = W,
=B (B, ez wﬂt
= M, B(B, &) W,,
:. M_ is continuous.
© B, =B =M®B) > M, P
= Bz = Pz
(b) If fand g are continous functions from a topological space into X and o is a scalar, then f+ g
and of are continuous.
Proof : Let (x ) be anet ina topological space z,

such that x,_ — x.
Then fix ) — fix)

g(x,) — g(x)
o fix) +e(x,) — fx) + g(x)
= (f+gx) > ({f+g) X
-, f+ g is continuous.
Let {xﬁ) be a net in z (topo.space) such that
X, = X. and o € F.
i{xp] — fix}
= af(x,) = af(x)
= (af) = (af) (%)
.. af is continuous.

‘ (c) Let x, be an element of X and let o, be a non zero scalar. Then the maps x —» x + X, and X
— a,x are homeomovphisms from X onto itself. Consegenty, if A is a subset of X that is open / closed
/ compact, then x, + A and o A also have that property. If A and U are subsets of x and u is open, then
A + U is open.

Proof : 1. Let T, : X > X be defined by
T*u (X}=x+x,
(@) Let T, (x)="Tx,(y)
DX+ =YX
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=x=y
= Tx, is one-one.

(ii) Let x & codomain, X.

Then Tx, (x - x) =X-X+x =X

Thus forx € X, 2 x - x, € X sit Tx.(x - x) = x.
- Tx, is onto and Tx_,(x) = x - x,.

(ifi) Let W_ vey be an open nbhd of x + X, Then3 U _and VH}, open nbhds of x and x, respectively

such that U_+ V. SW,
I

=U, o S W, -

:} Txu (UT:] ; WR_ND

o T“n 15 continuous at x £ X

*0

= T, is continuous on X.
o

(iv) T_ﬂ"(x) g i T-;,,]':KJ

= '1"3‘ﬂ is continuous for any x € X.

T_x1J is a homeomorphism.

2. Let Miﬂ : X = X be defined by Muﬂ (x) a X

(i) Let M"n (x) = Mﬂn (v)
>0, X=ay
=x=y[v a,=0]

. M is one-one.
I.'l.u

(ii) Lety € X. Then ;' Y € X and
Muﬂ (" y) = a, {Iu"}r =y
M, is onto and M_"'(y) = oy = M~ (3)

(iii) Let Ww be a nbhd of ax.
= 3 & > 0 and some nbd V_of x such that t V. & Wuux anbhd V_of x
such that tv, ¢ Wn“x whenver ie. [t-a | <e.

:’{IUVCW}E
=y
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=M (VIcW x
|:|:L-| K ‘ﬁ.{'
M“D is continuous.
Again, Mﬂﬂ"(x} = M“ﬂ !(x) is continuous. Since M 0 is continuus for cach a & F.

Mu,;, 15 a homeomorphism.

3. We knwo that, under homeomorphism open / closed / compact set goes to open / closed /
compact.

We know that, Tx (x) = x, + x is a homeomorphism and A is open / closed / compact.

T-s., (A) =x,+ Ais open / closed / compact.

Again, M“ﬂ (x) = o, x is a homeomorphism and A is open / closed / compact

Mun (A) = o, A is open/closed/compact.

"4. Here A, U < X such that U is open
Now, A+ U=1U {a+ u}
acA
= Union of open sets
= an open set.

= A+ U is open set.

(d) Suppose that A and B are subsets of X, that x, € X and let o, is a nonzero scalar. Then

1LA+BgA+B,x,+A=X tA aA=qA

2.A° + B'c (A + B, x, + A’ = (x, + A)’, ¢, A’ = (a,A)°
Proof : 1. Letx € A+ B

= x=y,+2z,wherey € A z B

Let (y,) and (z,) be nets in A and B respectively such thaty_ — v, z, = 2,

Then, there are subnets {yy} and {Z..':' of (y,) and (zaj respectively having the same index set.

Theny, + 2z, = y, + z,

::.yu+znr—:A+B

=xecA+B
LA+B cA+B

o=
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Lemma : If f: X — Y is a homeomorphism, then for A ¢ X, f{lA) = f{A) and f(ﬁ."} [flA)]°
Proof : Here, Ais a closed set and fis a closed map

= f{A) is a closed set.

Also, flA) c flA).

= f{A) is a closed set containing f{A).

But f{A) is the smallest closed set containing f{A).

. flA) c fiA) .....(1)

Again, f{A) is a closed set and f is continuous

= ! (f{A)) is a closed set

Also, flA) < {A) = A ¢ £T({A))

f“[f(_ﬁ]} is closed set containing A and A is the smallest closed set containing A.
So A c ! (RA))
= f{A) c fA) ..... (2)
. From (1) and (2), {A) = {A)

We know, T*u (x) = x, + x is a homeomorphism.
= Tx1J (A) = x, + A is a homeomorphism.

So, T, {_A] =T, (A)

=x+tA=x,+A

Lemima : If f: X — Y isa homeomorphism, then for A c X, flA) = [flA)]".
Again, A® is open and f is open open

= f{A") is an open set.

Also, fA") < flA).

. f{A") is an open set contained in f{A)

But, [f{A)]° is the largest open set contained in f{A)

- HAT) € [A)]" ... (1)

Again [f{A)]° is an open set and f is

continuous,

= f! [f{A)]" is an open set.

Also, [f{A)]’ = flA)

= ' [flA)]’ c A.

- £ [f{A)]° is open set containg A and A® is the largest open set containing A.
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-~ A c A?
= [fA)) < flA?) ...(2)
From (1) and (2), fA”) = [f{A)]° -

We know that

Mmu(x} = 0, X 15 a homeomerphism

= Mﬂg (A) = o, A is a homeomorphism

. M = 0

# M, (A% = M, (A)] :
= a A’ = [a, A]

Again, Tlﬂ(x] =X, T X i a homeomorphism

T*ﬂ (A) =x, + A1s a homeomorphism.
= 0

T, (A" =T, (A)]

= x, + A’ =[x, + A]*

Also, Mu‘} (x)=0ox is a homeomorphism

= Muﬂ{ﬁ} = g A is a homeomorphism

MBD{E} = Ma,(A)

= 0 A=TA '

Next, A" is open = A" + B’ is open.

Now, A'c A B"cBA"+B'cA+B

. A"+ B" is an open set contain in A + B.

But (A + B) is the largest open set contain in A + B.
L A"+ B =c(A+BY

() For each x in x, the nbhds of x_ are exactly the sets x, + U such that U is a nbhd of 0.
Proof : We knnw, X = X, + X is a homeomorphism

So, U is open containing 0 :

= x, € X, +Uand x+ U is open

= x,+ U s anbhd of x.

Conversely,-V is a nbhd of x,

=0e-x,+Vand x + V is open.
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Then U = —x, + V is a nbhd of 0
= V =x, + u, where u is a nbhd of 0.

() Each nbhd of 0 in X is absorbing
[ InaT.V.S ‘X', Ac X is said to be absorbing if x € X, there is a positive number to such
thatx et A, w t>t,
Proof : Let Ubcanbhd of Oin X. Letx e X
Then (t, x) — t 0 x is continuous at (0, x)
If U is a nbhd of 0, 3 a nbhd V of x such that t, ¢ U for [t| <, fore=0

=txelUif-e<t<e (0<t<Eg)

::>xet'Uift"l‘-é

:>xesUifs}su,whn:rcs=t",sc:-=E

- U is an absorbing set.

(g) For each nbhd U of 0 in x, there is a balanced nbhd V of 0 in X such that V cVev+V
o L
Proof : Suppose that U is a nbhd of 0 in X. The continuity of vector addition yields nbhds ul and u2
of 0 such that U, + U, c U. ;

Let U, = U, A U, A (-U,) A (-U,). Then U, is a nbhds of 0 such that U, = ~U, and U, + U,
c 1.

The same procedure applied to U, instead of U yields a nbhd U, of 0 such that U, = -U, and U,
+L + 1+ U 1L ‘

[t follows that U, + U, + U, does not intersect X — U, so the fact that U, =- U, implies that U,
+ U, does not intersect

X-U)+U,

Since (X — U) + U, is open, it follows that U, + U, does not mtersect

X-U+U,s0U,+U, g U

The continuity of multiplication of vectors by scalars produces a s > 0 and a nbhd U, of 0 m X such
that @ U, ¢ U, whenever | a | < 8. '

Let V=U {aU, : | @ < 3}. Then V is a balanced nbhd of 0 lying in U,.

[V is a balanced = tv c v if |t} < 1.] '
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[etft| <l,yetV =y=tx,xeV

>y=tau x=oau,ucel
la|<d

= y=(to), u, fto] = [t | < &
Ly=(ta)uy, fta <d
=>yeV

tVeVforjtj<1.

Thus V is a balanced nbhd of 0 lying in U, and

Vev=V+{0jcV+VcgU +UcU

(h) Suppose that A is a bounded subset of X, that x_ is an element of X, and o, € F. Then x; +
A and o, + A are bounded,

Proof : Let A be a bounded subset of X. To show that x, + A is bounded.
Let U be a nbhd of 0 in X and let V be a balanced nbhd of 0 in X such that V + V < U.
Let s, be a positive number such that Ac t and X & t whenevert > s,
ft>s, thenx, +Agt +1L St
’. %X, + A 'is bounded.
Next, to show that o A is bounded.
Let t > (Jo,| + 1) sw. '

Then T]q, | ~ ™

= Ac—L—V [A is bounded]
. 1+|a,|

= a,Actle]+)'a,VetVet,

Thus, ;;:DJR < t, whenever t > (ja | + 1) sv.
-, o, A is a bounded.

(i) Let A be a subset of X. Then

1. [A] = <A>

2. CO(A) = CO(A)

3. Ais a subspace of X => A is a subspace of X.
4. A is balanced = A is balanced.
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5. A is balanced = A" is balanced provided that 0 e A,
6. A is bounded => A is bounded.

7. A is convex = A is convex.

8. A is bounded = A" is bounded.

9. A is convex = A" is convex.

Proof : Let A be a subspace of X. To show that A is a subspace of X.
Letx,y € A and o, p € F. To show ox + Py € A
Now x € A= J anet (x) in A such that x, — x.
y € A=> 3 anet (y,) in A such that y, = ¥.
Then there exists subnets {xk,} and Yk’} with same index set such that Xy =% Yy Y.
— m¥+ﬁ§,r¥—}ax+ Bv.
L Aisa subspace., 50 X, + ﬁyk, A
ax+fye A :

= A is a subspace of X.

4. Let A be a balanced subset of X. To show that A is balanced.
A is balanced = tA — A, whenever |t| < 1.

= tA c A, whenever |t| < |

= tAc A, whenever |t| < |
. Ais balanced.

5. Let A be a balanced subset of X. To show that A” is also balanced provided 0 € A°
A is balanced = tA < A for 0 < [t < 1.
NowtA'ctAc Afor 0 <|t| = 1. |
Thus tA° is an open set contained in A. But A® is the largest open set contained in A.
LA Cc A for0 <t < 1.

Ift=0, thentA’= {0} c A’ (-- 0 € A").

. A is balanced.

6. Let A be bounded subset of X. To show that A is a bounded subset of X.
Let U be a nbhd of 0 in X and let V. be a nbhd of 0 in X such that V < U.
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Lt;t s, be a positive number such that A < tV, whent >s .
ThenAc i, |

= Act.ctU whent>s,

=> ActU,whent>s,.

. A 1s a bounded set.

7. Let A be a convex subset of X. To show that A is a convex subset of X.

For 0 <t < 1, we have

Alsconvex <= tA+(l —-tHAc A

i < tx+ (1 -ty € A, where

LyeA

Let x, y € A=> 3 nets (x_), (y,) < A such that,

X, =X Yy, >y

= 3 subnets (x;) and (yy) in A

such that xp — X, yy = ¥

Thenfor0<t<1,

txy + {1 -ty > tx+ (1 -ty

ButasAis c.ouvex, sotxy+(l-thyy € A

LSl -ty - A

= A is a convex set.

8. Let A be a bounded subset of X. To show that A° is bounded. Let U be a nbhd of 0.
A is bounded = 3t > 0 such tha_tA; te ¥V t2> L,
ThaA'C t P=t ot v t>1
= A'ct forallt<t,
-. A" is bounded.

9. Let A be a convex subset of X. To show that A° is convex set.
Let 0 <1t < 1. Since A is convex, so
tA’+ (1 -t)Ac A =
Now, tA’ + (1 — )A° c tA + (1 — DA < A.
. tAY+ (1 - I}A;’ is an open set contained in A.
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But A" is the largest open set contained in A.
SOtAY (1 =AY c AL

= A" is a convex set.

(j) Let Y be a subspace of X. Then the relative topology that Y inherits from X is a vector topology.
If the topology of X is locally convex, then so is the relative topology of Y.

Proof : Let (X, T) be a topological vector space and we know that
T!= Y~ U:UeT} is a topology on Y.
We have to show (i) +: Y x Y — Y is continuous.
Lt Y m U be an open subset of Y.
But Uis openin (X, T) and + : X x X — X is continuous.
S0, 3 VeTsuchthat V+V U
=YX AavYEYn¥VeYnil.

S+ 1Y %Y — Y is continuous.

(ii) To show : K x Y — Y, (a, ¥) a.y is continuous. -

Let Y m U be an open nbhd of (Y, T

= U is open in (X, T_} and (a, x) — m{ 15 CONCINLOUs.

So,Janbhd B= {t:alt—a] <5} and an open subset V of x such that
tVeclUfort-al <s.

=tYnV)cynUforft—og| <s.

= Scalar multiplication is continnous in (Y, T?}

S (Y, T)isaTVS.

If (X, T) is locally convex TVS, then 3 a basis

g - {U : U is open and x € U} such that U is convex.

We can show that BY = {Y n U : U € B} is a local base at x w.r.t (Y, T).
Let YN UeT andx e YN Uand x € Gbe open in (X, T)
=3Uef suchthat Uc G

=YnUcYnG

- B.Y is a local base at x.

Again, u is convex = Y m U is convex.
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LAY, T) s locally convex TVS.

Theorem : 1f U is a convex nbhd of 0 in a TVS *X’, then there is a balanced convex nbhd v of 0 such
that VeVceV+VclU

Proof : Let U be a convex nbhd of 0 in X. We have to show that a balanced convex nbhd V of 0 such
that

Vo VeV+VcUu

WLOG, we can assume that —u=u.

Since U is convex, so

31U + 30 - 37U = U

. 37U + 3" U does not intersect the open set (X — U) + 3-'u that includes X \ U. So,
FU+3Ugu

It is enough to find a convex balanced nbhd V of 0 such that V < 37 U.
LetW=n{3"'"aU:aekF|a|=1}

Then W is a subset of 3-' U and is convex as the intersection of convex sets.

Step 1 : To show 0 € W*

Let B be a balanced nbhd of 0 included in 3-'U. If is a scalar such that ja| = 1, then
B=aBg3'al

andso B W

~. It follows that 0 € W".

Step 2 : To show that W* is balanced.
Let B be a scalar such that | | < 1 and let t and be scalars such that 0<t<1,|y|=landP=

pw=t(Nn{3' ayU:aeF:ja|=1})
tw=tw+(l -t} {0} cw

= W is balanced and 0 € W".

= W’ is a balanced nbhd of 0.

. W' is a balanced convex nbhd of 0.

Let V=W c3' U
~ Then V is a balanced, convex nbhd of 0 such, that
Vo ?g V+Vegl
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Definition : Let A be a subset of TVS (X, T).
Then (i) convex hull co(A) = the smallest convex set containing A.
= the intersection of all convex sets containing A.

(ii) closed convex hull
co{A) = the smallest closed convex set containing A.

= the intersection of all closed set containing A.
(iii) Linear hull < A > = The smallest subspace of X contuing A.

= intersection all subspaces contamning A.

(iv) Closed linear span of A,
[A] = the smallest closed, subspace of X contaming A.

Theorem : (i) [A] = <A >
(i) CO (A) = CO(A)
Proof : (i) <A > is the smallest subspace of X contaiming A.

<A > is a closed subspace containing A.

. [A] € <A >, as [A] is the smallest closed subspace containing A.
Apiilo,

<A>c[A]

— <A> = {.T]= [A], as [A] is a closed subspace of X.

= <A> ¢ [A]

~[Al=<A>

(ii) We kﬁow, CO(A) = the smallest convex set containing A.

CO(A) = the closed convex set contaming A.
But, CO(A) = The smallest closed convex set cdntninjng A
. CO(A) < CO(A) ...(1)
Again,
CO(A) < CO(A)
e m]l = C_D{M, as CO(A) is closed.
= CO(A) < CO(A) ....(2)
From (1) and (2}, we get
CO(A) = CO(A)
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Remark : 1. A TVS has a local base at 0 such that each member of the IGEELll base is balanced.
2. An locally compact TVS has a local base at 0 such that each member of the local base is
balanced and convex. : ;
Proof : 1. Let B, = {Un} be a local base of 0 of 2 TVS *X".
Let f, = {V_:V isbalanced and V_, c U }
Then {V } is a local base at 0 such that each V_is balanced.

Proposition : A subset A of a TVS X is bounded if and only if it has this property. For each balanced
nbhd U of 0 in X, there is a positive 8y such that Ac s U.

Proof : Let A be bounded => A is absorbed by every nbhd U of 0.
= A is absorbed by every balanced nbhd U of 0.
= 3 su“}ﬂsm:h that ActU w t 25,
=AcC 8 U.
Conversely suppose that, for each balanced nbhd U of 0 in X. 3 5 > 0 such that A 8, L.
Let V be a balanced nbhd of 0 such that V < U.
Let s_be a positive number such that
Acs V

s
Ift >s . Then T”sl

::>ST*V;V

=3 Vgty
LACSVoIVOil, v t>s
». A is bounded.

Propgsition : Every compact subset ofa TVS is bounded. Thus every convergent sequence ina TVS
is bounded.

Proof : Let K be a compact subset of A TVS *X’ and let U be a balanced nbhd of 0 in X.
Smce U 1s absorbmng, the collection '
{tU : t = 0} is an open covering four K.
So, there are positive numbers | S— 2

Suchthatt <t <..<t and
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K;':Jt U

et

Since t, U=t t W et U, for each ).
R Ufort > 0

= K is bounded.

2nd part :

Next, supose (X ) is a sequence inTVS X
Such that x — x

Put K= {x} v (x}

Then we can show K is compact.

Let {U } be an open cover of K. Let U“ﬂ be an open set containing X.
Then x € Unﬂ, v 12n

Letx, eu, X, €1, ..., X | € U

Then K Unﬂ U w. LIRE

= K is compact and hence bounded.

Theorem : Every To vector topology is completely regular.
Proof : Suppose, that x is a TVS whose topology is To.
Let x, and y be two distinct elements of X.
Then there is a nbhd. U of 0 such that eithcf
xegy+Uoryex+U
Suppose, x € y+ U. Theny & x - U
It not y = x — u, where u € U and
x =y +u e y+ U, a contradiction.
. It follows that the topology of X is T,.
Now, let x, be an element of X and let F be a closed subset of X such that x; € X - F.
Then 0 ¢ —x, + F (otherwise x, € F)
=0g- x, + F '
. There is a batanced nbhd B of 0 such that
B (x,+F) = ¢

. There is continous function f: X — [0, + =)
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Such that f{i0) = 0 and fix) = | whenever x € X - B.
= f{x) = 1 whenever x € -x, + F.

Let g(x) = min {1, f{x — x,)} whenever x € X.

Then g is a continous function from X into [0, 1] such that g(x ) =0 and g(x) = 1, wheneverx € F.

. The topology of X is completely regular.
Remark : g(x) = min {1, fix,-x)} =0=gx)=0 v xeF
IfxeF thenx-x,€-x,+F '

=2 X—-X, € X-B
=flx-x)21

Sog(x)=min {1, fix-x)} =1
Lgx)=1lyxeF

Theorem : Suppose that x* is a linear functional on a WS X. Then the following are equivalent.
(a) The functional x* is continuous.
(b) There is a nbhd U of 0 in X such that x*(U) is bounded subset of K.
{¢) The kernel of x* is a closed subset of X.

(d) The kernel of x* is not a proper dense subset of X.

Proof : We shall show that (a) = (c) = (d) = (b) = (a).
If x* = 0, the theorem is true trivially. So we assume 3 x, € X such that x* (x,) # 0.
(a) = (c) : Suppose that x* is continuous. |
= (x*)! ({0}) is a closed subset of X.
[-+ x* is continuous and {0} is closed set]

= Ker x* is a closed subset of X.

(¢) = (d) : Suppose ker x* is a closed subset of X.

So, ker x* = ker x* ¢ X.
So, ker x* is not a proper dense subset of X.

(d) = (b) : Suppose, ker x* is not a proper dense subset of X.
S X\Vkerx* = ¢

Fix, x, € X \ ker x*. Then there is a balanced nbhd U of 0 such that'x, + U <

X \ker (x*)
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Thenu € U = x*u = —=x*(x))
If x*(u) = —x*(x), then x* (u +x)) =0
= u + x, € ker x* C ker (x*)
I::- uhE € X ker (x*),
a contradiction.
ox* (u) £ x*(x) forue U
Now, U is balanced = x* (U) is balanced
=tx* (M cx*(U)for|t| < 1.
If x*(U) contains an element, then it contains all elements, with absolute value smaller than the
absolute value of element. L
So, —x*(u) € x*(U) => x*(U) does not contains elements with absolute value bigger, than | —x*(x,)|
Thus |[x* (u)| < |-x*(x)| v ue U
= x* (U) is bounded.

(b) = (a) : Suppose, there is a nbhd U of 0 in X such that x*(U) is bounded subset of K.
W.L.0.G we assume, [x* (x)| <1 whenever x € U
Then |x*x| < & whenever e >0 and x s e U
If x € X and & > 0, then
[x*y — x*x| = [x*(y-x)|
< g whenevery e x +e U
= |x*y — x*x| < £ whenevery e xe U
= x* is continuous at X £ X.

= x* 15 continuous on X.

Lemma : Suppose that C is a convex subset of a TVS X. Ifx e C,y € C'and0<t<l],thentx+
(1-t)y e C°,
Proof : Cisconvex =>tC+ (1-t)C g Clor0<t<1

=tC+(1)C°cC

Now, tC + (1-t)C° is an -';‘,mpcn set and C° is the iargest open subset of C.

Hence, tC + (1-t)C° < C°

e.tx+(l-t)ye C'forx, e C

y e C%
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Flat or Affine Subset of a v.s :
Let X be a v.s. A flat or affine subset of X is a translate of a subspace of X.
That is, a set of the form x + Y, where x X and Y 15 a subspace of X.

Mazur’s Seperation Theorem :

Let X be a TVS and let F and C be subsets of X such that F is tlat and C is conves with non-empty
interior (i.e. C*= ¢). If FAC® = ®, then there is an x* in X* and a real number ‘s’ such that

l.Rex*x =sforeachx e F

2. Re x*x < s foreach x € C.

3. Re x*x < s for each x in C°
Proof : Case 1: Let X be a real vector space and 0 e C"

Let us prove that C* = {x : x e X, p(x) < 1},

where p = U_= minkowski functial

=mf {t>0:x et}

Then C is a convex and absorbing subsets of X, so the Minkowski’s functional p of C is a sublmear
and

.{x:xeX,p{x}{l};C;{x:xeX,p[x}fzI[- .
The continuity of multiplication of vectors by scalars implies that for each x & C7, there is an
s >lands x e C°c C.
S8 p(x) = [ﬁ(sxx} =1

1
= pix) = g{ 1 = p(x) =1.
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xeC=px) <l
. C'g {xe X:px) <1} ...A(1)

Conversely p(x) <1 v x e X

=>inf{t >0:xetC} <l

=3t >0suchthatxetCandt > 1

Thenp(t x) =t p(x) <1
=txcCand0 € C

Since x = f, ‘tx)+ {1 -0, s0
xeC

fxeX:pxX) <1} cC..Q2)

* From (1) and (2), we get
C={xeX:px)<1}
Let Y be a subspace of X and x, € X such that F = x + Y.

By given condition, F» C*= ¢ and 0 € C°
=0eF
Then the subspace Y contuns neither *—x ' nor its negative x.

.. Each element of the subspace Y + <{x,}> of X has a unique representation of the form y + ax,
where vy € Y and o & R.

Define, x,* : Y + <{x,}> - Rby x.* (y + ax,) =, whenevery € Yand a € R.
Then x * is a linear functional on Y + <{x}.
Ifa>0andy € Y, then o'y + x, is in F and so it is not in C".
LxFytax) =a<apaly +x)=ply+ox)
= x* (Y tax) Sply+ox) [ aly+x &c
= pla’'y +x) 2 1]

Since p(x) = 0 for each x € X, it is also true that x * (y + ax ) < p(y + ax ) whenever y € Y and
o<0

So, x,* is dominated by p on Y + <{x }>.

By the vector space versionof the Hahn-Branch extension theorem, the functional x * can be
extended to a linear functional x* on X such that
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*x<p(x) v xe X.
"Now, C® is an open nbhd of 0, and so it contains a balanced nbhd U of 0.
Now, [x*(u)| = max {x* (-u), x*(u)}
< max {p (-u), p(u)} <1

whenever u € U

- x* is bounded in a balanced nbhd U of 0 [x*(U) is bounded subset of R]
= x* € X*.

Finaiiy, x*(x)<px) <1l v xeC

x*(x)spx)<lyxel

Since F = x, +Y, it follows that

x*x =x*x =1 whenx € C.

. x* satisfies the conclusion of the theorem when s = 1.

Case 2 : Assume 0 & C°. Given, C=¢3Ix € ct

Then the interior —x, + C® of the convex set —x, + C contains 0 and does not intersect the flat subset
-x, + F of X. :

ie. (x,+CY n(=x +F) =
So, there is an x* in X* such that
*x=1vy xe—xl-i-l-‘
*x)slyxe-x+C

x*x) <1y xe—x +C

i foﬂuwé that
X (x+y)=1yye F
x*{-xl;-y]il v yeC

x‘[—x]+}r}{lvyeﬂ"

S5V =1+x%X) v YE F.
x*(N<sl+x*(x) vy yeC
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x*{}r}{l+x'{xl_)v ye C

. x* satisfies the conclusion of the theorem when s = | + x* (x,)

Case 3 : Let X be a complex vector space. Let X, be the real TVS obtained by restricting multiplication
of vectors by scalars to R x X. Since every subspace of X is also a subspace of X, the set F is flat in
X.

r

It follows that there is a continuous real linear functional z* on X and a real number s such that
Z*(x) =y xeF
*x)<ssyxeC
Z*x) < ¢y x e C°
Define, x* : X(C) = C by
X*(x) = 2*(x) - iz* (ix) v x € X.
Then x* is a complex-linear functional on X with Rex* = z*
The continuity of z* and the vector space operations of X and C gives that x* e X*
Hence, Rex* (x)=sy xeF
.rex“'{x}isv xeC
Rex*(x)<s v x e C".
Hence groved.

Corollarly : Let Y be a closed subspace of a locally convex space X. Suppose that x € X \' Y. Then
there is an x* in X* such that x*x = 1 and Y < ker (x*).

Proof : Given Y is closed = X - Y is open
= X-Yis an open nbhd of x.

Since X is locally convex, 3 a convex nbhd ¢ of x such that C cRXLY

SCNnY=¢

=2>CnY=¢

Also Yis flat in X.

Then by Mazur’s theorem, 3 x * € X* and a real number ‘s’ such that Re x,*(x) <swhenx e C
=C

Re x,*(x) =s whenx e Y.
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Since 0 € Y, it follows that s = Re x* (0)
=s=0
o x,*(x) = Re x*(x) - iRe x*(X)=0 v x€ Y.
=Yoo ker(xY)
Let x* = " x)" x,*. Then x*(x) = (x,*x)" (x,*x)
= x*(x) = 1.
Again, x*(y) = (<*x) ' X* (0) ¥ y € Y
=(x*x)'0, v yeY
=0
- ker (x*) 2 Y. [+ ker (x*) = ker (x,*) 2 Y]

Thus, x*x =1 and Y < ker (x*)

Corollarly : Suppose that Y is a subspace of an LCS ‘X" and that y € *Y*. Then there is a x* in X*
whose restriction to Y is y*.

Proof : If y* = 0, then the zero element of x* extends the zero element of y* to X.
So, let us assume that, y* # 0. Then there sa y, € Y such that y*(y) = 1

Let Z = ker (v*), where the closure is taken in X. The continuity of y* and the fact that the topology
of Y is inherited from X together imply that y, & z.

So, there is an x* in X* such that
x*(y)=1land z C ker (x*)
We have to show x*[y = y* (i.e. X*(¥) = ¥*(¥), v ¥ € Y).
Ify £ Y, then -
YY) ¥, - Y] = O 0y - Y
= y*y - y*y [as y*y, = 1]
. =0
= (y*y)y, — ¥ € ker (y*) < ker (y*) = 2
= (y*y)y, — ¥ € ker (x*)
SXH(y) = x4+ x* [(y*Y) ¥, - V]
= x*(y) + x*(yyx(y) - x*(y)
= X*(y,v* (¥)
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=y vyeY asx(y)=I
S & '

Corollarly : If x and y are different elements of a Hausdorff LCS X, then there is an xx m Xx such that
x*(x) = x%(y). :
Proof : Herexz2y=>x-y=0
" X — y is not in the closed subspace {0} of X.
Thus, 3 x* € X* such that x* (x - y) = |
= Xx%x)-x(y) =1

= X*"(x) = x*(y).

1.8 Metrizable Vector Topology : _
Definition 1 : A topological space (X, T) is said to be topologically complet if the topology T is induced
by complete metricd.
L
Definition 2 : ATVS (X, T) is called F-space if T is topologically complete.
Definition 3 : A locally convex F-space is called a Frechet space.

Metrization Thengem :

Suppose that X is a Hausdorff TVS whose topology has a countable local basis. Then the topology
of Xis induced by an invariant metric such that the open balls centred at the origin are balanced.

If X is locally convex TVS, then its topology is induced by metric which is an nvariant metric such
that the open balls centred at the origin are convex and balanced.
Proof : Let T be the given vector topelogy for X.

Then the topology T has a countable local basis {B(2*):n=0, 1, 2, ...} such that, for each n, the
set B(2) 1s balanced (and, if X is an LCS, then convex) and B(2™") + B(z'“"] c B(Z2™.

Let B,= {B2™:n=0,1,2,..}
Let B = B(1), then let B and {B(2™) : n € N} be such that B,=B v {B(2™) : n e N}

Then the map t — B(t) form {2":n=0, 1, 2, ...} into T is extended to (0, =) in such a way that
each B(t) is a T-nbhd of O that is balanced (and convex if each member of B, is convex, as X is LCS)
and B(s) — B(t) whenever 0 <s < t.

Then the formula fix) = inf {t : t > 0, x € B(t)} defines a T-continuous non-negative-real-valued
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function on X such that f{0) = 0 and such that f{x) = f{-x) and

fix + y) < fix) + f{y) whenever x, y € X.
If x is a nonzero member of X, then the fact that B, is a local basis for the Hausdorff topology T
implies that there is a non-negative integer n such that x & B(2™).

Hence, fix) 22" >0
Define, d(x, y) = fix — ). Then to show that of is an mvariant metric on X.
M) dx y)=flx-y)20
M,) d(x, y) = fix - y) = fly - x) = d(y, x)
Majx=y<:>x—yzﬂ<:>f(x—}r}=ﬂc>d[x, y)=0
or [and if possible let X # y '

Thenx -y 0

5 fix —y) 2 2° > 0, a contradiction
Ldx,Y)=0=x=y]
M4) d(x, y) + d(y, 2) = fix - y) + fly - 2)

zfix-yt+ty-2)
= fix — 2)
= dix, z)
= d(x, y) + d(y, 2) 2 d(x, 2)
" . d is a metric on X. Also,

dx+zy+z)=flx+z-y-32)

=fix —y)=dx y)
. d is an invariant metric on X.
Let T, be the topology induced by metric d. We have to show that T = L
Fo this we shall show that T and T, have the same local base at origin.

For each positive t, let V(1) = U {B(s): 0 <s < t}. Then each V(t) is a T-nbhd of 0 that is balanced
(and convex if each member of B is convex) and {V(t) : t > 0} is a local basis for g =

Now ift > 0, V(1) = {x : x € X, f(x) <t}
={x e X:dx,0)<t}
= B(0, t)
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. Each v(t) is the d-open ball of radius t centred at 0, so the d-open balls centred at 0 are all
balanced {and convex if each member of B, is convex).

Letjs|<1 ..sV(t) ={sxeX:fix)<t}

=§,rr5x-:f[{}{t}

={yex:fly)<st<t}
: =V(t)
= sV(t) < V(t) .. V(t) balanced.

Let U (s, r) be the d-open ball of radius r centred at x. Then
Ux,r) =1{yex: fily-x)<r}
=xt+t{y:yeXfly)<rt}
= X + V(r) for each +ve ‘r’
Now, {U(x,r):x e X, r>0)} is a basis for T,
and {x+V(r):xe X, r>0}is abasis for T.
e el
Finally, if T is a locally convex topology, then the selection of each member of B to be convex assures
that each d-open ball x + V(r) is convex. .
Hence the theorem.
Eidenheit’s Theorem :
Let X be a TVS and C, and C, be two convex subsets of X such that C, has non-empty interior.
If C,n C,* = ¢, then tthere is a x* X* and a real s such that
. ) Rex*(x)2s ¢y xeC,.
2YRex*(X)ss vy J{E{-:Z

3)Rex* (x) <s y x € C,\.

Proof : Since the flat subset {0} of X does not intersect the non-empty convex open subset
C,-C, of X, then Mazurs seperation theorem, 3 an x* & X* such that for each x, € Clandx €C,.

Re x*(x,) ~ Re x*(x,) = Re x* (x, - x,)
<Rex*0=0
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. There is a real number s such that
sup {Re x*(x) : x € C*} <s<inf {Rex*x:x € C}}
~Rex*(x)2swy xeC,.

Now fix an x, € C,” and x, & C,. The contmuity of vector space operations of X implies that there
is a to such that 0 <t <1 and

tx, +(1-t)x. € C.

LeeRexrftx +(1-1)X

=t Re E)E (1=~ Re x* (x,)

>t,Re x* (x) + (1 - t,) Re x* (x)

= Re x* (x,)

SRex*(x)<swy xe Cl'].

Finally, let x € C, and x, € C." that previously fixed. [f0 <t < 1, then
t+(1-tx, € C,? and so

tRex*(x) + (1 — t) Re x*(x,)

=Re x*(f +(l-t)x)<s

Lettiyt —» 1, Rex* (X) <s v x € C,.
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‘Unit 2
Bounded linear Operator

2.1 Definition :
Let X and Y be TVS. A liear operator T from X into Y is bounded if T(B) is a bounded subset of

Y whenever B 15 a bounded subset of X.

Theorem:
LetT: X > Y fromaTVS Xinto a TVS Y is a linear operator.

Then the following are equivalent

(a) The operator T is continuous.

(b) The operator T is- continuous at 0. -

Further each of (a) and (b) implies

(c) The operator T is bounded.

If X is metrizable, then (a), (b), (c) are equivalent.

Proof : (a) = (b) : T is continuous on X.
= T is continuous at every x € X

= T is continuous at x =0

(b) = (a) : Let T : X — Y be continuous at 0
Let x € X. Let (x_) be a net in X such that
=X X
=>x -x—>0
= T(x, - X) > T(0) =0
=T -T. =0
ln X
=T =T

So, T 1s continuous at x. Since x is orbitrary, T is continuous on X.

(a) = (¢) Let T : X = Y be continuous. Let B be a bounded subset of X. Let V be a nbhd of 0 in
Y.
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Then continuity of T implies that thre is a nbhd U of 0 in X such that T(U)c V.
Again, B is bounded = 3 s> 0 such that Btl, w t =5
= TB)cT(tU) v t=>s
=TB)ctT(U)ctV ¢y t>s
= T(B)ctV, v 1>5s.
. T(B) is a bounded subset of Y.
== T is a bounded linear operator.
-, (a) = (0) ~(b) = (a) = (c)
. (a) or (b) = (c)

(¢) = (b)
Finally, suppose that the topology of X is induced by a metric (invariant)
Suppose T is bounded linear operator. Let (x ) be a sequence in X converging to 0.
For each positive integer k, there is a positive integer r11 such that kx_lies in the open ball of radius
k™' centred at 0 whenever n 2 n,.

Therefore, there is a nondecreasing sequence (k) of positive integers such that k, — o and k x_ -
— 0. Since the set {kx_: n € N} and the operator T are bounded, so is the set {k_ T :n € N}. Let
W be a nbhd of 0 in Y and let ‘s’ be a positive number such that {k_ T :n e N} c tW oy t=>s.

Hence there is a positive integer n_ such that
k T"n. e K W whenever n 2 n,
= TH e W for all sufficiently large n
=> The sequence (T_) converges to 0.
= The operator T isnmntinuous at 0.
. {€) = (b) but (a) < (b)
~ (c) (a) also.

2.2 Definition :
A vector topology T on X is said to be locally bounded on X if some nbhd of the origin in X is
bounded.

Theorem (Metrizability) :
Every locally bounded Hausdorff vector mpulugy is induced by a metric.
Proof : Suppose that a Hausdorff TVS X" has a bounded nbhd V of 0.
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It follows that if U is a nbhd of 0, then there is a positive integer n,, such that
‘h’;nL.Un._:"VgU.-
" {n"' V :n € N} is a countable local basis at 0 for the topology of X. Hence the topology of

X is metrizable.

Theorem (Normability) : A topology for a vector space is induced by a norm if and only if it is a
Hausdorff vector topology that is locally bounded and locally convex.

Proof : Suppose TVS (X, T) is normable. Then 3 a norm ||.|| on X such that T=T .
Norm topology is Hausdorff, asx = y
=Bx By =¢

where r < M,

[t is locally bounded, since B(x, r) is a nbhd of x and B(x, r) is bounded, as it is absorbed by
Blx,t)=x+B({0,t), w t>r.

Also, {B(0, r) : r = 0} is convex local base at 0,

since B(0, r) = {x : ||x]l <r} is convex.

Hence a normable TVS is Hausdorff, locally bounded and locally convex.

Conversely, suppose that the topology T of a Hausdorff TVS *X is locally bounded and locally
convex. - _
= There is a nbhd V of 0 that is bounded, balanced, convex and absoring.
We have, the Minkowski functional
p{x)=mf {t >0 : x  tv} 15 a seminorm on X.
We have to show that (i) p is a norm on X
(i) T,=T.
(i) Let x{= 0) € X = X — {x} is a nbhd of 0, as T is Hausdorff.
Again, Visbounded = Vos'(X-{x}) y s'>t">0
= sV X - {x} whenever, 0 <s <t
= X & 5 V, whenever, 0 <35 <1,
Lpx)=inf{s>0:x € sV} and x & sV

=px)>s>0.
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Thus x # 0 = p(x) # 0
= px)=0givesx=0

. pis anormon X.

(ii) We have,
xeX:px)<l}cVg{xeX:px)=l].

Let x € V, then it follows from the T-continuty of multiplication of vectors by scalars and the fact
that V is a T-open, that there is some r > | such that x € V '

=meVci{xeX:px) =1}

= plrx) = |
::Cp{lei%{l

= p(x) < 1
w V={xeX:p(x) <1} =B(0, 1) is an p-open unit ball.
5 {0 V :n € N} is a local base at 0 for p-to pology of X.
Also, V is bounded = For a nbhd U of 0, 3n > 0

: such that

n'vcl

s o'V i n e N} is a local base at O for T. s
.. T and Tp are the same topology Le. T = Tp. |

2.3 Definition : A family of linear operators froma TVS X mtoa TVS Y is uniformly bounded if U{T(B)
. T e %} is a bounded subset of Y, whenever B is a bounded subset of X.

Theorem (The Uniform Boundness Principle for F—ipal:ﬂ}
(Banach Steinhaus Theorem)

Let % be a family of bounded linear operators from an F-space X mnto a TVS Y. Suppose that {T,
: T &% } is bounded for each X in X. Then 7 is uniformly bounded. In short, the pointwise boundness
of implies its uniform boundness.

Proof : Assume that % # ¢. Let B be a bounded subset of F-space X and U a nbhd of the origin 0,
of Y.

The theorem will be proved once a positive ‘s’ is found such that U{T(B): T € F} < t U whenever
t>=s.
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: 5

Let V be a balanced nbhd of 0, such that V+V c U.
Let S =n{T" (‘u_’] : T & F}. Then S is closed subset of X, because of the continuity of each T
LU
If x € X, then the boundness of {Tx : T € %} gives that
3n >Osuchthat {Tx . TeFlcn V
=>T enVecaV
= X EH‘T"W]: v TeF
- =>xe€nS
- It follows that X =w{nS : n € N}.
By the Baire category theorem, one of the closed sets nS, and hence S itself, must have nonempty
.interior. i.e. 8% # ¢.
Let x, be any point in S° and let W = x, — S° be a nbhd of the origin of X.
For each T in 77,
W) < T(x) - T(59
c T(x) - T(8) [ $*< S8}
V=N
SVEX g
= T(W) c L.
The boundness of B yields a positive s such that
B < tW whenever t > s
= T(B) < {T(W) c tU whenever t >s. v T %
= T(B) c tU whenevert>s ¢ T € %
= U{T(B) : T € %} <t U whenever t>s.
~{T(B): T e %} is a bounded subset of Y, whenver B is a bounded subset of X.

Corollary : Let (T ) be a sequence of bounded linear operators from an T-space X into a Hausdorff TVS
Y such that im T x exists for each x in X. Define T : X > Y by T, = lim T x. Then T is a bounded
Imear operator from X mto Y.

Proof :
Here T = lim T (x)
Letx,ye Xanda, p € F.
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o T(ax + By) =1m T (ax + By)
= o lim T(x) § m T(y)
=a T(x) + B T(y).
- T is linear.
Let B be a bounded subset of X. To show T(B) is a bounded subset of Y.
Now, im T x exists = (T x) is a convergent sequence.
= (T x) is a cauchy sequence.
= (T x) is a bounded sequence.
= (T ) is pomtwise bounded.
-. By the uniform boundness theorem, (T) is uniformly bounded.

YT, (B):ne N}is a bounded subset of Y.

=V {T(B):ne Nlis a bounded subset of Y.

Clearly, T(B) < L;' {T(B):ne N}, which is a bounded set

— T(B) is bounded subset of Y.

. T is a bounded linear operator.

Remark

y € T(B) =y=T,xeB

»>y=lm Tx=>yeT ey (T,B:neN=yeT {In (B)}

The Open Mapping Theorem for F-Spaces :
Every bounded linear operator from an F-space onto an F-space is an open mapping.

Proof : We use the fact that if d is an invariant metric on (X, T) and X, X,, ..X_ € X,

i d{i X, ,u] <3 d(x,0)
i=l =
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Forn =2, d(x, + x,, 0) <d(x, +x, x,) + d(x,, 0)
< d(x,, 0) + d(x,, 0)
d(x, +x,; 0) = d(x, — x,) <d(x, 0) + d(0, - x)
[ = d(x1, 0) + d(x2, 0)

Let d(x, + X, + ... +x_, 0) < 2.d(x,0)
=l

v O L LR, T Sdx +x .. tx 0+ d(x, 0)

< Ed[xj,ﬂ}+d{xn 0)

3 d(x,0)

=l

d[zn; X, ,D] < id{xj,ﬂ]
=l

j=1

Let T be a bounded linear operator from an F-space X onto an F-space Y., and let N be a nbhd

of the origin O_ in X. Suppose that it were shown that T(N) must include a neighbourhood of the origin
O of Y.
¥

[t would follow that if G is an open subset of X and x & G, then

TG) =T, +T(x+G) 2 T_+ [T(—x + G)]°, and so T(G) is an open subset of Y, since it would
include a nbhd of each of its points.

- It is enough to prove that O_ e [T(N)]° -
We first show that 0}. e [T(N)])°

Let V be a balanced nbhd uf{}‘ such that V + V o N.

If (T(V))' 2 b, then O, & (T(V))° - (T(V))°
c T(V) - T(V) ‘
=T(V) + T(V)
c T(N)

. T(N) includes that nbhd (T(V))° - (T(V))° of O,
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. 0, e (TN))', if (T(V)°= ¢
. Now, we shall show that [T(V)]° = ¢
Since T is onto, so T(X) =Y and since V is absorbing

Wegetx e X = X € nV whenever n>n, >0
:;xe‘:’r."u’
_ .'.K:'k;’(n\f]_
SY=TX) =T(Y (aV))
= YT(aV)

So, by Baire Calag_ory Theorem, there must exists a positive integer n, such that
T(n,V) is not nowwhere densem Y.

. [T@VP* ¢

= n, [TMI'# ¢

= [T)]'* ¢

Hence, O, & [T(N))’

Let d. , d_ be the complete invariant metrices inducing the topologies of X and Y respectively. Let

- S |

U (r) and \,(r) denote the open balls.of radius r centred at O_and O, respectively when r > 0, and let
& be a positive number such that U, (g) < N.

Then there is a sequence (8 ) of positive reals converging to 0 such that U, (§) < T(U, (2%€))
whenever n € N.

Let Y, be an arbitrary element of L, (8,). The tTheorem will be proved once it is shown that there
is an x in U (&) such that X, =¥,

Since y, € v, (8) < T(U, (2-'g)), there is an x, in U (2'¢) such that d, (¥, Tx,) < 8,
Since y, - Tx, € v, (8,) < T(U, (2%)), there is an x, in U_(2 ) such that d, (v, Tx, + Tx,)
=d, (v, - Tx, Tx,)) < 3,.

=t

Continuing in this way, we get a sequence (x ) in X such that x_ € U (2"¢)and d, [Ycu sz ,]

<§, vneN

35




[fm, m, € N and m, <m,, then

d[ZHZ J:‘jx[ ix;ﬁxJ

j=m,+l

=2Mg—>0am -

. The partial sums of the formal series ;xn form a cauchy sequence and so that Zx" COnVErges.

Let - Z"n

Since, 1111111 d, [Y-:w T [lejﬂ =0, it follows
=

that

= lim T( xJJ =Y,
n Fl

=>Txn=yu

Finally, d_(x,, O)

im ¢ [ixj,DlJ
a = =l

[

Edl{xJ,Dx}
=

< EZ"E =g
jl

=xelU(ecN
~ ¥ =Tx, e T (U (e)) € T(N)
=y, € [T(N)]° Hence proved.
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The Closed Graph Theorem for F-spaces :

Let T be a linear operator from an F-space X into an F-space Y. Suppose that whenever a sequence
(x ) in X converges to some x in X and (Tx ) converges to some y in Y, it follows that y=T . Then T
is bounded.

Proof : Let d, and d, be complete invariant metrics inducing the topologies of X and Y respectively.
For each pair of elements (x, y,) and (x,, y,) of X x Y, let

ey (X ¥)s (5 1)) = [(,(x,, )P + (dy (v, ¥))]7

Then d,, is a complete invariant metric that induces the product topology of X x Y. Hence X x Y
is an F-space when given its product topology and the usual vector space operations for a vector space’
sum. _ '

Let G= {(x, T) : x € X} ie. let G be the graph of T in X x Y.

Let ((x_, Tx )) be a sequence in G such that

(x, Tx) = (x,ymXxY

We have to show (x, y) € &

Now,

(x, Tx)—>(x,yyinXxY

=d. 6, Tx), X)) —20

= [(d, (x,, X)) + (d, (Tx, Y12 > 0

=d (x,x) > 0and d, (Tx, y) =0

=x »>Xxand Tx =y

= y = Tx(by Given condition)

L EY=xTx)e G
. G 1s a closed subspace of F-space X x Y
= G is also an F-space.

Since the map (x, Tx) ~— x from G onto X is one-to-one bounded linear operator, its inverse is
bounded. So the map x+~ (x, Tx) —> Tx is itself a bounded linear operator.

Proposition : Let X be a set let-'% be a family of functions and (Y, %):f €%} a family of
topological spaces such that each fin % maps X into the corresponding Y. Then there is a smallest,
topology for X w.r.t which each member of % contmuous.

That is, there is a unique topology T, for X such that-

1. Each fin T-E,_ continuous,
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2. if T is any topology for X such that each fin  is Y-continuous, then T = T
The topology Ty, has {F'(U) : f € %, U & Ty} as a subbasis.
" Proof : LetG= {f'(U): feF Ue Ty}
Let T be the topology generated by the subbasis .
Since G ¢ Ty, every member of 7 is T, continuous. _
Now, suppose that T is a topology for X such that every member of % is T-continuous.
ThenGc T, 50T T
Let T, be another topology
Then T, = Ty but T3 = T,
=T, =Ty
. Ty is the unique topology for X.

2.4 Definition : Let all notion be as in the proceding proposition. Then the set ¥ is a topologizing family
of functions for X, and the topology T, is the F; topology of X or the topology o~ (X, F) or the weak
topology of X induced by .

The cu]lcc.tion {F'(U) : fe F, U e Y} is the standard subbasis for this topology.

Theorem : Let X be a set and ‘% be a topologizing family of functions for X. Suppose that (x ) is
anetinXandxisa mcrnber of X. Then x_ — x with respect to the F-topology 1fa11d only ﬂﬂx ) =

fix) v fe5
Proof : Let x_— x w.r.t F-topology for X.
Now, f € F# = fis continuous w.r.t ‘#-topology on X
L ix) > fx) v feF
Conversely suppose that f{ix ) — f(x) for each fn
If f & % and U is a nbhd of f{x), then £'(U) is a nbhd of x.
So, there exists o, , such that
fix)eUifa, sa
=x ef'!Uifa, <a

= x_ — X w.r.t the F-topology.

2.5 Weak Topology : Let X be a normed space. Then the topology for X induced by the topologizing
family X* is the weak topology of X or the X* topology of X or the topology o~ X; X*).
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Theorem : A subset of a normed space is bounded if and only if it is weakly bounded.
Proof : Let B be a norm bounded subset of (X, ||.|/)
= B is absorbed by every ||.| nbhd of 0.
= B is absorbed by every weak nbhd of 0.
= Be is weakly bounded. )
Conversely, suppose that A is a weakly bounded subset of a normed space X.
It may be assumed that A is nonempty.
Let Q be the natural map from X into X**.
Then Q(A) is a non-empty collection of bounded linear functionals on the Banach space X*.
For each x* in X*,
sup {|(Qx) (x*)| : x € A} =sup {x* (x)| : x € A}
<o
It follows from the uniform boundness principle that
sup {|ix||: x € A} =sup {[Qx]:x e A} <
- A is norm bounded.

Weak* topology

Let X be a normed space and let Q be the natural map from X into X**. Then the topology for X*
induced by the topologizing family Q(X) is the weak* topology of X* or the X topology of X* or the
topology o— (X*, X). '

The Weak* topology of the dual space of a normed space X is the smallest topology for X* such
that for each x in X, the linear functional x* — x*x on X*is continuous w.r.t that topology.

The Banach-Alaoglu Theorem

If Visanbhd of 0 ina TVS X and if K= {~ € X* : |ax| £ 1, for every x € V}, then K is weak®-
compact. - '

Proof : Since every nbhd of 0 is absorbing, so V is absorbing nbhd of 0.

.Then for each x € X, 3 y-(x) < « such that x € y (x)V.

Hence, [ax| <y (x) (x € X, A € K) ....(1)

LetD ={aeF:jalsy x} Let T be the product topology on P, the cartesian product of all
D, one for eachx € X.

Since each D_is compact, so P is also compact. The elements of P are the functions fon X (linear
or not) that satisfy |f{x)| <y (x) (x € X) .....(2)
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Thus, K = X* n P. If follows that K inherits two topologies : one from X* and the other, T from

We will see that

(a) These two topologies coincide on K and

(b) K is a closed subset of P. s

Since P is compact, (b) implies that K is T-compact and then (a) implies that K is weak*-compact.

Fix some A, € K. Choose x, € X, for 1 <i<n, choose § > 0.

Put W, = {An € X*:lnxi—nuxliﬁﬁforléiin}

and W, = {fe P: |fix) — A, x| <dfor1 <i<n)}

Let n, x,, and & range over all admissible values. The resulting sets W, then form a local base for
the weak* mpolugy of X* at A, and the sets W, form a local base for the product topology Y of P at

Aﬂ.

Since, K — P m X¥, we get

W.nk=W, ok

= (a) is proved.

Next, suppose f, is in the T-closure of K. Choose x € X,y € X, scalars ce and P and € > 0. The
set of all f € P such that [f-f| <eatx aty and at ax + Py is a T-nbhd of {. Thercfnre K contains

such an f
Since this f is linear, we have,
f(ax + By) — afy(x) - BEY)
= (f, - Dax + PBy) + a(f - £)(x) + B(f - f}[}'}

= |f(ox + By) — af(x) - BRI < (1 +jol + |B) &
Since & > 0 was arbitrary, we get

- fjax + By) = afy(x) - BE(Y)
= f, is linear.
Finally, if x € V and & > 0, the same argument shows that there is an f € K such that
Ifix) - f(x)} <&
Since [f{x)| < 1, by definition of K, if follows that [f(x)| < 1.
ek
= K is a closed subset of P, i.e. (b) is proved.

Hence the theorem.
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(B) Theorem : Suppose that X is a vector space and X' is a subspace of the vector space X* of
all linear functionals on X. Then to topology of X is a locally convex topology and the dual space of X
w.r.t this topology is X'.

Proof : For the prove of this all allusions to a Iﬂpﬂlﬂgj" for X refer to the X' topology.

Suppose (x;), (¥,) are nets in X and (ct,) s a net in F such that three nets have the same index set.
Let X, = X, Yy = ¥, & = .

The continuity of addition and multiplication of F, assures that for each fin X,

flogx, +y,) = afix,) + (v,)

— af(x) + fly) = flax +y)

= ox ty, >axty

= The vector space operations of X are continuous.

It is éasy to see that

[f'): fe X, U is an open ball in F} is a subbasis for the topology of X that generates a basis
for that topology consisting of convex sets, so X is an LCS.

Let f, be a continuous linear functional on X.

= Then there 15anbhdof[)thhatmmappt:dbyfommtheopenumt ball ﬂ-fF‘

= There is a nonempty finite collection £, ....f € X' and corresponding collection U,, ..U, of nbhds
of 0 in F, such that * :

£ (U) A ... A (£ (U,) is mapped by f, into the open unit ball of F.
Let x € ker (f) m ... m ker (f).
Thenmx e ! (U)n...n ' (U) v m e N.
m |f (0] = |f(mx)| <1 v m € N.
= x € ker f,
- f, is a linear combination of f.....f, so
feX
=> The dual space of X included in X'
The reverse inclusion follows from the definition of the X' topology of X.

Hence proved.

Proposition : Suppose that X is a V.S and X' is a supspace of X*. Then a subset Aof X isbounded -
w.r.t the X' topology <> f{A) is bounded in F for each f € X'.

Proof : Throughout the proof, the topology of X is the X' topology.
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Let A be a subset of X..
Suppose that A is bounded.
Let f be any member of X/, and let U be an open unit ball m F.
=» There exists t > 0 such that
Actf (U)
= fA)c tU
= f{A) is bounded.
Conversely, let f{A) is bounded, whenever f € X'
Let U, be a nbhd of 0 in X and let f, £,..f € X' and V...V nbhds of 0 in F such that
£VIN . A (V) U,
The boundness of each fjm] yields a s > 0 such that_t;{ﬁ] ctV. v jwhent>s.
= Actf ' VI ..nfWilctU,t>s
=AgtU,t>s

= A 15 bounded.

Proposition : Let X be a normed space and let A and B be subsets of X and X* respectively.
(a) The set A' is a weakly* closed subspace of X*. h
(b) (‘B)* = [B]*

(c) If B is a subspace of X*, then (*B)* = B*

* Proof : Let Q be the natural map from X into X**.

(a) Then At = {x* :x* e X*, x*x=0 vy x € A}

= {ker (Qx) : X € A}

For each x € A, the linear functional Qx is weakly* continuous on X*.
= mi{ker (Qx) : x € A} is a weakly* closed subspace of X*.

=> A’ is a weakly* closed subspace of X*.

(b) We have (*B)* 1s a weakly* closed subspace of X* that includes B.
So, [B]* < (‘B)*

Now, suppose that x * € X* - [B]*"

= 3 x, € X such that x *(x)) = 1

and [B]"" ¢ ker (Qx,)

Since x, € “B, so x,* ¢ (‘B)’

(B < [B]
- (B)t = [B]™
(c) We have, < B>*" = [B]*, then
(By-= B .
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Chapter-3
Locally Convex spaces

The Hahn Banach Theorms

3.1.1. Definition : :
The dual space X of a topological vector space X is the vector space of all continuous linear functionals
onX.
The addition and scalar multiplication are defined in X" as follows
(A FAX=AXTAX (aA )X=anAX
(A A, € X and o is a scalar)

3.1.2. Proposition :
[fu is the real part of a complex linear functional fon X, then u is real linear and
f(x) =u(x) - i u(ix) o
Conversely, ifu : X — IRis real-linear an a complex vector space and if fis defined (1), then f'is complex
linear on X.
Proof:
Let f: X — K be a complex linear functional and let
fx) =u(x)+ iv(x), :
where u(x) and v(x) are real and imagmary parts of f{x).
Now, for any real a,
fl ox) = u(ox) + iv{ox).
But every real number is also a complex number.
and so flox) = afix)
= u(ax) + iv(ox) = au(x) +ioav(x)
Equating real parts we get
ufcox) = cufx).
This shows that u is real linear.
Further,
flix) =u(ix) + iv(ix)
or  (x)-wx)=u(ix)+ v(ix)
Equating real parts, we get ;
v(x) = -u(ix). | -
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{x) = u(x) +i(- u(ix))
= u(x) - mfix).
Conversely, suppose u(x) is a real linear functional on a complex vector space X. Define a map f: X —
K by '
fix) =u(x) - m(ix).
Then, for any complex scalar & and x, y € X, we have
fix+y) =u(x +y) - iu(ix +iy)
=u(x)+u(y) - ifu(x) +u(iy)} [~ uisadditive]
= [u(x) - iu(ix)] + [u(y) - m(iy)]
= f{x) + f{y).
fis additive,
MNow, if a=a+1ib, then
flox) =u(ox) - i)
= u{(a + ib)x) - in(iax + i’bx)
= u(ax + ibx) - ju(iax + bx)
= u(ax) + u(ibx) - iu(iax) + u(bx) [~ uisadditive]
= au(x) + bu(ix) - iau(ix) + biu(x)
; [+* wuisreallinear]
=(a+ib) u(x) - ia + ib) u(ix)
=(a+ib) [u(x)-m(w)]
= of{x)
fis complex linear.
Corollory :
Let X bea TVS. Then
(i) every complex linear function on X is in X" if and only if its real part is contmuous
(i) every continuous real linear u : X — R is the real part of a unique f € X

3.2. Theorem:
Suppose,
{a) M is a subspace of a real vector space X,
{b) p: X —» R satisfies ‘
p(x +y) £ p(x) + p(y) and p(tx) = tp(x)
fxeX, yeY, t20. .
(¢) f: M — IRis linear and f{x}s’: p(x) on M.
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Then there exists a linear » : X — R such that
Ax=f(x), yxe M
and -p(-X) SAx=p(X),(x € X).
Proof: :
[fM = X, then fitselfis the required extension and hence the result is obvious.
IfM # X, then consider x, € X - M.
and define
Mn:{x+txu:tr—.'[R} _
Then M, is a vector subspace of X, suchthat Mc M.
Forx,ye M
fix) + fly) = fix+y) <p(x +y) [by (¢)]
= f{x) + fly) S p(x - X, +x,+Y) ' |
= fx) + fy) < p(x - X,) + p(x, +y)
= fix) - p(x-x) < p(X, +¥) - f¥), v X, y e M

= 10 - plx- 1) <SR (P + X0 =D, g x e

= inf {f(x) - p(x- Xo)} isump{ ply +x,) = f(¥) }
M L .

Let @ be a real number, such that
1) ing{f{x}— p(x—x,)} < a <sup{p(x+%,)- f(y) }
XE !’Eﬁ{

Define f,: M,—>Rby
(2) f{x + ) = fix) + ta, xeMtelR)
Then, f;is well defined and linear on M,
. Also, foranyx e M
f(x)=fx+0x)=fx)+0.a= fix)
f,=fonM.
We are left to show that
f,<ponm,
Consider, t > 0 and x, y € M. Since m is a subspace, t'x, tly e M.
Now, from(1)
fit'x) - p(t'x - x,) S a < plt'y +x)) - fir'y)
= t'f{x) - t'p(x - tx,) S a t'p(y + tx) - t'H{y)
[~ fis linear and fitx) =tf{x) v t>0]
= fix) - p(x - X)) <to
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and p(y + tx,) - fly) 2 taw
= fix) - ta S p(x - tx)
and f{y)+to<p(y+ix)

= fi(x-x) Sp(x-tx) R (3)
and f(y+ix)<p(y+ty,) wt>0
Again ift=0, then
fy(x +1x ) = £(x) = f{x) < p(x) = p(x + X ) wrnsi(3)

From (3) and (4), it follows that
J;{x+txn)£p(x+txo), v telR.
Le. f(x)<p(x), v xeM,_
If M, =X, then we are done,
If M, # X, The continue the process.
We complete the proof using Handorff maximality theorem :
“Every non-empty partially ordered set F contains a totally ordered subset Q which is maximal w.r.t.
the property ofbemg totally ordered™ .
Let P be the collection of all ordered pairs(M', ), where M’ is a subspace of X that contains M and f
is a linear functional on M' that extends fand satisfies f <ponM.
We define a partial ordering “'<” on P by the rule,
(M, F) < (M", ) '
ifMcM and f=f on M.
Then (P, ) is partially ordered set.
By Hausdorff maximality theorem ther exists a maximal totally ordered subset {)of P.
Let @ be the collection of all M, such that (M, ) e Q). Then @ is totally ordered by set conclusion and

the union pq of all members of @ ie. M = MUNM' is therefore a subspace of X.

If x ep,thenx e M forsame M e § .
" Define amap A-p — Rby
Alx)=f(x)
where f is the functional which occurs in the pair (M, f) € Q.
Clearly » is well defined, as @ is totally ordered.

» is Linera :
Let x, y be any two elements of pg. Thenx € M, y € M’ for some M, M’ € @. Since @ is totally
ordered, one of M, M" must contain the other. Let M'c M,

Thenx,y € M’
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Ax+y)=f(x+y)
=f(x) + f(y)
= f(x) + f'(y) [+ f=fonM]
= a(x) + AlY)
and A(ox) =f(ox) = af(x)=a(x)
A is a linear functional on §f -
Alsox e jf.=>x € M forsome M € @
= f(x) < p(x)
= A(x) < p(x)
Hence A<p, w X € M-

If 1 were a proper subspace of X, the first part of the proof would give a further extension of A, and
this would contradict the maximality of ).

Thus §1 = X and A is the required extension of f.
Finally, A<p,on =X
ie. AX)=p(x), vxeX.
Ako A(-x)<p(-x), vxe X
= - AR <(x), yx e X.
= -pl-x) S A(x), vx € X
Hence -p(-X) £ A(x)sp(x) vx e X.
This completes the proof.

3.3. Theorem :
Suppose M is a subspace ofa vector space X, p is a seminormon X, and fis a linear functional on M
such that :
| fix) | < p(x), (x € M)
Then fextends to a linear functional A on X that satisfies
| Ax|<p(x), (x € X)
Proof:
Given p is a seminorm, on X
ie. plx+y)<px)+py)
and p(tx) =|t | p(x), v scalart.
andforxe X, ye X
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Casel :
When X is a real vector space we observed that
(1) M is a subspace of the real vector space X.
(i) p : X = Rsatisfies
p(x+y) <p(x) +p(y)
and p(tx) =tp(x), v t>oandx, y € X.
(iii) f: M — Ris linearand f<pon M.
Thus all the conditions of the theorem 3.2. are satisfied and hence we get an extension » of fon X, that
satisfies
a=fonM
and -p(-x) =< A(x)=p(x)
Since p is a seminorm
pl-x)=px), v xe X
and hence
|a(x) | <p(x), v xeX.
This proves the result when X is a real vector space..

Casell :
When X is a comple vector space.
In this case fis a complex linear functional
Suppose, Ref=u.
Then f{x) =u(x) - u(ix), v x & M.
Also, u: M — Ris a real linear functiﬁnaland
ux)=p(x), w x e M.
Therefore, by therom, 3.2., there is a real linear U on X such that
U=uonmand
|U) =p(x), v xe X.
Let us define, A : X — € by
Alx)=Ux)-ilU(ix), v x e X.
Then, we can show that
L A is complex linear
ii. | A(x) | < p(x).
iii. A(X)=fix), v xeM
1. A is complex linear as seenin 3.1.2.
i | A(x) | =p(x)on X.
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To every x € X, there corresponds o € ¢, such that o | = 1 and
an(x)=|ax|.
Hence | Ax | = A(ox) = Re A(ox) = U(ox) < p(ax)
=|aX|s|alp)=px), v [|e[=1
Hence | A(x) | <p(x), v x e X. '
Finally, forx e M
Ax=U(x) - iU(ix)
=u(x) - u(ix)
=1lx)
Aa=FfonM.
This complete the proof.

Corollory :
If X is anormed linear space and x, & X, then there exists A € X" such that
ax,=|xfland |Ax|s|{x || yxe X (1997, 1999)

Proof :
If x, = 0, then taking » =0 we can conchude the proof.
If x, # 0, then consider the subspace generated by X, as M.
ie. M={ox,:ae ¢}
Considerp : X — Ras
p(x)=x], v xeX.
Define, f: M — Kby
flax,) = all x|l v ox, € M.

fis linear :

flax, + Bx.) = fi(a + B)x,)
=(a+B) %,
=a| x, || + B(x,)
= flax,) + f(pPx,) v oxg, px, e M

fis additive. Also, for any scalar a,

Raax) = R(ox)x,) = aod| x, | = aflax;)
fis linear,

69




_fisbounded :

Foranyx=ax e M

fix) =alix, |
=) [=lallx =l X1 = ax, | = I x|
This shows that fis bounded.
Therefore by Hahn Banach Extension, 3 a linear function A onX,, such that
a=fonM

and |A(x)|sp(x), v xeX

e, |ax|=||x], v xeX.
 1s bounded and hence a continuous linear functional on X.
A e X,

Finally,
AR = ALX) = LIl %, [ = 1%, |

e, Ax,=|x,]I

Further A= sup{lax|:x eX}

|=i=d

<sup{|x|:x eX}

ixi=l

=1
jalel: =0 0 ol (1)
Again choosing, @ = ”K_,.wéﬂndthatx=axﬂ e M.
Also
I '
||x||:||mqp||=ia|||xg.||: ”xa” IxU“:]
| ax|=|Aloxy) |[=fa|lx, | |=]a] || x, ]| =] ox; ||=1
Sup{| ax|:||xl{€1}=1land ||Aa|21 ... (2)

From(l) and (2), we get | 2 ||= 1.

34. Thenrem{Sepnraﬁnn theorem) :
Suppose A and B are disjomt, non-empty convex sets in a topological vector space X
(a) IfA is open there exists A € X' and y € R such that

Rerx<y<Reany

for every x € Aand for everyy € B.
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(b) If A is compact, B is closed and X is locally convex, then there exists n € X',7, € R, v, R such

that

Reax<y <y,Reny
for every x € Aand for everyy € B.
Proof:

Ifis enough to prove this for real scalars. For if the scalar field is complex and the real case has been
proved then there is a real linear u on X, that gives the required separation; if A is the unique complex linear
functional defined by

AX=u(x) - miix)
then A € X" and Re ax=u(x). _
'Assume that, all scalars are real
(a)Fixa, e A,b eB and put
X,=b,-a,andC=A-B +x,
Then C is a convex neighbourhood of o in X. Because,
0=a,-b+x,€C
andCis  open(asAis open).
Since every neighbourhood of 0 in X, is absorbing it follows that C is convex absorbmg subset of X.

Let p be the Minkowski's functional defined on X. Thenby Theorem 1.3.5., p satisfies,
p(x +y) < p(x) + p(y)
and p{tx)=tp(x), yt20
and foreveryxe X, ye X.
Since AnB=¢,x, & C, and so p(x)) 2 1.
Forifx, € C, then
X,=a, -b, +x, forsomea €A, b eB.
=> a, =b, which is not true.
Ako, 0eC,x, € C=>x,=0.
Define, f{tx ) =t on the subspace M of X generated by ; 42
Then f: M — Ris real linear. Further fix) < p(x), ¥ x € M. Because, ift =0
fltx) =t=stp(x)= p(tx,)
and ift <0, then
fitx,) =t <0<p(tx,) [ p(x)=0]
fix)<p(x) v x e M.

71




- Thus all the conditions of 3.2. are satisfied and hence fextends to a linear functional A on X, satisfying
AsponX.
Now,x e C=px)s1 = A(x) =]
Agpinxe(-C)=-xeC=A-0s1=-Ax)=1
Thus |ax|2l,yxeCn(-0)
This shows that A is bounded in the neighbourhood C M (- C) of 0 and hence » is continuous and ~

Ifnowa e Aandb e B, we have
A(a)-A(b)+1=na(a-b +-xﬂ)£p{a~'b+xﬂ}¢i |
Since Ax, = 1,a-b+x € Cand C is open.
Thus ra < Ab.
: It follows that A(A) and A(B) are disjoint convex subsets of R, with A(A)to the left A(B). Also A(A) 15
open set since A is an open set and every non-constant linear functional on X is an open mapping.
Let y be the right end and point of A(A), then
AX<YZAY, v xeAand v y€ B.
. (b) There exists, a neighbourhood V of o on X such that
(A+V)nB=4¢.
By part (a), with A+ V in place of A, thre exists A € X" such that A(A+ V) and A(B) are disjoint
convex subsets of R, with A(A + V) open and to the left A(B).
Since A(A) is a compact subset of A(A + V); 3 v,, v, € R such that
AXSY, <Y, <Ay

foreveryx € Aand forevery ye B

Corollary :

If X is a locally convex space then X' separates points on X.
Proof :

Letx x, e Xandx =x,.

Let us consider A= {x }, B= {x,}.

Then A and B are disjoint subsets of X, with A is compact and B is closed. It follows that, (by part (b)
ofthe theorent 3.4.), that 3 A € X" and y,, v, € R, such that

Axl-:*f]{?!{n}{_,_.

This implies that Ax, # Ax,. Hence X" separates points of X.
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3.5. Theorem :

Suppose M is a subspace ofa locally convex X, and x € X. Ifx, is not in the closure of M, then there
exists A € X" such that Ax; = 1, but Ax=0, forallx € M.
Proof :

Consider A= {x } and g = }{ . Then Ais compact and B is closed, with
AnB=¢.
Therefore, there exists A, € X" such that A/A and A B are disjoint and hence A x, and A M are

disjoint. thus A (M) is a proper subspace of the scalar field. This forces A (M) = {0} and hence A x,#0.

Define .

A:x—=>Kby |

AX

Ax) = T'd="“txu
Then, A is a continuous linear functional defined on X and hence A € X.
Also Axn=A'Tx”_=%=1,
and forx e M, ax € A(M) = 2ax=0
ie. Ax=0, v x € M. This completes the proof.

3.6. Theorem{1999) :
(Hahn Banach Extension theorm on Locally Convex Space)

If fis a con tinuous linear functional ona subspace M of a locally convex space X, M then there exists
~ & X, such that A= fon M.
Proof:

[ff=0, there » =0, will meet our requirements.

So, without loss of generality, let us assume that fis not identically zero.

Define, ‘

M,={xe M:fix)=0}
Thus, there exists x, € M - M, such that f{x ) = 1. Since {15 linear.

By the continuity of f, M, is a closed linear subspace of M, w.r.t. the relative topology on M enherited
from X.

Since x, & M, implies x, is not in the M-closure of M,
and x_ is not in the X-closure of M,
Therefore by theorem 3.5., there exists A € X" such that

Ax,=land ax=0vy xeM,

13




Ifx € M, then x - f{x)x, € M, because
fix - fix)x,) = fix) - {x)fix,) = fix) - {x)=0.
Alx - f{x)x ) =0
= ax-fix) A(x ) =0
= ax= fix)

Ax, = 1. Hence A= fon M.

3.7. Theorem:
Suppose B is a convex, balanced, closed set is a locally convex space - X, x, € X but
x, & B. then, there exists A € X" such that | ax|< 1 forallx € B,but - AX,> 1.
Proof : '
Consider A= {x }. Then Aand B are disjoint, non-empty convex subsets of X.
Also A is compact and B is closed. Therefore by theorem 3.4(6), 3 A € X and y,, v, € IR, such that
Reax <v,<y,<Reaxy xeB.
This shows that A x, is not in the closure K of A (B) and K is a proper subset of the scalar field €.
Let Ax,=re",r>0. ]
Now, Since B is balanced, so is K. Hence K is a disc, because non-trivial balanced subsets of € are
that discs only.
Hence, thereexists 0 <s<r,sothat|z|<s,forallze K.
Now, define
A=gle A
Then, A is also a continuous linear functionalon X and so A € X'
Now .
r

Ax, = sle® Ax =gleP e = =

::bnxﬂ}l

and forx e B
: i 1 1
IA11=|5'E"’nlx|=; |n1x|£;.s=l

Thus Ax,> 1 and | Ax| = 1.

A
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Weak Topologies

Let t, and 1, be two topologies on a set X and assume t, < 1,; that is every T, open set is also 7,-open.
Then we say that t, is weaker than 7, and that 1, is finer than 7.

Proposition :
If T, < 1, then the identity from mapping on X is continuous from (X, t,) to {X t,) and is an open
mapping from (X, 1 )and (X, 1,).
Proof:
Leti: (X, t,) = (X, t,) be the identity mapping, then for any G € 1,
i'G)=Ger, (v 1,C7)
This shows that the inverse image under i of every 7 -open set t,-open, and hence i is continuous from
X, 1,yto (X, 7).
Agaiﬁ leti: (X, t,) = (X, t,) be the identity mapping, then for an]',;.r openset G 1,
G)=Ger, i L
Thus, image under i of every T -openset is 7,-open and hence i is an open mapping from(X, T )} to (X,
T.).

Proposition :

If T, < T, are topologies on a set X, if 7, is a Hausdorff topology, and if T, is compact, thent, =1,
Proof:

It is enough to show that

'!3 i TI.

To see this, let F < X, be t,-closed. Then F is T,-compact as X is T,-compact.

Since t, < 1., it follows that every 1 -open cover of F is also a t,-open cover of Fandso Fis T -
compact.

Since t, isa Hausdorff space and compact subsets of a Hausdorff space are closed, F is 1-closed.

Hence 1, 1, and consequently 1, = 1,.

Quotient Topology

X X ;
Consider the quotent topology T, ofﬁ, where t.={Ec N’ n'(E) 1}

X
andm: X — N is the quotient map.
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; X
By its very definition, 7, is the finest topology on T, that makes n-continuous and it is the weakest one

N
. * L - iy . x x " H H e
that makes 7 an open mapping. Explicitly, if T and t" are topologies on N and if m is continuous relative T
and m is open relative to 1’ then
i i Y e

S - topology

Suppose that X is a set and $Fis a non-empty family mappings
f: X—>Y,, where Y, is a topological space.

Let 1 be the collection of all unions of intersections of sets f'(V), withf € Fand Visopenim Y . Then
tisatopology on X, and it is in fact the weakest topology on X that nmkeswei-yfe Fcontinuous. Ift'is
another topology with that property, then T < 7', This topology 1 is called the weak-topology on X, induced
by For Ftopology of X. :

Proposition: .

The Stopology T on X, is the weakest topology X that makes every f € #Tontinuous
Proof : '

Let T be the & topology on X, and 1’ be any other topology of X w.r.t. which every f € is
continuous. To show T = 7.

To see this let G < X be t-open. Then G is the union of the finite intersections of the sets £'(V) with f
€ Fand VisopenonY,. By continuity of each f e Fw.r.t. T, each f'(V) is v-open.

Since 7' is closed finder finite insection and arbitrary union it follows that Gis ~ t-open.

So, T < 7. This coinpletes the proof.

Proposition :

If s a family of mapping f: X — Y, where X is a set and each Y is a Hausdorff space anf if J*
separates points of X, then F-topologyon X is a Hausdorfftopology.
Proof: ‘

Letp,ge Xandp#gq.

Since Sseparates points of X, 3 f € Fsuch that fip) = fig).

Since Y is a Hausdorff space, 3 Y -opensets V and V, such that

pefi(V),qef'(V) andV NnV,=¢
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and f'(V)NfI(V)=1'(V,nV)=f($)=9¢.
Hence X is a Hausdorff space w.r.t. the . *topology.

Proposition :

If X is a compact topological space and if some sequence {f } of continuous real valued functions
separates points on X, then X is metrizable. .
Solution :

Let 1 be the given topology of X. We are to show that t is compatible with some metric d on X.

Suppose, without loss generalitﬁf, that | f | < 1 for all n. Let us define

d: X x X — Rbythe rule

d(p.q) = g?"‘lfn(p}— £, (q)

d is well defined since the series is convergent.
We show that, d is a metric on X.
M,) d(p,q) =0 _
M,) d(p,q) =0 ' -

o F27L, (p) - £,(@)=0

a=1

<fp =@, wvnzl
<p=q [+ {f} isaseparating farnily]
M,) d(p,q)=4d(q,p)

M) dp.)= 22716 ()~ @)
= £27I6,(p) = £, () + £,(0) - £,(@)

< 3275, (p) - £, (O)+ £27|f, (1) ~ £, (@)

m=] n=|

=d(p, r) +d(r, q)
Hence d is a metric on X. . .
Let 7, be the topology in duced on X by the metric d. We claim that 7,=t.
Now, forany(p,q) e Xx X -

|gp, Q=127 £(p) - (@[ <2°=M, (say) [ [f]=1]

wiire “}?Igntp.q} = gz"“lﬂ,{p) ~£,(q)l.
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Since £2" is a convergent series of positive numbers, by Weirstress M-test, the series

>g,(p.9) = i_l?- “|f, (p) - £,(a)| converges uniformly on X * X.

n=l

Also each £ is T-continuous. All these together imply that d is a T-continuous function on X = X. The

balls
B (p) = {q : d(p, q) <r}are therefore t-open. Thent, .

1, induced byametricd isa Hausdorff topology and also T 1s compact.
Therefore, 1, = t follows froma preceding proposition. This complets the proof.

39.Lemma:
Suppose A, A, ..., A, and A are linear functionals on a vector space X. Let

N={x:ax=.=Ax=0}.
The following three properties are equivalent.
(d) There are scalars o, ct, ..., €@ such that :
A=A T TOA
(b) There exists y <« such that

| x|€y max |, x|, (x €X),
(EAEA )

{c) ax=0 for everyx € N.
Proof:
(a)=(b)
Leta=an +..+0n.
Foranyx e X,
A= AXt. raaX

A x|< (e |+ oy |+ +a,] ) max [a; x|

=y max |A; XY =[a, ]+ o+ +a,| <a

Thus, 3 y < o such that

|Ax|<ymax (A, x|, (x€X)
laign

(b)=(c)
Let x € N be any element.

ThenAx=0, v i=1,2,..,n
= ymax A, x|=0 -

1=

=|ax|=0
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= rx=0, yxeN.
(¢)=(a)
Let K be the scalar field. Define m: X — K" by
T(X) = (A X, AX, .oy AKX,
So that
(x) = {(A X, AX, ., AX)CK 1 x € X}
Clearly nt(X) is a subspace of K"
X n K-

=)

Define f: n(X) = Kby fin(x))=rx, yx e X.
fis well defined. For any x, y € X,
n(x) = n(y)
=>nax-y)=0

= Ax-y)=0, yi=l,2,..n
=x-yeN
= alx-yv)=0
= AX =AY
= fin(x)) = f{n(y))
Thus fis well defined.
Also, fis linear.
Let us extend f'to a linear functional F on K*, so that
F = fon n(X).
Then for any
(u,u,..,u)ek
Flu,u,.,0)= Flue,+ue+..+ unen}.
=uF(e)+...+uFle)
ol 8 S L g [a, = F(e)]

l<i<n
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Thus foranyx e X.
~x = f{n(x)) = F(n(x))
=F(AxX, ..., nnx} '
=aAXTt.. + oA X
=(anA + et a A X
Hence AX= (B A+ FOAX, v xe X
A=an Tt tans
This complete the Lemma.

3.10. Theorem :
Suppose X is a vector space and X is a separating vector space of linear functionals on X. The the X'
-topology t' makes X into a locally convex space whose dual space is X'
Proof :

Given X : Vector space
X': Separating vector space linear functionals on X.
t': X-topologyon X.

To show, (X, T') is a locally convex space.

Since R and ¢ are Hausdorff space, it follows the X'-topology t’' on X is Hausdorff.

The linearily of the members of X' shows that t'is translation invariant.

ifni, Ay ooy, € X, 01, >0, and if

v:{x[,«ix|<ri,1si£n}=rfwn;'(nn) ...... (1)

then V is convex, balanced and V & t'. In fact, the collection ofall V of the form (1) is a local base for t.
Thus t isa locally convex topologyon X. We are left to show that vector addition and scalar multiplication
are T-continuous.

If V={x:|ax|<r,1<i<n} then

lyilyvay

2 2 ’
This proves that addition is contmuous.
Now suppose x € X and o is a scalar. Then x & sV, for some s> 0, since V is absorbing.
Now, ifr>0,|B-a|<randy-x erV,then .

By - ox = (B - a)y + afy- x)

cla-Blx+rV)+arV
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cla-plsV+rv)+arV
c(rs+n+lan)V
< V provided-
s+ +|ajr<l.
Thus choosing r so small that r{r+s)+|e|r<I
we find that corresponding to every neighbourhood ox +V of ax, 3 a neighbourhood W=x+rV ofx and
r >0 such that
BW < ax + V, whenever [ - a| <r.
Hence scalar multiplication s continuous.
All these together imply that (X, t') is a locally convex space.
Finally, we show that (X, t)"=X.
By definition, every A € X'is T-continuous so that XX
To prove the other inclusion we proceed as follows.
Suppose A is T-continuous lingar functional on X. To show A € X.
Then | ax | <1 for all x in some set V ofthe form (1).
Let Ay Ay s A, € Xandp >0 such that
V={x:|ax|<r,] <i<n}
wih |~Ax|<l,vxeV.
Let Oy = T08X In; XL, forx e X.
Foranyy = 0, we have
i N

‘—L|,«1{x]'i{l-::r, 1€i<n
Y

X
1A 2=
o,

(
T

X ; | ){| 1, (

—eV al—|<l= lax]<l
So, and | [ ]| 'r"ll,l |
=|Ax|<7y0,

= |Ax|<ymax |A,; x|

I=iZn
Hence by Lemma 3.9, A =a., for some scalars ct,.
Since A, € X and X' is a vector space A, € Xie.neX.

Consequently, X" = X' Hence X" =X'ie., (X, t) = X.
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3.11. The Weak Topology of TVS:
Suppose X is a topological vector space with topology t, whose dual X" separates points on X. We
know that this happens in every locally convex space.
The X'-topologyof X is called the weak topology of X and is denoted by T,
Then by Theorem 3.10. X_=(X, 1_) is locally convex whose dual space is X".
Since every » € X' is T-continuous, and since t_ is the weakest topology on X, with that property, we
have 1, c 1.
In this context the given topology t will be often called the original topology of X.
Note :
(A) Subbasic members of t_ are ofthe form
(x)(D)={x:x'(x) eD}
={x:[x(x)|<r}
(B) 1 is the coarsest topology on X w.r.t. which dual of X is X",
Suppose 1, is any other topology on X such that (X t) =X
Toshowrt c1,.
Let G € t_ be arbitrary. Then G is the union of finite intersection of the sets {x : | AX[<rp=nA" [D,I }
But reX
= A" {Da ) is rl—upeh
= G is 1 -open [~ 1, isatopology].

Ge T Hence T ET.

Convention ;

Orginalineighbourhood, open, closed, closure, co mpact etc) means the corresponding concept w.r.t.
original topology. '

Weak(neighbourhood, open, c'lused, closure concept etc.) means the corresponding concept w.r.L.
weak topology. '

Proposition :
A sequence {x } converges weakly isatvs (X, t)toxiff ax — axforall AeX
Proof:
First suppose that
X — x weakly.
ie.” y —>0weakly wherey =x - x.
Then for e >0,3 n, e N such that
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y € ~Y(D), wnzn, vy AE X
=y, €D, ynzn,y rne X

= |AX -AX|<gYD2D, Y ne X

=> AX, —> AX, v oAEX
Conversely, let

AX, = AX, waeX.
To show x_— x weakly.

ie. to showy — 0 weakly,y, =X - x.

Let G be any weak neighbourhood of o then G contains a neighbourhood of the form
V={x:|ax|<rfor1Si<k}

=(r"(D,)
where A € X',andr > 0. i=1,2, ..k
Smce Ay —0 v aeX
'=>n|}rﬂ—>{] vi=12,..,k
= forr, > 0, 3 m, e Nsuch that
SRS ¢n2m,1<i<K
=Yy, €V v n2m = D&%

=Y, € Ai't(Dtl},‘_H;,-‘ nzm,l<i =K
=y G ¥ nzn,

Thus for any weak neighbourhood of G of 0,31, € INsuch that
y. € ynzn,

So, y —0weakly and x —X weakly.

Corollory :
Original convergent sequence, converges weakly.
Proof :
et AR orignally
ie. y =0 originally, y =x -X
To show AX —»AX, W AEX

Since any A € X' is originally continuous at 0, fore > 0,3 a neighbourhood V of 0 such that
| Ay, | <€, whenevery €V
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Agam, y_—» 0, originally. This implies, for the neighbourhood V of 0, 3 n, € INsuch that
yeVwazEn 09000 L e (2)
Combining (1) and (2), we get, for € >0, 3 n 2 n,, such that

| Ay, | <&, . ¢¥nzn
= |AX -AX|<E, vnzn,
= AX_—>AX, vaeX

Hence x — x weakly.

Proposition :
- A set Ec X ina tvs X is weakly bounded iffevery A € X" is a bounded finction on E i.e. iff for every
A € X", A(E) is bounded. '
Proof:
Suppose E 1s weakly bounded.
Then for every V of the form
V={x:|ax|<rforl sisn}
where A, € Xand r, > 0, there exists t, =t (V) > 0 such that
Ect, v t2t,
Let A € X" be arbitrary and consider V, = {x || ax | <r} forr>0.
Then, 3n,=n (V) > 0 such that

EcnV, v nzn,
:_:>nu"x eV, - w X€E
= | an'x | <r, vXxeE
= | Axi<ng, vXxeE

= aisbounded onE.
i.e., A(E) is a bounded subset.
Conversely, let E— X and A(E) be bounded for all A € X". To show E is weakly bounded.

Suppose V= {x:|ax|<r,forl <i<k}.
be a weak neighbourhood of 0, where r >0 and A € X'
Then A (E) is bounded for | <i<k
=|AX) €M <m,forl <i<k

v X € E and for some M, > 0.

Dsuglﬂ. (X)|<M; <o for1<i<k.

Let M=supM,; Ty,

EATA




sup| A, (x)| S M, <o, V1<i<k
xcE

Now, foranyx € E
|ax|SM, yl<isk

M
Shxlsn— ylgigk

L

M
n, > max —

Let Mo~ T2F T ,then
]

| AX|<rn, v1l=isk

X :
= |A,—|%<5, V15150
|0

:"'*-E-EV,"E‘"K eE
anI

:xﬁnﬂ‘vﬂ v XxeE
=EcnV

a . Ny
Now, ifn=zn, ie, —=1.
v n

Then %VC V,[+ Visbalanced]

=nVcnV, ynzn
=EcaV, y'n2n,

Thus, for any weak neighbourhood V of 0, 3 “c. e INsuch that
EcnV, ynz n,.

Hence, E is weakly bounded.

3.12. Theorem :
Suppose E is a convex subset of a locally convex space X. Then the weak closure E_ of Eis
equal to its original closure E .
Proof:
Let t be the original topology and 7, be the weak topology. Then
et &

E, = intersection ofall weak by closed sets containing E.
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= mtersection of all original closed sets containing E. [+ 1 < 1]

- E

ig: BL.O3E " e (1)

To obtain the opposite inclusion let us choose x, € X, X, € E . Thenby separation theorem, 3 A € X'
andy € Rsuchthat Reax <y<Reax, v xe E.

Consider V = {x : Re Ax <y}

Then V is a weak neighbourhood of x, which does not intersect E. Thus XE€E,

Thusx, ¢ E=x ¢ E,.

= E, cE e )
From(l)and(2), weget E_ =E.

Proposition :
~ For convex subsets of a locally convex space

(a) Originally closed equals weakly closed. and
(b) Originally dense equals weakly dense.(1995)

Proof': :

Suppose, E is any convex subset ofa locally convex space. Then
E,=E.

(a) Now, if E is originally closed then
E=E
<E, =E
< E is weakly closed.

(b) If E is originally denlse, then
E=X=E, =X [~ E,=E]

«= E 15 weakly dense.

3.13. Theorem :

Suppose X is a metrizable locally convex space. If | X } is a sequence in X that converges weakly
to some x € X. Then there is a sequence {y,} in X such that

(a) eachy, 1s a convex combination of finitely many x . and

(b) ¥, — x originally.
Proof :

Let {x } be a sequence in X which converges weaklyto x € X.

o =
L. . x, ——x-
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Consider H, the convex hull of {x }.
Then each y € His of the form '

y=Xax with o= 1

- and for each y, only finitely many a_are = 0.
Also, H is a convex subset of the locally convex space X and hence

; A :

Now xn__}w x::..xeﬁ* =H [‘-L {x:n}CH]
= 3 asequence {y} in H such that y — x originally, where each y, IS & convex
combination of finitely many x 's. ' '

3.14. The weak -topology of a dual space :
Let X be TVS whose dual is X" which may or may not separate points of X.
Further weak'-topology is defined on X' where as weak-topology is defined onX.
The important observations to make is that every x X induces a linear functional f on X" defined
by ?
f(A)=nX, v A€ X"
and that {f : x € X} separates points on X".
Let 5= {f : x € X}. _
Since f : X* — K and K is Hausdorff space, so the. *“topologyonX 15a Hamdc:rﬁ' topology. Further
w.r.t. this F-topology, X" is a locally convex space.(since . #is a separating fammly).
This, F-topology of X is called the weak'-topology of X.
Since there is an isometric isomorphism between X and F.
So the weak -topology of X" is also defined to be the X-topology of X'.
Also every linear functional on X' that is weak contmuous has the form
A —» AX for some x € X.
For any », € X', a weak’-neighbourhood of A, is
W={reX :|ax-Ax|<d,1<i <n}

= ﬁ{n eX":|ax, —A,x, <8, ]
L

where x's are in X and8's > (0.
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3.15. The Banach Alacglu Theorem :
ItV is a neighbourhood of 0 in a TVS and if
K={reX :|ax|<]l yxeV)}
then K is weak'-comapact.
K is sometimes called the polar of V.
Proof: _
Since a neighbourhood of 0 is absorbing there corresponds to each x & X a number y=v(x) <scsuch
e .
X e vV
Hence

AEK.:>|A[ - ]‘51
| Lr(x)

= | x| = y(x)
LetD = {a e €:|a|<y(x)}.
Foreachx € X, D_being closed and bounded subset of ¢, is compact.

Let P = ITD. and t be the product topology on P.
Since each D_is compact, so is P, by Tychonoff's theorem.
The elements of P are the functions f on X(linear or not) that satisfy
|f{x) [<y(x),x e X. :
Thus K< X" n P. It follows that K inherits two topologies, one from X'(its weak'-topology, to which
the conclusion of the theorem refers) and the other from the product topology 1 of P.
We will see that '
(a) these two topologies coincide on K, and
(b) K is closed subset of P. ;
Since P is compact, (b) implies that K is t-compact and then (a) implies that K is weak"-compact.
[a}FixsnmcnoeK,chcmsexlex,ﬁ:-r] <i<n, choos 8=0. Put .
W ={reX :|ax-Ax|<8, forl <i<n]
W,={feP:|fk-Ax|<d forl<is<n}
Let n, x and & range over all admissible values. The resulting sets W, then form a local base for the
weak’-topology of X" at A and the sets W, form a local base for the product topology T of P at 4 since
K< P X', we have
W,nK=W,nK |
This proves that relative weak - topology on K coincides with the relative produced topology on K.
This completes the part (a).
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(b) Suppose f is in the t-closure of K. To show f, € K.
[t is enough to show , fis linear and bounded.
We proceed by choosing x € X, y € X scalars c and § and £ > 0.
Define
W, = {f:|fix) - f,(x} | <&}
W, = {f: | fly) - f{y} | <g}
W, = {f:| flax + By) - f(ax + By) | <€}
Puu W=W nW, n W,
Then W is a T-neighbourhood of f. Therefore
WnK=é [~ f, € t-closure of K]
Let f € W n K, then fis linear,
Now
f(ax + By) - af,(x) - Bf(y) <| f(ax + By) - flox+By) |
+Hla||f(x)-fx) | +| B[ f(y) - fly)]
<g+|ajet+|Ple
=(1+]|a|+]B)e
Since £ was choosen arbifrarily small,
f(ax+ By) = af (x) + Pf(y) and £, is linear.

f, is bounded :
Forx e V,e>0, let
W, ={f:[ f{x) - f(x) | e}
W, is a neighbourhood of f, and
W, nK=6b.
So, 3 f € W, n K such that
(%) - (%) | <t.

Butfe K= |fix)|<1.

Now | £x)|-| fix)| | £(x) - fx) | <&
=) | <e+1 v [fx)]<1]
= |{x) =1 [ t>0isarbitrary]

Hence f € K. Consequently ¥ = i .

Then proves (b) and hence the theorem.
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Theorem :
If X is a separable topological vector space, K = X" and K is weak"-compact
then K is metrizable, in the weak’-topology.
Proof:
It is enough to show the existence ofa countable family of continuous real valued linear finctionals of K,
which separates the points of K.
Since X is separable, it has a countable dense subset tx | say.
Define,  f : X" — ¢ by
f(A)=AX,
Then each £, is weak"-continuous by the definition of the weak-topology.
Further, if &, A" & X" such that :
AN
= axzAX, forsomex e X
=An, #A'"n,, forsome *n, € {x} [ {x }=X]
= ', (A)# "0, (A)
" {f } separates points of X".
Thus {f } is a separating family of continuous linear functionals on X,
Now defining g = Ref, and noting that continuity of f implies the continuity of Ref, we find {g } isa
countable family of contmuous real valued functionals on X* which separates points of K = X". Hence K is
metrizable.

Theorem :
If'V is a neighbourhood of 0 in a separable topological vector space X, and if { A, 1 1S a sequence
in X" such that
|AXISL,xeV,a=1,2,..

then there exists a subsequence {A i } and there is a A & X" such that

AX =liman X (x € X)

Proof:
Let K={aA}={A eX :|Aa|S],yxeV} n=12,..
By Banach Alaoglu Theorem K is weak’-compact.
Again, by theorem 3.16, K is metrizable, w.r.t. relative weak-topology.
Thus K is a compact metric space and hence it is sequentially compact and so the sequence {a 1 has

a convergent subsequence {An, } such that




Ao WAEX 4iism

L

ie. lmAnXx=AX (x e X)

F=eix

Theorem :

In a locally convex space X, every weakly bounded set is n»l:'i.gim-nll].r bounded and conversely.
Pm-uf-:

Let  be the original topology of X and t_ be the weak-topology of X and E be an oniginally bounded
subset of X. Since, every weak neighbourhood of o in X 1s an original neighbourhood of o it follows from
definition that

E is originally bounded
= E is absorbed by every t-neighbourhood of o -
= E 15 absorbed by every t_-neighbourhood of o
= E is weakly-bounded.

Conversely, suppose E is weakly-bounded. To show E is originally bounded. Let U be any 1-
neighbourhood of o. Then since X is locally convex, there is a convex, balanced, original neighbourhood V of
o in X, such that -

Vcu-

Let K={areX :|ax|2]l, v xeV} B (1)

By Banach Alaoghi Theorem K is weak -compact.

Weclaimthat V = {x e X:|ax|=], v A €K} C Em (2)

Clearly Vo {xeX:|ax|2], v A €K}

Since right hand side of (2) 1s closed,

voeixeX: |ax|sl, gy aneK}
Next suppose that x, € Xand x, £/, Since ¥/ is a convex, balanced and closed set in a locally
convex spaée X, 3 A € X" such that
m{ﬂl?lbul|nx|£1._,vxe Vv
=ax,>lbutaek [ Vg V]
=>x,e{xeX:|ax|sl, v Ak}
So,{xeX:|mx|j=sl,vaekic V.
Consequently,
VoilxeX:|ax|sl, v AneK].
Since E is weakly bounded there corresponds to each A € X' a number y(») < oo such that
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ax|sy(n),(xeE) ... (3)
Since K is convex and weak"-compact and since A — Ax are weak -continuous,
We can apply Hahn-Banach theorem (with X' in place of X and the scalar field in place of Y) to
conclude from (3), that there is a constant y < oo such that
|ax|=y(n),(xeE,neK) Ll (4)
Now, (2) and (4) show that '
YxeycUwxeE

Since V is balanced
EctyctU - {t=y)

Thus E is originally bounded.

Corollory :

Let X be a normal space. IfE < X and if
sup|A x|< o0 (reX)
xaE

then there exists y < oo such that
xl[<y (x € E)
Proof:
Try yourself.

3.19. Definition :

(a) If X is a vector space and E < X, the convex hull of E will be denoted by c (E) and it is the
intersection of all convex subsets of X which contain E. Equivalently, ¢ (E) is the set ofall finite convex
combinations ofmembers of E.

(b) {Xisa TVS and E — X, then closed convex hull of E, written E(E] is the closure of E.

(c) Let K be a subset of a vector space X. A non empty set S < K is called an extreme set ofKifno
point of S is an internal point of any line interval whose end points are in K, except when both end points are
in S. Analytically, the condition can be expressed as follows ;

IfxeKyeK 0<t<l,and(l -t)x +ty € §, then

xeSandve S _

The extreme points of K are the extreme sets that consists of just one point. The set ofall extreme

points of K will be denoted by E(k).
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Theorem :
Suppose X is aTVS on which X" separates points. Suppose Aand B are disjoint, non-empty, compact,
convex sets m X. Then there exists » € X" such that

supResx<infReny
—y veB 2

Proof :

Let X be X with its weak-topology. The sets A and B are evidently compact in X . They are also
closed in X, because X is a Hausdorff spa::ef Since X _ is locally convex, Hahn Banach can be applied to
X, inplace of X; it provides A € X~ that satisfies

Reax<Reny (1)

Sk L T

But since X" separates points (X )" = X" and hence (1) holds for some A & X,

The Krein Milman Theorem :
Suppose X is a topological vector space on which X" separates points. [fK is a non-empty, compact,
convex set in X, then K is the closed convex hull of the set of its extreme points. -
"~ InSymboks
K= 5 (E(K)).
Proof:
Let P be the collections ofall compact extreme sets of K. Then
P#¢, sinceK e P,
We shall prove the following two properties of P :
(a) The mtersection S of non-empty subcollection of P is a member of P, unless S # ¢.
(b IfS € P, A € X', u the maximum of Re~ on 5, and
S ={xeS:Reax=u}
thenS e P.
{a) By definition :

S:ﬂﬂPu,whﬂe{Pu:aea}cP

Since, every TVS is a Hausdroff space and since every subspace of a Hausdorff space is Hausdorff, it
follows that K is a compact Hausdorff space. _
Now since compact subspace of a Housedorff space is closed and any intersection of closed sets is

closed, it follows that being the intersection of compact subsets of g o= ﬂap-: is a closed subset of the

compact set K and hence itself compact(because closed subset of a compact set is compact).
Hence S is compact subset of K. S is an extreme subset of K.
letxe K, yeK.0<t<1and
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tx+(l-thye 8
=xt+{l-t)yecP, VvV OEA
=&xEPu,yEP“‘ v oLE A

[+ P,_isanextreme point]
=x€ NP,.Y€ NP,

il

acA
=X,YES
= § is an extreme subset of K.
This complets the proof of (a).
(b)Forne X*
S, ={x€ S:ReAx=}} is a compact extreme subset of K where
p=max{Reax:x € S}

Clearly, S, © 5.

S, is an extreme subset of K :
Supposex€ K,ye K,0<t<1and
z=tx+(l1-tlye §,
We provex, y € S ie. Reax=Reay=H.
Now,ze § =>Reaz=p.
Againze §, =z€ § {> 5 C8)
=>x€ 8,ye S
= Reax Sy, Reay s .

We claim that
Resrx=Reny

If possible, let Reax # Reay and in particular
Reax<Reay<p )

Then since A is linear, and z€ §
p=Reaz=tReax + (1 -t)Reay
<tp+(1-tp [using(D)]
=5 W # |, a contradiction.
Reax=Reay=Hu
=x€S,yES,

=S _isanextreme subset of K.
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S iscompact:
By definition
S, =(Rea)" |;(u)
Since Rex is continuous and {u} is closed
=S =(Rer)'({u})isaclosed subset of K.
= 5 _is acompact subset of K.
This proves (b).
: Now, we proceed to prove that
K= ¢o (E(K)).
By defimition,
E(K) cK
= coE(K)cK [+ Kisconvex]
= oE(K)=K [+ K, being compact subset of a Hausedorff
space, is closed]
Thus H(EK)<K . (A)
This shows that g (E(K)) is compact.
To eastablish the other inclusion, we first show that, every compact extreme set of K contains an

extreme point of K.

Choose some S < P. Let P ' be the collection of allmembers of P that are subsets of S. Since S € P
P ‘£

Then (P ', ©) is a non-empty poset and hence by Hausdorff maximality theorem, P ' contains a
maxmal totally ordered subset Q2 of P .

Let M be the intersection of all members of €.
Since € is a collection of compact sets with the finite intersection property, a topological space X is
compact, iff every collection of closed subsets of X with the FIP is fixed i.e., has a non-empty intersection.
M=z¢
by(a, Mep '
The maximality of € implies that no proper subset of M belongs to P.
[Forof if PCM and P P, then P<Sand {P} ' Q is a chain in P, which contains € and it is not true]
[t follows from (b), that every A € X" is constant on M.
[For if A is not constant on M, then 3 at least one x € M such that p = maxRes # Reax and hence S.A
1s a proper subset of M belongs to P, which is not possible]
Since X" separates points on X, M has only one point.
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[Forifx e,y e M, x =y, then 3 A & X' such that Ax+ Ay
:’Sn"‘:M andisnottrue (v S e P}
Therefore M is an extreme point of K contained in S.
We have now proved that
: E(K) " S # ¢, vSeP .. (B)
In other words, every compact extreme set of K contains an extreme point of K.
We are left to show that K < 5 (E(K)).
Assume to reach a contradiction, that some x, € Kis notin ¢ (E(K)).
ie.x, € Kbut x;  ¢o (E(K)).
Then withA= o (E(K)) and B= {x}

Reax<Renx,. V¥ X € o (E(K)).
[fwe define
K ={xeK:Reax=p}  where #=maxReax,
Then K, € Pand K, N 5o (E(K) = é.
which contradict (B), because E(K) < ;o (E(K)).
Hence KcoEK) e (C).
From (A) and (C), it follows that
K= 5o E(K)

Hence the theorem has been completly establish.

Duality in Banach Space

4.1. Sﬁppose XandY are normal spaces. Associate to each A € B(X, Y) the number
Nall=sup{lax]l:x e X, || x| £ 1}.
Then B(X, Y) is a normal space w.r.to the above normed and B(X, Y) is a Banach space if Y is a
Banach space.
Proof:
B(X, Y) is a subspace of the vector space L(X, Y) of all linear mappings from X into Y.

For A, A, € B(X,Y) and a, ek,
Il (on, + B () [| =] o (x) + Pax) ||
Slallla+IB AL

<(alllal+IBlIA DI
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So, an + [:‘m: € B(X, Y) and B(X, Y) is a vector subspace.
N) liall=Sup{ll ax]l:xeX|ix||<1}
2 ().
and is finite, because  is bounded in the closed unit ball.
IfA=0,then| Al =0.
and if || » || =0, then for any x,
Iax]|<{lAllllx]|=0.
[ Ax|[=0
= nrx={, vyx
= a=0
N,) Fora ek, | ana|=sup{[(ar)x)|: | x| <1}
=sup{|a || AG) || : | x ]| < 1}
=|a|sup{ij ax||:||x[j=1}
=lalliafl.
N,) Fora eB(X,Y), A, eBXY)
| (A AN A+ A
<A+ IA DX

Shiafi+llall wxllx[<1
So, Sup||a, (x) + A, ()I=] A 1+]IA, ]

ixi=l

2nd Part :
Assume y is a Banach space. To show B(X, Y is a Banach space.
Let {f } be a cauchy seq in B(X, Y).
For € >0, 3n, € INsuch that
If-fll<e  wmn2n,
Now | f(n)-f () [[=[[(f - £ )(x) |
<|£-£ |||l x|
<gl|x|| W
Hence {f (x)} is a cauchy sequence mY for eachx € X.

Since Y is a Banach space 3y € Y such that imf,(x) =y,

Wedefinef: X = Ybyfix)=v
We have to show that (1) fe B(X,Y)
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(i) f -1

(1) fis linear :
flox +By) = Hm, (ox +By)
= alimf, (x) +Blimf, (y)
= aflx) + By).

fis bounded :
fix) - £(x)= .LIEI}; fo(x)—£,(X) foreachx € X andeachn.e N.
Then

1809 - £00 | = | lim £ 00 - £,(0)|
= lim |£, ()~ £, ()
<gl x| wnzn,
Hence
: | fx) || = Il fix) - £, (x)+ £, (X ||
< |1 fix) - fo, GO+ £, ()]
<gl| x|+l £, 1]
=(e+| £, DI x|
So, fis a bounded and f e B(X,Y).

(ii) Toshow f - £
|| £- £ [|=Sup{|l fix)- £ [[: | x|| =1}
<Supief x||: [ix[|<1}
<Eg yonzn,
Hence, f — fand B(X, Y) is a Banace space.
Note : keeping Y = K, B(X, Y) = B(X, K) = X" is a Banach space.

Theorem :
Suppose B is the closed unit ball of a normal linear space X. Define
| " [i=Sup{|<x,x">|: x € B}, foreveryx" € X".

<X, X > stands for x"(x).
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(a) This norm makes X" nto a Banach space.
(b) If B® is the closed unit ball in X, then foreveryx € X,
| x|i=Supfl<x,x>:x" e B’}
Consequently x* — <x, X"> is a bounded linear functional on X" with norm|| x ||.
(c) B" is weak” compact.
Proof: _
(a) We know B(X, Y) is a Banach space if Y is a Banach space. Since K is a Banach space, X" = B(X,
K) is a Banach space with
1% (| =Sup{| X | | x| < 1}
= Sup{| <x,x">|:x € B}
b) B'={xeX||x|<1}).
To show || x||=Sup{|<x,x">|:x" e B'}.

<, x> =X Ix]<lx]| wx eB.
So, Sup{| <x, x">|:x" e B"} || x|| vx B
If possible let,

Sup{|<x, x> |:x" e B} <|ix||

| <x, x> <{| x]| vx € B
But by Hahn-Banach Theorem, for x= 0, 3x" € X" such that
.= x| =l x||with || x" || = 1.

This is a contracdiction. _

Thus, Sup{| <x,x™>|:x" e B'} =||x||.

Next we have to show x* — <x, x> is a bounded linear functional on X" norm|| x ||
We define amap ¢,_: X™ = Kby,

¢ (x7) =x"(x).

¢, is linear :
b (ax" + By") = (ox" + By Hx)
= ox'(x) + Py’(x)
= ad (x) + Py

¢, is bounded : '
| ()| =] x"(x)|

<{ix =l
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=M|[[x"|] (M=|| x|, fixed)

So, ¢_is bounded.
To show,
o, i =1 x|

|9, li=supil¢,(x)|:f|x"||<1}.
=Sup{|x'(x)| :x" e B"}
= x}.
{c) B" is weak” compact Hausdorff.

B’ is weak’ HausdorfT : _
Letx',y" € B suchthatx"#y".
[x'||sland| y | <1
and 3 x e X such that x"(x) = v'(x).
Now we put, 3e=|| x"(x) - y'(x) ||
Take weak” neighbourhood N and N, as,
N,(x', x, )= {z' ||| 2'(x) - X' (x) || <&}
NG xe)={Z [[|1Z()-y(®) || <e}
We have to show N, " N, = ¢.
Ifnot, 3z € N NN,
2, (x) - x"(0) [| <eand || 2,"(x) - y'(x) [| <&.
3e=||x"(x)-y'(x)|
= [ X'®) -2, (%) +2,/(x) -y ) |
<X - 2,7 ||+ 112, () - Y |
<g+eg
=2
This shows that 3 < 2, which is absurd.
SoN, NN, =¢.
Hence B is weak” Hausdorff.

B'={x":||x" || <1} is weak’ compact :
Let C,=[- || x|l | x|[] when x is real.
={z||z|£| x|} when x is complex.

C, being closed and bounded subset of K is compact. By Tychnoff's theorem,
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C= Exc‘ is also compact space.
Forx e X, {fix)|[fe B cC}.
SofeB’
= {fix)|xe X} & I[;ch =L,
So,B'c=C.
The weak” topology on B" is same as relative product topology of C on B
Since C is w" compact it is enough to show that B is weak” closed subset of C.
To show p* =B’, the closure w.r.t. weak” topology. L
Letg € g*, wehave to show g € B".
geC=pgx)eC.
=g |slIxlIs1 £ [Ix]=1
= Sup |g(x)|= 1

[E1=4]
=|glisl.’
Sogisboundedand || g |i< 1.
We are left to show g is linear.
Letx,yeXanda,p ek
We shall show {a) g(x+vy)=gx) +aly)
(b) glox) = ag(x).
g € g* = every w'-neighbourhood of g tersect B’
Choose weak” neighbourhood N, N,, N, of g such that

N (g% €)= {h: | h(x) - g(x}| < %}
E
Nj(g,y.€)={h:|h(y)-8(y)|< 3}

“3‘53=“+3’sﬂ)={hrlh[xw)-g{xw)l"%},

ThenN AN, N,isw’ neighbourhood of g, which contains a member f of B°(" ge

809~ 00 |< 5, | 1) - g 1< 5 [ R+ y) - gx-+9) | < :.

| g(x +¥) - g(x) - g(y) | =| g(x +y) - fix +y) - g(x) + fix) - g(y) + f{y) |
[+ fix+y)=1{x)+1y)]
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S|fix+y)-gx+y) |+ fix)-g(x) | +]| fly) - g(y) |
£ & £ '
<3+ 3 +3
So, gx+y)=g(x) +g(y).
Choose w'-neighbourhood N ,andN_.

=&

£
N,(g, ax, €)= {h:| h(ox) - g(ax) “:‘2"}

£
Ny x.€)= {h:|h(y) - 20 [ < 315}

Since g € g°, N, " N,, a weak’-neighbourhood of g contains a member .of B".

£ £
So, | flax) - glax) | < 2 and | fix) - g(x)| < m

| glax) - ag(x) | =] glax) - flax) - ag(x) +aflx)| (- flox)=ofx))
<| glex) - flox) | +| e || g(x) - fix) |

E E
. € —+|a|—
2 2o
=E,

-

Hence, g(ax)=ag(x)andg € B".
So, g’ =
Thus B" is w'-closed and hence w"-compact.
Note : 4.4.Comparison of sup norm topology and weak” topology on X :
Weak” topology on X' is the coarset topology w.r.t. which ¢_define by ¢ (x") =x"(x) are continuous.
Also [| ¢ () [| =[1x"x) || < [l || || x|
So, ¢, are continuous w.r.t. sup norm top of X', Hence weak’ topology is coarset r than the sup norm
top of X'\
Alternatively || f|| for f € B(x, y) can be defined as
[ fll=sup{llfx) fi:llxI<1} . (1)
Also || x || =sup{|| x*(x) || : || x"|| < 1}
Replacmgx by fix) €, .
(1) || = sup{|| y'(Fx)) || : [| y" | < 1}
So from (1), || f]| = SuP Sup ly " (FCx)l

i1 1y ks1

= sup{(| <f(x), y"> | : | x| < L, ||y | < 1} -
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4.6. Annihilator: ]
Let X be a Banach space and X" be its dual spdce. For subspace M c X, annihilator-of M is defined
by, ;
Mt = {x" e X" : x'(M) = {0}}
={x"eX :<x,x>=0, yx € M}.
For subspace N of X" annihilator of N is defined by ‘N = {x & X | <x, x'>=0 yx e N}
Note 1 :

Mi= NKerd, yhere o (x7)=x"(x).

x i

X eMexXXx=0 yxeM
< (x)=0 vxeM
o ‘C‘L ker¢,
= [ker
M* = 19“ ¢* :
Note 2 :
M-* is a weak” closed subspace of X'.
weak topology is the coarset topology on X* w.r.t. which all ¢_ defined by § () =x"(x)
are continuous.

* Hence, ¢_is weak”continuous.
kerg = ¢ '({0})is weak” closed in X",
=M = ﬂxke“h is weak' closed in X'
Note 3 :
AN is norm closed subspace of X.
Let {x_} be a sequence in N such that x —x in X.

To show x = *N.
Also,x € *N<x,x>=0yx €N yneN.

Now, x'(x)=x" ( [}iﬂc.x i ]

= ( lin x"(x,)) (»+ X is continuous)

=0 vXx €N
Hence x € ‘N and ‘N is norm closed.
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Theorem :
Suppose X is a Banach space, M is a subspace of X and N a subspace of X'. Then
(a) {M*) is the norm closure of M in X. '
(b) (*N)* is the weak” closure of N in X".
Proof :
(a) We observe that M < “(M").
LetxeM=x"(x)=0 yx" e M-
= x € 4{M*)
So, M = {(M4). '
Also Y{M*) 15 normed closed in X.
And M < jf= H{MY).
Next to show, {M") = N\
Suppose x, € §f. The 3 x" € X" such that
(x)=0 wxeM
and x'(x)#0.
Then x™ € M* but x, & {M*).
Hence {M*) = ) and 3 = {(M?).
(by N < (*N)*
Letx’ e N=x'(x)=0x ye'N
= X" e (N}~
So, N < (*N)* and (*N)* is weak” closed.
But weak” closure W is the smallest weak” closed set containing N,. Consequently,
N_. c(N*
For reverse inclusion, forx " & W
Applying Hahn-Banach Theoremin (X", T,.), 3F, inweak’ dual of X' such that
x'(x)=F (x)=0 vx eN
and F, (x)#0 '
So x, € ‘Nbut x’ & (*N)*

Hence (*N)*c N . and N . = (“N)~
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Dual space of a subspace and quotient space :

Theorem :
Let M be a closed subspace ofa Banacn space X.

. X
Definec: M — ﬁ: by
o(m")=x"+M* whenx' is H.B. extension of X".
Then o is an isometric isomorphism.
Proof: '

o is we defined :
Let xl' and x," be two extensions of m" e M.

To show x"+ M*=x"+ M-
X, (m)=x,(m)=m'(m), ym € M.
=(x,"-x,)(m)=0 yme M.
=R K oM
=>x" +M=x"+M.

(ii) o is linear :
Let x," and X, be extensions of m andm anda, p € K.

Then ex,” + Px,” is an extension of am, '+ pm,”.
So ofam + pm,’) = ux1' +Bx," + M*
= a(x, + M) + B(x, + M)
=ao(m,’) + po(m,’).

(iii) cin onto :

Letx’+M'~EM1.

Putm’ = "K{ .Thenm' e M’ and o(m") =x" + M".

(iv) o is isometric :
To show that || m" || = || x" + M* |}
Ifx" be an extension of m" € M". then
| x" || = m’ || s}
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X+ 1= 16+ )0l

2 Sup ||x" (x)||
Ixfisl

= Sup ||m"(x)i|

ix k=l
=|lm" ||
Now gh || x"+y" || 2] m’ ||

y e M
=[x+ M fj=gb|x"+y|
vy e M*
<|Ix* |l (. 0eMY

flm" || <]l x"+ M| <[] x|,
This 18 true for all extension x* of m'".
By H.B. theorem 3 x" such that || x" || = [{ m"||
m [ x"+M" || <[ m" |
[’ | =] %" + M|
ie, |m'|=|o(m")].So, oisanisometry.

X'
Thus M’ is isometrically isomorphic to M

" Theorem :

Let M be a closed subspace of a Banach space X.

X Ll
Define 1 ; (H] = ML,

by [©(2")](x)=2"(x+ M)

Then 1 is a isometric 1somorphism.
Proof :

First we show that 1 is well defined.

i sodal
ie. forz c:. M)

z) e Micx'

To show 1(z") is linear bounded on X
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and 1(z)m)=0ymeM. .
[t(z")](ex + Py) =z (ax + By + M)
=z'{a(x + M) + B(y + M)}
= qz'(x + M) + Bz’ (y + M)
= of1(z)](x) + P[(z"))(y)
This shows that ©(z") is linear.
And from |[t(z"))(x)|=|z"(x + M)
: X
sl NIx+MJj - 2" € (K,J
i =l - ¢ Ix+Ml[<|[x+mij
wvme M)
it follows that t(z") is bounded.
So,1(z") e X
And form e M, [t(z2")}{m)=2z"(m+ M)
=z (M)
=0.
Hence 1(z") € M* and the mapping is well defined.

5 X\‘
isali on|— | &
. TIsalnear [MJ

- L - x 3
Forz ,z, € M

[t(az,” + Bz, N](x) = (az," + Pz, )}x+M)
=az'(x+ M)+ Pz, (x + M)
=aft(z,)](x) + B[t(z,)](x)
=[at(z,) + Pr(z,)](x)

So t(az "+ Pz,") = at(z,”) + Pr(z,") and linearly of T follows.

1 is onto :
_Let x e M~ We define

X
z: ﬁ - kbyz'(x + M) =x"(x).
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. xY
To show z" 1s well defined and z° [-—J ;

M
Forx,yeM
x+M=y+M
=x-yeM
=x(x-y)=0 v X eM

= x(x)=x'(y)
=z (x+M)=2(y+M)

_— [E)
Z is linear on M)
X
Forx+M,y+Me H,ﬂ-‘ﬁEk
z'[a(x + M) + By + M)] = 2’((ax + By) + M)
= X (ax + By)
= ax'(x) + px’(y)
=gz (x + M) + Bz'(y + M)
Hence z' is lmear.
" i h. ded on E :
I 15 Doun M H
|Z(x+M)|=]z'(x+m+M)| ymeM
=|x"(x+m)| (definition of z°)
x| x+m]l (" x"isbounded)
1
||x-"l'||z'[x+M}|:;||x+m|| vme M.
1
T 17 M sghlx+m]|=|x+M|
or [ZEHMISIXIIX+MI ™)

M

Then [t(z")](x)=2'(x + M) =x"(x).
So, 1(z")=x".Henec 1 is onto and R(7) = M".

x -
_Su,z‘isboundedamiz’ & [-*] ;
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1 is isometric :
To show || 2’| = | ®(z) |
1(z)=x" e M
Ne@)I=lx" |22’ || (Fom(*)) ... [fohg
Also |(t(z)(x)|=|Z'(x +M)|

iZ flix+mi

<\ Z' ||| x+ml| ymeM
L@ I Z 1IxI<iZ] wxlx[<1.
SWP | (2N <112
B B3 L1 (**%)
From (**) and (***)

12" |=1l (") |l

So 1 15 isometric isomorphism.

Adjoint
Theorem :
Suppose X and Y are normed spaces.
ToeachT € B(X,Y),3T" € B(Y", X") satisfying,
() <Tx,y>=<x, T'y>ie, y(Tx)=(Ty)x)
@HTI=1T.
Proof:
Define T*: Y — X" by
[T°(y)](x) =y (Tx).

T is linear :
[T(ay,” + By, ](x) = (ay,” + By, ATx)
= ay,"(Tx) + By, (Tx)
=Ty, )x) + B(T"y, W)
: =[aT (y,) + BT (y,)1(x)
T'(ay,” +By,) =aT'(y,) + BT (y,)-

Bounded :
[Ty | =Sup{| (T"y" Xx){: | x]|< 1}
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3

=Sup{|y(Tx)|: || x[| =1}
<Sup{l| y" |11 Tx || : (| x|} <1}
=¥y lIlIT|
So, T" is bounded.
Thus [T(y) [y ||| T|l forall |y {| < 1.
Consequently, || T"|| < || T|.
Againby 4.4, alt definition of || T || is
I TI=Sup{ly'(Tx} [: [ x| < Ly s 1}
=Sup{|(T'y)=): xS L[|y <1}
=Sup{l| Ty || : ||y || = 1}
=T}
T =T

Uniqueness of T :
IfS" e B(Y", X") such that
ENR=y(Tx)
Abo (T"y)x)=y"(Tx).
(SYNx)=(Ty)x)
S’y =Ty
=58=T.

IfT: X — Y be a (bounded) linear operator then null space of T, N(T)={x e X|Tx=0}
Range space of T, R(T) = {Tx | x e X}.

Theorem :
Suppose X, Y are Banach spacesand T € B(X, Y) then

(a) N(T")=R(T}*
(b) N(T) = “R(T").
Proof :
@NT)={y' eY | Ty =0}
=Y eY [(T'Y)x)=0,x e X}
={y €Y |¥Y(Tx)=0,x e X}
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={y e Y'|y'(R(T)) =0}
= R(T)-

B)N(T) = {x € X| Tx=0}
={xeX|y(Tx)=0 vy e Y’} (~+ v separates points of Y)
= e X|(TY)0=0 vy €Y'} '
=*R(T)

Corollary (a) :
N(T") is weak” closed n Y.
Proof:
N(T")=R(T)*
But M" is weak” closed for every subspace M of X.
N(T")=R(T)* is weak’ closed.

Corollary (b) :
R(T) is dense' in Y iff T" is one-one.

Proof :
Suppose R(T) isdensein Y. 1.e. R(T) =Y. .
Toshow T : Y" - X" is 1 - 1. It is enough to show N(T") = R(T)*= {0}.

Let feR(T)*
= f{R(T)) = {0},
Fﬂrer:by=r}i:]GTKu C: RM=Y)
= fiy)= inf(Tx,) =0 =+ T(x)eR(T)
=f=0.

R(TY}=N(T")=0
T 1s one-one.
Conversely suppose T is one-one.
ie. R(Ty={0}.
We have to show R(T) isdense m Y.
Suppose R(T) =Y.
Then 3y, € Y such thaty, & R(T)-
By H.B. Theorem 3 y" € Y~ such that
y'(R(T))=0and y'(y,) #0.
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=y € R(T) and y"# 0.
This contradicts R(T)* = {0}.
R(T)isdenseinY.
Corollary (c) :
T is one-one iff R(T") is weak” dense m X",
Proof:
Let R(T") be weak"-dense in X",
To show T is one-one it is enough to show that
N(T) ="R(T") = {0}.
Let x € 1R(T").

Then (T'y" )} x)=0 vy €Y’
= x'(x)=0 vx € R(T) S
=x(x)=0 v X X

[’ eX'= ﬁ, weak’ closure.
So every weak” neighbourhood of X" mtersects R{(T").
{f: | fix) - x'(x) | <€} is weak” neighbourhood of x".
So, 3 f, & R(T") such that

[ (%) -x'(x) | <&

= | x"(x)|<& (Sinec £ e R(T") = f(x)=0 by (*))
=x"(x)=0 vx e X'
=x=0 (Since X" separates points of X).

Conversely let T be one-one.
So, N(T) =*R(T") = {0}.
To show R(T") is weak” densein X".

Suppose m # X', the closure being weak" closure.

Hence 3x" € X" such thatx ' ¢ m

Applying H.B.Theoremin (X", T_.),3¢_e (X', T_-)" suchthat
0(x)=0 yx' eR(T).

But ¢ (x,) #0ie x,(x)#0orx=0.

ie. x'(x)=0 yx' eR(T).
=xetR(T)andx#0

‘R(T") # {0}, a contradiction.
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R(T") is weak” dense in X"

Theorem : :
If X and Y are Banach spaces and if T € B(X, Y) then each ofthe three conditions implies the other

three.
(a)R(T)isclosedin Y.
{b) R(T") is weak'-closed in X.
(c) R(T") is normclosed in X
Proof:
(a) = (b).
Let R(T)benormclosed m Y.
We have
N(T)='R(T") (Theorem4.12)
(N(T))=(*R(T"))*  isweak" closure of R(T") in X’
...... (1)
oR(T) (v~ C(N}Y2N)
We can show that,
NI eRT) (2)

Then R(T") = (N(T))* which is weak” closed by (1).
To prove (2), let x" e (N(T))~

We have to show x" € R(T").

For this we have to show 3y" € Y' suchthat X" =T"y".
Define A : TX = kby ) = x'(x).

A is well define :
F Tx=Tx
= T(x-x)=10
= x-%x  N(T)
= x"(x)=x"(x" © (Sincex" e N(T)")
= A(TX)=A(Tx)
Hence A 15 well defined.
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A is linear :

AfaT(x,) + BT(x)] = A[T(ax,) + T(Px,)]
= A[T(ax, + Bx,)]
=Xx"(ax, + fx,)
=ax'(x,) + Px’(x,)
= an(Tx )+ Ba(Tx,).

A is continuous or bounded :
Since R(T) isclose m Y, R(T) is a Banach space.
Applymg open mappmg theoremto T : X = R(T)
i x|l <k| Tx ||=k|| y|| for eachy € R(T).
Thus [Ay|=|A(Tx)|
=[x'(x) |
<{Hx =il
<k x|yl vy € R(T).
Thus 4 is a bounded linear on R(T).
" ByH.B. Theorem » can be extended by y" e Y".
v (Tx) = A(Tx) (= A=y onR(T)).
=x"(x).
Ty =X(%) vxeX.
Hence x" =Ty and x" € R(T").
R(T")=[N(T)]*, weak” closure of R(T").
So, R(T") is weak” closed.
(b)=(c)
It is obvious as weak” topology is coarser then the norm topology on X".
(©)= (@) '
Let R(T") be norm closed in X"
To show R(T) < R(T)
Then Z = R(T) is a Banach space.
Consider Z € B(X, Z) such that
Sx=Tx gre X
So, R(S) =R(T).
Since R(S) =Z, R(S) is dense in Z.
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By theorem 4.12 we know that T : Y™ = X"is 1 - 1 & R(T) =Y.
So0,S": Z" = X is one-one.
Ifz" e Z", by Hahn-Banach Theorem z° can be extended by y" € Y.
We can show that T'y" = §"2".

Forx e X,
(Ty)x=y(T)=y(Sx) (= Sx=Tx)
=7 (Sx)
=(58Z")x)

Since R(T") = R(S") is norm closed by (c), R(S") is complete.

By the Open Mapping Theoremto 8" : Z" — R(S") 3 ¢ >0 such that
cllz' ||| S2N) | foreveryz' e Z'.

Thenby lemma 4.13(b) :

"Suppose U and V are the open unit balls in the Banach spaces X and Y, respectively. Suppose T €

LB{X, Y)andc>0,ifc| y" || <|| Ty || for everyy* € Y" then T(U) o cV."

We get,
§(U) o ¢V, where U and V are unit balls n X and Z.

So, S : X — Z is an open mapping and Z = 5(X).

Hence, Z=R(S)=R{) and Ef'ﬁ =Z.

Consequently, R(T) = R(T) and R(T) is closed.

Compact Operators :
Definition :
Suppose X and Y are two Banach spaces and U is the open unit ball in X. A linear map T : X U'Y is said

to be compact if T(U) is compact inY.
In the study of compact operator we need the followings.

TheoremA :
If X is a metric space then the following are equivalent
(1) X 15 compact.
(2) every sequence in X has a convergent subsequence.
(3) X is complete and totally bounded.
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Theorem B :
Let X and Y be normed linear spaces and F : X — Y be a linear map.
(a) F is compact iff for every bounded sequence {x } in X, {F(x )} hasa convergent subsequence in Y.
(b) If F is compact then F(U) is totally bounded.
The converse holds if Y is a Banach-space.
Note 1 :
A compact operator F : X — Y is bounded.
F is compact = F(U)istotallybounded  [Theorem B(b)]
= F(U) is bounded.
=> F is continuous (Boundedness ofa linear map in a
unit ball implies map is continuous) *
=> F is bounded.
Note 2 :
A continuous operator may not be compact.
Consider I : X — X which is bounded linear.
Take {e,e, e, ..} c =X
where e = {0,0, ..., 0, pr e O
Hence || e ||=1 wnand {e } is bounded.
But {e | = {I(e )} has no convergent subsequence.
Since || g, - e = 2,00 Suhﬁéquence of {e_} is cauchy and hence not convergent. Hence I is nota

compact operator.

Theorem :
Let X and Y be Banach spaces.
(a) If T € B(X,Y) and dimR(T) < oo then T is compact.
(b) If T € B(X,Y), T is compact and R(T) is closed and then dimR(T) < cc.
(¢) The set of compact operators form a closed subspace of B(X, Y) in its norm topology.
(d) If T € B(X), T is compact and A # 0, then dim N(T - AI) < 0.
(€) IfdimX =0, T & B(X) and T is compact then
0eo(T) [SpectrumofT,o(T)= {A € ¢ |T - Al is not invertible} ]
() IfS e B(X), T € B(X) and T is compact so are ST and TS.
Proof(a) :
Let U be unit ballin X.
" Toshow T(U) is compact.
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Since T(U) = R(T) and R(T) is closed as R(T) is finite diminished.

We have T(U) = R(T).

Again T is bounded => T(U) is bounded = T( U ) is bounded.

So, T(U) is closed and bounded subset of £.d. space R(T). S T(U) is compact and hence T is

compact.
Proof(b) :

We have (Theorem 1.22) every locally compact topological vector space is finite dimensional

The closed subspace R(T) is a Banach space.

Since T : X — R(T) is lincar bounded onto map from X onto R(T} by the open mapping theorem T(U)
is an open neighbourhood of 0 m R(T) and T(U) iscompact as T is compact. So R(T) is a locally compact
space and hence it is finite dimensional.

Proof (c) : ;
Let £ be the set of all compact operators from X to Y and S, T & Z. To show aS+ BT is compact.
Let {x_} be a bounded sequence in X. To show 3 a convergent subsequence of {(aS+ fTH}x )}

By the compactness of T, {T(x )} has a convergent subsequence { } By compactness of §,
{ S, i ]' has a convergent sequence { ’S-,u,'L } . Subsequence ofa mnw:rgent sequence is convergent.

Hence {(aS +BT}[xnm ) } 18 convergent subsequence.

Thus oS + BT < Z and £ is a subspace.
Toshow ¥ = Z.
LetT € §.Fore>0,38 & I such that

T-S|<=
IT-Sk<5- |
If U be open unit ball in X, thus S(U) s totally bounded. Hence 3 finite pomts X, X,, ..., X, nU such that S(U)

: £
is covered by balls of radius 3 centered at Sx,, Sx., ..., 5x

£ E
||S—T[|ﬂ§=>||Sx~Tx|!_~i§ v x e L.

x € U => 3 x (1 <k <n) such that || SK'SHH*‘%

| Tx - Tx )| <N Tx - Sx ||+ ) Sx- Sx,JI + [ Sx,- T |

| o
i | m
LIFS
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So,xelU=Txe S;{Txk].

Hence T(L) ¢ Q{ S (Tx).

So, {Tx, Tx,, ..., Tx_} is an e-net for T(U) and T(U) is totally bounded. So | Tek.
Thus ¥ c Zand £ is closed in B(X, Y).
Proof (d) :
We put Y = N(T - Al). ;
ThenT|Y : Y — Y is linear, bounded and.unm since we shall see that R(T|Y)=N(T - AI).
YeR(T|Y)=y=Tx : _
where x € Y =N(T - AI) and hence Tx = Ax. r -
(T-Ay=Ty- Ay e

=TOxX)-dy (~y=Tx=2x) ' o o
=ly-dy=0.

Hence y € N(T - Al) and R (T | Y) < N(T - AI).
Also N(T - AI) c R(T | Y). '
Hence R(T | Y) = N(T - AD).
T|Y € B(Y), T|Y is compact and R{T | ¥)=N(T - A1) is closed.
Hence by (b) dimR(T | Y) <0 ie., dimN(T - AI) <o,
Proof(e):

Suppose 0 ¢ o(T)
= T is mvertible

rir-ad

= Tis onto
=R(T)=X
Also by (b) dim R(T) dimX < oo
which is a contradiction.
S0,0 e o(T).
Proof (f) :
Let {x } be abounded sequence in X.
ISG) IS HIx, [ <]IS k<o
So {S(x )} is abounded sequence in X.
By compactness of T, {T{( Sx_)} has a convergent subsequence. TS is compact.

{Tx_} has a convergent subsequence { Tx m} :
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Then Tx, — X, =8 [Txnl ] ——8x, = {ST](x“I} — 5x,.
So, (ST)(x ) has a convergent subsequence. Hence ST is compact.

Theorem :
Suppose X and Y are Banach spaces and T € B(X,Y). ThenT is compact iff T" is compact.
Proof :
Suppose T is compact. To show T": Y — X is compact.
Let {y "} be a sequence in unit ballofY".
Let U be unit ball in X and put Z = T(U) =Y.
Consider A= {y, | Z} = B(Z, K).
We can show that A is relatively compact.
T is compact = T(U) is compact.

= T(U) is bounded.
=|lyl[sM<w vyez=T(U).
Then for such y € Z= T(U)
ly WM<y, Hlyl<M<e (v 'y, €unitball)
{y."} is uniformaly bounded on Z.
Fory,Y, € Z,
PACARSACAIRI DA VRS AL
<Ny, Iy, -y ll<iy, - Y.l
This shows that {y " | Z} is eqicontinuous.

By Ascoli's Theorem 3 a subsequence {}f s } of {y, '} such that yn, |Z converges in B(Z, K).

We can show that {T"y, ~ } isa convergent subsequence of {Ty,'}.

Fore >0,

| Yo, - Yo, 1SN Y0 =¥, Y )

‘1% M=t wjkzn

(~+ yn'|Zisequi-continuous, v y€Z)
IfxeUthenT e T(U)c T(U) =<

Yo, (TX) =Y, (Tx)|<e foreveryx € U.
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o I(Thyn.']{")—(T')‘n,')(?‘i}| <€ forx e U.
Taking supremum over all x € U.

|T ¥s, =T'% ||-::z-:

{ Ty, ' } is a cauchy seq in the Banach space X" and hence it is convergent. Thus {T"y "} has a convergent
subsequence. So T" is compact.
Conversely suppose T" : Y — X' is compact.

To show T : X — Y is compact. P i ‘4\\
Consider ¢:X X" e e
and Y: Y=Y ¥ ~ ™
We observe that :

¥T=T"¢ Mt T
e, W(TX=T"0(). ,:fd{

Sme (W(Tx))y" =y (Tx)=(Ty)x)
=[&(x)}(T"y") (definition of ¢ and taking T"y" =x" € X')
=[T"$(x)1(y").
WT =T"§.
Also we observe that
$(U) < U™ where U™ is unit ball in X™

Foru e U, || (u) || = SUP1¢. (X))

ix |=s1

- sup|x’ (u)

x =1

< sup||x’|| fjul]

1x"is1
=< 1.
Hence ¢(u) g U™ and $(U) c U™,
(FTHU) =[T"$)(U)
=T H(V)
cT"U™
T iscompact =T : X" = Y" is compact
= T"(U"") is totally bounded.
= [W(T)}(U) is totally bounded.
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= T(U)istotallybounded (" ‘¥ isisometric isomorphism)
So, T is compact. :

Complement of subspace :
Definition :
Suppose M is a closed subspace ofa topological space X. If 3 aclosed subspace N of X such that
X=M+Nand M~ N = {0}.
Then M is said to be complement mn X.

4.21. Lemma :
Let M be a closed linear subspace ofa tvs X.
(a) If X is locally convex and dim M < =0, then M is complemented in X.

X -
{b) If dm [ﬁ ] (i.e., codomain of M) 1s finite then M is complemented.

Proof (a):
We supply the proof for nls. Let {e,e,, ..., } bea basis for M.
Forx e M, x=a,(x)e, +a,(x)e, +... + a (x)e,.
a, : M — Cis continuous linear.

Forx, y € M and scalars aand b,

ax+ by= 1o, (ax + bye,

Alko ax+by= aﬁui (x)e, + biﬂl(}"}ei
=l

= (aa, (x) + b, (¥))e,
=l
By the uniqueness of representation of ax + by, we have
o (ax + by) = aq, (x) + b (y).
In M any two norms are equivalent.
In(X, ||. ||} define another norm, || X [l = ;Iultx}i
Since || . |jand ||. ||, are equivalent.

Ixl, <M, x| wxeM

= Fla, (X)] <M] x|

iml
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| o, () | < M| x|].

o, is @ bounded linear functional on M.
ByH.B. Theorem 3x" € X" suchthat

X (x)=a,(x) vxeMwith|x'|[=|a/]
Take N = (Vker(x,"), whichiis a closed subspace of X.

Weclaim X =M @& N.

Forx e X,

B ' I," n .,
x:(zxi (x)e, ;+|l\x—2x.. {x)ei)
A =l
where 3x,"(x)e;, €M.
and xi‘[x—ijlxk'(x}ekJ: xl'{x}—t};xk'{x}xi‘(ek}

= xi‘(x} o li:lxh'{x}ai{ek )

=X, (x)-x(x)
=),

X- ixh'(x}et Eﬁkf:t x, =N
k=1 X i=l
X=M+N.
LetxeMnN=xeM

So, x=a,(x)e, +... +a (x)e,
and XeN= :[jker(xi')
=2xX)=ax)=0 yie{l,2,..,n}
So,x=0and M N = {0}.
Hence X =M @& N.

S50 M is complemented.
Proof(b) :
(30
Let dim M <

Let][]: X — %,b}fn[x)=x+w‘[_
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" . X
Let {e,e,, ..., .} be basis for M : .

Letx e Xsuchthat [T(x)=e.
We put N =span{x , X, ... X }
[t can be shown that X =M @& N.

Lemma :
If M is a subspace of a nls X, if M is not dense in X, and if r> 1, then 3 x € X such that || x ]| <r but
Ix-y||=1forally e M. '
Proof ;
Since D =X, 3 x, € Xsuchthatx & }f.
So3k>0suchthat| x -m|>k ymeM.
glb|x, — mi|= k, > k

meM
X !
— glh\ —"—m"= 1
b kfl ]
Xy
So3 % =i" such that d(x, M) =1

o
o> 1= gbllx, ~m|
mhd
= 3m, € Msuchthatr>|[x -m, || =|| x || where x =x, -m,
mih

glb||x, + m, + mi|
mahi

= glbjlx -yl
mehi
1<|ix-y]| vy € M. Hence Proved.
Theorem : o
If X is a Banach space, T & B(X), T is compact and A # 0, then T - AI has closed range.
Proof :

We have dim N(T - LI) <ec (Theorem 4.18)

and N(T - AI) is complement (Theorem 4.21(a)) .

This means 3 a closed subspace M of X such that
X =N(T - AI) @ M.
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Defne S:M—Xby S(x)=Tx-Ax.

S is one-one : S(x,)=S(x,)
= Tx, - Ax, =Tx, - Ax,
= T(x, - x)-Ax,-x)=0
= (T - A)(x, -x) =0
=> X, = X, € N(T - AI).
Also x -x, €M So,x,-x, & N(T-Ail) n M= {0}.

Hence, x, =x, and S is one-one.

R(S)=R(T -Al):
Let yeR(S)=y=5xwherexe M
' =y=(T-Al)(x) (defmitionofS)
=y e R(T-4I).
R(S) = R(T-Al).
Conversely let”
y e R(T-Al)
= y=(T-AD(x)
Forx e X,
x=n+m (v X=NT-AD)®SM)
where n € N(T - Al) and m & M.
(T - A)(x) =(T - AI)(n) +(T - AI)}(m)
= y=(T - AI)(m)
= y=8Sm
=y e R(S)
Hence R(T - AI) g R(S) and R(S)=R(T -AI). .
Finally to show, R(T - A1) =R(S) is closed.
We use the following result proved is chapter 1.
If (X, d) and (Y, d,) are metric spaces and (X, d,) is complete. IfE is closed m X, f: X = Y 1s
continuous and d (f{x), f{ix")) 2d (x, x"), v x|, x" € E then f{E) is closed.
The equivalent form of which is nls is
Isx||zr|x|| forr=0 ... ™)
Now we prove (*).
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Suppose (*) is not true. Thenforne N3x & M such that || x_|=1 and || Sx || < % I =, 1= i
So, Sx, = 0.
{x } is bounded = 3 a subsequence [x - ] such that

Tx, - x,€X (compactness of T).

Sx,, =0 |

= Tx, —=Ax, =0

= AX, =»x,eM (v Misclosed)
and Sx, = S(l@m lx“.)
=0=S5(0)
e = (*+ Sisone-one)

But ||x:|1‘1| =]y nland X = 1i_l;'I_Elx“k .

So, || X, [ =] A |> 0. This is a contradiction.
So (*) is true. Hence R(S) = R(T - Al) is closed.

Theorem :
Suppose X is a Banach space, T € B(X), T 1s compact, r = 0 and E is the set of eigen values A of T
such that | & | >, then
" (a)foreach: € ER(T - Al # X.
(b) E is finite set.
- Proof:
We can show that if either (a) or (b) fails then 3 closed subspaces M, of X and scalars A, € E such that
(M, cM,cM,...andM #M : .
{2) T(M"} = Mn forn=1.
(G)(T-ADM)cM,  forn>2.
We can complete the proof showing that (1), (2) and (3) contradicts compactness of T.
Suppose (a) fails then 32, € E such that
R(T-A ) =X _
Put S =T -2 Jand M, = N(T < 1, 1) = N(S).
Define M_ = N(S7) whichisa closed subspace.
(1)yLet x € M, => x € N(§)
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= S%=0
= §"*ix=0
=xeN@E")=M
McM, . ’
A, € E=3x #0Tx =AxX
= (T-2,(x)=0
= x, € N(T - A,1) =N(8)
=X €M
R(S) =X, = 2 x, € X such that Sx, =x,
Ingeneral 3x_, € XsuchthatS(x , })=x_.
Thus we have a sequence {x_} such that
% ,,=S"x, =S"%  =..=8x,=x
S i(x , )=8x =(T-AI(x)=0 (= Tx,=Ax)
X, eNE")=M

m+l

Butx &M since S(x , )=x =0.
M=M_ ie. McM .
(2)TM)cM fornz1

LetTxe TM)=xeM = N(5%)

= S%x)=0.

SY(Tx)=T(S*x) [+ TS=T(T-A)])
=T*-AT
=T(0) ST=(T-A T
=0 =T2-AT
. ST=TS]

Tx e NS =M, _
TxeTM)=TxeM, .

TM)c M.
G) (T-ADM)cM,, n>2
y e (T-A,D(M,)
=y=(T-A)x, xeM
=y =35X
Sely=8"(Sx)=8%x=0 (= xeM,=N(S").
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So, yeM, |
and (T-ADM, cM, ..
Suppose (b} is not satisfied. then E contains a seq(A.) of distifict eigen values of T.
Let M_=span{e , €,, ..., €.} where Te, =X ¢,
Thus M_being finite dimensional is closed.
(1) Ay Ay oy A, are distinct > M, | T M,
(2)TM )M,
Suppose Tx e T(M)
: =xeM
>x=qe +aet+..tae
= Tx=aTe + oTe,+.. +aTe € M,

T(M) M,
@) (T-LDM,cM, .
Let (T-ADxe(T-ADM,

=xeM

=x=ae¢ tae +..+ a?en
Now (T -A Dx=Tx-Ax

=T(ae, +..toe)-A(oe +.. foe)
=a,(A, -A)e +..talr, - A €M |

(T-ADM, cM, |
Thus if (a) or (b) fails then (1), (2) and (3) hold.

M, =M, cM,,

M,, *M,
So M, isnotdensein M.
B:.riermnawLHMf:X,ﬁiK,r?l,
Then3x € X suchthat|| x| <rand || x-y[|>1 vyeM.
Forr=2>13y €M such that
Hyn“qc'zandﬁyn-xnzl vxeM . ' :
If2 <m<n, define
z=Ty_ -(T-ADy,
y.eM M, (by(2)
=Y. €M,
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=Ty € Mﬂ_l {. T(Mn.n]CMn-n}
Y. €M =(T-21y e M (by(3)
z=Ty,-(T-A Dy eM’
Hence || Ty,-Ty,l=Z-2y,]
=1, 11ly,- A, Z 12| A, |
i¥,} is a bounded seq in X but {Ty } has no convergent subsequence. Thus T is not compact. This is
a contradiction.
(a) and (b) must hold. Proved.
L X 2 ] a
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Unit 4
Banach Algebra

4.1 Algebra : An algebra is a linear space whose vectors can be multiplied in such a way that
(i) x(yz) = (xy)z

(i) x(y + z) = xy + xz

(x+yz=xz+yz

(iii) a(xy) =(ox)y=x(ay), v a € K

4.2 Banach algebra :

Let A be an algebra. If A is also a Banach space w.r.t a norm that satisfies the multiplicative inequality
- Ikl STkl il v %y € A ' |

then A is called a Banach algebra.

If 3 a unit element ‘e’ in A s.t.

eXx=3xe =X v € A, then |ie]| = | and A is called unital Banach Algebra.

If xy = yx v X, ¥ A, then A is called commutative Banach algebra.

Examples :

1. The complex plane C is a Banach algebra.

(i) C is an algebra

(ii) C is a normed algebra, where

liz)| = |i|, zeC

(iii) C is complete.

lzz)l = llzll lzll v 2,2, €C

o C is a Banach algebra.

Also, 1 is the unit element (.- [[1|| = 1) of C and C is commutative. Hence C 1 unital and
commutative Banach algebra.

2. Let K be a compact Hausdorff space. C(K) is the collection of all continuous complex valued
functions defined on the set K. ‘

Then C(K) is a Banach algebra w.r.t usual operations.
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Proof : Let f, g € C(K) and « be any scalar.
We define
(i) (f+g) (x) = fix) + g(x), x e K.
(ii) (af) (x) = aflx), x € K.
Then C(K) is a linear space.
The multiplication is defined as
(fg) (x) = fix) g(x), x € K.
Letf, g, he C(K)and x € K

(i) (f(gh)) (x) =f{x)(gh) (x)
= f{x) [g(x) h{x)]
= [f{x) g(x)] h(x)
= [(fg) (x)] h(x)
=((fgh) (x) v x e K
= figh) = (fg)h.

(i) [flg + h)] (x) =f(x) [(g + h)(x)]
= f{x) [g(x) + h(x)]
= f{x) g(x) + f{x) h(x)
= (fz) (x) + (th) (x)
={fg+ﬂ1](x] v x e K.
o flg+h)=1fg+th
similarly, (f+ g)h = fh + gh

(i) [o(f)] (x) = eu(fgh(x)

= affix) gx)]

= [afix)] g(x)

= (af) (x) g(x)

=[(ufg] (x) v x €K

o offg) = (af)g
simularly, a(fg) = fag)
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- alfg) = (af)g = flag)
. C(K) is an algebra.
We have, [lfl| = sup {/fix)|: x € K}
Then C(K) is a Banach space w.r.t the above norm.
Let f, g € C(K).
Now, |Ifgl| = sup {|(fe)(x)| : x € K}
= sup {|fix) g(x) | : x € K}
< sup {ifix) || g(x)l : x € K}
= sup {|fix)| : x € K}
sup {|g(x)} : x € K}
= I Il
= |ifgll < [ifil llgll v £ g e C(K)
- C(K) is a Banach algebra.
Let us consider the mappmng
I:K=Chyl{x)=1 v x e K
Then ||} = 1
.~ C(K) 15 unital Banach algebra.

and also C(K) is commutative Banach algebra.

3. Let X be a Banach space, B(X) be the collection of all bounded linear operations on X. Then $(X)
is a Banach algebra w.r.t the usual operation. .

Proof : We know that B(X) is a Banach space w.r.t the norm ||T|| = sup {{|Tx|| : |ix|| £ 1}
For S, T B(X), we define,
(ST) (x) =S(Tx) , v x e X.
LetT, T, T, e p(X)and x € X.
M [T (T, T)] x) =T,(T,T)x)).
=T, (TAT,(x)))
= (T,T) (T, (x).
=[(TT)T,](x) v x € X.
A e g B i e
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(i) (T, (T, + T))) =T, (T, + T)(x)).
=T, (T,(x) + T,(x))
=T (T,(x)) + T(T,(x))
=(T,T,)(x) +(T,T,) (x)
=TT, +TTHX) v x € X,
5T I+ Ty TT,+ 1T,
" Similarly, (T, + T)T, =TT, + T,T,
(iii) Let o be any scalar. (e K)
((eT)T, (x) =(aT,) (T,(x)
' =aTl (T (x))
= o(T T,)(x)
=(@TT)HE vxeX
s a (T,T) = (aT)T,

Agam,

(T, (T )Nx) = T (T Nx))
=T (aT,(x))
= aT (T,(x))
=ofT, T, )x)

=T T) (x) v xe X
= T, (aT)=a(T,T,)
= Tilal) =T T.) = (6THT..
" B(X) is an algebra.
Let S, T € B(K)

Now,

ISTI| = sup {lIST) : IIx]l < 1, x € X}
= sup {IIS(TGIf = [Ix]| = 1, x & X}
< sup {IIS]| T = fixll = 1, x € X}

IISIH sup {IIT(x))f : Il = 1, x e X}
= ISl IITi|
= |ISTI| < |IS|i |IT}]
.. B(X) is a Banach algebra w.r.t the defined norm.
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Let us considﬂf the identity mappmg
[: X Xstlx)=x,vxeX
Now for all S e B(X), .
SI=1S=S8§

and [|T|| = sup {|/Ix] : |Ix]| = 1}

= sup {fjx| : [Ix}]i = 1}

= 1
. 1 is the unit element in p(X).
Also, ST (x) = S(Tx)

TS(x)=T(Sx) v x e X

In general, B(X) is not commutative.

a B
4. Let s be the collection of all matrices of the form L' u] a, p € C. Then & is a Banach
L :
algebra.
Proof : s is a linear space with ordinary matrix addition and scalar multiplication as below :
Let
A 1:I'I BIW 3
= S

0 o o

@y |31\‘|
B= K=

0 a,) =

a,+a, B, +B,
A+B= € @
0 o, +0,
Let 6 € K,
then, dA o E’Bq
en, 8A = le &
L0 ba,)

If
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llAll = |a] + |B

Now, ;

@ A =l + B 2 0

(i) JAl =0 < o + B =0

ol =0,18=0

a=0,p=0
= A=0
(iii) Let & be a scalar
(50 3B |
" |I8Al = | . an ”
= |8a + |B3|
= 13] |e + 18] IBI
= 6| (|| + |BH
= i8] llAll
{iv) Let
—_Ir’a‘ B] ] s
\0 o)

f

.'1|+U-: ﬁ:"'ﬁ:]l

|
Thea, A + B =|
i

. O o, +0,

o, + a| + B, + B
o] + fo + (B + [B
= (o) + B + (ot + IB,)
= |IA] + (1B
= ||A + B|| < ||| + [B|

. % 15 a normed linear space.

1M
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Let {A} bea carchy sequence in -, where

o P
n_Lﬂ l:t.]

-, For each € > 0, 3 a positive integer n, such that

n

JA —All<e vy mnzn,
Ifoen Ba) (@ PBull
= -

o a, 0 «a ‘I

! [am —-a, ., Bm _ﬁn\II il'

<evmnzn,

= | <gVmnzn,

0 a,o, ) |

=ja_-o]+|B,—B/<ev mnzn,

=la -~a|<e p,-pl<evmn2n,

= {a } and {B } are Carchy sequences in C.

.. C is complete, so these Carchy sequences must converge in C.

Leta — aand B, — pm C.

|. ThenAe g

|
0 o

Then |A, -.n,i|=‘| . . |
R o, = 1]

=lo, - + B, - B

—0asn—=wx

[ﬂu—ﬂ ﬁ;—ﬁ]'l

Therefore {A } — An &

.. % is a Banach space.




From the properties of matrices,we have,
(i) A(BC) = (AB)C
(i) A(B + C) = AB + AC
(A+B)C =AC + BC
(iif) a(AB) = A(aB) = (zA)B, where A, B, C € % and o ‘a’ scalar.
~. 5 is an algebra.
Now, for A, B € &, we get

IAB d_‘l aa, of,+a,p, \|
| ||--,[ ) ]L

o,

low,! lo| + o | IB, + |t B, + IB,I.IB,)
(et,) + 1B,D) (ot + B,

= ||AlLIB|

= |IAB| < ||AJLIB]

.. & is a Banach algebra.

1 0) .
And,letie;ﬁ}'where[=[ﬂ J~'-|§Iif‘—'|l|"‘|0r!=]
|

IU\|
0 1y

I= is the unit element of 7,

In general & is not commutative.

5. Let P__ denote the linear space of all polynomials with complex co-efficients of degree less than
or equal to n.

It :
X(t)=a,+at+ % ol S Y
we define,

| x(t) ”=z |

Then P__, is a normed space.

»+ Demmension of P_ is (n+ 1) i.e., P__ is finite dimensional, so P_ is complete.
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For,
x(t) =a, +at+at’+.  +at

W) = b, + bt + bt + .+ bt

(xy) (1) :Z a,t*, where @ = Z a b,
k=0 -

Then P__ is a Banach algebra.

6. Let L' (R) be the space of Lebesgue integrable complex valued functions on R.
Addition is pointwise addition
(900 = fix) + g(x)
Multiplication by scalar
(AfH(x) = Afix)
Norm,

Norm, [f| = [ |f(t)|dt

R

Convolution,

(f*g)(s) = _[ f(t) g(S—t)dt,seR
R

Then L' (R) is a Banach algebra. This is called Group algebra of R.

7. Let G be a group. Let I'(G) denote the set of mappings ‘f” of G into C s.t

> [fs)| <o

Sal

(F*g)s)=" f(1)g(t's),seG

1=

ifl=2 [fes)

=0
Then /'(G) is a Banach algebra, which is called discrete group algebra of G.

8. Let G be a locally compact group and p be left invariant Haar measure on G Let L'(G) be the
corresponding Banach space of integrable functions.
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Define,

' (f *g)(s) = [ £(t) g(t™'s) du(t),s € G.
G

Then L'(G) is a Group algebra of G.

Theorem Multiplication is jointly continuous in any Banach algebra. In particular, multiplication is left
continuous and right continuous. :
Proof : Let s be a Banach algebra.
Let the sequences {x } and {y } converges to x and y respectively in &
We have to show that x y_— Xy.
Since, X, — X,s0 [|x —x|| > 0asn —
since, y = ¥, 80 |ly,—yl =+ 0asn— =
Now,
Ixy, - xyll = lixy, — %y + Xy — xyl|
= |Ix, (¥, — ¥) + (&, — x)vll
< kv, = ¥l + [i(x, — x)¥l
< [ Iy, — il ix, - xI} iyl
—0asn—
Hence, X y, — x¥
. Multiplication is jointly continuous.
Next let x be any fixed point in %, and {y } is a sequence in g sty — yin .
Then [fxy, - x¥i| = x(y, <Y :
x| lly, -yl —+0asn—
= Xy, = Xy
= Multiplication is right continuous.

Again, for any sequence X, — X in g and any fixed pomt y & %, we get
Iy — 2yl = lI(x, — x)yll

<lx —x| Iyl »0asn—>x

= x y — Xy = Multiplication is let continuous.
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Exercise )

Let A be a Banach algebra without unity.

Let A consists of all ordered pairs (x, o), where x e A, a e C.
~ We define

(x, o)+ (yp)=(x+yath)

Mx, ) = (Ax, Aa), A € K.

(%, a)(y, B) = (xy + ay + Px, ap)

Then A is an algebra w.r.t these operations.

The norm on A, is defined by,

(%, il = [ix]l + la]

Then A “is a normed space

and ||(x, ) (v, P} < [I(x, ) |1l (. B

Let {x, o }} be a Cauchy sequence in A .

Then {x } is a Cauchy sequence in A

and {a_} is a Cauchy sequence in C.

.- Aand C are completeso 3x e A, a e C

5.t

limx, =x,limx_=a

n-»E i =
and lim (x,,a,)=(x,a)e A,
n—%x

- A is complete

Let(x, @) e A,

Let,

e=(0, 1) € A, 0 is the zero element of A.

Then(x, @) (0, 1} =(x0+al+ l.x, a.l)
o= o)

and (D, 1) (x, a) = (x, a)

. €15 the unit element n A .

We define,
g:A—-A st
g(x) = (x, 0)
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Then [|lg(x)I| = [l(x, O] = [}x|
g preserves the algebric operations.
g is an isometry.

~. Ais isometrically isomorphic to some subspace of A,.

Theorem : Let A be a Banach space as well as complex algebra with unit element e (= 0), in which
multiplication is left continuous and right continuous. Then there is a norm on A, which induces the same
topology as the given one and makes A into a Banach algebra.

Proof : Clearly, A= {0}, ase= 0

For each X € A, we define a left multiplication operator.
M‘fﬁ-—rﬁs.tMt(z}=xz,z e A

Let A ={M :x € A}

Let <z > be a sequence mA stz — Z

Since, the multiplication is right continuous in A, so
Xz —>XZ yX € A

=>M(z)—> M(z), yx € A

= M_is continuous X € A

=M is bounded wx € A

ie,M € P(A) yxe A

A S BA). s

We define

$:A—= j stdx)=M,xe A

Now,

M @) =(x+yz=xz+yz =M)+M@)
=M, + M)(2)
v zZ €A

=M, =M +M
= ¢(x + y) = ®(x) + d(y)
And,
M (@) =(xy)z
=x (yz)
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=M, (M,(2))

= {M‘M)_](z} W Z e A_
=M =MM
= (xy) = ¢(x) ()

Let ¢(x) = ¢(y)
=M = MF

= M (€) = M (e)
= X& = ye

= X=Y

. § is one-one.
Clearly, ¢ 15 onto.

S ¢ :A— 4 s an isomorphism.

Now,

¢! A > Ast
¢ (M) = x

MNow,

lixll = [lxefl = |IM, ()]

< [IM,]L-fell
=[IM,]|
= [l (Ml = M|
= [l¢7]l = 1
= ¢ ' is bounded.
= ¢! is continuous.
Again,
IM M| < [[M[|.[[M]|
Ako,
IMIl = JITj| = 1

To show 73 is a Banach algebra, we have to show that it is coniplete, i.e., to show that it is a closed
subspace of B(A), relative to the topology given by operator norm.
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Let T € B(A) s.t the sequence < T, > in A converges to T.
+ T e A ={M:xeALsoletT = H-“i for some x, € A.
TN =M () =xy
= (xe)y
=T(e)y, v ¥ € A.....(1)
Now,
IT(y) = Tyl = |IT, = TI| liyli
—>0asi— e
LT =2 T(y)asi— o, v ye A
In particular,
Tie) > T(e)asi—»
-+ Multiplication is left continuous m A, so
T(e)y - T(e)yasi—> o
In (1),

T(y) = T(y)
T (e)y = T(ely

as 1 —» oo

- T(y) = T(ely
= xy, putting T(e) =x
=M(y) v yeaA
=>T=Mxe §
. A contains all its limit points and so it is closed.
. A is complete.
". A is a Banach algebra.
.. By open-mapping theorem,
¢': A — Ais open
S ¢ A= & 15 continuous

- ¢ is bounded
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= 3K > 0 st [$(0] < Kifx|
= M| = K |jxlj
Again, |jx|| < M || < K]|x||

~ |Ix|| and ||M || are equivalent norms i A.

. A is isomorphic to the Banach algebra % , (with the norm |[M |} and |[M: || induces the same
topology as [|x||.

4.3 Singular and non-singular elements :

Let A be a Banach algebra with unit element e. An element r & A is called left (right) regular, if 3
s e Asuchthatsr=c¢e (rs=g)

An element which is both and right regular is called regular or invertible, or non-singular element.
ie.3seAstrs=sr=e '
Then s = r' and
ml'=r'r=e¢
. s =1 is called inverse of .

Not regular < smgular.

Note :
No r € A has more than one inverse.
If possible, let r-€ A has more than one inverse, say s and s
Then, rs=sr=e
s, =sr=e
Now
s =se=5(rs) = (sr)s, =es, = s,
=>s5=5

.. Nor € A has more than ohe inverse.

4.4 Complex homomorphism :

Let A be a complex algebra and ¢ is a linear functional on A which is not identically 0. If §(xy) =
$(x) d(v), v X, ¥ € A, then ¢ is called a complex homomorphism.
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Proposition :
If ¢ is a complex homomorphism on a complex algebra A with unit e, then ¢(e) = 1 and ¢(x) = 0,
for every invertible x € A.

Proof : Since ¢ is not identically zero, so for some y € A, ¢(y) # 0.

Now, vy = ye
= §(y) = d(ye) = d(y)d(e)
= dle) =1

[f x is invertible, then

wl=xx=¢e

= §(xx") = d(e)
= $() (x) = d(e) = 1
= §(x) # 0

Theorem : Let A be a Banach algebra, x € A, ||x]| < 1. Then (a) e — x is invertible.
Proof : Lets =e+x+x*+..+x°

S|l = i < 1

= < s_> forms a Cauchy sequence in A.

.- Ais complete, so 3s € Asts —»sasn— x

cxll<l,sox*—>0asn— %

Now,

s (e —x) =fe+x+x+..+x)(e-x)
={e—~x"")
g~ %) 8;

-+ Multiplication in A is cuntinuﬁus, S0 Aasn —» o0,
s, (¢ — x) = s(e - x)
(e—-x)s, — (e—x)s

Ako, e-¥YToe+~0=ecasn—x
Lse—xX)=e=(e-X)s
S, & — X is invertible.

Agam, (e-x)'=s

=lims,

i
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=l

= lim [c+ix’] _
=g+ ix“
=

2

® fe-07-e-x |53

Proof : |[(e —x)'—e~-x|| =|s—e—-x||

T
e+z X -e-Xx

=l I

x
<2 Il
=1

l

i
ﬁZ 5

o

1-[x]

2

:>i|[e -X)" —¢- x||5 T

1=

(€) [#(x)| < 1, for any complex homomorphism ¢ on A.
Proof :
Leth e Cst|h] 21
~ Then [[A"x]| = A7 [Ix]]
<l |xl<1
. By(a), e — A~'x is mvertible.
Then e =A%) =0
= dle) - (L'x) =2 0
= 1-A"'¢(x)=0
= A ) = |
= ¢(x) # A
So, [$(x)| # [A] = 1.
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= |#(x)| < 1, for every complex homomorphism ¢ on A.

Proposition :
Let A be a unital Banach algebra and G = G{A), be the set of all invertible elements of A. Then G
is a group under multiplication.

Proof :
Clearly, G2 ¢,ase e G
[etx,ye G . xx'=x'x=e
YW =yly=e
>y'x'eA
Now, (xy) (y'x™") = x(yy")x"!
= xex’
= xx!
- e
Similarly (y'x7") (xy) =e
. Xy is invertible and (xy)™' = y'x!
Xy e G
Letx,v,z2e G
Then x(yz) = (xy)z
Agamn, xe = ex =X
=> e 15 the identity element of G
Letxe G
Lxtl=x'x=e
= x' is invertible and x' € G

. G is a group under multiplication.

Theorem : Let A be a Banach algebra x & G(A), h € A,

I < % [ Then x + h & G(A) and

li(x + B)™ = + x'hx| < 2 || xP [ihlP?
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Proof : Given that ||h]i < % [Ix=*|!

=[x . Il <

b [

Then

) < b < & < 1

2
and {~x'h|| = ||x'h|| < 1
- e ={—x'h), ie. e + x'h is invertible.
Now,xe G
e+xhe G
.+ Gis a group, x(e +x'h) e G

=x+xxhe G

=x+heG

Agam,

(e + x'h)' =e+) (-D"(x'h)"

=e-x"h+i (=D "(x"'h)" .
= (e+x'h)y' —e + xJHk;-

=3 Dy
=~ [l + x*hy! —-_e +xh ||

| =
=13 0y

| n=2
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Now, ;
(x +h)y"' - x!'+ x'hx! = [x(e + x'h)]"! - x' + x"'hx"*
= (e + x'h)"? x' - x' + x"hx!
=[(e + x'h)"' - e + x'h]x"'
S Hx + )y~ x # xc ||
< fite + By = & + xh [}
< 2 |lx"'hi[* . Jx]
£ 2 [P ihif

Thm : G(A) is an open subset of A
Proof : Let X, € G(A).

We consider the open sphere

L

with centre at x, and radius ||x,3"i|

) l

If,xeS [x““xﬂ;nu then [jx — x|} < ":,'TI

Lety=x"xandz=e-y

Sl =1zl =lly —ell = llx;"x - el
= %% - %5'%,)
= [Ix,™ (x — x|l

< Jixg ™l Hix — x|

-t
<,

=zl <1
= e — 2 is invertible,
. e — (e —y) is invertible.
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=y is invertible.

sy e G(A).
Thus x, € G(A), y € G(A) = xy € G(A)
Ry = XA K] =X
. x € G(A).

Xo» = | = G(A)
x|

= G(A) is an open set.

COROLLARY :

Let S be the set of all non-invertible elements of A. Thén S is a closed subset of A.
Proof : We know that G(A) is an open subset of A.

Now S = A — G(A) = [G(A)]°

. G(A) is open subset of A

= [G(A)]° is closed subset of A.

= S is a closed subset of A.

Theorem : The mapping x — x” of G(A) into G(A) is continuous and is therefore a homeomorphism
of G(A) onto _itsu:lf,
Proof : Let x, & G(A). Let x be any other element of G(A) such that

Ix—x,| < %
2|
Solkx =l =ik x - x|
< g7l I — xli
< % < |

= e - (e — x,'x) is mvertible.
=5 X, X is invertible.

Now,

G =X = et 2, (e - %0 (D)
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Let,
T: GIA) = G{A) s.t T(x) = x!
 |ITx — T}LB”: lix? — x !

o Il

%, — )|
ﬂf%—ﬂm%’

1M

] =i
[ *e :|

- X, IK}:.

|n=| I

< ||”n"ifi Jee-x"f
n=|
I3l - 7

¥ h-

=f?[-fe-xe "

l"ex

il- 1 —!|=:—x¢ 11;" =1 -—%-‘

”\‘:,%{‘2

1 x|
—|c—xn x|

-::2|x

= 2|l (% — %)
S 2%, Hlx = x,

= T is continuous at x,

=» T is continuouson G(A)

Again T is one-one

T is onto.

Next, T(Tx)=T(x") = (x"y'=x

= T'x=1Ix. v x € G(A)

=T =1

=T=T"

". T 18 a homeomorphism.
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4.5 Spectrum :

Let A be a Banach algebra. If x € A, the spectrum o(x) of x is the set of all complex numbers A
such that A.e — x is not invertible.

- a(x) = {k € C: (he — x) is not invertible}
Complement of o(x) is called the resolvent set of x.
Q=C - ax)

= [k e C: (he - x)"' exists}

Spectral radius of x :
p(x) = sup{h| : & € o(x)}
- If A e €, then (Ae — x)' exists.
We define a vector valued function x () on Q by x(A) = (x — Ae)"
This is the resolvent function associated with x.
Let X, A, e Q
x(X,) = (x = he)"
xX(h,) = (x - Ae)"
)T () = (x = he) XO0)
=[(x-Ae)+(Ae~ Ae)] x(2,)
= [(x(A))" +R, = & )e] x(A,)
=e+ (A, - AJx ()
= x(A,) = x(h) + (A, — 2 )x x(X)) x(&,)
This is the resolvent equation.
Theorem : The resolvent function x(3.) is analytic at every point of .
Proof : Let A, A, € Qand A= A
Then by resolvent equation, |
X(1) = X(h) + (h = &) X(h) X(1)
= x(A) — x(A) = (A = Ax (L) x(R)

x(A) = x(Ay)

= A—y = x{A,) x(X) ...(1)
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We have,
xA) = (x — he)!
The mapping x — x' of G(A) onto G(A) is continuous.

J'.mll x(A) = lim (x —Ae)

A=kl
=(x — &)
=x (&)

Taking . — &, in (1), we get

. xX(A)-x(A;) .. .
e RIS

= x(k) lim x(3)

=x(h,), x()
= x( ) .
~o X () exists.

=> %(}) is analytic at every point of (2.

" Theorem : p(x) < ||x]|

Proof : let A = C s.t [A] = ||x]|
S IR = A < 1

- e = A7 x is invertible.

= — Me - A'x) = x — Ae is mvertible.
Liel

But p(x) = sup {|A| : & € o(x)}
For [A| > |lx||, A € Q

Le. A g a(x)

If A & o(x), then [A] < |||
Sosup {jA| - A ea(x)} = x|

= p(x) < [x|

Theorem : Let x € A. Then the spectrum o(x) is compact.
Proof : We have, if 4 € o(x), then 4] < ||x||
.. o(x) 18 bounded.
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To prove the theorem, we have to show that o(x) is closed, ie., to show that its complement C —
o(x) = L) is open. ;

We define g : C > Aby g(h) =x - Ae

Now, [lg(A,) = g(A) || =Ix—Ae) - (x - el
| —Ae+Agel
IChy = e | = 2y = A
.. g is continuous for every value A € C.
Leti, e Q=(C~ a(x))
S0 X= A e is invertible.
o (x = Ae) € G(A)
Since, G(A) is open, 50 3 € > 0 st

S(x - Le, e)G(A)

.. S(x — &g, ) contains only invertible elements.

-+ g is continuous at A, is 3 & > 0 such that

llg(h) — g(A )l < € whenever [ — & | <&
ie. [I(x - Ae) — (x — &) || <& whenever [. - A | < 8.
o g(A) = x— ke e S(x — Ag, &), for all values A such that [A-2,) <8

© o he L) whenever A —A | <8
iehe S (h, 9.

o S(A,, 8) e 2 )
- L) is an open set.
Le. C — 0 = o(x) is closed set

Hence o(x) is compact.

Theorem : For any x € A, o(x) is non-empty.
Proof : Let fbe a continuous linear functional defined on A.
For A € £, let
fir) = f(x - Ae)]
= flx(A)]
where, x(}) is the resolvent function associated with x.
since x = x' of G(A) onto (A) is continuous, so x(1) is continuous. Also f'is continuous.

= f{A) is a continuous function of A on the resolvent set of x.
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From the resolvent equation, we get forany A, u = Q, (A # W),

x(A) = x(u)

= X(A) x(p)
since fis linear,
F(x(A) —f(x(w)) _ fx(A)—x(n))
A=L A—u
_ o x0-xw
YoA-p
= f{x(L) x(p)).
Taking limit as A — p, we get

fim =00
horp A—H

= lim £(x(A)) x(1))
= fl{x(u)}7]
sofis ar[alytia.: on Q.
Next, L) = [fix(A))]
< [If]- x|
= |ifllli(x — Ae)'|

o1 b (Lx-e
i A

AT (A
"|!f||'-:,‘_| ![E li |‘....{A}

For all large |/,

Ix

l5]= L <1

1z

pigl [—{:—31: x} 15 invertible and
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il

—»0as |}.| —5 00
1— i
Al

-
::-[e-lx] ‘—eas|h >
Yl ;

Now from (A),
[fix)] = 0 as |A| = o ......(B)
If, s(x)=¢,then 2 =C-o(x)=C
~. fis analytic on the entire complex plane,
i.e. fis an entire function.
. By Lioville’s Theorem, fis constant,
L =0y AeC=0
since f is an arbitrary continuous linear functional, so
flx(R)] =0 w e C=0 [y [ € A¥]
=xA) =0y LeC=0Q
= (x—de'=0, v LeC=0
= Jlell = itx — 2e) (x — Ae) ||
= ||(x — Ae) x(L)|
= (0] =0
But, this is a contradiction, as |le|| =1

. o(x) 1s nog-empty Le. o(x) = ¢
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Lemma :
If x € A and n is a positive integer, then
o(x’) = [e(x)]"

= )" : A e ax)}

Proof : Let A be a non-zero complex number and A, A,,...., A_be its distinct n" roots.

Sx—de=(x—-Ae)(x—Ae)..(x~Ae) .1}

Let A e o(x"). Then x" — Xe is not-invertible. So, at least one of the factors on the RHS of (1)
is say X — A.¢e 15 not mvertible.

. A € o(x)

= A" e [o(x)]"

= A & [o(x)]"

- 6(x%) ¢ [o(x)]"

Let A = [a(x)]"

Soh= A, & € ofx)

. X —Ae is not nvertible

DX =g = (x = Ag) ..(x = Ag) .... (X - A e) is not-invertible.

Sohe o(x™).

= [e(x)]" < ofx?).

sool) = [o(x)]" :

= {A" : A e a(x)}.

Theorem : The Spectr;tl radius p(x) of x safisfies

[
1. o

1/
" =inf [x

mzl

p(x) = lim

B—sx

x“]

Proof : For any +ve integer n,
p(x") = sup {|A| : & € a(x")}
sup {{A| : & e [o(x)]"}
sup {lu*: u € o(x)}
[sup {jul : p € o(x)}]°
= [p()1"
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Now, p(x") < [[x7
= [p()]"= [Ix7|

= p(x) = |Ix"| *"'r;, for any positive number o ....(1)
. L/
Lopy s x5 (2)

= p(x) < im inf [f)"0....(A)
Now, we show that if a is any real number such that p(x) < a, then for all sufficiently large values
ofn, .
x| < a
If [A] > |ix]|, then & & Q..
sox(A) = (x — de)!

=2 [esS f"} . 3)

n=l

Let f be any continuous linear functional on A.

5(3) = fix(a) == 47 Z; %"J----H)

for all A such that {&| > ||x||

We have, p(x) < |Ix]

for [A| = ||x]l, » € ©2 :

Le. for [&| = ||x]| = p(x), & € (2 : *
ie. for |\ > p(x), A € Q

f is analytic on €.

- f{x)()) is analytic in the region |A| > p(x)
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. The expansion (4) is valid for all A such that || > p(x).
Let a be a real number such that
px)<a<a, (a, a>0)
Since o > p(x), so (4) is valid for A=«
.. {(4) = The infinite series

=

i '
2 f }x,. J converges and so its terms forms a bounded set of numbers.
N .

n=l

Since this is true for all f € A*, so the sequence is itself bounded.

X"
i

<K .forn=12,......

x|

::»“lrL =K

ik

= [x"| < 'K

(7
<otk

n

=[x

Since o < a, so for all sufficiently large values of n, aK h<a
S el <a ()
= !l{ﬂ sup [[x® :-Ii' <a
Since a is arbitrary with a > p(x)

so lim sup [} < p(x) ..(B)
s {A) and (B) =

—_ 1 e | Ir|. = al In.
p(x) = 1% [ inf |jx7|

Theorem : The following conditions are equivalent.
(i) 1[x¥| = |Ix|F for every x.

(ii) p(x) = ||x]|, for every x.

Proof : (i) = (ii)

Let |jx7| = |[x|]*for every x.
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o = ] = (1R = (e
I = x| = %P = 13HF =) = =

o | = |xI* for any k € N

2 p(9) = lim e

n-—ex

(b

kv \
= |ixl|

2 (i) = (i)

Next (i) = (1)

Let p(x) = |[x|| for every x.

We have

p(x") = [p(x)]*
= [ = [l
For n =2, [} = |Ix|i*

- (i) = (i)

Gelfand-Mazur Theorem :
If A is a Banach algebra with unity in which every non-zero element is mvertible, then A is sometrically
isomorphicto complex field.

Proof : If x € Aand A = A, then at most one of the elements x — A e and x — A¢ is 0.
.. At least one of them is invertible.
‘We know that o{x) is non-empty, so there must exist at least one X s.t x — Ae is not invertible.
SXx—de=0=x=le
Also, there cannot exist two different values of & for which x = Ae.

.. Every x € A can be written as a unique scalar multiple of unity.
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We define f: A — C st
fixy=2,ifx=A4e
Then fis linear ;
f 1s one-one

and ‘t‘ is onto.

Let x = Ae.
SRR =1A = [A] [lell as & = Ae
= ||Aef]
= x|

- Tis an isometry.

. A is isometrically isomorphic to complex field.

Ex. B be a Banach algebra and A be a Banach algebra s.t A B. Then o,(x) < o,(x)
Soln. Let A € oy(x)

=> X — Ae is not invertible in B

= X — Ae.is not invertible in A.

= A € g,(x)

S a(x) 2 o, (x)

" 4.6 Component :

Let W be a topological space. Then a component of W is a maximal connected subset of W.

Lemma : Suppose V and W are open sets in some topological space X, V < W and W contains
no boundary point of V. The V is a union of components of W.

Proof : Let C be a component of W that intersects V.
Let U=X-V. ThenUnV=X-V)nV=4¢
SCAUANACAV)=CA(UnNnY)=Crnid=¢
. W contains no boundary point of V, so
Wn(V-V)=4¢
~C=Cn{UuV)
=CnNnU)u(CnYV)
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-. C is the union of two disjoint open sets C" Uand C n V.
But C is connected. Also C n V # (i

SoCnU=¢

=Cc¥

Lemma : Let A be a Banach algebra. x, € G(A) forn=1,2,3, ..;xisa boundary point of G{A),
andxrl—:»xasn—>m."[hen||x“"g|;->magn_}m_ _

Proof : If possible let |[x '] = o« as n — .
Then 3 M > 0 (< 20) s.t [x || < M for infinitely many n’s
Again,xn—u-xasnﬁm

. For one of these n’s, say n=n,

- Xl < o
o XIT Ny
: R G e
Again, [le - x, x| =[x, " (x, )|
< Ik, I %, = i
g, =
<M. - 1

Loe—(e- x“n"x} 15 mnvertible.
ie. xnn'x e G(A)
Again, X, € G(A) and G(A) is a group.
xﬂu{x% 'x) € G(A)
ie x e G(A)
" G(A) is open, so 3 & > 0 s.t Sg(x) < G(A)
5S¢ () N (A-GA) =
~.'X is not a boundary point of G(A), which is a contradiction.

Skl > oasn oo

Theorem If A is a closed subalgebra of a Banach algebra B and if A contains the unit element of
B, then G(A) 15 a union of components of A ~ G(B).
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Proof : Let x be an element of A s.t x is invertible.

-+ A c B, so x is mvertible in B.

= G(A) < G(B). |

Both G(A) and A n G(B) are open subsets of A,

and G(A) = A N G(B) '

Ley y be a boundary point of G(A). Then y is the limit point of a sequence {x_} n G(A).
Sl —>ccasn— o

Let y € G(B).

.+ The mapping x — x™' of G(B) onto G(B) is continuous, so.x~' = ¥y~
o {llx ~'|l} is bounded, which is impossible.

-y & G(B).

i.e. G(B) contains no boundary point of G(A).

. A G(B) contains no boundary point of G(A).

d(&] is a union of components of A G(B).

4.7 Topological divisors of zero :

Let A be a Banach algebra. An element z € A is called a topological divisor of zero, if there exists
a sequence {Z },Z € A,

lzjl=1,forn=1,2, 3, ... and such that either zz — 0
orzz—0

Let Z denote the set of all topological divisors of zeroin Aand S =A - G(A).

Theorem : Z is a subset of S.
Proof : Let z € Z. Then a sequence {z } m A with |zJ|=1,n=1,2, ... and either
zz. > 0orzz—>0asn— =
If possible, let z € G(A)
Then z ! exists.
Suppose, zz — 0 asn — ®
-~ Multiplication is a continuous operation,
z'(zz) = 7'0

:>z“—>Dasn—}::u
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which is a contradiction to the fact that ||z || = | v n.

.z & G(A)
z€A-G(A)=S
L Zo s

Theorem : The boundary of S is a subset of Z.
Proof : Since S is a closed subset of A, so any boundary point of S is also in S.
- Again, for every boundary point of S, 3 a sequence of elements from G(A) that converges to the
boundary point.
~ Let x be any boundary point of S. Then x € S and 3 a sequence of elements from G(A), say {s_},
such that—

$.—»Xasn-—>w,

_s}"x —- 838 (X =8) ..(l)

If {||s,”'l is a bounded sequence, then since s, — x, from (1), we get, for all large values of n,
lIs."'x = ¢]| < 1 '

~g—(e—-8x) =8 'x € G(A)

Also, s € G(A) for all n.
- s5,(5.7'x) € G(A)

i.e. x € G(A), which contradicts the fact that x = S.

=~ A{lls,”'ll} is not bounded. So, we can assume that lis,'|l = > as n — 0.
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But ||s, || > 2 asn — w

srEr—30asn—o

-1
.|

4]
Again, s —> Xasn — »

::x—sn—:-ﬂasnﬁco
Also, |xf =1
ol
" xX —»>0asn—>x
“xe 7.

Theorem : If 0 is the only topological divisor of zero in A, then A is isometrically isomorphic to the
complex field. '
Proof : Let x € A. We know that o(x) is non-empty and it is bounded.
So, a(x) has a boundary point.
Let A be a boundary point of o(x).
Then x — Ae is a boundary point of S = A — G(A).
L X—Aeisa mpu.lugical divisor of zero in A.
~. X — ke = 0, by the given condition.
= X = Ae.
There cannot exists two different values of A for which x = Ae.
~. Every ‘X’ can be written as a unique scalar multiple of the unity.
We define f: A — C st
fix) =4, if x = Ae.
Then flax + by) = afix) + bfiy)
- fis linear.
Also fis one-one and onto.
Let x = Ae.
Rl =1 =P fell, & = Ae
= |Ae]
= |Ix|
. fis an sometry.
.. Ais isometrically isomorphic to complex field.
ie. Az C. '
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Theorem If the norm in A satisfies the inequality,
Ilxyl] 2 K [x]l.|ly]| for some positive constant K, then A is isometrically isomorphic to the complex field.

Proof : Let z be a topological divisor of zero in A. Then 3 a asequence {z,} in A with [z || = 1 and
zz »>0asn—>x,orzz—>0asn—» '

=zl 2 K |lzllliz)l = Kliz] ....(1)
Ifzzn—rﬂasn—avm,'th:n{l} =
lZl=0=2z=0
Again, |lz,2]| 2 Kifz|| ..(2)
Ifzz — 0 as n — =, then (2) =
lz|=0=2z=0
. 0 is the only topological divisor of zero in A.

L AsC

Theorem Let x € A and G is an open set in C such that a(x) = G. Then 3 & > 0 such that
o(x + vy) = G, whenever ||y]| <8, y € A.
Proof : If A e C = o(x), then (x — &e) is invertible and x(A) = (x - »e)"' is a continuous function

of A.
L;[x—?ue}" " = 3" [-:}b—x —1:]_]‘

x

A

<]

For all large values of i,
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=

il

&
= - H
f,i\,|

—}ﬂa.s|li—}::c

=
.'.(e-%x] —easiA| >

Thus (1) gives ||(x — Ae)"|| — 0 as || = =
We may assume that 30 <M < =, 5.t

i(x — Ae)!|| < M for all & outside G
o
Take & =
M

Letye A, |yl <8and A ¢ G

K+y-Ahe =(x—-Ae) (x—-2e)' y+ (x - he)
=x-Ae)[(x-Ae)'yt+e]..(2)

Again, [[(x — Ae)yl| < [I(x — Ae)y ||yl

<Ms=M.L =]
M

S e+ (x - Ae)'y is invertible.
. The R.H.S of (2) is invertible.
Le. (x - Ae) [(x — he)' y + e] is invertible.
- The L.H.S of (2) is invertible
fo i by o ivvediia,
Sk eoxty)
LAEG=Aheoxty)
. a(x +y) © G whenever ||yl <8,y € A.
Lemma : Suppose that f is an entire function with f{0) = 1, f(0) =0
and 0 < |f{(z)| < ¢* for all complex number *z’. Then f{z} =]lvyz
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Theorem : If ¢ is a linear functional on A such that ¢(e) = 1 and §(x) # 0 for every invertible x € A,
then

d(xy) = o(x) d(y). X, ¥y € A.

ie.gisa complex homomorphism.

Proof : Let N denote the null space of ¢
iLe. N = ker ¢.

Let x € A and let B = ¢(x)

We consider the element x — fe.

. b(x - Be) = (x) — ¢(Pe)

= $(x) — Po(e)
= $(x) — §(x)
=0

= x—Pe e N.
Let x — Pe=23a, a e N.
= x=a+ e '
. Every element X € A canbe expressed as
x=a+ Pe=a+ p(x)e, where a € M.
Ify € A, then y=b + ¢(y)e, where b € N.
oo Xy = (a + d(x)e) (b + d(y)e)
= ab + ¢(y)a + (x)b + §(x) (y)
- d(xy) = B(ab) + §(¥)-(a) + $(x).6(b) + $(X) ()
= ¢(ab) + &(x) ¢(y) -...(1)
[-- a, b e N]
. The theorem will be proved if ¢(ab) = 0, L.e.
ie. ab € N, whenever ab € N ....(2)
Suppose, we have proved a special case of (2) viz. a* e Nifae N ..(3)
In(1), we assume X =¥
Then a + d(x)e = b + ¢(y)e
i = b + d(x)e.
(1) = ¢(x?) = ¢(a”) + [$(x)]*
= &x}) = [¢(x)])* ... (4), as a* € N
Replace x by x + y in (4), we get
o((x + y) = [o(x + YT
= ((x + y)x +y) = [$x + YF
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= [6(x) + d(Y)I
= o +xy+yx +y)
= [$(x)]* + 28(x) d(y) + [$(¥)]*

= o(x%) + d(xy) + §(yx) + §(y")

= [$(x)]* + 2¢0(x) d(y) + [¢(W)]’
= d(xy + yx) = 2¢(x).¢(y)
Lxy+tyxe N
xeN, ye A . ..(5
We have,
(xy — yx)* + (xy + yx)’
= (xy — yx)(xy = yx) + (xy + yX) (xy + yX)
= (xy)(xy) - xy’x — yx’y + (yx}(yx) + (xy)(xy) + xy’x + yxy + (yx}(yx)
=x(yxy) + (yx y)x +x(yx y) + (yx y)x
= 2[x(yx y) + (yxy)x] ...(6)
Replacing y by yxv in (5), we get
X(yxy) + (yxy)x e Nifx e N
Sxy-wy+xy+yx)yeNifx e N
Agam ifx e Nby (5, xy +ywx e N
Applying (4), (xy + yx)* € N
(xy-yxy e N
5 [fxy — yx)] =0
= [¢p(xy -y} =0
= d(xy —yx) =0
= Xy-—-yxe N
Thusxy-yx e NifxeN,ye A ...(T
Adding (5) and (7), we get
xye Nifx e N, y € A,
- (2) 1s satisfied
.. The theorem is proved, provided we establish (3).
Since by hypothesis, §(x) # 0 for every invertible element x,
So, N contains no invertible element.
[faeN,then |e-a|| 21

[fa e N, then 3 €N, for any complex number % (= 0)

whe—all = fle - 5 I
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> Al
= |¢(re — a)| ....(B)
Now, every element x € A can be expressed as x = ke — a, where a € N, X is a complex number.
L (8) = Iﬂ;-[x}l fixll

= gl <
Now, ¢ 15 linea: and bounded
. ¢ is a continuous linear functional
Let a € N, and without loss of generality we may assume that jjal| = 1.
We define
= 9@") .
t‘{l}=§ Tl heC
Now, < [¢(a")] < [|]./la"]
< Il lal®
S llall* =1
- f{A) 1s analytic at A.
-, fis an analytic function on C.
. fis an entire function.

Y ‘Ha )

n={

<> B

n=0 nr

Agamn, f(0) = ¢(e) = 1
f({]} = ¢(a) = 0, since a € N.
. If we can prove that [f{A)| > 0 for every complex number A, then f{.ﬁ.] =],y €C.
ie. £ (0) =
$(a?) = 0
a’ e N, ifa € N.
Consider the series
b l“' e
T(\) = £a",heC
) Zﬂ o
This series converges in the norm of A.
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. Since ¢ is continuous

el

T (1) =¢[Z %a]

=% A pran
—§ Eﬂa )
=f(3) ...(9)

Agam, form the expression of T(L), we have
TA+p=TA)T(w) ; A, peC

In particular, when p =—4,

TR T(-A)=TO)=e

Similarly, T(-A) T(L) =e

. T(A) is an invertible element in A.

S O(T()) = 0

= f{A) # 0 [by (9)]

S =0

Hence The theorem is proved.

The Theorem is known as G leason, Kahane Zalazko Theorem.
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Unit 5
Spectrum of a a bounded operator

5.1 : Invertible upémtnr :

An operator T & B(x) is a said to be invertible if there exists an operator

Sef(X)stTS=8T=1.

Then such operator S is unique and it is called the inverse of T and is denoted b}* 2 i

ie. S=T"\

An element A € C is caled a spectral value of S e p (X) if the operator

S, =8 — Al is not invertible.

The set of all spectral values of S is called the spectrum of § and is denoted by —(8). '

If . € C — o(8S), then § — Al is invertible.

Let R (S)=S," = (S — Al)"

. R, is called the resolvent operator of S and % is called a regular value of S. The set of all regular’
values of S is denoted by Q (8) or p(S), and is called the resolvent set of S. i

If & & €3 (S), then the equation '

(S = AI) x = y has a unique solution for all y € X.

If A is a spectral value of S, then the inverse of S — Al does not exists.

. §— Al s not 1-1 and onto.

An clement A & C is called an eigen value of S € B(X), if S - Al is not one-one, i.e.

Jifx A X(x=#0)st

(S-AD(x)=0

= Sx = Ax.

The set of all elements x & X which satisfy Sx = Ax is called the eigen space corresponding to the
eigen value A.

Theorem : Ifx, x,, ...X are eigen vectors corresponding to the distinct eigenvalues &, A,..., &

n

of an operator § € B(X), then the set {x, x,, ...} is L.L

Proof : [I'pusmb!e Bt {X., Xy <ies X} be LI
Let x_ be the first element of the set which is a linear combination of all the precedmg elements.
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Letx. =ax +ax +.+a x ..l
Then the set {x.x, ... %} B LI
Operating on (S - A_I) on both sides of (1), we get

m-|
(S =2 Dx)= 2 &(S—A,D(x)
i=l

m-l
= Sx_ =A X, = Zai{lixi ~Ha)

m-=|
= ?"mxrn _}"mxm :Zui{li *lmxxi
1=l

m-1
= Zui{l,i -A,)x, =0
i=l

Bit {x; X, .. x .} 8Ll
LA -A)=0yi=],2 ., ml
= o, =0{- A's are distinct]
vi=1,2, .., m1.
s (1) = x_= 0, which is a contradiction as x_# 0 (- it is an eigenvector).

s AR X e B} B L

=

Lemma : Let X be a Banach algebra. If x, € X, i= 1,2, ... such that 2, {xil < e, then

im]

n

the series Z X 18 convergent in X.

1=l

Proof : Let & > 0 be arbitrary. Then there exists a positive integer N such that

2. IXl<&n>m>N
1

=m+

B TR L At M B e )
S, = Sl = 10k, + %, + o X) = (% + X+ x|
w FX ot R (¢ n>m)

< [l

[+ gl + ot
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i ]
< 3 fyceyasnsy

1=m=f

-, {8} is a Cauchy sequence in X, so it converges to some x € X.

O+

o
je. Hm5, =x::.~]imz X, =X
|'|—Ml:-l=|

.
:}Z X; =X

=1

:. The series Z X, is convergent in X.

Theorem : Let S € B (X) and k € C be st
IIS|l < |k|. Then k € o—(S) and

G- =2 &=

- i)

Also,

.
IS = kD = =[S |

Proof :

Let, T=é5
T =S < 1
= k

-

e <Y

n=i

g h‘“ |" <

Since B(X) is a Banach space, By the previous Lemma,

-

E T Converges to some A € B(X)

n=0
=

> T =a

n=0
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Let A Z T

1-TA, =0-D3T*
n=l}

M?,

o' Bk
n=0

E =i T-..rl.--l

A (I-T)

= (~-DA, ~1-T¥=A 1-T) -

Again,
IT"Y = 0asm = oo (- ||T|| <1)

T™—>0asm—>w

Now, (1) =
i_l_]ﬂ {] T‘}Am - i";r: {l = TTFI*l}
l]l_r.r:lc A(l-T)

m]{[_T}A:I:A[l— }

A-Ty'=A=lim A
_llm“)l_‘T"

111)-\.‘._'"{:‘

=3 T

a=0

(1-1s) -3 (Ls)
=[1-—-8| = <50
-1 £ n
:[i{kl—s}) =y 8

i e

= k(k[-S)" = S
n={ k”_

(1)
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© Now,

=T =i §T“ I

DN e

k|

W O
1_|-11(-§||sa,1 Ik{ -

=[5k < =

o
Ik{ s

¥ __1-_ i
Theorem : IfS e B(X) is mvertible and T & B(X) such that ||T — Slj < ig-l“ , then T is invertible.

: |
Further if ||T -S| “M ,0<n<l,

IT
then |[T-! — §| < [|S”!|P |11—n|||

1
Proof : If |[T —§| < Hﬂ , then

It - ST = IS7'S - §~T|

<87 (- Dl

< I8l s - i

e

<Js ] =1
Replacing k by | and S by [ - S7'T in the previous Theorem, we get
ST is invertible. '
Let
A= (5'T)". Then

AS'T) =1=(SVTA
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AST) =1= (ASH)T =1

(S'TA =1= [ = S(S'T)AS! = [ = T(AS)
. (AS)T =1=T(AS")
= T 15 invertible and T-' = AS !

Agamn,
IT- - IS < I - 8
= |IT'sS - §|
= |IT- 88" - T'TS")
=|IT7 (5§ - T) 8
< | THIS=TILNIS)

: L
< [T Is™ (IS

< n T
= [T = nlIT} < 187

ST = 87 < TS — TS|

s
~ (I-7m)

IS =TIk [IS7]

-

=S (1-m)

Spectral Mapping Theorem :

Let X be a Banach space and S € 3(X) and p(A) = A A+ & A™' + ..+ o, where o _# 0
Then p—p(s) = o~ —(s)), where ' |

p(8) =o 5+ o B+ L@l

Proof : We know that &—(S) # 4.
If n = 0, then p—={—(5)) = o,
= o-(p(s))
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We now assume that n > 0
Let T=pis)and for p € C

Tu = p(s) — pl, and

t,(A)=p) - n
Let t.(3) = p(h) - b = o, (h —¥) (b =¥k = ) (1)
Then,
T=0a8-yDE-yD.(-yD..Q2)
If each y, & o~(S), then each (S —y[) is mvertible.
© S—ylis 1 and onto.
.. By inverse mapping Theorem.

(S -y is bounded.

We know that (ST)' = T-'S!

1
L@Q2TT=0" 6D -y )16 -y b

= p(S) — pl is invertible.
= u & o (p(s)
= u e Q(p(s)
ie., if each g‘J e £ (S), then pu < 0 (p(5))
re, if u & 0 (p(S)), then 3!}. & €1 (3), for some i
Le. if p € —(p(S)), then Y. € (S}, for some j.
L=t ) =py)-p=0

= pu = ply) € ple—(8))
- o~(p(s) € Po(S)) - (A)
Let k € p (c—(S)). Then k = p(pB), for some f € c—S).
. B is a zero of the polynomial

t. () =p(h) - k.

-, We can write,
L) = (- Pg(h),
where g(2.) is the product of the remaining (n — 1) linar factors and a. .
Corresponding to this representation of't,

we can write T, in,the form
T, = p(S) = KL = (S - BDg(S) ...3)
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.. 2(8) commutes with (S — pl)
© T, =gS) (S~ BD) ...(4)
If T, exists, then (3), (4)
=5 —-ph g 1." = T, g(S) (S - BD)
. § = Bl is invertible, which is a contradiction, to the fact that
B e oS
- T, 1s not mvertible
= p(S) - Kl is not invertible.
= K = o (p(S)).
- ple(S)) Hp(S)) ....(B)
From (A) and (B), we get
p(e—(8)) = ~(p(S))

5.2 Ideals :

Let A be an algebra. A non-empty subset I of A is called an ideal of A if
(i) I is a subspace of A.

(iiIfxe A,ye,thenxy € l and yx € L.

If I # A, then I is called proper ideal.

Lemma : If | is a proper ideal and x € [, then x is non-invertible.

Proof : If possible suppose x is invertible
=x'existsandx' € A

Now, x € [ and x' A

xtlel

= e €l

s I=A, ie. [ is not proper ideal, a contradiction.

Hence x £ I is not-invertible.
" Theorem : Let I be a proper ideal of A. Then the closure T is also a proper ideal.

Proof : Let x, y € T. Then 3 sequences {x } and {y } mIstx —x and

y —>yasn—o
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Let e, P be scalars. From the continuity of vector addition.
ax, + By, - ox + By

woax + Py, el so ax + By € |

Similarly, it can be shown that,

ifxe jandy € A, thenxy € | and yx € |

s 1 is an ideal.

-+ 1 is a proper ideal, I contains only nnn—invm:tible elements.
1< A-G(A) '

Again, A — G(A) is closed

. 1 A-G(A) = A-G(A)

-+ G(A) = & (-~ e € G(A))

T #EA

. { is a proper ideal

Theorem : If A is a commutative complex algebra with unit, then every proper ideal of A is contained
in a maximal ideal of A.

Proof: [ be a proper ideal of A. Let P be the collection of all proper ideals of A which contain L.
We define a relation <onPby M< N ifMc N. '

Then < is a partial order on P.Let U be the maximal totally ordered subcollection of P. (Such existence
of U is assured by Hausdorff’s maximality Theorem).

LetK= '*;::Et' . Then K being the union of a totally ordered collection of ideals, is itself an ideal.

Clearly, I < K, and K # A, since no member of p contains the unit element of A.

Since, U is a maximal subcollection, so K is a maximal ideal containing .

Theorem : If A is a commutative Banach algebra, then every maximal ideal of A is closed.
Proof : Let M be a maximal ideal of A. Since M contains no invertible element of A, so,
Mc A-G(A)

—~McA-G(A)
-+ G(A) is open, so A — G(A) is closed.
. = McA-G(A) =A - G(A)

Le. M contains no invertible elements.
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So, M 1s a proper ideal of A containg M.
. But M is maximal, so pf = M
Hence M is closed.

Example : Let A, B be commutative Banach algebras.
A —» B 15 a homomorphism.
Then kerd is an ideal of A, which is closed.
Soln. : Here kerd = {x : (0 =0}
Clearly, ker ¢ is a subspace of A.
Leta e A and x € kerp = ¢(x) =0
T .
- flax) = d(a)d(x)

i)
= ax € kerd
similarly xa = kerd
Hence ker ¢ is an ideal of A.
Let {x } be a sequence in ker such that x — x. To show that x = kerd
Sox)=0vyn
- §(x) = $(Limx,) = Limé(x,)

=0

= X € kerd
- kerd is a closed ideal of A.

5.3 Quotient Algebra :

I:.E!. Jbea closaﬂ proper ideal of A, where A is a commutative Banach algebr.
Let m : A — A/ be the quotient map defined by

nx)=x+J,xe A

Then A/J is a Banach algebra and n is a homomorphism.

Proof : In A/J, we define vector addition, scalar multiplication, vector multiplications by
x+DND+(y+D=(x+y)+1]
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a(x+)=ax+J
x+D(y+H=xy+lLx,yeA aek _
Then A/] is a vector space w.r.t the first two operations.
We define the norm in.A/J by,
I + 3| = inf {|x +jil : j € 1}
With respect to this norm, A/J is a Banach space.
We know that x, y € Axy € A.
Soxy + J & A/J. Then multipication is well-defined.
Lx+Dy+ D e Al
-, A/] is closed under multiplication.
letx+J), y+Jz+Je Al
Then (x + N [(y + Nz + )] =(x+Dlyz+])
=x(yz) +1J
=(xy)z + ]
= (xy + Dz + 3
=[x+ Ny + D] z+J)
Again,
x+D[y+DH+(z+])]
=(x+01)[(y+2z)+]]
=x(y+2z)+]
= (xy + xz) +J
=(xy+1J)+(xz+1])
=x+Ny+D+x+NE+])

Next,
af(x + )y + D] = afxy +]]
= afxy) +J
= (ax)y +J
=(ex+ Dy +J)
=[a(x + 1] (y +J)
Agam,

(ax)y +J =x(ay) +]
=x+DN{ay+)
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=(x+1]) [aly + 1)]

sefx+ Dy + N =lax+N]=x+1)[aly+ )] -
~. A/J is an algebra.
Since A is commutative, so A/J is also commutative.
To show that  is a homomorphism.
letx,ye A,a e F
Thenn(x+y) =(x+y)+]

=x+D+{yt+i

= n(x) + n(y)
mox)=ax +J=a(x + J) = an(x)

. Tt 15 linear.

Next,

nxy)=xy+Jl=(x+]{y+]))
= 1(x) n(y)

. 1 is a homomorphism.

Agam,

GOl = lix + J

= inf {x +jl :j € J}
< |lx + 0}
=|x|l, v x € A.
= ||=|| = 1.
To show that A/J is a Banach algebra :
. Letx e A(i=1,2)
Then |[n(x )| = [Ix, + Jl|
= inf {|ix, +j| :j € J}
So, given & > 0, 3y, € I such that
IRl + 8 2 [Ix, + ¥,
Similarly, considering x,, we get given & > 0,
3y, € J such that |[n(x,)| + & 2 [jx, + |l
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Now,
(x, +y)(+y) =xx+xy, +Xy, +yX * Yy,
= XX, *+ i
where j = xy, + ¥X, vy, € L. ¥
e xXx + 1
Again,
In(x )l = lxx, + J|

=inf {llxx, +2|:z € J}
< fxx, +il
= |i(x, + y,) (5, + )l
< lix, + vl + yl
< (I il + 8) (x| + 8)
= [|me(x)|-[l =Gl
+ §ljm(x )| + 8 [Im(x,)| + &
= {|m(x /|G| + &, say
where & = &(||n(x )| + [In(x,)l) + &
Since & 1s arbitrarily small, we get
lm(x 2 ) < [ LI, )l
= {xx, +Jll s X, + J||-)i=, + JH
= |l(x, + Ix, + Nl < lIx, + JLix, + 7]
Let e be the unit element of A.
Then, e + ] € A/J
L+ ixt+)=ex+J=x+]
=x+De+])

s, (e +J) is the unit element m A/J.

Now,
le + 3| = inf {fle + i : j € J}
<|lel = 1.
LetxgJ Thenx+J=1]
Sx+ J =0
Agam,

e +7) (x + 1) < [l + TLix + J||
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= lix + Jj| < [le + Jiiix + J|
= etz
Selle 4 I = 1.

~. A/J is a commutative Banach algebra, with unit element.

Theorem : Let A be a commutative Banach algebra, and let A be the set of all complex
homomorphisms of A.
(a) Every maximal ideal of A is the kernal of some h € A
Proof : Let M be a maximal ideal of A. Then M is closed and so A/M is a Banach algebra.
letx e A, x g M.
etJ=f{ax +y:ae€ A, y € M}
Then J is an ideal of A. Also, M < J.
Putting, a = e, y = 0, we get
ex+0=xel |
AMcel(--xe M)
But M i1s maximal, so ] = A,
- e € A, s0e=ax+y, for some
d aes A ve M
Let, ® : A — A/M be the quotient map.
m(e) = mlax + )
= w(ax) + n(y) = n{e)
= m(a) n(x) + n(y) = n(e)
= w(a) n(x) + M = a(e)
= n(a) n(x) = n(e)
~. Every nonzero element 7i(x) of the Banach algebra A/M is invertible in A/M.
.. By Gelf and Mazur Theorem, A/M is isometrically isomorphic to C
Let j : A/M — C be the isomorphism.
leth=pn:A—>C
Then h € A
o kerth= {x e A: h{x) = 0}
=(x € A: (or) (x) = 0}
= {x € A:j(r(x)) = 0}
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=[xe h:j{x+M]=lﬂ}
={xeA:x+M=M}
={xeA:xeM}=M.

- keth=M.

(b) If h € A, then kernel of h is a maximal idela of a.
Proof : leth: A— C

kerh = {x € A : h(x) = 0}

Then kerh is an ideal of A and
keth= A (- hie) = 1)

Let Y € A— kerh.

Let M = linear span of kerh U {y}.
For a € A, we consider

LON

P=2=12°

( h{a]]
S hiBy=hla—-———
P La hm'f
h(a) )
h{;:«)}f,j

= ht_a)—h[

hia)
=h{a)-——=h(y
. (a) b(y) (¥)
:D

"= B = kerh.

.'.u=ﬁ+%a—]yem

(¥)
JAcM=M=A
. kerh is a maximal ideal of A.
(e) An f:lemén[ x € A is invertible in A <> h(x) # 0 for every h € A.
Proof : Let x be invertible in A.
LxXx'=x'x=e
L hixx—=1)=hie) w he A
= hx)h(x")=1. v heA
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= hx)z0 v he A

Conversely, let h{(x) # 0 w he A
LetJ={ax:a € A}

Then J is an ideal of A, )

If x 1s not invertible, then e = J.

So, J is a proper ideal of A.

Let M be the maximal ideal containing J.
Then M = kerh,, for some h € A
Now,

x=ex € Jc M= kerh,

- h(x) =0, which is a
contradiction as h(x) # 0 v he A

.~ X i1s mvertible.

(d) An element x A is invertible in A if and ounly if X lies In no proper ideal in A.
Proof: We know that no proper ideal of A contains any invertible elements of A.
Conversely, let x lies in no proper ideal in A.

We consider,

J={ax:a e A}

Then ] is an ideal in A.

TX=ex €l

If x is not invertible, then e & J.

. J 1s a proper ideal containing x, which is a contradiction.

S, X must be mvertible in A,

(e) A € o~ —0o (x) if and only if h(x) = for some h € A
Proof : Replacing x by Ae — x in (c), we get

he — x is invertible iff h(he - x) 20, w h e A

. Ae — X is invertible iff h(’e) 2 h(x), v h e A

Ae —x is invertible iff Ah(e) # h(x), v he A

Ae—xis invertible iff h(x) 2 A, v he A

S he —x is not mvertible in A.
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< hx)=hforsomehe A
ie. h e 6(x) iff h(x) = A for some h € A.

5.4 Gelfand Transforms :

Deﬁn'iliuu -

Let A be a commutative Banach algebra and A is the set of all complex hnnmmﬁrphisnm of A

To each x € A, we define a function

% :A=>Chy

i(h)=h(x),h e A

Then 3 is called Gelfand transform of x.

Let, 4 be the collection of all such g, where x € A.

The Gelfand topology in A is the weak topology nduce by, 4 , i.e. the weakest topology that makes
every § continuous.

A < C(A), the algebra of all complex continuous functions on A.

IfMisa fnaxinml ideal of A, then M = kerh, for some h € A.

Conversely, if h € A, then kerh is a maximal ideal of A.

So, 3 a one-to-one correspondence between the maximal ideals of A and the members of A.

. A, equipped with Gelfand topology is called the maximal ideal space of A.

Radical of A, rad A is the intersections of all maximal ideals of A.

If rad A= {0}, then A is called semisimple.

Theorem :
Let A be the maximal ideal space of a commutative Banach algebra A.

(i) Gelfand transform is a homomorphism of A onto a sub-algebra 3 of C{A), whose kernel is rad

The Gelfand transform is therefore an isomorphism iff A is semi-simple.

Proof : Let ¢ : A — A such that ¢{x) = % 1s the Gelfand transformation.
letx,yveA,aeCheA

"+ $lox) = (ax)’ .

Now,

(ax)* (h) =h{ax)
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= au(h(x))
=ax(h)
={agdh, v he A

= (x)* =ag

= p(ax).= ap(x)

Again,
Mx +y) -ix "
SLx+yh)=h(x+vy)

= h(x) + h(y)

= g(h) + y(b)

={(x + y)h)

=S EEryy=q 43

LYxtY)=@@ryYyr=g+§

= $(x) + §(y)

. ¢ is linear.
Now,

(xy)* (h) = h(xy) _
=h(x) h(y) [ h is homomorphism]
=((x X)) (¥ Mh)
=(% - ¥Xh)
=S =%.¥
T 6) = ()
at
- 11[11- o(y)
. ¢ is homomorphism
Clearly, ¢ is onto
Now, kerd={x € A: §x)= §}
-{xeA:g=p)
2 2=0=i0)=0§®M), vhea
:>I;1(x]={}, v heA
2. x e n {keth': h € A}
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We know that if h h € A, then
kerh is a maximal ideal of A, and conversely every maximal ideal is kernel of some h € A
- x € A {M: M is a maximal ideal of A} -
- kerd = radA.
If A is semi-simple, then rad A = {0}
= kerp = {0}
= ¢ is one-to-one.
.. ® is isomorphism. '
Conversely, if $ is isomorphism, then
¢ is one-to-one
= ker ¢ = {0}
= rad A = {0}

. Als semi-simple.

(ii) For each x € A, the range of ; is the spectrum o (x).
Hence || %], = p (x) = [Ix]]
where || ||, is the maximum of | (h)| on A and x € rad A iff p(x} = 0

Proof : If A € range %, then A = 3 (h) forssome h € A.
Then A = % (h) forsome h € A

= h{x) for some h € A
L heo—(xye hix)= i forsome h € A,

. range x = o (X).

Now, .

%, =max {|z(h) : h e A} _ :
=max {[A| : & € o~ (x)} '
= p(x) < |Ix|

= llxll, = lixI

Again,

xeradA o xenr lkerth: h e A}
< hix) =0y he A
SAh=0yg hea(x
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= px)=0
"xerad A< px)=0

Theorem : If'¥ : B — A is a homomorphism of a commutative Banach algebra B into a semi simple
commulative Banach algebra A, then ¥ is continuous. :
Proof : Suppose x — x in B and
Yix)>ymA
By closed Graph Theorem, we have to
show that Wi{x) =y
Let A, and A, be the maximal ideal spaces of A and B respectively.
We fixhe A
Let¢=ho¥ Then ¢ € A_
Then x| =1 = |¢p(x)| =1
Sgl Skl =1
.= max {||g(h)|:he A} <1

= |h(x)| =1 v he A
. § is continuous and hence h is also continuous.
Now, '
b(y) = h(lm ‘¥(x))

=lim h (*F(x ))

= lim 6 (x,)

= ¢ (lim x )

= §(x)

= h('¥'(x))
= hly-¥(x)=0v hea,
= y - "¥(x) e rad A.
-+ A s semisimple, so radA = {0}

=>y-¥x=0
= y = ¥(x).

"

s ¥ is continuous.

Corollary : Every isomorphism between two semisimple commulative Banach algebras 1s a
homeomorphism.
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Proof : Let A and B be two semi simple commulative Banach algebras and
¥ : A — B be an isomorphism.

Obviously ¥ is one-one and onto.

Given that B is semisimple so ¥ is continous.

Again ¥-' : B — A and A is semisimple, so ‘¥~ is continuous.

Hence ¥ is a homeomo rphism.

Lemma : IfA is a commulative Banach algebra and

Kl

r=

2
|
|

Ix
B

o il AxeA x=0)
]

then =< r < s

Proof :
Il = max {|x(h)| : h e A}

Il|ii.1'.

-+ 5= inf th

%L
I
= |ixll. = slix] .....(1)
We know that

%

&I, = Il
s 2 gL
g3, =max {{z*h)|:h e A}
=max {|h(x})} : h € A}
= max {|h(x)].|h(x)| : h € A}
= max {[h(x)| : h € A}
= || = |12

Xil g

a |12

ol 2 il = ke
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> v x € A

x|
=s'S-—;xeA,x=0
x|

x:l
setsinf L= xeA, x=0

= Il = rﬂx"z- VxeA ...(2)

We assume that [[x"]| = 2™ |[x|™" ....(3)

(o an+l

o e =
21 [ [using (2)]
2 £ x[2* [by (3)]
= =2 x|
= =1 P
S

m=2",n=1,2.)..4)
Taking m® root in (4) and when m —» o, then

i i i .
lim jpmjim > lim -2 i)

= p(x) 2r x|}

S, = p(x) 2 dfx]|

I%].. .
= r< —;X€EA,X20

Il

192




.'.riinfﬂ—i-“i—s

Il

Therefore,

Theorem : (a) The Gelfand Transform is an isumétr}f

Sl =Py xe A

Proof : we know that if r = inf ;|x_:|i,
!
B f‘||i|1: i
s5=1n Jthens  <r<s
Ix]

The Gelfand transform is an isometry if and only if ||z || = |ix|l, v x € A.

a0

= |:;"|T:l,‘;fxeﬁ,x;tﬂ
1Xj
Bl _,
|‘||
5=
e=r=1
@inf"j:—"ﬂ
Il
<:>inf!|x—_3|‘|:1,'1fxeh,x;tﬂ
1%

1 lx:" = ||x||: VXA

Thus Gelfand transform is an isometry if and only if ||z || = |Ix{|. v x € A.
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(b) A 1s semisimple and A is closed in C(A) iff 3K < a such tﬁar IxF <k |Ix¥, v x € A

Proof : ||x||* < k ||x|

= MELVKEF&
<k

Ix

<::>inf—:2l>[1¢:>r>l}
Ix|

k]

.. The existence ofk is equivalent tor >0
B % A
LT 0ss>0

Now,

s> <> inf &'}{]

I

-

X[,

I

= 2 k,(< =), say

v XeEA
=gl 2k |xi, v xe A
LetT:A— A st T(x)= % be the Gelfand Transform.

Now,

- kilixll < 1kl =0
= [xl| =0 [- k, > 0]

=x=10
= ker T = {0}
= rad A= {0}

= A is semi-simple.
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Also, T is one-one
Clearly, T is on-to

Now, T': A = A such that

T(z)=% % € A.
. -TI| a Y| = ”{ ‘l— - 1 |
ST RN = ] = k, &1l Il

1
= T < 3

. T is bounded
- T 18 contmuous.
Let < %, = be a Cauchy sequence in A.
Slg, = R ll <€V mpzn, |
AT &) -T (G LS ITI &, — &
— (as mn — =
< T (%) = is a Cauchy sequence in
T (A)=A
and hence it must convergeto T™' () € A
~THR)>T () nA
= T(T" (z ) = T(T'(% ]j in A, as T is continuous.
= %, >R A
. A is complete

= Al closed in C(A).

Lemma : Let X and Y be normed spaces and T : X = Y be linear. Then T is an open map iff 3
some y > 0 such that for every y € Y, there in some x € X with T(x) = y and |[x|| < v ll¥ll-

Proof : Let T be an open map. Let S (0) denote the open sphere centred at 0 with radious ‘1"m
X.

Since T 1s an open map, so, T(S,(0)) is open inY. .- 0=T(0) e T(§,(0)), so 3 some 6=>10
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such that S_ (0) < T(S (0)).

oy
Lety € Y, y# 0. Then MESJU‘J < T(S,(0)

- By
. 3 some X, ‘e S (0) such that T(x,) =n;:|

¥
Let X=@x, ThenT(x)=T [gx.]
=|'|"¥'HT[7‘|)=”_}[H-&'¥"
3 5 |yl
=>T(x)=y

+ X, € 5,(0), so [lxfi <1

¥, E ly
= 1y - B ey 21
T =1
Taking ¥ = E » we get ||| < v ¥l

Conversely, suppose that for every y € Y, there is some x € X with T(x) =y and [Ix]| <7 [y, for
some fixed v > 0. . e

We consider an open set E in X. Let x, € E.

Then 3 & > 0 such that S, (x,) = E.
: .
Lety € Y with ||y — T(x)l| < ¥ il 1)
By, hypothesis, there is some x € X with
T(x) =y — T(x,) and |Ix|| <y [iy. — T(x)l --(2)

i
< Y by (1)

=5
Ll Ex)-xll=lx<d=>x+x, €8, (x)cE
s T(x) + T(x) = T(x + x,) € T(E)
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5
o 8T (1) < T(E).

.. T(E)is openin Y.
= T is an open map.
Next A is semisimple = rad A = {0}
= ker T = {0}
= T is one-one.
Also T is onto.
A is closed = A is complete.
By open mapping thcor;en, T:A- A 8t
T(x)= % iS an open map.
. There exists some y > 0 s.t foreach 3 € A,

3 some x € A with T(x) = % and

Ixl < v l& Il
:.>||i"“}l:=-inf—"i">{}:>s:sﬂ 1
2. > -
o I I

Smees*<r<s,sor=>0

L

Il
=inf L2150

[l

. There exists some & > 0 such that

|

l; >avxeA

< el vxea

X
Ix

= ¥ <k | K= %
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Theorem :

The maximal ideal space A of a commutative Banach algebra A is compect Hansdorff space.
Proof : Lat A" be the dual space of A, regarding as a Banach space.

Let K be the norm-closed unit ball in A",

Sp, by Banach-Alaoglu's Theorem, K is w" compect.

A"

<!

We have, for x « A with I|x|| =1, |¢:{x]| <1, for every complex homomeorphism ¢on A
~If peA, then p eK '
LAcK ;

The Gelfand topology on A is the restriction to A of the weak "~ topology on A",

So, we have to show that A is a w” closed subset of A"

A

[ K is w™ compact and every closed subspace of a —!

compact space is compact

Let g, be in the w™ closure of A . We have to
show that go(xy) = go(x)go(y) %,y €A

g(e)=1
We fix, xeA,vyeA. Let ¢ >0
Let W={g cA"|g(z)-g,(z) <& for I<i<4} 0

where z, = ¢,Z, =X, Z, =¥, Z, = XY

Then W is a w-nbhd of g . So, W contains an h ¢ 5
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For this h, |1-go(e) = [h(e) - go(e)| < € [by (1)]

Since g is arbitrarity small, so

g, (e) =1

Now,

2,(xy) - g(x) g,(¥)

= g ,(xy) — hixy) + h(xy) — g,(x) g,(¥)

= [g,(xy) — hixy)] + h(x)h(y) — g,(x) &,(¥)

= [g,(xy) — h(xy)] + [h(y) — g,(y)] h(x) + [h(x) — 2,()] g(¥)
- Jga(xy) ~ 2o(X)2o(¥) |
<[go(xy) ~ 1i{xy)| + () - 2o(y)} {a(x)|+ [n(x) ~ 2o(x)}- o)
< £+a,|h[x}|+£,|gu(y]|l ‘ (2)

Since heAc K 50, Ih(x){ﬂﬂﬁiﬁ

-

-, From (2), we get lgu{xﬂ ;EUT."]EG{YH

< e +elfx] + elgy ()l

= s{l + x|+ |gn{}r]|i}

Since ¢ is arbitrarity small, so we get

g4(xy) = g,(x)g(y)

ie, &, €A

Therefore, A is w'-closed and hence A is compact.

Problem :

Let X be a compect Housdorff space. C(X) is the collection of all complex ,valued continuous
functions on X. '

C(X) is a commutative Banach algebra with

I£l= sup{ﬁf{x]|:x - X} with unity e(x) = 1.

Fo find maximal ideal space of C(X).

Soliftion : ‘

For each x e X, we consider the subset M of C(X), where

M, ={f:f eC(X)and f(x)=0}
To show that M is an ideal
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an imvolution on A if 5
1. [x+y]' =x"+y

2. (Ax) =Ax



Clearly, M _#¢,as0 ¢ M, (- 0(x) = 0)
Let, fig € M.. Then fix) = 0, g(x) = 0.

~(f+g)(x)=f(x)+g(x)=0

Snf+ge M,

If .« is any scalar, then

(af)(x)=af(x)=a.0=0
safeM,
Let g eC(X). Then

(&)(x)=g(x) f(x)=2(x).0=0

LgfeM,
- M, is an ideal.
Suppose, U be an ideal in C(X) such that M _cU

So, 3 some g <wu such that g & My
~.g(x)#0. Let g(x)=a(a=0)

Let f=g—ae

£ (x)=(g-ae)(x)

= g(x) - ae(x)

=a-a.l

=a-a

=0

=feM,.

Since M_ cU.So feU
Now, f,gel

~f-geU [.U is an ideal)
:g—g+m::EU

=aeel/

=a  (ae)eU (" a=0and u is an ideal )
=eel/

s =G X)

L

.. M is a maximal ideal.
Therefore, each x e X gives rise to a maximal ideal M_ of C(X).

~A(C(X))= X
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Involutions :
Let A be an complex algebra. (not necessarily commulative) A mapping , —, x* of Anto A is called
an mvolution on A if -

I (x+y) =x"+)'

2. (Ax) =4x'

3. (o) =y%

4 x"=x, forall " x,yed,AeC

Any x e A4 for which 5 = x is called hermition.

Example : Show that f — £ is an.involution on C(X).
Solution : Here £ — 7, F(x)=/(xh /" =F

Let feeC(X) and 1eC |

L (f+g)(x)=(S+g)(x)

= f(x)+g(%)
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g
Hence f — £ is an involution on C(X).
Theorem : If A is a Banach algebra with an mvolution and if x e 4, then

(a) x+ x',i(x - x'} and y,* are hermition.

Proof : Let A be a Banach algebra with an mvolution
(x +x ) =X +(x' )

=x"+x

and [i(x=+")[ =7 (x-x')

=7(x -x)

=—i(x"-x)

=i(x-x")

Also, (xx") =(x") x'

c.x+x"i(x—x") and 5" are hermition.

(b) x has a unique representation x =u+iv, with € 4,v & 4 and both » and v are hermition.

Proof : Let, # =%(I+X')

-
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u‘:-{x'+x"}:%(x+x')= i
1§
¥V =—E(x —f)
:-%(x'—x):v
=~ —.. -y and v are hermition.

Now, u+iu=%[x+xl -x +x)

= uU+iv=x

Suppose x has another representation »'+iv', where 3 and ' are hermition.
Let w=v'—v

Then " =" —v" =v'—v=w ' ¥ e

and y+iv=u'=i'
=(u-u)=i(v'-v)=iw - (1
= (iw) =(u-w') =u"—u"

r
=u—U
=iw
- Both w and iw are hermuition.

Soiw = {f‘w}- = W =—iw
= w=0

= -v=0

=V =v

From (1), we get (u—u")=0

=u=u '

. The representation x =y % jv 1S unique.

(c) The unit e is hermition.

Proof : Since " = e¢’, so ¢ is hermition (by (a))
Thene' =(e') =e"=¢

;. € 1s hermution.

(d) x is invertible in A iff x” is invertible and &) =x"
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Proof : Let x be invertible. Then

l=xx=e

A xx"y =¢€

=(xYx" =e

and (x')' =¢'

=x {x')'=e

-. X" is invertible and (x*)" = (x)’

Conversely, let x* be invertible. Then

X(xN=x"Yx"=e

LX) =

=x)"x"=e =x'x=¢

and ((x')'x")" = ¢’

=x" (x)" =e =xx'=¢

Thus xx' =x'=¢

— X 1§ invertible.

(e) A Ecj{x} iff A Eﬁ(x']

Proof : We have, je— x is invertible iff 3 — x* is intertible

ie, Ae—xisinvertible iff j o — x* is intertible

= % eo(x) < Leo(x’)

Theorem : If a Banach algebra A is commulative and semisimple, then every involution on A is
continuous. .

Proof : Let h be a complex homomorphism on A
we define ¢:A - C by ¢(x)=h(x")

Then ¢ is also a complex homomorphism.

Now, if x| <1, then [p(x)<1

= ¢ is bounded

= ¢ is continuous.

Let xn—x and xn" -y in A.

Now, h(x")=¢(x)= ¢(lim xn)

=lim ¢ (xn)
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=lim h (:m']
=h (limxn")
=h(y)
=h [x' —y) =0
=x —yekerh
Since h is arbitrary, x'—yekerhVhe A
=x -yellkerh
heA
Lx —-yerad A
But rad A= {0}, as A is semisimple
nx —y=0
=x' =y
= y=x
_:_ By closed graph Theorem, the mapping x — x" 18 continuous.
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Unit 6
B*-Algebra and Its Properties

6.1 : B*- Algebra

A Banach algebra ‘A’ with an involution y _ " that satisfies lx} || =|l¢[" ¥x € 4 is called a B'-
algebra.

Here, "xx' ” < il

= <ol

|
i

C = "‘r" < "r"{"xﬁ = ﬂ],"e‘x ed
Replacing x by x°, we get

el ) =1
=[]<l+

“ =]
Theorem (Gelfand-Naimark) :

Let A be a commutative B*-algebra with maximal ideal space ...., The Gelfand transform 1s then an
isometric isomorphism of A onto C(.....), which has the additional property that

h(x')=h(x)(xc 4, heA) (1)

or, equivalenthy, that

{x']ﬁ =£{IEA] ; (2)

In particular, x is hermition iff £ is a real valued function. (3)

Proof : Let ue A,u=u’ and he A. We prove that h(u) is real.
Let z=u + 1te, for real *t’

If h(u)=a+iff, where o and § are real, ~
then

h(z)=h(u+ite)
=h(u)+irh(e)
=a+if+it
=a+i(f+1)

=33 =(u+ite)(u-ite)

=u+1'e
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o (B0 =|hOY
11]|3|i2 =”33'H [ AisB algeb}a]

<f+re).

‘_-tﬂz.e1'||+r2

<l +#

=at+p+2pt+8 <l +7

=a’+ 28 <l , oo<t<co

Since, this holds for all real values of t, 50
28=0

= =0

~h(u)=a is real

Every element x e 4 can be expressed uniquely in the form x = u + /v where u = u',v=v"
. h(u) and h(v) are real.
~h(x)=h{u+iv)=h(u)+ik(v)

Then h(x) = h(u)-ih(v)

wh(x)=h(u -iv")

=h(u—-iv)

= h(u)—ih(v)

-0

Hence (1) is proved.

Again, (x' ]ﬁ' (k)= h.(x' },Wx €A

= {x},"a’h eA
=i(h),YheA
=% {x' )" =3

- (2) is proved.

- 4 is closed under complex conjugation.
Stone Weierstrass Theorem for complex functions :
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Let L be locally compact Housforff space. Suppose A is a complex subalgebra of C(L) which is
colsed under complex conjugation and strongly separates the points of L.

Then A=C(L)

Applying Stone-Weierstrass Theorem, j is dense in C(A) ie. 4=C(A)
If xe 4 and y=xx", then

o (H.]' ey

b l-bi o

We assume that

1

= "y”_ [Replacing y in (3) b}rf"}

-1

=™

Applying indur;tiuu on n, we get

=[y" =", where m=2"n=1,2,...
Taking mth root, as m =

tim{y|” =[]
= P(y) =)

=[5l =I¥

Since y= B

]|f’|}r = max [|i[h]l the ﬁ}

max {2 (y )| h Eﬂ.}

max ik | x | heﬁ}

It

{
((

max”h x)h(x'): kel
{

= max |ﬁ:r{r heﬁ}
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ﬁm“h[x}. he &}

[max”h{x}]':h eﬁ}f
[max {]x{ h]i :he f}.]:r

"

SE
=l =l
===l

= |3, =l

=], =i

. x —» § is an isometry.

. As, "A’ is complete, So 4 15 complete.

. jmust be closed ie. 7_ j

= A=C(A)

Therefore the Gelfond trandform is an isometric isomorphism A onto C(4)

Theorem : If A is a commulative B -algebra which contains an element x such that the polynomials
in x and X" are dense in A, then the formula (y f) = fo % (H

Defines an isometric isomorphism y of C(o(x)) onto A.

Moreover, if f{4)=4 on o(x), then yf =x.

Proof : Let o be the maximal ideal space of A. We know that % is a continuous function on A
whose range is o(x).

Let, h,h, €A and x(h)=%(h)

=>h [-t}:h: (x)

Then, (x') <A (9= (%) = (¥

If P is any polynomial with two variables, then it follows that

A (P(0 )= (P(s). 3

A and h, are homomorphisms and

b (x)=hy(x);h (x")=hy(x") 2
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By hypothesis, elements of the form P (.r,.r') are dense in A.

Let, y & A. Then y =lim Pyn(x,x")
“h(y)=h [lifn Pyn(x, r]]
~timh,(Pyn(x,%')) (b is continuous)
=lim iy (Pyn(x",x)). by )

=h, (Hin P}'n{x'ix']), (- h, is continous)
(

=h(y)
Thus, i (y)=h(y)¥ye4
= h =h,
%{hs}:i(kz}
=h=h

s % 1s one to one.

Theorem : Let X be a compect space and Y be a Hausdorff space. Then every bizective continuous
mapping of X onto Y is a homeomorphism.

Since o(x)is compact and A is Hausdorff, so %:A— o(x) is a homeomorphism.
We define, ¢:C(o(x))—> C(a) by ¢(f)= fox

Then ¢ is one-one and onto.

Let, f;, f, € C(o(x))

Then ¢( £, /)= £, fr0%

Now, (£, £)%)(h)=(£. £)(¥(h))

= (/i /) (A(x))

£ {1(x)) £ (h(x))
fi(2() £ (3()
(fi2)(R)( %) (h)
((£2)(A5))(h
= (£ f)E=(f%

YheA
(f%)

)
)
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= ¢(/.£)=8(£)e(1.)

:.¢ is a homomorphism.

Now, /], =sup{|7(4): 2ea(x).|2 <1}

=sup{|f{h[x}}| theA,|h(x)s l}

=sup{|f (£(h))|:|Hl s e A

= 5uplifoi[h)1 BN a}

=|(2)]

=)l

~.¢ is an isometric isomorphism of C(o(x)) onto C(4).
We know that, the Gelfand transform is an isometric isomorphism of A onto C(4)
~.#(f) = fok is the Gelfand transform of a unique element of A, which we denote by v f .
~(wf) ok
and o 71=Ld =111,

-. (1) defines an isometric isomorphism ¥ of C'l_'cr{x]] onto A.

A

Let f(A)=4 on o(x)
w(fox)(h) = f(%(h))
=/ (h(x))
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~h(x)=#(h)VheA
= fﬂ.{' = ,‘E'

=>(wf) =% =pf=x

Centralizers : :
Let S be a subset of a Banach algebra A. The centralizer of S is the set

. T(8)={xe 4:xs=sxforeveryseS}

S commutes if any two elements of S commute with each other.
Theorem : (a) T(S) is a closed subalgebra of A.

Proof: Clearly, T(S)# ¢, aseeT(S)

Let x,y€T(S)
= X5 =5X
and ys=s5p.Vs5e 8§

{I + _1-‘}.5' = X5+ Y8 =50+ 5y

= s(.r+y}

sx+y,Ax,xyer(S)
. 7(S) is a subalgebra of A.

Let <x,> be a sequence in 7(S§) such that x, — x.
Since, multiplication is continuous in A, so

.TWS' -3 X5 and ¢

sn—>sx

ey X, € I{S} 9o for any 52 5.
X, 8 =snVn

= limx_s = hmsx_

R=% Lk 2o
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=5 X8 = 5X
=xer(S)

S T(S) s o closed subalgebra of A

w ScT(r(s))

Proof - Lt XET(S). Then xs=sxVseS§

.. For every, x € T[S]I

N = x5

= seT(I(S))

~seS=seT(I(S))

. 8cTI({r(s))

() If S commutes, then T( [(5)) commutes.

Proof : Since S commutes, so S < T'(S)

~T(8)c=Tir(s))

If T(E) < E, then T(E) commutes.

~T(T(S)) commutes.

Theorem : Suppose A is a Banach algebra, § < 4,5 commutes and B = T{F{S ]}
Then B is a commutative Banach algebra, § = B, and o, (x)=0,(x), for every xe B.

Proof : We have B=T(I'(S)) is a closed cubalgebra of A. [by (a)]

Since S commutes, so B also commutes [by (c)].
Therefore, B is a commutative Banach algebra contaming S.

Let A€o ,(x)=> Ae—x is not invertible in A.
= le—x is not invertible in B [ Bc A]
= Aeo,(x)

soilncolz)

Llet ye B and x 15 invertible in A.
~xy=yx for every yeT(5).
= x"(xy)=x"(yx), forally eI'(S)

= y=x"yx,Vyel(S)

213




= =x"y, ¥y eIl'(S)

=x"'el(I(s))=8

ox is invertible in A

— y 15 mvertible m B

. x 15 not invertible in B
— ¢ 15 not mmvertible in A

sAeoy(x)

— Je—yx is not invertible in B.

= Ade—x is not invertible in A.

= iea,(x)

=g (X) G o, (x)

sog(x)co,(x)vxeB.

Theorem : Suppose A is a Banach algebra, xe A,ye 4 and xy=)x
Then o(x+y)co(x)+o(y)

and o(xy)co(x)+o(y)

Proof : Let S={x,y},B=T(I(S))

Then S B

SX+y,xvehR [ Bis subalgebra]

Then o,(z) =0, (z], Wz e B so, we have to prove that—
o5 (x+y)c oy (x)+ oy (1)

oz () coy(x) o, (¥)
Since B is commulative, s0

o,(z) is the range of the Gelfand transform :, forevery - < 3.
Again, (x+y) =i+ |

". Range(x+ )" = Range (%+ 7)

< Range %+ Range y

= ay(x+y)co,(x) +o,(y)

=o(x+y)co(x) +a(y)

Also, (xy) =y
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= Range(xy)" = Range (iy)
C Range x. Range y
=o0,(x+y)co,(x) +a,(y)
S o(x+y)calx) o ()

Normal element :
Let A be algebra with an involution. If xe 4 and x"x = x"x then X is said to be normal.

A set § — A is called normal if S commules and " ¢ §.

Theorem : Suppose A is a Banach algebra with an involution, and B is a normal subset of A, that
is maximal w.r.t being normal.

Then

(a) B is a closed commutative subalgebra of A.

(b) o;(x)=0c,(x) VxeB

Proof : (a) Since g — 4 is normal, so, B commules and ;' ¢ g whenever xe B.
Let ye 4 such that (1} y' = x"x

(i) xy=yx,VyelhB

Since ye B, so y" € B. Hence by (ii),

' =yx,VyeB

= (o) = (2)

= yx=xy",Vyeh

HU{I,x'} is normal.

But, B is maximal w.r.t being normal.

BU{x,x'} =R

ie, xeB

Let x,ye B.Then x",y" € B

(x4 y){x-s—y]' = {x+y}(x' +y')

=xx"+x" +yx + '

=x"x+ )y x+xy+yy [+ B commutes)
=x"(x+y)+y (x+y)

(x' +y ){x +y)
(

x+y}'{x+y}
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For ze B(x+y)z=xz+yz

=z + 2y

— ::’(.I +y}

Therefore x+y satisfies both (i) and (11)
=x+yvel

Similarly, xye B and Axe B,A is a scalar.

- B is a commutative subalgebra of A.

Let <x_ > be a sequence in B such that
X, =X
-, Multiplication is continuous, so

X y—>Xxy
yx,—+w,yveb
But, x, v =yx ¥n
= limx, y=lim yx,

= xv=yyxVyvel
-, (1) 1s satisfied.

Now, x'}‘:{_v'x)-

=(»")

=yx'VyehB

In particular, x'x =x x'Vn
= limx'x, =limx x’

=rr=xx

- (1) is satisfied.
;.xeB

— B 15 closed.

(b) Let Aeo,(A4)=> Ae-x isnot invertible in A.
= Ae—x is not invertible in B (- B< 4)

o (x)2a(x)

Let xeR and y'c 4

= x (xp)s™ = x7 ()™
= w =x"y,VyeB

. .
XK =X X
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= {xx )_I = (x'x}_l
:}{x'}_lx : :x'l(x.x)_l

= () 5 = (x1) [*.'(x')_l =(x" ”.

- ! satisfies conditios (1) and (i) of (a).

nx'eB

. x is invertible in A = x is invertible n B

— x is not invertible in B = x is not mvertible in A.

s Aeoy(x)

— jie—x is not invertible in B.

= Ae— y 15 not invertible in A.

= Adeqd,(x)

~oy(x)co,(3)

nog(x)=0,(x)VxeB

Positive element :

Let A be an involutive Banach algebra and x e 4
"x2= 0" means =y’

and o(x)<[0,e) .

Theorem : Let A be a b'-algebra. Then
{a) Hermition elements have real spectra.

Proof : Let x = 4 such that -

AR BIrmyy

= x IS normal

. x is contained in some maximal normal set say B in A.

Then, B is a commulative B*-algebra. So, it is isometrically isomorphic ti ils Gelfand transform

B =C{ﬁ},where A is the maximal ideal space of B.
For zeB,Z(A)=0(z)
If x = x*, then f is real valued
~.o(x)=x(A) is real
(b) If x e 4 is normal, then P{x)=|x|
Proof : We know that o(x)=x(A)

P(x) =4,
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-+ B and B are isometric, so ||f||,; =||Jr I
' = P(x) =

(©)If ye 4, then P(yy")=|pf’

Proof : Let z=)y", ye 4

Then z 1s hermutian.

LI ==z

= z 15 normal.

=By (b), P(z)=|]
= P(w')=|w|=II
() Ifuedveduz0,v=0, then y+v20
Proof : Let a=|ul,8=|v|

and w=u+v,r=a+f

NDW, uz=u=u" and U(H} — [{], m}

-

.u is normal as 4" = 'y
By (), P(u)=[il, =lul=a
= sup{|4|: A e(u)}=x
no(u)e[0,a]
. Now, o(ae—u)cac(e)-o(u)
=o-o(u)
c[0.a] -
no(ae-u)<[0,a]
Again, (ae—u)(ae-u) = {fxe—u}(ae—u']
=(ae—u)(ae-u)
=(ae-u) (ae-1)
= (@e~u) is normal
By (), Plac—u)=|ae—]

=|ae-u|<a by (1)] (2)
Similarly, we have
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|Be-v|< B 3)
[re-v<7 . )
Now, w’ '={u+vj' =y+v=w
(re-w) =ye-w'=ye—w

~.(7e-w) has real spectraem.
(4)=>o(re-w)c[-r.7]

= o(w)c[-r+r.r+r]=[0,2¢]<[0,x]
Thus * =y and cr{w]c[[:;:n]
~wz0

=u+vzl

() If ve 4, then y" >0

Proof : Let x = yy". Then x is hermition.
Let B~ 4 be the maximal normal set containing x.

Then B is a commulative B'-algebra and B is isometrically isomorphic to B=C(A) since x is

hermition, so 1 15 a real valued function. We have to show that >0 on A

Since |i|-%€ B, 50 3, B such that

5= |,E|—,§ on A (1)
Since 2 isreal, so - _;°
Let _ey'= w=u+ iv {2), where u and v are hermition elements of A.

oww =(2p)(2v) =20
i :(_}‘_}")3'

Xz’

= zZzx [ zxcBandBis cummu]at_ive]

2311

coww +ww=(wriv)(u—iv)+(u-iv)(u+iv)
= +v +ut +V

=2u’ + 20

Sww=2' +2v' —w'w

=2ut +2vi -z'x (3)
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Since, y =", S0 4 is real, i.e, o(u) is real
So, by spectral mapping Theorem,
cr(ul}c:[(},ac}
* Similarly, o(*) = [0,%)
w20 20
If possible, let <0
Then 7% <0
EEIEB .
GI'(ZEI) = (E’Ex}{&‘] c {—tx:‘ﬂ]
g(_zzx) < (—e,0]
n=2x20 (4)
~(3)=>ww20 [using(d)]
.'.rx(w'w} L:[lf],ar:u}
r:r[w'w) s cr(w'w)u 10}
a'(w'w)c [ﬂ,u’:}
=wwzl
= z’x 20, a contradiction to (4)
. our assmption is wrong.
nxz0onA
~o(x)=x(a)c[0,)

c:r(}}"} =[0,)
Ly z0 -

6.2 Positive functional :

A positive functional is a linear functional F on a Banach algebra A with an involution which satisfies
F(xx’ ) >0

Vxed '
Theorem : Every positive functional F on a Banach algebra A with involution has the following
properties : '

(a) F(x')=F(x)

220




Proof : Let x,ye 4. Let p=F(xx'), g=F(»')
| r=F(»n'), s=F()

Let, o e C. Then F[{x+ ay)(x+ a_v]']zﬂ
=>.F[{x+afy][x'+ﬁ'}ﬂél]

= F(x +&@0" +ayx’ +]af 3")20

= F(xx')+&@F (x')+aF () +|a F(5")20
= p+ar+as+laf 20 (1
Putting, @ =1, (1)=> p+r+s+g20

a=l, {1]:p+r+s—§an |

o (peg)slras)=o @)
Putting, @ =i, (1)= p—ir+is+q20

= p+q+i(s-r)20 (3)
Now, (2) and (3) =>(s+r)and i(s—r) are real
let, s+r=a -

s—r=ib

L2s=ag+ib=s =%{a+:‘b]

.‘.2r=a—:‘b:>r=§{a—z‘h}=?

:>F(133')=F[yx')

Let y = e. Then F(xe‘]= F[ex;}

:}F(x]éF(x')

::-.F{x'}: F{x]ﬁﬁ’x E A
(b) |F(1}r; ]]‘ i:F(xx')F(}}'*]
Proof : Let p=F(x'),g=F(y»")

i F(x}r'],s =F[_vx']
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- If r = 0, then the result is true (b)

tr.
Let r=0, I.et_ﬂf=r|, where e B
Fi

(1 :>p+Er+frs+|a|?q20

= p+2t£|+rlq3_*i]
r

¥

:>p*2:———+.' ‘=0
I

= p+2r|t+1g 20 (<o<t<c)

7
Puttng, { =——> we get
£ q g

(I,
p~:2[r|i_ - l4+gq—20
L q) q

—>pq—|r| =0
:‘>|r|1£pq'

© [F < F(e)F() S F(e) (=)
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Proof : We have, F(ee’)=F(e)
By (b), when v = &,

IF(xe')| < F(xx')F(ee)
=|F(x) < F(e)F(=")
Let se IR be such that ¢ 2 J(xx")
Then, o (te-xx" ) c to (e) —I_cr(xx']
=t-o(x) c[0,2)
. There exists e 4 With =" and 4° = te — xx’
. Flte—xx")=F(u*)20
= 1F (e)- F(xx')20
= F(,uc‘)zrf(ej
Substituting, 7 = P(xx"), we get
F(xx")< P(xx")F (e)
= F(e) F(xx") < F(e) P(xx")
A|F(x) < F(e)F(xx)

<F(e) P(xx")
AP (x) < F(e)F (') < Fe) P(xx")
(d) |F(x)|< F(e)P(x), for every normal element x e 4
Proof : Since x is normal, 50 xy" = x'x
no(xyco(x)o(x)
= sup{[4]: 2& o (")}

<sup{|4]: Ae o(x)}

sup{|4|: A& o(x")}
= P(xx")< P(x)P(x")= P(x) P(x)

= P(u’) < P(x) ()
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From (C),
IF(x) < F(e) P(xx")
< F(e) P(x)" [using (1)]
=|F(x)|< F(e)P(x)
6.3 Hilbert space :
Theorem : Let H be a Hilbert space. If T € B(H) and if <Tx,x>=0vxe H, then T =0

Proof : For x,ye H,
(T(x+y.x+y))=0

= {Tx+Ty,x+y)=0

= {Tx, x)+(Tx,y) +(Ty.x) +(Ty, y) = 0

= (Tx,y)+({Ty,x)=0 (1)

Replacing y’ by ‘iy” we get

{Tx,.{v)+{?"{fy}~x>=l) : ’
= —i{Tx, y)+i{Ty,x) =0 @

Multiplying (2) by i and adding to (1), we get
{Tx,y)+(Ty,x)+ {Tx._ y)=({Ty,x)=0
=2(Tx,y}=0

=% {Tx._, y} =10

Taking , y =Tx, we get

{Tx, T?r} =)

=Inf =0

S |1 -0

=Tx=0vxeH

=T=0

Corollary : If §,T € B(H) and (Sx,x) =(Tx,x),¥xeH, thenS=T.

Theorem : There is a conjugate linear isometry y — A of H onto H' given by
. 1. Ax={x,y),yeH

- Proof : For ye H, we have Ax:{X,,P}
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Now, |Ax] =[x, y)| <|}<] |}
=A<y

= |A[<]] 0
- A 15 bounded.
=Ael

Again [y =(r.7) = Ay s Al
=< |l (@
From (i) and (ii), we get |y] =|Al
Let f:H — H" suchthat f(y)=A

and Ax={x,y)
f{ﬂ}'t + :SJ":] =\
where

Ax=(x,ay, +By.)
=a(x,y)+B(x.y)
= ahy, + Ay,
=af(n)+B/(»)

. The mapping y — A 1s conjugate lmnear.
To show that every A o g+ has the form
(1). If A=0, then we take y =0

s{xy)={x0)=0=Ax

If A=0, Let N(A) be the null space of A

We know that N(A) is closed. So, 3ze N(A),z20
. A{(Ax)z—(Ax))

=(Ax)(Az)—(Az)(Ax)
= (Ax)z(Az)xeN(A),xeH

oo B N{h],su{{ﬁx}z —{hz}x,:}zﬂ

= {(Ax)z,z)-{(Az)x,z)=0
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Taking, ¥ ={z,z)" (E)z{e H), we get
M:{If_}":}
Thus there exists a conjugate linear isometry y — A of H onto H* given by Ax= {.‘L‘._. y,yeH.

Definition : Let X be a complex vector space. A conjugate bilinear form (sequilinear) is a mappng

FiXxX—>C

(x,y) = f(x,») is such that

. x—= f(x,y) is linear for every y e X

flax +Bx,y)=af(x,y)+ Bf(x,.y)

2. y-» f(x,y) is conjugate linear for every xe X
f(xax+By,)=af (x.)+Bf(xy)

Theorem : If /: H xH —» C is a conjugate linear and bounded in the sense that
1. M= suPHf{x,yﬂ el = = 1}(ac then 3 a unique S & B(H) that satisfies .
2. f(xy)=(x%), xyeH

Moreover, S| =M
Proof : For ye H, Let Ty: H — C such that

Ty(x)=f(xy), xeH
f (xy) < M|
= [Ty (x)| < M-Iy

= |Ty|< M|
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-, For each y e H,the nﬁpping Tv is a bounded linear functional on H, of norm at most A I
To each Ty, there corresponds a unique element of £, we denote it by Sy so that

Ty(x) =(x.5)

= f(x,¥)=(x,5)
- The condition (2) holds.
Clearly §: H — H is additive

Now, [Syl|=[IT] < M
For y,y,€H
{x,ﬁ{y, + ¥, }}=f(x,_v} +, )
= f(x )+ f(xn)
- =(n5) +{x50)
=(x, 8y, +5y.)
= S(3+0,)=+5,
If geC,
(5.5(a)) = £ (x.)
=af(xy)
=a(x,8y)
=S{ay)=asy
- § 1s hnear.
Now |svl< Ml
SN ERY (1) ‘
~.SeB(H)
)=l )
<|el |
<xbIs1-1A
= sup{lf ()] =D =1} <l
- M<||s] @)
From (1) and (2), we get |S||=M
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6.4 Definition :
If T e B(H), then (Tx,y) is linear in x, conjugate linear in y and bounded, then 3 a unique
S e B(H) such that -

f(xy)={x5)

= (Tx, y) =(x, Sy)
We denote S by T". Then

1. (Ix,y)= {x,i’"y){,r, yeH)
2. |r]-in
Then T is called the adjoint of T and T = B(H)

Example : Show that 7 _, 7* is an involution on B(H)
Solution : Let S,T € B(H) and @ be any scalar (2 €C)

@) ((S+T)x,y)=(Sx+Tx,y)
=(8x,)+(Tx, )

=(x,8"y) +{x.T"y)
=(x,(5"+T")y)
=>{(5+T)xy)=(x(s" +T")y)
= (5(5+7) 3)=(x(s"+T"))
. (S§+4T) =§"+T

(i) {(aT)x,y)=(aTx,y)
=a(Tx,y)

=a(x,T"y)

=(x,{a?"}.y> =(x.a@r'y)

= (aT) =ar’
(iif) {(ST)x,y)=(S(Tx),»)
=(Tx,5'y)

=(r,T'S'y)
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:{T'y,x}

- “x}
"'LJ"" &3

(T X,y

=T=T"
. T —» 7" is an invohlution on B(H)

Again, ||TxH: =(Tx,Tx)
= (T', Tx, x>
<|rTfief vxeH

= <|rT]” e vxe #

=|rI <|r'7|

<[]

-

; B{H } is a B'-algebra, relative to the nvolution 7 5 7*

6.5 Definition : A C’-algebra is a closed star z-ubalgcbra of B(H) for some Hﬂbcrt space H.
Every C’-algebra is a B -algebra.
Examples :

1. Let {4i}, be a family of C’-algebras.
Let A be the set of {.xi']m{{x;'} :{xt,xz,.....xi,...}r,ﬂ]
Such that yie 4
sup |xi| < o0
ial
We define, (xi)+(yi)=(xi+ yi)

(xi) (i) = (xipi)
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A(xi)=(Axi)

{x:’]' = [_ti')

] = supei

Then A 1s a C"-algebra, called the product C'-algebra of Ai’s.

2, Let A be a C-algebra. Let A" be the algebra obtained from A replacing the multiplication
(x,y) > xyind by

(x,¥) = yx,"with all

other algebraic operations and the norm same as A.
Then A’ is a C-algebra called the reversed normed involutive algebra of A.
6.6 Homomorphisms :

Let Aand B be two involution algebras. A mapping ¢: A — B is a homomorphism if
L ¢(x+y)=8(x)+4(») |

2. ¢(Ax)=Ag(x)

3. ¢()=¢(x)é(v)

4. ¢(x")=¢(x) ,Vx,ye 4, A€l

Proposition :
Let A be an involutive B -algebra; B a C"-algebra and [7 is a homomorphism of A into B.

Then [11(x)] . v < 4

Proof : For each Hermition element y of B, we have

bl=bA=bA

By induction,

‘J"r =¥l ,n=1,2.3,....

=" = m=2n=1,23,.....

=P(y)=]y] M

Let A€o, (I1(x)),xe 4

=> Ae'—TI(x) is not invertible in B. (¢’ is the unit element ofl‘E}
=> Al (e)~TI1(x) is not invertible in B. (e js the unit element of A)
= I1( Ae — x) is not invertible in B.

Let ye 4 suchthat y' e 4
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~T(y")eB

and TT(y)I1 {_V_I) = I—I(_};v") =T(e)=¢
Similarly, [1(y™ )TI(y)=¢'

[n()] =n(y")eB

Now, I1(Ae—x) is not invertible in B.

— ie— x is not invertible in A.

= ieo,(x)

~oy(M(x)<a,(x)

- P(MI(x)) s P(x) <|] (2)
Now, [1(x)f’ =) ()
oo

= [ ==}

(] =P(n(e))<foc] by @)
=<’

= |r(x)] <] vxe 4

6.7 Definition :

Let TeB(H). Then T is

(1) normal if TT" =T°T

(ii) self-adjoint if T = T*

(in) unitary, f TT =T'T=1

(iv) projection if T* = T, where [ is the identity operator on H.
Theorem : Let T € B(H). Then

(i) If T is self-adjoint, then (Tx,x) is real, Wx e H and conversely.
Proof : (i) First suppose that T is self-adjoint. Then for all x e H,
{Tx,x} = (x._,]'"x)

= {I,Tx}, asT =T

= (T x)
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“ATx,x) is real Vxe H

Conversely, suppose that (Tx,x) is real Wy e H .
Then (Tx,x) = (Tx,x)

=(T"x,x)

=((T-T")xx)=0vxeH
=(T-T")x=0VxeH

=T-T =0
=T=T
- 7 1s self~adjomt.
Theorem : Let {Tn} be a sequence of bounded self-adjoint linear operators mn B(H)and 7 —» T'-
Then T is a self-adjoint operator in B(H).

Proof : "TH' —T'" = ”{Tn —T}'H
“lrn-1}, [<I7|=Ir1]
T-T"=T-Ta+Tn-Tn" +Tn" =T~
=(T-Tn)+(Tn-Tn")+(Tn" -T")
=(T—Tn]+(Trr'—T'). as Tn=Tn"
|r-1°| <|T - Tnf)+|Tnr - 77|
=2|Th-T| > 0as n—ox
>|r-1f=0 =TT =0

=T=T

= T 1s self-adjomt.

Theorem : An operator T € B( H) is unitary iff T is isometric and surjective.
Proof : Let T be isometric and surjective.

Now, T is isometric =:-||Tx|| :"\'H

Now, = Tx=0=|Tx|=0

= =0
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=x=0
T is bijective.

Now, (T'Tx, x) =(Tx,Tx) =|

e = (x.%)

= ((:r"r— I)x,.r) =0VxeH
= (T'T-I)(x)=0vxe H
=T'T-1=0 =TT=I
Again, TT" =TT" (TT™)
=7(T'7)r"

=TT

:TT_]

=1

=TT=TT"=land T" ~T"

- T is unitary. -
Cnnversely suppose that T is a unitary operator on H. Then T is invertible and therefore T is onto.

Also T°T=TT" =1

Thus we get [Tx| =], vxe H

. T 1s isometric and surjective.

Theorem : Let P be a projection on a Hilbert space X. Then
(i) I - P is a projection on X. )

(i) R(P)={xeX: :Px= x}
(ii) R(P)=N(I-P)

(iv) X =R(P)®R(I-P)
(v) If P is bounded, then R(P) and and R(I-P) are closed.
Proof : (i) Let P be alpmjectinn on X.

Then p*x=Px Vxe X

Now, (I -P) x=(1-P)(1-P)(x)
=(1-P-P+P*)(x)
=(I-P-P+P)(x)

=(I-P)(x) VxeX

~.(I—-P) is a projection on X.

(if) Cleary, {x € X : Px=x} c R(P)
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Let yeR(P)= y=Px for some xe X

& Py=P(Px)=Px=Pr=y

sye{xeX: Px=x|

~R(P)c{xeX:Px=x]

~R(P)={xeX:Px=x]

(iil) Let x € R(P)

< x=Px [by ()]

< bx=Px

& (I-P)x=0

<=:*JCEN{I—P}

~R(P)=N(I-P)

(iv) Let x e X Cleasly, R(P)+R(I-P)c X

Now, x=Jx=Px+I[x—Px
=Px+(/-P)x

=xeR(P)+R([-P)

XCR{F]+ R(I-P)

=R(P)+R(I-P)

Let yER{ JNR(I-P)

= y=Py=(I-P)y

=y=PyzP(Py)

=P{I-P)y

=Py-P'y

=Py-Py
=9

“R(p)NR(1-P)=({0})
~X=R(p)®R(I-P)

() R(P)=N(1-P)=(1-P)"({0})
Here {0} is closed. Again, P is bounded. Thn (I - P} is bounded and so (I-P)" is bounded.
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Hence (I-P)" is contmuous. .
Now continuous image of a closed set is closed.

= R(P)=(I- P]"{{{]}) is closed.
Similarly, R(I —P)=P"'({0}) is closed.
Theorem : If T e B(H), then N(T*)=R(T) and N(T)=R(T")
Proof : Let yEN{T"_] < Ty=0

= (.r:,T'y) =0vxeH

< (Tx,y)=0vxeH

<y Tx, VxeH

< y'R(T)

o yeR(TY

~N(T")=R(T)

Replacing T by T", we get
N(T")=R(T)"

= N(T)=R(")'

Theorem : If T B(H ), then

(a) T is normal iff [[Tx| =

I'x| VxeH
Proof : Let T e B(H) be normal
~IT =TT

Now, [Tx| = {(T%,Tx)

= (T"Tx, x)

AT %x)

={ 7% )

= || =] vxe H

Tx|| = hTt“

Conversely,
— ||]"'Jr|l1 = "T'_r":

L
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= {Tx,Tx}:(T'x,T'x)

= (T'Tx, x) = (TT'.r, x) Vxe H

=T'T=1TT"

— T is normal. _

(b) If T is normal, then N(T)=N(T")=R(T)
Proof : Since T is normal, so

= ||Tx||=|T'x|!_. Vxe H

Let yeN(T)=T(y)=0
e |n]=0
=0

<.‘::-1T'y

= T'y=0
@yE;V(T') oy
“N(T)=N(T")=R(T)

(c) If T is normal and Tx = ax, for some xe H,zeC, then T"x=gGx.
Proof : Since T is normal, so 77* = 7°T
Now, (T-al)(T -al) =(T~al)(T" -al).
=TT —aT —aT" +aal

=T'T—al" -al +aal
=T'(T-al)-a(T-al)
=(1"-aI)(T-al)

=(T-al) (T-al)

~(T —al) is also a normal nperatu;.

Given that,

Tx=gax, forsome xe H,a el

:>[T—af}x: 0
=xe N{T—a!}=!‘u’({?‘&cx.’}']
= xe N(T" -&I)

=(r"-al)x=0
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=T'x=dx

(d) If T is normal and If & and # are district eigenvalues of T, then the corresponding eigen-spaces
are orthogonal to each other. '

Proof : Since o and f are eigenvalues of T, so 3 non zero vectors X and y such that

Tx=ax, Ty=py

Let E, and £, be the eigenspace corresponding to the eigenvalues o and § respectively.
~Tx=ax, VXx€E,

Ty=pfy, Vyek,

For, x€E,, YeE,

a(xy)={ax,y)

=(Tx,y)

- (1)

- (%)

= B(x.y)

=(a-pB){x,y)=0

= (x,y)=0 (wa=*p)

=xly

~E, LE,

Theorem : If U € §( H ), then the following statements are equivalent

{a) U is unitary.

(b) R(U) = H and (Ux,Uy) =(x,y) Vx,yeH

(c) R(U) = H and [|Ux] =[x
Proof : (a)=(b):

JVx,yveH

U is unitary, so /' = 7 and u is bijictive.
~R(U)=H

And, (Ux,Uy)=(x,U"Uy)

=(x,U"'Uy)

={x"f_};} ={x!_}l}5 \?’I,FVEH_

() ::’{'5']3 R(U) = H and (Ux,Uy) =(x,y), Vx,y € H.
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In particular, for y = x,
{[.{r,U.x} = (x, .r}

= o =

= o=

|, Vxe H

(c)=(a): R(U) =H and |Ux]|=|x|, vxeH

= U] =<

= {Iir,b’x} = {x, x)

= (U U, x) =(x,x)

= ((UU-1)xx)=0VxeH-

=UU-I=0

SUU=I"

Similarly, 777" — J

- L7 18 unitary,

Theorem : Let P& f(H) be a projection. Then the following are equivalent.

(a) P is self-adjomt.
{b) P is normal

(¢) R(P)=N(P)"

(d) (Px,x) =1|Px||2, VxeH
Proof: (a)=(b):

P=p

=PP =FP

— P is normal.

(b}=(c): P is normal

= N(P)=N(P')=R(P)
= N(P)' =(R(P)')

= N{P}" R(P) I:R{P] is dﬂxed:l
~R(P)=N(P)

(c)=(d): R(P)=N(P)

Now, N(P)=R(I-P)
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and H =R(P)®R(/-P)
=R(P)®N(P)

=N(P)®R(P)

- Every element x ¢/ has the form x=y+z, where y Lz,ye N(P)zeR(P)
~{y,z)=0 and Py=0

Since ze R(P), so z=Pu, where ye H
©Pz=P(Pu)=Pu=Pu=z
Px=P(y+z)=P(y)+P(z)=0+z=z
(Px,x)=(z,y+z)

=0+

=l

“ .Px"1 = {:Px, Px} = {z,z} = {z

12

. (Px,Px)=|Px], Vxe H
(d)=>(a): |Px| =(Px,Px), vxeH
= (x,P'x) '

= (P'x,x)[ (x, P'x)is real |

= (Px,x)=(P'x,x) Vxe H
=>({P—P')x,x) ~0, VxeH

=P-P' =0
= P=P
- p is self-adjomt.

Theorem : Suppose S #(H) and S is self-adjoint. Then ST =0<> R(S) L R(T),Te p(H)
Proof : Given that S is self-adjoint.

= S=8

Let ST =0. Let x,ye H

{S;r, ]'jv} = {x, S'Ty)

=(x,5Ty)=0 (. ST=0)
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= Sx LTy for since Sxe R(S) and Ty € R(T)
= R(S)LR(T)
Conversely let R(S]lR(T}

Then 3x, y € H such that
Sx 1Ty

= (Sx,7y) =0
= (x,5'Ty)=0
= (x,5Ty)=0 Vx,ye H

= STy=0VyeH

=5T=0
OR
ST =0 «STy=0v¥yeH

& (x,STy)=0 Vx,ye H

& (x,5'Ty)=0 , as g'=5

& (8x,Ty)=0

< Se LTy Vx,ye H

< R(S)LR(T)

This ST =0<> R(S) L R(T), ¥T & B(H)

Theorem : Let M,N,T < f(H), M and N are normal and MT = TN. Then pf'T = 7N"

Proof : Let, S e S(H). Let
V=5-§". We define

Q=exp(v)=3nV"

Then V' =($-8") =§"-5=(5-5")=-¥
o :exP{V'] = exP{—P’]

_ 1

= Q_l
. Q 1s unitary.
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00" =I=[00| =[]=1
:;HQHZ = I[ B(H) isa B'—algebm]
=[d|=1

:}HEXP{VJH:I

::"uP{S—S'}ﬂ:[, vSe f(H) )
Given that

MT=TN, Te B(H)

= M(MT)=M(IN)

= (MM)T =(MT)N =(TN)N
=(MM)T =T(NN)

= MT=1TN"

Let, M"T =TN"

L M™T=M(M'T)

= M(TN")

=(MT)N"

=(TN)N"

TN

-. Byinduction, M"T =7N", ¥n=1,2,....

=T+MT+——+..

=T+TN+E1-+___
L_

=T f+N+N., + .0 1
L)

=exP(M)T =TexP(N)
:>T=EKP(-;W}TEKF[N] (3)
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Let u, =EXP[M' - M}

U, :EKF[N—N')

Since, M and N are normal, by (3)
u,Tu, :exP{M' —M)Tex P(N - ;'\-r')

=ex P(M")Tex P(-N") (4)
(1) = Juf| =[ex P(M - M) =1

=o'

(4)= [ex P(M* ) Tex P(-N" ) =l
< e Y7 e
adl ®)

We define, f:0 — B(H H) by
f(4)=exP(AM")Tex P(~AN"), 4 el

~(AM)(AM) =IMAIM

=AAMM"

=AAM'M

- (a°) ()

- (aMy (T1)

- A M isnormal

Similarly, 7 » is also normal.

Applying (5) to 7ps and Jn, we get

= lex P((TM)) )7ex P(—[IN)‘]H‘—:HTH

= |ex P(aM")Tex P(-2N")| < 7]

=|f(@)=irl. vie: |

~. f is bounded entire function on [: . So by Liouville's theorem, f'is constant.
But fi0) =T

5 (A)=T, Yiel

= exP(AM )TexP(-AN")=T, Vi el
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= Tex P(AN")=ex P(AM")T, Vie

:>T{I+P.N'+
\

. e \

(AM } +”“.
B

=| T+ AM + TvAdel

i

Equating coefficient of 1, we get TN" = M°T
Exercise :
1. Suppose *is an involution in a complex algebra 4, g is an invertible element of 4 such that g

= g and x= defined by x=¢7'x"q, Vxe 4
Show that - is an involution on A.

2. Let A be the algebra of all complex 4x4 matrices. If M :{m".):—: A, let M" be the conjugate

transpose of M.

00 0 1) 000 0
LQ_ualu': S_IDD!J
et“.nlaﬂl‘ o000

Llﬂﬂ{}j 000 0)
f0 0 0 0)

00 0|
r=?

00 00

00 0 1

Define, M = Q ..IJ\r'f.Q_. MeA,
Show that S and T are normal w.r.t the involution «, that ST =TS, but

ST"=T"S

6.8 Resolution of the Identity :

Let M be a o -algebra in a set ( and H be a Hilbert space. a resolution of the identity properties :
@) E(¢)=0,E(Q)=1

(i) Each E(w) is a self-adjoint projection (we M)

Gi) E(wNw) = E(w)E(w)

{iv) If w'[Iw"=¢, then EI{H" U W'} = E{w’l}-iv E{ w"}
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(v) For every xe H and y € H , the set function Ex,y defined by Ex.y{W]={E_|[w)x,}f) is a

complex measure on M.
Properties :
(1) Ex,x is a positive measure on M.
Proof : Since each E(w) is a self-adjoint projection,

Ex,x{w} = {E {w}x.x)
=(E{w}2.x,x>

=(E(w)x,E(w)x), as E(w) is self-adjoint

= (E (w) x) 20
=> Ex,x is a positive measure on M.
2. Any two projections E{w) commute with each other.

Proof : E(wNw')=E(w)E(w")

E(w'Uw) = E(w)E(w)

Now, w'w"=w"w

= E(WwNw)=E(w W)

= E(w)E(w)=E(w)E(w)

3. If ww"=¢, then E{u’hw"]:E(;&]:ﬂ
S E(W)E(W)=0

E(w) is a self-adjoint.

- R(E(w)) LR(E(w)

6.9 Spectral decomposition :
Theorem:If T f§ {H ) and T is normal, then there exists a unique resolution of the ﬂf:nhty, E on

the Borel subsets of (T ), which satisfies

T= [ AdE(A)

7]

ie, {Tx,y)= I-idE,_r{A], x,yeH

a7}

Moreover, every projection Ew) commutes with every S € § (H') which commutes with T.
E is called the spectral decomposition of T.
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6.10 Definition :
If E is the spectral decomposition of a normal operator 7 € f#(H) and if f is a bounded Borel

function on (7, then the operator

w(1)= | JE i genoted by 1)

o(T)

Theorem : Let T € S(H ). Then the following are equivalent.
(a) (Tx,x}20, Vxe H

(b) 7 =7 and o(T)c[0,0)
Proof : (a)=(b):

If {Tx,x) >0, Vxe H, then
(Tx,x) is real Yxe H

o (B x) = (T5m)

={xTx)

=(T"x,x)
=((T-T")xx)=0vxeH

=T=-T"=0=T=T
R is real valued.

.o (T)= Range T is real

Let, 1>0. Then Afx|’ = A(x,x)
={Ax,x)

< (Ax,x)+(Tx,x)

=((T+Al)x,x)

<j(r+ a1l

= Al |7+ 1) 0
~.(T +AI) is bounded below.

AT +AI) =T +Al=4I

= {T + E."]' is bounded below.
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Lemma : Let X be a Banach space, Y be a normed space and let T € f(.X,Y). Then the

followings are equivalent.
(a) T is invertible
(b) T is invertible
(e) R(T) is dense in Y and T is bounded below.
(d) T and T are both bounded below.

Hence T+ A7 is invertible.

ie T+Al =T —(-4)7 is invertible.
s-Aec(T)

So, forany 4>0,-Agc(T)
~o(T)e[0,=)

(b)=(a): Let T = T" and G‘{T}-c [0,20)
Now T is normal.
Let E be the spectral decomposition of T

ATx,y)= I AdE, (A), xeH
T}

We have, Ex,x is a positive measure on o (T)
Also 120 on o(T).
Hence | AdE, (4)20VxeH
a{T) _
= (Tx,x)20 Vxe H
Note:If Te 8 [H ) satisfies any of the conditions (a) and (b), then T is called a positive operator ,

and is denoted by T>(

A self adjoint operator 'S' is called a square root of a positive operator T if §*° =T.

Theorem : Every positive operator T & S(H) has a unique positive square root S € §(H ). Again
if T is invertible, then so is 'S'.

Proof : Let S be the collection of all self-adjoint operators on H.

We define a relation < on 'S' by

IfT.,T, €S, then
T<T, & (Tx.x)s(Tx,x) VxeH
T <T,>aT, <aT,a>0

Let T € B(H) bea positive operator, Then T is self-adjoint.
"Without loss of generality, we can assume that 7 < f.
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, 3
Let 5,=0 and S, =9, +E[T"5,),H=ﬂ,1.2,.,..} (1)

1 )
58 =8, -.r—i(T—S;}

1
_5 2 4
_7-1p
8

=r[ralrJ

8 )
{8x, x} = (% Tx, .r\ = %{Tx, x)z0
=8 20

1

Again, {S.__x,x} =<(T _ET: )x,x)
/ 1 2
R?:t,x}—g = (T x,x)

1
Since, product of two positive operators is positive, so T[f —EJ 20
=5,20
Let Pe f(H) commutes with T, i.e PT = TP

1 1 1
§P==TP==PT=P| =T |=PF§,
Then, = 7 ’ [2 J

Similarly, S,P = FPS,
*Thus the operators Sn's are positive and they commute with every operator P which commutes with

In particular, Sn's commut with each other, ie.,§5 =8 §
Now, From (1),
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I .
1-8 . =I-8, —E(T-—Sﬂ']

~iyogsdgedigay)
2 2 2

:%{!—Sﬂ]] +%{!—T} 2)
By (1), we get

1 ’
S =85+ E{T -51,)

. S o 1(53_
2

"

- 53)
=[I—%{5,, —S"..}}{S» =5,1)

=5 -8 = %[[I -5,,)+(1-5,)](5,~5,.) 3)

(2)=1-5,,20
=551, n=0l2,.
a8 AT L2,

(3)=85,,~5,20if S,-S,,20,n=12,...
;o
But, 5, =57 20=5,

.8, <8, n=012,..."
.{8,} is a bounded increasing seqﬁenﬁc of positive self-adjoint operators
sBef sfx a8l =

= (S5, x) S(Syx,x) <.....$(S,x,x) <(S,. %, x)<...Vxe H

. The sequence {{SﬂxTJ}} converges to a limit say {.’ix, x:,'l ,xe B(H)

- im(S,x,x) =(Sx,x),Vx € B(H)

=5 <l'tm Sn,r,xj =(Sx,x),Vxe H

=31

= <[lim s, —.'i']x,xll} =0VxeH

A |

= limS, -5 =0

H=sL
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=lmS§ =5

LY

(r 111{155]

e

~(l)=1limS,,, =limS, +

A=

[

s K gh
:>5—S+2{T 5)

1 ¥
:>-2—{T—S )- 0

=5 =T

. T has a positive square root S.
To show that S is unique.

Let §' be another square root of T.

5 =T

L S8T=88=8"=5"8"'=T§'
- 5" commutes with T

- 8 commutes with §'

Le §S§'=5'S _

{SS} =5"8'=7"= {SS]
Let xe H and y=(5-5")x
(Sy,¥)+{S,»)
={{S+S'}y,y>
=({SI—S;:).‘E,‘V>

=((T-T)xy)

=(0.y)
=0
-+ § and §' are positive so,

(Sy,y)20,(Sy,y)20
(S, ) =0, (Sy,y)=0

.+ § is a positive operator, so S has a positive square root (say) Q, ie 0’ =§.

.. O is self-adjoint.
) =(2.2)

Now,

=(0°0y.y)
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:(:.‘:Ty,y}

=10

= 0Oy=0
Sy=0'y=0(Qy)=0(0)=0
Smularly, §'y =0

~||Sx=8%|" =(Sx~ 8%, 8x~5%)

= |Sx-S%|=0vxe H

= Sx-Sx=0%xeH
= S5x=8xVxeH

=S5=5
Let T be invertible.

~8T=18

= STT ' = 75T

= T"S(TT" ) = (T"T)ST"

= TIS=5T""

. 8(17'8)=5(sT")=8T" =TT =1

Si[‘l'ﬂl:—ll’b"., (T-]S)S i T_I'S: — T.-IT - Ir
e 5 is‘ i[l‘-’ﬂl't"lblf: al‘ld 5'_[ - T—]S
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6.11 Polar decomposition : _
Every complex number A can be factorized in the way A = a |Aj, where |a| = 1.
If T € B(H), then if T can be factorized in the way,
T = UP, where U is unitary and ‘
P >0,
then UP is called the polar decomposition of T.

Theorem : , _
(a) If T & B(H) is invertible, then T has a unique polar decomposition T = UP
Proof : Tisinvertible = TT'=1=T"'T
= (TTHY*=1=(T'T)*
= (T)*T* = = T*T)*
= T* 15 invertible.
Thus T and T* are invertible
= T*T is invertible
Agam, T*T_is hermitian.
L <T*Tx,x>=<Tx, Tx > = |[Tx|F = 0
- T*T 1s positive.

. T*T has a unique positive square root, say P.

S P=T*T

- T*T is invertible = P is invertible

Let U = TP

- T and P! are invertible, so U is also invertible.

Now,

U*U = (TP") * (TP P*=PpP
=(PY*T*T P (P1)* = (P*)"
= (P) * PP = p-!
=p!'PPP!

=]
Similarly, UU* =1
~. U is unntary.
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Again,
U=TpP'
= T =UP, P is positive and U is unitary.
Therefore UP is a polar decomposition of T.
To show that U is unique
Let if possible U’ be another unitary operator such that
T=1IP
s UP=UP
= (UP)P-' = (UP)P"!
= U= U = U 15 unique.
. T has a unique polar decomposition.

(b) If T e B(H) is normal, then T has a polar decomposition T = UP, in which U and P commute
with each other and also with T.

Proof : Let T & B(H) be normal operator.
Let p(A) = [A|
A
A
;. A=0

h=0
u(h) =
Then p and u are bounded Borel functions on o (T)
Let P=p{T), U =u(T)
Sincepz0,P=20
sinceull = 1, so UU* =1
u =1, sn'U"'U =]
»+ A =u(A) p(A), so T = UP
- T has a polar decomposition.
- u(k) p(k) = p(k) u(h), so
UP = PU
and since Au(A) = u(A)A and Ap(A) = p(A)X
so TU = UT and TP = PT.

252




Theorem : Let M, N, T € B(H), M and N are normal, T is invertible and M = TNT.
If T = UP is the polar dcomposition of T, then M = UN U™' [M and N are unitarily equivalent]
Proof : Given that M = TNT' ......(1)
.+ T = UP is the polar decomposition of T, so U is a unitary operator,
Hence form (1), MT = TN
Then, M * T = TN*
- T*M = (M*T)* = (TN*)*
=NT*
Again, P is the positive square root of T*T.
.. N P = NT*T =T*MT
=T*TN
= P°N.
. N commutes with f{P?) for every f € C (o(P?)) _
Now, & (P?) is a non-empty compact subset of R [+ P* is positive, o(p®) < [0, «)]
If i) = A ': on A(P?), then
NfiP?) = PN

= NP = PN

= N = PN P

Now, M = TNT' = (UP)N (UP)!
~UPNP'U!
=UN U

= M = UN U~

Theorem : If A is a B* algebra and if z € A, then there exists a positive functional F on A such that
F(e) = 1 and F(zz*) = |lz|

Proof : We fix z € A. Let A_be the real vector space that consists of Hermitian elements of A.

Let P be the set of all x € A_such that

a(x) = [0, =)

~xePiffxz0

Now, x € P, y € P = cx € P, where c is a positive scalar

andx+yeP

Also, P contains all the elements of the form xx*, for every x € A (- xx* 2 0)

233




s0, In order to prove the theorem, we have to find out a real linear functional ‘f* on A_that satisfies
the given conditions and .
fix)20, w xeP..[(1
Let M, be the subspace of Ar generated by e and zz*.
We define f, on M by
fae + pzz*) =a + P |zz*, o, p € R
Clearly, f, is well-defined and linear.
Also, zz* is a positive element, so
plzz*) = ||lzz*||
5 |lzz*|| e o (zz*)
By Spectral mapping theorem,
aol(ae + Bzz*) = o + Po (zz*)
Lo+t fllzzt| e o (ae + Bzz*)
LX) ea (), ifxeM, '
LEx)z0ifx e PN M,
Also, f(e) = 1 and f, (zz*) = ||zz*||
= lizjP
[+ Ais a B* algebra]
Let f be extended to a real linear functional f, on a subspace M, of A such that
ﬂ(x}éﬂ v X € F‘ﬁI"--“II
Lety € A be such that y € M,
Let M, = < M,, y >, is the subspace generated by M, and y.
M=ty :xeM,ae R}
LetE=Mn(Y-P)
Ef = M. (Y +P)

Ifx € E, then X & MNn(y-P
=>xXeMadx ey-P
=>xeMandy-x eP

Similarly, if x" € EY, thenx" e M, N (y.+ P}

= x'eMandx" e y+P

=x'eMand-y+x eP.
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S y-x)+(y+x)eP
=>x'-x el
=x-xeMnP
L —x“}?ﬂ::sfiijufl[x}z{l
= { (x) < £(x).
Let ¢ be a real number that satisfies
fiise S LX) {8
We define, f, on M, by f(x + ay) = f(x) + aC,
xeM,aeR
Since f, is linear, so f, -is also linear.
ForxeM,ifx+yeP, then —x € y - P
=-xeM (y-P)
= -xekF
= f (-x) = ¢ [by (2)]
=>f(x)2-c
L E(xFy) = Fc2—c+e=0
=>fx+yz0
Agamn, ifx—ye P thenx ey + P
=xeMny+P)

= x e E

= f(x) 2 c.
LEx-yY)=fxf-c2e—-ec=0
=>fx-y20

LEEE+) 20y X+oy e P,

IfM,=A, then Pn M, = P, and taking

f=f,wegetfix) 20y xeP

ie. (1) holds.

IfM, # A, then proceeding in tﬁe same way, and finally applying zomn’s Lomma, in the partially
ordered set of all classes (£, M), we can conclude that there exists a real linear functional f on Ar such
that ix) 20 ¢y xe P

and fle) = 1, flzz*) = ||z}

Anyx € Acanbe putinthe formx=u+1v,u veA.
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We define F on A such that

F(x)=flu) +if{v),ifx=u+iv

Lety=u +iv :

s Fx+y) =F(u+iv) +(u +1v))

F((u + u) +i(v + v))
fu+uy+ifilv+v)

flu) + flu) + i[f{v) + f{v)]

= [flu) +i fiv)] + [f{u) + 1 {V)]

= F(x) + F(y)
Again, F(ix) = F(iu —v) = f{-v) +i flu)
= _fiv) +i f (u)
=i f{u) + 1 f{v)]
= i F(x)

.. F is linear.

Now, xx* =(u+iv) u—1iv)
=1+ Vv +1i(vu-—uv)

o F (xx*) = flu’ + v) + 1 flvu — uv)

= flu®) + f{v?) + i fivu — (vu)*]

[-- (vu)* = u*v* = uv]
= fluu*) + f{ivv*) + i[fivu) — f(vu)*)
= fluu*) + flvv*) + iffivu) - fiv)]
= fluu*) + f{vv*) 2 0

[ fi(vu)*) = f(vw) = fivw)]

. F is a positive functional

Hence F(e) = 1, F(zz*) = ||z|}

6.12 Representation : g
Let A be an involutive algebra and H, a Hilbert space.

A repesentation of A in H is a mapping [T of A into B(H) such that
I (x +y) = I1(x) + TI(y)

M(xy) = I(x) [(y)

[1(x) = [1(x)
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I[Mix*)=II(x)*, x, ye A, A e C.

State : Let A be an involutive algebra with a norm. A state of A is a continuous positive linear
functional ‘f” on A such that |{fl| = 1

Theorem : If A is a B* algebra and if u € A, u = 0; then there exists a Hilbert space Hu and a
homomorphism T of A into B(H ) that satisfies T (e) =1

LT, (x*)=T(x*xe€A |

2Tl < Ixll, v x € A

and ||T (u){i = |[ul]

Proof : We take ‘u’ as a finxed element.

Then 3 a positive functional F on A such that

F(e) = 1 and F{uu*) = |ju]* ....(3)

LetY={ye A:Flxy)=0, v x € A} ....(4)

-+ F is continuous, so Y is a closed subspace of A.

We denote the elements Uf‘a‘;’Y be

x=x+Y, xe A ... (5)
We claim that < a', b > = F(b*, a) ....(6}

defines an inner product on &/y.

Remark :
Suppose (a, b) =0
=a=0orb=10

=acsYorbel.

~<a,b>=10
=> F(b*a) = 0
To show that < a, b'> is well =defined, we have to show that F(b*a) = 0, if at least one of a and

b lies m Y,
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Ifa e Y, then by definition, F( bfa} =0
Ifbe Y,then F(a*b) =0
= F((a*b)*)=0

= F(b*a) =0
= F(b*a) =0
.. < a, b > is well-defined.

Agam,

(i) <a,, b>+ <a,, b) = F(b*a) + F(b*a)
= F(b*a, + b*a))
= F(b* (a, + 3,))
=<{a +a),b>

=<a' +a,b>

(ii) <a,b >=F(b*a) = F(a*b) =< b, a >
(iii)y <a,a>=Fa*a) 20
(ivi<a,a>=0< F(a*a) =0

< F(xa)=0vy x€ A

&sae Y
sa+¥Y=Y
e a =10

<g,a>=0&a/ =0

. <a, b>=F(b*a) is a well-defined inner product on Aly.

Ll =<a,a>? = F(a*a}_ll
Let H be the completion of A/y w.r.t this norm. Then H is a Hilbert space.
For each x € A, we define
L Aly — Afy such that
T (a) = (xa)
ie. T(a+Y)=xa+ Y
Then T_ is well-defined.
MNow,
T, (@+b) =(x(a+Db)
=x(a+b)+Y
=(xa+Y)+ (xb+Y)
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= (xa) + (xb)
=T, (a) + T (b)
T, . @) =(x+x)a)
et e %Rk
=(xa+Y)+ (x,a+ Y)
=T (@) + T (a)
=(T, +T) @)
2T, .. =T, +T,

@) T, . (a) =(xx)a)

=(xx)a+Y
and T‘I 1Tt1{a} = T‘| ((x,a))
= (x, (x,2))
=x(xa)+Y
-m(xx)a+Y
= T
()T, (a) ={((ox)a)
' ={ax)a+yY
=(axa+Y)
=(aT) (a)
=1 .=al.
and
Tfa)=(eay =ea+Y=a+Y=g=]a)
=T =1 '
We define,

0:A> B Aiy) by d(x) =T,
2. ¢ 1s well defined.
Hence,

dx+y)=T =T +T = ¢x)+ §(y)
Plax) =T =al = ap(x)

o(xy) =T =T T = ¢(x) §(y)

- ¢ is a homomorphism. -

=T @)

il | B

ll(xa)|F

< (xa), (xa) >

F(xa) * (xa))

H
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= F(a*x*xa) ....(T)
Fora ﬁxm;l a € A, we define
G(x) = F(a*xa)
Then G is a positive functional on A and
G(x*x) < Gfe) |IxIF
IT@)IF =Gx*x)
< Gle) |Ix||* -
= F(a*a) ||x|]
=<a,a > x|
= fla]F . {ix|P
= |IT (a)l| < [lafl lfx]|

=T <|xl, v x € A

Again,

< Tt_ (a), b > =< (x*a),b >
= F(b* x*a)
= F((xb)* a)
=< g (xb)y =
=(a/ T (b)) =

=<T* (@) b/ >
=T .= T % ..(8)
Since Afy is dense in H, so
(T.*) (@) =(Tx)* (a), v T, € B(H)
ie. T,=T*and |[T | < [ix], v x € A,
T, e B(H)
Replacing T by T (x), we get
M =1(e)=1
()T, (x*) =T, (x)* x € A
(i) | T (| < [ix]l, x € A.
(iv) uF = F(u*u)
= F{{ue)* ue)
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=T, (&) [using (7)] '
< ITJE Helf ;

{lle]FF = F(e*e) = F(e) = 1}

o [ulf < |IT P

= |jull < |IT|

But,

ITH<|x, v x € A

ST S

= AT, )il = [l

Theorem : Let A be a B* algebra. Then 3 an isometric *isomorphism of A onto a closed subalgebra
of p(H) where H is a suitably chosen Hilbert space.

Proof : Let u be an arbitrary element of A (u = 0). Then u gives rise to a Hilbert space H .
Let H be the direct sum of all the Hilbert spaces H, u € A. :
Let _{v) be the H_ coordinate of an element ‘v’ of the cartesian product of the spaces Hu,
Then, by definition,
v € H if and only if Z lIm (VI < ol
where ||m (v)|| denntesuthe H -norm of m (v).
The convergence of (1) implies that at most countably many « (v)'s are different from 0.
The inner product in H is given by
<y, ¥ = - <R (v), '.Itu(‘r"} > 2)

v, v € H.

Now,
M<vv>= Z <m(v), m(v)>

=2 im0

= |Ivlf?
L<yv>=0&|vif=0&|v|=0& v=0.

(ii)<v,v> = Z._,“ < n(v), (V)

= g < (v), n(v)>

=<V, v>
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(i) <ov,vi> = Z < m(av), n(v)>
= Z‘ < ?t"["-’}. :rru{v'} =

= az < n(v), n(v) >
u
=g<v,v >

iVi<v+vi vi>= Z <n(v +v), mx(v)>
= ; < m (V) + m(v), (v >
= zu: < m(v), m(v) >

+ zu: < m(v), T(v') >

mev,VWE+ras, vE
Also, H is complete. So, H is a Hilbert space.
Let S5, € B(H) and let S| <M, w u

Let S, be defined as the vector whose co-ordinate in H_is

n(S) = S, ) .3)
if v € H, then

2 | rWf <

22 IS, 1 < 2 (S iR

<
<M 2 W
< o0

Using (3),

2 xS <o

S eHifveH

Again,

IS = 2 fIm, S
= Z IS, m Wi
< 2 [Pl )P
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s 2 {1y I
= {sWP syt 2 P
= {s9P IS, 32 IvIP

=[5, < S |si . I

= ISl < 5P IS,

Let u € H with juf| = 1
Now,
Isi =2 ||S I

r ...... e
- \JZ I8, =, )

=yls. W[’

= IS, (wil
= IS, £|jsl| v ue H with [jul| = I
cosup {[IS, ()l = [julf = 1} < [|s]
=[S/l = sl v u

» SUP S || < |IS|

= liSlh = SUP §iS )i ....(4)

Again, for u (= 0) € A, 3 a homomorphism

T,A=>p(H)

To each x £ A, we associate an operator

T(x) € B(H) by

m, (T(x)v) = (T (x)) (m(v))

Now,

(D) 7 (T(x, + x,)V)= (T (x, +x,)) (%))
= [T (x)) + T (x)] (m (v))
= (T,(x)) (V) + T(x,) (m,(v))
=% (T(x)V)+mr, (T(x,)v)

Similarly,

(ii) =, (T (ex)v) = ax (T(x)v)

Again

(i) = (T(x) (v, + v,)) = T (xNm (v, + v,))
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=(T,(0) [mfv) + 7, (v)]
= (T,() (=, (v)) + (T,(x))
(m,(v,))
=R (Txv) + w2 (Tx)v,)
(iv) m (T(x) (av)) = ar_(Tx)v)
We define
¢ : A — B(H) by
Px)=T(x) w xeH
MNow,
() o(x, + x,) =T(x, +x))
=T(x)+ T(x)
= §(x)) + d(x))
(i) plox) = T{ax)
= aT(x)
= ad(x)
Again,
[T COll = x| = IT (x)I
STl = 3P IT ()l [by (4)]
< SUP ixjj = fix|
= [T = [ix]]
Again,
ITGH = SUP |[Tu(x)|
> [T ()] = x|
= ITx)| = (1]l
ST = x|
= [[6(xl = [ix]|
Also, p(x) =0 = ll9(x,) =0
= x|l=0
= X, =0 = ¢ 15 one-one
2. ¢ is a isometry
Agam,
$(x*) = T(x*)
= T(x)*
= p(x)*

~. ¢ is an isometric * isﬁrnorphism of A onto a closed subalgebra of B(H).
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