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CHAPTER-1
Probability

Introduction:

Probability theory is the branch of mathematics concerned with probability, the analysis of
random phenomena. Probability theory began in seventeenth century in French when the two great
French mathematicians, Blaise Pascal and Pierre de Format, corresponded over two problems from
- games of chance. In common parlance, the term Probability refers to the chance of happening or not
happelitng of an event. Today, the theory of probability has been extensively developed and there is

hardly any discipline - physical or social - where it is not being extensively used

Random experiments:

. It we perform certain experiments under identical conditions we expect of arrive at results that are -
essentially same provided we can cogarol the value of the variables that may affect the out -come of the
experiment. But in many cases we are not in a position to control the vah:e of same variable. As a result
. though under identical conditions experiments are performed, the result will vary from one experiment to
‘Examples of random experiments.

1. Let the experiment be tossing of a com. Thenwuhmﬂbeeﬂ:rhmd{l—[) ortall (T). But we cannot
exactly predicts what the result will be . The results will depend on chance. There are various factor that
will influence the result and all these factors cannot be controlled . This is an example of random experiment.

. Ifcoin is tossed twice, the result will be {(H,H), (H,T),(T,H),(T,T)}. This is also example of
2. Letus consider the random experiment of throwing a six faced unbiased cubical die. As the die is
perfect, we are sure that one of the faces will come up with one of the numbers 1,2,3,4,5,6.
_Sample sapce and Event : A sample space is a collection of possible outcomes of a random
experiment. A sample space may consist of single outcome ora group of outcomes taken together. Each

possible outcome or element in a sample space is called a sample point or an elementary event. An
event will be denoted by capital letter of English alphabet. :

AseriesofeventsA,, A,, ...., A, will be called exhaustive, ifat least one of them is sure to happen
in any trial of random experiment. For example when a coin is tossed, either head (H) or tail must occur.
Hence the event is exhaustive. '

Two events A and B are said to be mutually exclusive, if in occurrence of one prechudes the
occurrences of the other. In other words the two events cannot occur smultaneously. For example in
_casxing ofa die if 6 occurs then other members viz 1,2,3, 4,5 cannot occur. Hence it is an example of
. mutually exclusive events. Aseries of events A, A, ...., A, are said to be equally likely, if one of them

cannot be expected to occur in preference to others ina single trial of random experiment . Forexample in
tossing of a coin each face is equally likely to occur. ' ¢
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Classical definition of probability:
Let *n’ be exhaustive, mutually exclusive mdquaﬂyﬂmmmﬁmofﬂﬂumﬁmmbhm an

event A then the probability of A is defined by — and is denoted by P(A) orp. So that

m
PAF—

since 0gm<n, P(A) lles bcrwunﬂand L. Whent!mm IS nO' eknmarymmﬁvumahhmh, then
P(A)=0 since m=0.

Example 1. Let a six-faced die be cast. Find in probability that (i) the number shown on the die is odd
(i) the mumber shown inthe die s divisible by 2 and:3 (i) the mmber shown op the die i divisibieby 2 and
5

‘ Whenadmscastmmmmcasest.2345ar6 Thﬁcmexhaustm:.mumaﬂfmhmmmd
equally like. .
(1) If A be the event, then the favourable cases for the eveest Aare 1,3,5.

BAy3 =3

(ii) IfB be the event, thznthertisml}fﬂmﬁvnurahlemse viz6. -

PEr

(ui} Dtnofl,z 3,4,5 or 6 no one is divisible by 2 andﬁ chu tf{:dcmtesthuwmt
P(C)=0.

Example2. Acardls{h'amatmndnmﬁ'umaweﬂshlﬂﬂdpnck{}fphymgmds, Fmdmpmbahhrym
it is (i) a king (ii) a queen of spade (iii) a heart. .

In a pack of cards there are 52 cards and any card may be dmwnmdh;nce totnlmnnber of
cases is 52.

(i) Let A denote the cveut.'l'hmm fuu;rkiugsandsq mni:ﬁnfﬁmmbhmmﬁbrduwhgakhgis
4,

1
P{h —'=—

(if) Let B denote the event. There is only one queen of spade.

1
. P@Br3;




(iif) Let the event be C. There are 13 hearts

Ll
. | e
Limitations of Classical definition : !
The classical definition requires that ‘n’ is finite. But there are instances where it may be infiite. -
Secondly we assume elementary events to be equally likely. This is also need not be true always. For
example in tossing a coin, there are two events head and tail. Unless the coin is unbiased they may not be
cqunﬂ)rEk.eI}LTngctapcrfml)runb:ased{me:savcrydﬁcuhwndnmnHmeprobahﬂnynfabtmnmg
aheadmrhanymmmnbeubmmdﬁbmthmcald:ﬁmmn

Statistical definition:

Tuovmthdﬁm%mmmndmclmuldeﬁmmmhrgemmufnﬂufﬂndm
experiment is considered . Let m be the number of occurrences of an évent A associated with the n
nxlepmdcmmnh ufmndumexpermLTh&pmhahbtyufthewmAs deﬁnedby '

P'[J“-}= lim ';
. n—w
Example: _ - :
In tossing of a coin 1000 times heads comes up 537 times. The probability of head coming up is
' ' - 537
_IOGCI:G 537.

But this definition of probability also has drawbar:ks because the large number mvolved m
definition is vague. - ;

As both the definitions suffer from certain defects, another approach has been put forward to
over come all defects. The approach is known as axiomatic approach of probability. Before considering
this approach, let us introduce another concepts know as sample space.

Sample Space:

A set S that consists of all possible outcomes of a random experiment is ea]Iﬂd a mmpl: space. Each
outcome is a sm:q:lc pomt.

E.nmple_:{.ctusm:_:siderthemsuhufcaahgasb:-ﬁceddje;l‘heommmwﬂlbeﬂéappmmce
of one and only one of the numbers 1,2,3,4,5,6 on the upper most face of the die. In other words the six
passﬂnht_u:mmhthﬂmmﬂornmmﬂfdwmcanmsum]tamuuslyandaﬂmst one of them must

occur. The sample space S is {1,2,3,4,5,6}. IfA denote the event of occurrence of even number then
© A={2,4,6} which is a subset of S.

Let us generalize the concept.
Let all possible outcomes of some particular experiment be €, &, ..., &, which are such that no
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two or more of them can occur simultaneously and exactly one of the outcomes must occur when in
Whmﬁm&ﬁwsﬂmhmﬂwﬁhmmmmﬁtmmm
properties is called a sample space. The elements or points ofa sample space elementary events of the

If a sample space has finite number of points then it is a finite sample space. If it has many poiots as
there are natural numbers then it is a countably infinite sample space.

Example 1: [f we toss a com twice, the four possible results are {HH,HT,TH, TT } which is the sample
space. . '

Example 2: From anurm containing 4 balls of different colours red(R), Blue(B), white (W)and green(G);
draw two balls simultaneously. The sampbespw:forlthh experiment is {RB, RW, RG BW, BG WG}.

NotcRBmdBRmprMﬂnsamenummbﬁmmwcdmwhﬂsshnmﬂthdof.
balls drawing simultaneously, let us now draw balls in succession with replacement. The sample space will
be {RR, RB, RW, RG, BR, BB, BW, BG, WR, WB, WW, WG GR, GB, GW, GG}.

Note: In this case RB and BR are not same.

Do the following: .
1. . Describeexplicitly sample space ofthe following experiment.
(i) Tossing of a coin three times.

(if) There successive draws(a) with replacement (b) without replacement from a container containing
6 coloured balls of which 1 is blue, 2 are red and 3 are white. :
(i) Casting of 2 dice simultaneously. |

(iv)A-::ardis drawn at random ﬁ'nmanordharypack of 52 playing cards, ifthe consideration of
suit is not considered and ifthe consideration of colour is not considered.

Axiomatic definition of Probability : Let S be a sample space. IfS is discrete then all subsets correspond
to events and conversely. IfS is an discrete only special subsets correspond to events. To eacheventAm
a class C of events, a real numbers P(A) is associated. Then P(A) is called the probability of the event A
if the following axioms are satisfied.

Axiom 1. For everyevent A in the Class C, P(A) > 0.

Axiom 2. For certainevent S in the Class C, P(S)=1.

Axiom 3. For any number of mutually exclusive events A, A,, .... inthe class C,

P{AEUA:U,,,.FP(AI) +P(A)+ ...
In particular, for two events A, and A, P(A,UA)=P(A ) +P(A) C

Let S be the sample space {€ ,&,, .... , €,} -




. ) n 1
and P({e}}=p,i=12,...,nsuchthat 0 g pl and i§lpi=l. Now P({e})=7 -

If ‘E* bean:;.rwmtmmisting ofr (1 <r <n) elementary events then

1: "1 ) r
P(E)"’;+E++{rum}=a
; n(E)-

ie HEFE

where n(E)=number of clements of E  and n(S) =number of elements of S.

Calculation of probabilities: |
Examp.e 1: Two dice are thrown. Find the probability of the event where Eis -
' _{i}Sumufthnnmnherﬂmwnbythemu dice are 7.
(1) the number on the two dice are equal
(i) mumber on the 2nd die is greater than the Ist.
 ‘The sample space S consists of 36 elementary events

 DE{1LOCHBHAHGDED). So, HEF3e=5

@ ES((LDRDGIENENES) So. PEy¢ -
| GEYE~{(12), (13), (14), (15), (16), (2:3), 24 2.5), (26), 3.4, 3.9), 3.6), (4.5), 4.6,

(5.6)}
I8 -5
So, P(E,)-EE-E
Enmpiez.Ammimssodmcetm‘ in succession. Find the probability of the event that have
(i) two or more heads '
(i) exactly one head and two tails

{ih}nﬁmbuafhegdsequa]shmb&mf:aﬂs, The sample spaceis
{(HHH), (HHT), (HTH), (THH), {TH'T] (TTH), (TTT)}.
E ={(HHH), _(}ﬂms (HTH), (THH)}.

g W |
So, P(EI}=§=E




E,={HTT), (THT), (TTH)}. So, HE,)-%

E {(HHH) (TTD)}. So,P{E:J""“‘
Example 3: meapnckafumulphymgcards a card is drawn at random and is noted. Calculate the
probabilities of the following cvents: ,
{1}fh=d:awncardmmh=rasl;adenrnchbs.
(ii) the drawn card is a picture card .
(iii) the drawn card is of denomination less then 10 and greater than 5.

The sample space consists of 52 cmumcmmm each ofthe 52 cards than
canhe drawn from the pack.

@ ME,uhmﬁm&mmhawmcm ThenE, consists of (13+13)=26 clementary

i
PEF =7

{u)%umﬂuﬂnnMWdhapmm}mmmt&mupnmmmmﬁzm
4)[4=-lﬁcbmjrm
i6_8
. . e -y
(iii) E, be the event such than denomination lies between 5-and 10 . E, consists of 4X4=16 elementary
Events ' ; " .

P51

Som:theoremmnprnl_ﬁbﬂ_lty:
Let S={e,¢,,....., ¢} bea sample space ofan experiment.
Theorem1.  P(S)=1.
Pmﬁﬂnrdeﬁmnm P(S}—P({c IHP({e,y——+P({e.}) =ptp,+~—+p, =1
This theorem is véry trivial.

Theorem 2. If A and B are two events such then A Bthan P(A) < P(B). |
_ Proof: Ac B = B contains all the elemientary events of A. :
The probability of B is equal to the probability of A plus the sum of the probabilities attached to




those elementary events which belong to B but not to A is B-A. Since any probability is a non-negative
number, . '
- P(A)<P(B).

Theorem 3: Foranyevent A, 0<P{A) < 1.
Byaxiom 1, P(A)>0. Again foranyeventA, AcS.
~ Bytheorem2, P(A) <P(S)=1 bytheorem 1. :
. HemceO<P(A)<). |
Note: P(A)=0= A is an impossible event and P(S)=1 = § is sure event:
But converse s not true. Far;xm:phletusmnsﬂcrtbesmplcmc: S={HH,HTTH.TT} _
Letusmtgnd:eﬁ:ﬂnwngpmhbilma -

. 'E .
- fA={HT,TT} the P(A)=0;but A is not an impossible event
. Againif B={TH,HH]} then P(B)=1, though B is not a sure event.

- Theorem 4: Probability of impossible event is zero.

Let P denote impossible event. We know S=5 U P ,
= P(S)=P(S U P)=P(S)+P(P) byaxiom 3
= P(P)=0. : '

Theorem 5: P(A-A )=P(A )-P(A)
?chnuwthat A=A U(A A )=where A and A -A are mn.tuali}'sxclmwe
P(A)=P[A, L (A;-A)]
. =PAYP(A-A)
=P(A-A =P(A)-P(A) -
Theorem 6: If A’ is the complement of A then P( 4" }=1-P(A)
We know that” A A'=S.
" Hence P(A A*)=P(S)

- = P(AHP(A) =1
= P{A’)=1-P(A).




Composite event: When an event comprises of more then one sample, then the event is called a
composite event. The event A B comprises of the sample points in the whole region bounded by A
and B. AU B is also denoted by A+B. Similarly, event A~ B is denoted by A.B.

Theorem 7 (Addition Theorem): For any two events A and B,

P(Au B)=P(A)+P(B)-P(AB). : |
Proof: Let the number of sample points in the sample space Sben. Let the number comprising the
event Abe mand that the event B be r. The number common to Aand Bbek. ThentheeventAuB
comprises of sample points that belong to Aor Borto both. Hence A U B will have m + r -k sample
points. P(A s B)= sum of the probabilities ofthe m*+ r-k sample points belonging to Ay B.
P(A)=sum of'the probabilities of m sample points belonging to A.
P(B)= Sumofthe probabilities of r sample points belonging to B

P(AB)=Sum of the probabilities ofk sample points belonging to AB

_ P(AUB)=P(A)+P(B)-P(AB). _ .
Corollary : If Aand B are mutually exclusive then AB=P so that P(AB)=0 Then
' P(AUB)=P(AYP(B) W
Deduction: if o’ denote the complement of AthenA p'=PandA L A'=SThus
P(AU A')=P(S) - 5
=P(AHP(A" )1 | -

" = P( A )=1-P(A) which s theorem 6.

Generalisation: IfA ,A, A, be any there events then

P(A,UA,UA)=P(A) + P(A) +P(A) ~P(A A) - P(AA) —PAA) + P(AAA)
[t can be generalized to n events . o

' Example 1. From an ordinary pack of cards a card is drawn at random. What is the probability that it -
_ (i) 3 of clubs or 6 of diamonds (ii) any suit except heart (ifi) a jack or a queen
(iv) either a spade, or aheart or not a picture card.

(i) Let Adenote 3 of clubs, and B denote 6 of diamonds. Now A r'\_B'=¢L '

0
P(AUB)=P(A)+PB) =55t 537 2¢

32 26




(i) IfH denote heart then gy’ will denote any suit except heart

3
P(H' FI-P{H)F‘"-——

(iif) Let A denote that the card is Jack and B that it is queen. anAﬁB-nb,

s 2
PAU B}FP{A}*'-P(BF;; B5

(i) Let S denote spade, H denote heart and A denote pictire card. S and H are mutually exchusive
(S H=$) but$ and A, Hand Aare not mually excsiv.

P(SNA)= —35 and P(HNA)=_-

P(S}:F—-— P{H}:— al:ﬂ P(A }I...—

| P(SuHuA}-.f‘(S)+P(H}+Ptﬁ)—P{5ﬁH)*P(Snﬁﬁ'—l’(ﬂhﬁl+PlSni_iﬁﬂ}
RS TN IO S - P i

52525252525213

Enmpthbmughmma persons are to bcchnsmwtofﬁvecmd:datﬂh,ﬂ,aﬂ E,
nquﬂuhmnesufbulgmwd. Find the probability that -

{}Aandﬂmdecwdmﬁmd(:mm
(i) E is elected or C and D are elected.
_LetE,bnﬂaementthﬂAandBmahctedde bﬂ!mwcutthatﬂand(:m:hcted.
- $={ABC,ABD; ABE,ACD, ACE, ADE, ADE, BCD, BCE, BDE, CDE}
@ E={ABC.ABD ABE), E,={ABC,BCD,BCE}. .
E,E,={ABC}.

3 =i, i}
PEy . MBI  PEAENS

3 g8
] PEVE> 10710 10,10 2
(i) E‘={HBE:,JKCE, ADE, BCE, BDE, CDE}, E={ACD,BCD, CDE'}
E,ﬁE‘={cnﬁ} ;
'% 1 S 4

| ﬁ
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Conditional probability: _ :
Suppose birth day of one of your friend is the September. [fyou do not k;mw:lhyl:lﬁngmrehbum

; : : L]
his birth day then the probebility of any day in september being his burthday is 'j'ﬁ'.hﬂﬂnda}mnfSeptenﬁer
are the sample points. Now if somebody tells you that his birth day is during the first 20 days of september -
. | i :
than the probability of any day in september being birthday is 20 , the number of sample points in this case
is 20. Thus additional information may change the probability of the happening of some events.
Let us now consider the problem of casting two dice. Let A be the event that the sum of members
_in the two dice is 8. Then the sample points are (2,6), (3,5), (4,4), (5,3), (6,2). Since there are 36 points
5 . ;
in sample space we got P{ﬁ}=~j—g,Lﬂusnuw impose one additional condition that the 2nd die should

show 4. Let this event be B. For this condition the sample space will be (1,4), (2,4), (3,4), (4,4), (5,4),
(6,4). Under this additional condition, the event that the sum of the numbers shown on the faces ofthe two
die is 8 is a conditional event and symbolically devoted by (A/B). Now the conditional probability

?{Mayw%.
Let us now generalise the result. P(B/A) denote the probability of B given that A has aiready
occurred. Since A is known to have occurred, it becomes a need sample space replacing the original S.
Let i=number of sample points common toAandB :
. j=mxmberufsamplcpdimsmmprisingh
n = total number of points in S. :

: B . i
Now, E=P{ﬁB], E_P(M . and A P(B/A)
i
i 0 .PAB) .
PB/AFET= ]  PA) > P(A)= 0. -= P(AB) =P(A)P(B/A).
4 % :

This is multiplication rule. This rule will hold only if P(A>0
Examplel. ' :

Acoin is-tbssc& three times m succession. A is the event that there are at least two heads and B is the
event that first throw gives ahead. Find P(A/B). ;

S=(HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
'A={HHH, HHT, HTH, THH} ~
B={HHH, HHT, HTH, HTT}

. 12




PlAr E_}[
P(A/B)=  p(B)

oo | 4 [oo | W
i
F N

Example 2.
Two dice Green (G) and red(R) are thrown. A is the event that the number of G is greater than number -

onR and B be the event than sum of the mumbers o two diceis 7. Find P(3/; Jand P(85)
A={(2,1), (3,1), (4,1), (5,1),(6,1),(3,2), (4.2),(5,2), (6,2), (4,3), (5,3) (6,3), (5,43, (6,4), (6,5}
B={(6.1),(5,2), (4,3), (3,4),(2,5), (1.6)}

AAB=((6,1),(5,2), (4,3)}

3

P(AB) 36 _ !

- BA/Bjeas PB) 6 2
36

Example 3.

A box contains 5 black and 4 white balls. Two balls are drawn one by one without replacement. If the
first drawn ball is black what is the probability that both the drawn balls are biack

LetAbe mee»emmazﬁmbandmm is black. Then P(A)= 74«

1_
Le:Bbetheemuhaxzndbaumlsomackp(%)-m==—

51 5
PHB}BP{A}P(P[% Jmz o

Example 4. .
If an event A must result in one of in two mutually exchusive events A, and A, then prove that

RAVB(A). (YA, )+ B(A) BV,

weknow A<(A~A)JU(ANA)

AnA, and A A, are mutually exclusive since A and A, are:mmmﬂy exclusm
P(AY=P(An A JHP(ANA)=P(A). P(MA JHP(AP(A/A,).

Independent events: if the probability of B occurring is not affected by the occurrences or non
occurrences of Athen A and B are said to be independent events. In than case P(B/A)=P(B) and

13




P(AB)=F(A)-P(B)
Conversely if P(AB) = P(A).P(B) then A and B are independent .

Example.

' Find the probability of a 4 turning up at least once in two tosses ofadie.
ﬁﬁ-ﬂvcn,tdronthcﬁmtmss, A_=event 4 on the 2nd toss.

ThmA LU A =event at least one 4 turnsup. A andﬁﬁmnmmmﬂymhﬂmﬂm

P(A, U A) =F\(A) + P ~B(AA) = P(A,) + P(A) - P(A)P(A,)
A 5 o

1 1-3.2
6 67636
Some results on Independent events:

1Ifhandectwowr:ntsm.v:hthanP{A};&ﬂ,P(B];&ﬂmdAssmdepmdﬁﬁothhu&Bls :
independent of A.
; AlﬁmdcpumntufB:::rP(AfBPPfh).

= P(AB)=P(A)P(B) = PBA}R(A).P(B)=> gﬁ-rm:rmwm .-

=anﬂepmdeﬁuf¢\. ;

2 ﬁ.aﬂdBmwmmauchtbm?{h);ﬂ,?{B}gﬂthmhmdBwiﬂhndepuﬂmmﬁ
' . P(ABFPEh}Pt'B}

P(
A and B are independent = P(MB}-P(A) =5 P{B}} =PA) = P{EB}?P{PL}.P{B)
| Conversely lot P(AB)=P(A).P(B).

| P(AB) s ] -
Thm PA) =P(B) = P(B/A)=P(B)=>B is independent of A.

3. AandectwamdepmdenimtsAaneP
' A and B are independent = P(A) = 0,P(B) # 0
' Ifpossible let A~ B=P. Then P(AnB)=P(P) =P(A)P(B)-0.
Which is acontradiction to the fict P(4) 7 0,P(B) # 0. Hence An B« P |
4.IfAis mdependent of B then 4’ is independent of B.
" B=(AnB)u(A'nB) adAnBand(a’ ﬁB)aIemumaﬂy:xc'mswc




P(B)=P(A~B)+P(A' BFP(A).P(BYP(A" B)= P( A’ B)=P(B)[1-P(A)]
=P(B).P(A")
This shows 4 * is independent of B.
Three events A, A, A, are independent if they are pairwise independents
P(AA=P(ADP(A) i jwherei,j=123.
P(AAA=P(AP(A)P(A,)

' Baye’s Theorem:
LetB,B,, ....,Blbemuiaﬂyexﬂh:siwemsmdnhatﬂr}r forma partiionofSie (B,uB,u..UBJS.
Let A be an event which can oecur in conjunction with any of the events B(F1.2, ... k). -

The probabilities P(B) (i=1,2, ..., k) without any regard to the occurrences or not OCCUITENCES of Aand
conditional probabilities P(A/B))(=1,2, ..., k) are known . Then

"(4)- @)%

k

ZP(B,) F[%r)

Proof: Sinﬁchﬂmn‘igmnjuncﬁonwithontym ofthe wents_Bi, =12, ..,k

we have

A=AB +AB+.. +AB,
. Again AB, are mutually exchisive. . '
P(A)=P(AB,)+P(AB) +... + P(AB)

=?fB..}?(%,J+HBJ-?{yBJ"'P(BJP(?/BJ
(%) e

— R
Again Pfaga}-P(P (ﬁ‘)f P;?f;}- @

P(AB)=P(BA)-P(B) P [%J . G

15




From (i),(if) and (iii) we get,
Al
p(B/] P(B, }.P( L )
A
E P(B, }P[ J
. Example.'l’.’hﬁam &neeums;lh,ul,u,, The contents of the ums are

u: 1 white, 2 black, 3 red balls.
W Iwhitf._', 1 black, 1 red balls.

! 4 white, 5 black, 3 red balls.

Each urn is chosen at random and two balls are drawn. They are white and red. What is the probability
that they come fromumu,?

LetB, tf:nd:etheevemthatﬂmnhmnlschﬂmSmtheummﬂmma]

P(B|}=P(B,)=P{Bl}=§.

Let A denote the wm-mcwh.itnaudunercd ball are drawn.

{96)=3 "08.)=4 (o)=ir. reerrer ()55

P{AB,)-P(B)"(% )--" s P(“BJ;P‘[EJF{%;) ';T 1

L 1.2..1 118
P(AY-P(AB) + P(AB,) + PAB) =1 (341 +)=3 1o

11 -
P(B/)=P(Mi:) Aoy 00 168 S8,
A P(A) 1 13 3x118 118

Example 2.

Box I contains 3 red and 2 blue marbles, box I1 contains 2 red and 8 bhue marbles. A coin is tossed. Ifit is
head, amarble is chosen from box I and ifit is tail then the marble is chosen from box I1. Ifthe person who
mss:ﬁﬂmmmdmmtrevcalnhmdmtailbutrewa]s:hatamdnmrbwmc}mscn.whansﬂrprohabilny

that box Lis chosen ?
LetR, I, Il denote the event that a red miurble uthatmbnxlamibux I1 is chosen respectiv= l'y :

}_"{[)-I_-P(I[}n‘z— P(‘%’)——-% : | u)




By Bay'es theorem.

LA rels)

PP J+ Panply
LR &
Lo o g R
13,12 3,2 “¢+s2 "¢
25210 5

10

Random Variable '
anmnhpnmufamhspmweassignamni:et.'i‘hcnwegﬂaﬁmhndeﬁmdnnth:

sample space. Thaﬁmmsmﬂdnmndam(urmhﬁ&]mhhkmﬁmhha’mmﬂed ;

random fimction. ' _
Let us consider the experiment oftossing two coms. The sample space is S= {HH, HT, TH,

TT}. The outcome uquhammdmdwcﬁbadbyatmhna Now let us find anumerical valuéd
- function of the sample points. Lﬂmmmﬂﬂthcmmﬁaommwnmdwcﬂmbyx.%wﬂ

exhibit it ma table
Sample point HH Hr T™H TI
- X s g 1 1 0
'Concspondhgtodnsmphpom*}Emex=2,mthemlepumHT{orTH}mmXﬂ and
tuﬂnpounTTwes:‘tx-D

Lﬂmmwcmﬂcrttnmcummﬁmgcxpcmmmhsp&cem
S={HHH. HHT, HTH, THH, HTT, THT, TTH, TTT}.
Lﬂpsmwﬁﬂmﬂvahmdﬂmnnbymﬂmmemmtaﬂfhmdsshuwnmddmhnhy

%
smsepotm HHH HHT HIH THH HIT THT TTH TIT
X -3 - SO LA gy B 1 0
i the feat cases BX=D) =k BRIy 4=, PORO)=T

Inumzndmep(x-=3}-=-l- P(x=z)=i, p(x=1}=%, p{x=m=1‘

L:tushnwmnsui:-rmmmmafﬂwvmgldm Thcsatq}ksgmcchaﬂﬁpnmts Let X
bcthcsmnnfﬂicmmbmshuwnmthemadm For each sample poirit we get a numerical value.

17




There are some sample points which may correspond to the same numerical values. For example the
points (1,3),(2,2) and (3, 1}wmg;m:X=4butxv—12ﬂubtam:dﬁ'umoniyampomtiﬁﬁ}.)(canmt
have values O and 1. .

1 ' 1 1
?fx-1)=‘ 36 P(X=3)=12, P(X=4)=l—2-, . P{J{-S)-E
1 1
P{X=ﬁ)= 36 ' HX=T)*E - PCPS)" 36 PX=9y3
1 1
P{K‘lﬂ}-ﬁ P{X*'II:F 18 P{X‘HF—

Here we discuss random variables which assumes only integral values. Suchrmdnmmﬁbhm
known as discrete randumvamblcs

Discrete Random Variables:

Let X be a discrete random variable and let the possible values that it can assume be given by
B 7. S mangedhsamurduﬁuppummmﬂwxvakmmmtmdwihmhbﬁﬁwgimby

PX=x)=lx) - k=12....
Notethat T POX=x)=1.

Let us now introduce the probability functionby P(X=x)=f{x). Fmﬁﬂaﬂx)mm _
P(x=x)=f{x,), which for other vahies ofx, f{x)=0. Thus we get fx)>0and E fx)=1.

The distribution function (curmlative) for a random variable X is defined by F(x)=P(X < X)wherexs .
any real numbers (- 0 <x<a0) '

lim ' lim
X—>—a0 F{x)=0‘ j X—30 Fx)y=1
FOO=POX %)= 2, 9
Continuous random v:ﬂ:hlu

A non-discrete random variable X is said to be continuous if its distribution ﬁ:mhnnnn_vhe
represented as

F(x)=P(X $x)= [fu)du

.whcreﬂujhﬂsthcﬁi‘opcrtics 1. fix)=0 _ 2. ifl[u}tiuﬂ




IfX is a contimuous random variable, the probability that X tosses on any are particular value is zero

. b
‘where as informal probability is | P(a<X<b)=f{u)du.
a

It now ﬁlhwsthatﬂkammﬁnmmmndnmvaﬁabk,thenmembabiﬁwmxmmmy one
particular value is zero, but when X I.iﬂbct}vemnmdi&mnmhﬁil is given by

b
Pla<X<t)= | flu)du.
a
Mathematical E:putaﬁnn

For a discrete random variable X, having rhcwhmx‘,g.x,——x‘the nnthcmmimmm-
tion is expected value or expectation of X is defined as.

- .
EQO)=x, P(X=x)+x,PH(X=x)+.. +xP(X=x)=E xPX=)
' u
=i'fl x, p, where p,=P( X=x)
Hmummmmmmmm%m

X, +X, FoeatX

E.;x),.__i__z__ whmh:sthcﬁ..h!ufxi,xl, x,mmn(x:._-
Examplel. AdmcmhmwnFmdﬂmexpwcted vahmfthemmnber}{shawnonthnfam
X can assume the values 1,2,3,4.5,6 with equal Probability E

i 1 ; 1 1
EQO=1, *+1—~+3.l+4.~;—+5.—+ﬁ.—=72=3,j

Enmplelﬁndmcmﬁnﬁwn IFthhemnfthenumbmShnwnunﬂnﬁcﬂoﬂhemrudm
find E(X) X can take vahies 2,3,4,5,6,7,8,9,10,11, and Ilwﬂhmrrespﬂndmgpmbabihues

1,284 & & 3 &8 .
36’ 36° 36 36 36' 36’ 36" 36 36 36 345 {“md’ ussed)

1
E{XFE (Z+6+12420+30+42+40+36+30+22+12)=T7
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The expected value may not be any value of X. Ttmughmmemnieumpkwcmthntthc
- expected value 7 is one ofthe values of X, thmeﬁrstexmleﬂmcxpectndnnmbeﬂ« 5 is different
from the vatues of the variable X.

E(X) may or may not exist when X takes infinite nurnber of values. The expected value, E(X)
whmcmtsmcalhdthepopuhmnmnuﬁh:pmbabﬂnymandndmmdby p. Hence

E(X)=p=x

Expected value of functions of random variables:
' The expectation of a function G(X) of a random variable is defined by

n n
E[g00F 2 g0)POC)=.Z (P,
where X , X,, X, ....., X, are the values of the variable X and p,, ;i:. .+ P, ar€ the corresponding

. Example: Aﬁndumvuuhhxmsmﬁmdmhnmnumﬂwmmgm % S Iﬂwiti_l:mqﬁalpmb—
ability. Find the expected value of X and X*. :

i
X assumes the values 1,2, ...., 10 with equal probability 1o *
E,(X)mtiﬂ(l +2+ ...+ 10=55

E(X’)m-l-ia{ﬁ 22+ 3%+ ... +107)=38.5.

| Properties nfupectaﬂun:
(i) E(c)=c where c is a constant

n g n :
E(c)= 'EI CP{X“E}‘;'Cf P(X=C)=C since ? P(X=c)=1
1=
(ii) E(aX)=aE(X). : |
Let X be a random variable and ‘a’ hcacnnsanansun:smhnx,.x? ..+X_ with prob-
abilities P(X=k )=p, '

" n " g
Let g(X) be fimction of X. Then E[g(X)}=E(ax)= iEI ax P(x=x)

n :
=a _Elxi P(x=x)=a E(X)
i=




(iif) E (ax+b) =aE(x) +b where ‘a’ and ‘b’ are constants.
Let X be a random variable which assumes values :L,,:g-ﬂx.withprmbabiﬁxy ]_?{x-xi}mp,.

n i n
E(aX+by= = I{aiﬂ.+b)P(K=Jc,}= z lm&-l’(x“&} + _1"-1 bP(X=x)
1= 1= 1= .

n n
=a 'EI x P(X=x) +b 'El P(X=x)
i= ! i=

| =aEQO+b. . _
() Elgxye=Elg)} e - by property ()
(V) Elcg(x)=cE(g(x)] by property (i)

Jolnt distributions : Let X and Y be two discrete random varisbles. Then the joint probability fimction
anand‘(mdcﬁnedby :

P(X=x,Y=y) =flxy). where
1. fixy)20

2. f ?f(x,ﬂ-L
Ifxﬁmﬁmynmoﬂhewhmxpx‘,...,:gdemmmyomnfﬂnmn,yr._;y_thm
ﬂ:epmhabﬁityﬂfthemudnt){ﬂmd‘{-ﬂhghmhy

PO, Y=y)fxy)- . _
mmmmmm&hhmmﬁIMMmWKMYk
; o ' -
defined by fix,y)>0and |

—a0

oo ;
J fixy) dxdy=1.
m -
Expectation of sum: [£X an'Y are two random variables then EGX+Y) = B(X) + E(Y).
Proof: Let f{x.y) be the joint probability fumction of X and Y. Then :

| b

B = E 2 (x+y)xy)

whgrcxl,xz, ,..1x'andyl,yl,...,.y_mthevahmoﬂ{mﬂ&'andf{x,, j)=Pi:X=xPY;-3rQ

m 2 n m .

o |
I E > = '
B2 o AT WY By PR
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Independent random variables:

Let X and Y be two discrete random variables. Ifthe events X=x and Y=y are independent
events forallxand ythen X and Y are ndependent random variables. Ln such case,

PX=x,Y=y}=P(X=x)P(Y=y) or - fxy)=£(x). L)

Conversely if for all x and y the joint probability function f{x.y) canbe expressed as the product
of a function of x alone and a function of y alone then X and Y are mdependent.

Mathematical Expectation of product:

If X and Y are independent random various then ECXY)=E(X).E(Y):

Proof: Let f{x,y) be the joint probability finction of the discrete random variables. Since X and Y are

todeomaiiont coadonm Wkl _ . i
fix,y)=t,(x).£(y)

where £ (x) is the probability function of X and £(y) is that of Y.

EXY)=Y T xyf(x,y) =Y 31 £ 05, = Lxf(x)2yH() = EGCOEXY)
L ¥ E Y - x ¥

Variance: Let X be a random variable with expected value E(X)=p. The variance of X is defined as
E[(x~p)"] and is denoted by Var (X) :
Var(X)=E{(X-1Y]
=EQC-2p0+Y)
=E(X")-2pEQQ +1’
=EQC)2p et
=E(X) -’
"ECO)-EOF
From definition it is clear that variance is a non-negative number. The positive square root of varriance
is called standard deviation. The variance is also denoted by & : .
. o=Var (X)=E(<)-1" _
. Standard deviation (S.d)=&. S.disvey impertant concept of statistics.
Probability distribution of functions of random variables:

_ Let us consider a problem of drilling for oil. From record onthe average only one in 10 drilled
wells strikes oil. Let x be the number of drilling unit the first strike of well Here x is a random variable

taking values 1,2,3,..... Let the experiment of drilling be independent.

The event [}C=l]denpt¢sﬂ1ami!_is striken at in the first driling.
P(X=1)=0.1. '




If the first drilling is a failure and second drilling yields oil then X=2.
Then the two events are independent and probability of first is 0.9
So,  P(X=2)=(0.9)x(0.1)=0.09.
similarly P(X=3)=(0.9) x (0.9) x (0.1)=0.081 and so an.
In general P(X=n)~(0.9) (o-1)0.1), 0=1,2,.....
lﬂusmwde&edmimnnﬁnmnnsF(xFP[ng]
Then F(I)P(X<1)=0.1 2
FQFP(X< iFP{X"I}*?(K’TF'D 140.09=0.19
F(3)=P(x < 3)=0.1+0.19+0.081=0.371 andsoan
In general F(x)=P(X < k) -
Thus F(x) is carmulative distribution fimction

la}(b:admcrewmndnmvmhlewnhprohbﬂnyﬁmamﬂ:x] 'I'hmY=g{K)mahn discrete random
variable and probability function of Y is

: hy)=P(Y=yT P(X=x)= fik).
[thaknsvaﬁ:ﬁx*,x:, ..... ,x,‘md‘fthavahﬁyl,yl, .Y, (mgn)then

Y,y Hyh(y,) + oo+ y Dy, ) = 20X + ﬁl)f(&}" ------ + s(x,‘iﬁx.lu
E{gX)}=x g()fix). :
It x:sawmmrm!mnvambh immg;mbabihtydmﬂtyﬂx)thm

_ Bl [ gtofode
IfXa:ﬂYarctw;:mnt'n:nmm random variables having joint probability density fimction f{x,y) the |

Efg(xy)}= Jf, [ stxy)ixy)dxdy.

Enmple Two dice are thrown. If}[uﬂwmufthemmbn-sshumonthcﬁcuofﬂ:mdm ﬂncl
the s.d. ofthe sum obtammed.

E(X)=7 (Already calculated)
1 % B 4 5 6 .57 3 2 1
22— e — e —+ T — 8L — 102 —+11% 128 —
B e A - a ae ae i g 35+ %3 g
= 54.83 g '
o=E(X)-{E(x)]*=54.83-7"=5.83,
s.0=./5.83 =2.41




Theorems en variance: _
Theorem 1.Ifa be a constant and x be a random variable then
Var({cx)=c*var(X)
- Var(eX)=E[(cX)}-E[cXF

=E[(cX)-CEXF -

=CE(X?)-ECOY

~CTEC-(EQOY 1= Var ()

cor. "'u"ar (a+bx)=b? var(x)
Theorem2.  E[(X-a)'] is minimum when a=E(X).

E[(K-ay=E[{(X-) + (n-9))7] ~ where u=E(x).
=E[(rp+2(cp)-ay(al]
=E(x-pj+2(n-2)E(x-) + (p-8)°

- =E(x-p)*+ (p-ay since E(E*P«)':E(K}'H'ﬂ
Thus Ef(x-a)] will attain minimum vabue when a=j ie. when a=E(x).
Theorem 3.Var (X+Y)= WG{)-I-V::(Y)
Let E(X)y=p, and E(Y)=p,.
: Then Var (X+Y)=E[ {(c-y)& SPFEL{G O]
=Ef(x-41 P 2BICcep Xy-s Ly, Y)

We know that E[(x-H,Xy-#I=E[(x- )} B[(y-4)}=0.if X aod Y and (X-4,) and (Y- ) are indcpen-
dent.

HmVaI{X+Y)=-\Fm‘(X)+W{'Y}.
Snm]aﬂy:tmnbepmwdthst Var(X-Y)= Var (X) -Var(Y). -

Example l.ﬁmhismmdthreetmandxisthenmnber ofheads shown. Find E(x) and var (x).
The sample space S is : '
- S={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

1

' 'xasmmmhlmlil,l,ﬂwithpmhahﬂm‘:sg 5’ E’y rcspﬁ’:twel}'

— Ll o 30 g
E(x)=3.5+2.3+. 5403 {3+&+3)= T

B9, L 44,341, 240.3 =
(xFSgragtlgtig™
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9 3
Var(x)=EQ)-[E(X))=3- =7

Example 2. In a lottery there are 200 prizes of Rs 500.00, 20 prizes of Rs 2500.00 and 5 prizes of Rs
10,000.00. Assuming there 10,000 tickets are to be issued and sold what is the fair price to pay for a
ticket? '

Let X be a random variable denoting the amount of money to be won on atickets. The values
of X together with corresponding probabilities are shown below

X: 500 2500 10000
200 20 5
PX): 1000 10000 10000

E(x)=500x 0.02+2500x0.002+10,000 x 0.0005=20
Thus fair price to pay for a ticket is Rs 20.00

Bernoullian Trails :
Ifa random experiment be such that there are only two possible out-course (*Success’ and
“failure’ type), the trail corresponding to this type to random experiment is called a Bernoullian trial
A random variable X which assumes only two values say 0 and 1 is called a Bemoulli random
Let X=1  whenthe trialgivesa success with probability p
0  otherwise with probability 1-p=q. '
Innotation, P(X=l)=p '
' P(X=0)=q
where 0<p<1 and p+q=1.
The above probabilities define an probability distribution of the random variable X.
E(Xy=Lp+0.g%p. E(X*=1p+0g=p.
Var (X)=E(X?)-{EX)}*=p-p=p(l-p) =pq.

If we are to find the probability P(X=x) we shall see that in one trial, if x be the mumber of success then .
(1-x) will be number of failures. Then P(X=x)=p*q"* p i 18 Pl AT
For example, m throwing a die, if we regard the appearance of an even number as success and
1

. 1
appennuéeafﬂmoddnm;sfaﬂmumnwithp=§, q=7 we have

P{X=l)="% : P(x=c})=~]£
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where X=1 represent success and X=0 represent failure.

In the same experiment if we regard appearance of six as success and appearance of other
numbers as faihire then

P{X=1}=-l- and P(X=0) =-~5~

Agzmlfmndmeamthmwnandappcaramcufsmﬁamassmdappemmufath:r
mmbers a failure then

2
P(X=2)=P(SS)= G‘:)

ax|-~
chru-
::n}-'

PfX“I}“?{SFFP(FS)—

_miu;

P(X-—"DFP{FFF[%)_
Momenis : -

The r th moment of random variable X about any point x = ¢ is defined as E(X") and is denoted by

p’ .. This is sometimes known as r th raw moment.

W, =E(X-0) =306~ p, =2 Th(x, =0, N=Ff, p=it

=izfﬁ.-’= where d; =X;~c
N i :
In Particular 2nd moment about ¢ will be
ny =E(X~c)" = 3 (x;~c)'p,

The rth moment about the originis defined as

u =EX")= Ex,’.P(X= X;)= in’.p, where ZP-; =1

or p:r:%zfi:l;, Zf; =N smce p,=—
i |




. L
In particular, 1! =E{X}=ﬁ2fix-, = Arithmetic mean.
W, =E(X?)=Zxp, is 2nd moment about origin

similarly  j =E(X")=Ex] p,  is 3rd moment about the origin and 5o on.

Replacing c by the arithmetic mean  in the formula of rth momnt about a point x = ¢, we get the r th
moment of random variable X about the mean . This moment is called r th central moment and is
denoted by 1 . Thus '

1 .
W=EX-K) = Hzf.(xi B =012,

Now uﬁ=E{X-§)“=2piﬂ'¥1,
BB )EQO-x=x - =0
LR, meBOERYey! o :
This shows that the second central moment or second moment about the mean is the variance.
In case of ¢ontimuous variable

b= Jx-w e
MMphemmmmtlmmun nndthuufmypolm:
%kmwihatifd;=x;—¢- then f¥ﬁ+%§fadi=h+u:r where A isthe assumed mean.
ngaymf
4, = E(X =gy %};fi{xi ~xY
=lZﬂ(ii—c+c--i}'
N
;%Zﬁ(&ﬁa—i}f, where d, =x,—A
’ 4
D

-

- %Z £,(d—"Cid,""ui+" Cod = C,d ] Het (<D u])
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F r L ¢ Ty . 0, "
=M, C1ur-1l‘1:+ Czp'r-]"li = C]I’i":-]]"':! +--"'+{_‘n Hy
In particulat, = -7, Hy= K5~ 350 200 B~ 4pg) +6p5p) — 3  and soon.
Skewness and kurtosis :
Lef us now apply different moments in measuring skewness and kurtosés.
| Skewness : Oftena distribution is 6ot symmetric about any value instead it has one of it tails
' hngerthmméuttmr.-Ifth:longctmﬂommtherightthm_ﬂ:dithnissajdbeskewedmﬂu

right. If the longer tail occurs to the left then it is said to be skewed to the left. Measures describing this
asymmetry are called coefficient of skewness.

Skewness to theright  Skeness to the lefi.

: ]
: B

Let us define the parameter B, in terms of moments as B;’;ﬁ"

. : _ 2

5 [ ) By
ne t Bl =% - T 1
The measure . | FF’: o

wﬂlgiuthemofskewm Thummwmbcpomwormguwe according as the distribution
is skewed to the right or left respectively. For symmetric distribution y, =0. - -
Kurtosis : In some cases adﬁuﬁmﬁumyhami\svahmmmmmmdmthemmﬂmﬂ:

distribution has a large peak. In other cases the distribution may be relatively flat. Measures of degree of
pmkaedumofad'utrﬁuﬁunmmﬂudmeﬁdeﬂ of kurtosis. .




By 8 2|
~ Let us define another parameter B, im'terms of moments as .= nt jﬂwm

Y, =B, —3 will give the musurcaﬂumusi&

Moment generating function (m.g.f):

The moment generating function of the discrete probability distribution of a discrete random
variable X about a pomt a is defined by

MI“ (t) e 'E{:I{x_'l} )_ z Eti’;q'-llpi

where t 1s a real parameter.

I‘ : tz ’ - t’ ) . ' .
M'-(t}=Z;_I-H[IE—E)*.EE(X*-&) +-j-!{x..-a} +...,+E(x,—_a) .+,., :
g t? . :r :
=Zpi + tL{“s ~a)p, +-ﬂZ(xi -a)’p, -4-,,...+,+-r=—!;{mi —-a)'p, +

; t v : :
=l+t|.t1+-2—?u1+ ,,,,,,, +-r—!p.,+..+. (1)

where is the moment of order '’ abuuta.'['hus M (t)gmuatutmmtsandhmceﬂzmmq

Differentiating the relation (1) ‘'r’ t:mes w.rt ‘t"we have

' d’ :
B = EtT [Mt = {t)luo

M, ()= E(:;‘x"‘ }:: Ee‘“i"’pi = c"z e™p, =e ™*M,(1)

where M,(t) is them.g.fabout the origin.
Thusif x) be probability distribution function then Mn(t}-E(c“}

Mq(t) = > 6™ 1(x) for discrete variable
and  M,(0)= [e"f(x)dx for contimious variabie
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Theorem : [f X and Y are independent random variables having moment generating function: M (1) and
M (t) respectively then M, (t) =M, (t).M(1).

Proof: Since X and Y are independent random variables, any function of X and Y are also independent.
Hence e and e are independent.

M, ?{:PE[e‘f‘*ﬂ]=E[c“.e'*]=E{c“].E(c”}=M~m.Mr{t]. :
Change of origin and Scale;
Let us introduce a new variable u defined by

Mx{l} = E(Eﬁ } = Zeﬁhpi i z,‘,ﬂthw‘hipi o : ..Z au.;.‘pl
* Mx[i.] = j‘Mu(t} Wfﬁﬂ;ﬂ (i-] for t

Example: The random variable X can assurne the values 1 and -1 with probability 3 each Find the
m g.fand first four moments about the origin. )

o 5 O o
e =l+—+—+—+... and = & =le—mb et
Agen TAFTRETAN 11 2! 3
; . t! tt
e +e =2|1+—+—+
21 41
Now .
M, (t)=E(e™) l{-.e*‘+t:"}‘1+t—:t~+-ti+
x 2 2'_ 4! -----
Ako
M t-1+. t+ fiz:~+ ri+ ’E-+ + A
x(}' K “IZI Hlj'l' u441 ...... I.I-rr! .......
By comparison, u=0, p =t w=0, p.=1 ..
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This shows that all odd moments are zero and all even moments are |.

Charactaristic functions :
Letusreplacetby ‘iw’” mm.g.£
Then
My (iw) = E(e™)
This function is called characteristic function and is denoted by @ ().
Hence @ (w)=Ze™*fix) for discrete variable and
@ (W)= f_ﬂmf{ﬂ} dx for continuous variable.

Since |e™ [=1and | dy {w}{ =1 the integral always converges absolutely. -

From
o P ;! t
My (t) =1+ pjt+p} §T+piﬁ+p:&—-!+. ..... +|.1:—r+~!+,,,.‘._
we get,
: 2 3 ; g
by (W) =l+ipw—p) l""'—r-a-—i|..t§ﬁW—+......+ i LA
: 21! 3! r!

where p =E[X'] s the the *r’th moment of X about the origin.

Theorem : If §, (w) is the characteristic function of the random variable X and aand b (b 0) are

mnsténts then the characteristic finction of X:a is ¢32{W]¢ﬂ?¢x["bi)
-]

X+a
-

Proof: Letu=

Then Ox(¥)= T e p(x)= T e p(u) = ¢ T ™ p(u)

Replacing w by % we have 'i‘x[%) = ediiﬂ"‘“p(u}

= s (W) -—ﬁ:m[{-]
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Theorem : If X and Y are independent random variables with charactaristic functions ¢ ,(w)and
¢ (W) respectively then ¢ . (W)=¢ ,(W). $ (W) :

Proof : Since X and Y are independent random variables, anyﬁmctmuﬂ(andmyﬁmmmoﬁ’m
independent. Hcmee’*‘nnde*“‘mmdcpcndmi _

o AWyE[e™Y]
=E[et" X ]=E[eliX em¥1]
=E(e™X) E(e™ )= ¢ (W)- ¢ ,(W)

Properties : '
L ¢ (0)F1.

Putting w=01in b ((w)=Ze"*fix) we get §,(0)=Lf(x)=1, since sum to the pmbabil:mes is |
2. § (w)and ¢ (-w) are conjugate.
. Weknow, ¢ (W)=Ee™*f{x). Replacing w by—w we get, $.(-W)y=Ee***f{x)
 This shows that §,(w)and ¢x{-w)mmﬁjugut¢m-m¢h-uttur;

Probability generating function (p.g.f):
mmmw&xmuwmmumymmmp@
. indeterminedby  P(S)p,#p;stp st = E P, =E(S")

The coefficient of S* in the expansion of P(s) gives P(x=n).

(P = j P\ = -
Now |3g l_t-—'EnP,‘Liu st H“%!_l(ﬂ'l}l‘.‘?llz —H

Then

F o [ r2 P+5P [-a_r;]z
B =H, |"_| asz s |38 3

Theorem : The probability generating function of the Sum of two independent random variables is
equal to the product of their p.g.£ . .

Proof : Let X, and X, be two independent random variables.
© Then By (5) =Ef§* )= Bs* 5% )= E(s% JE(S**) since X, and X, are independent.

=Py (S).Py, (S) :
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Deductions: 1. P, (s)= Eﬂ p.=s Eﬁ p,s™=sP(s)

2. P ()= E p ™= E pﬂsl}'%l"(s"}
Covariance : Let X and Y be two random variables with respective mean p, and jt, . I.nca.scuf'ma
variables X and Y we define another quantities known as co-variabie by
0, =coVY)E[(X-p, ) (-1 )]

Theorem 1: o, =E(XY)- E(X)E(Y)
Proof : o, ,=Cov(X.Y)

=E[(X-, (V1))

=E[XY - 1Y ~ X + pt,)]

=E(XY) — iy E(Y) 41, E(X) +E (8,

=E(XY) — bty = Byl Iy

=E(XY) ~i, 1,

=E(XY)-E(XE(Y) .
Theorem 2: Imedemd:pmdm:rmdommbbsthm o ﬂCw(X,Y)“G ”

Proof : Since X and Y are independent,  E(XY)=E(X)E(Y). -
Now Cov (X.Y)=E(XY)-E(X)E(Y)=ECOE(Y) -ECQE(Y)=0

Chebyshev’s Inequality : _
' Let X be a random variable with mean p and variance o (finite). Then for given £>0.
o
P(X-nlze)< 77
Proof : If f{x) be the density function of X then

o =E{(X-p)= [, (x-p)* f(x) dx

sm;:cthr:mtegﬁl:snonmgamtﬂnvahmufdm mtegrnlcanonlydncrcmwtmuth:mngofmegmtnn
is diminished. Therefore,

2> jj:-n?h {x"ﬂﬁx}dx 2 EJ [L'-ulh f{x)dx
Again P[X-u[> & }= fpiae X)X

]

o> e P(X-pl> e):r_!"{lx—ulz £)< :—
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|
Deduction : If e =ko then P(X-pjzko)< ?

Takingk=2, P(X-p|220)<025 or P(X-p<2a)> 075

Law of Large Numbers:

"

Let X X, ...... ,lec‘n‘mmuaﬂyindcpm&mtmﬂnmvarhhlﬂmhhwhgﬁniﬁemhpmd
variance o°. ' .

-

Let §=X AKXt + X, @=1.2, wcny )
5. R
Then for given £>0, },EEP{I'H"ME g0

Proof : Wehave E(x)=E(x)=...=E(x)=p and Var (X, )=Var(X )=....=Var(X y=¢*

S, X +X,+..+X, |1
mﬁ(-ﬂ~]=£[_["‘ 2 ],E[E(XI}+E{X=}+:..T+E(X_}]

So, EE"*] - %iﬂuF M
Var(S .)%Va:txﬁxlh..,,.ﬁ}g =Var(X +Var(X )+....+Var(X ),

since XX, ... X, are independent:
::.vu{ﬂ}izvm(s,;:f‘;

n n -

g

g ‘ S~ &
Now put X-:" m Chebysbev’s inequality. Then P(i—ﬂ"‘-—uizz)ﬁ -
Taking limit as n—»<© we have

IimP(i—Sé-mzs]ﬂ}
= n

g . 'Sn " 0’1
Deduction : We have P(1-t-l-*|.1|4::e] zl- E

Taking limit as n—>2 we have,

fim 1§L*£&|{5].“1
B ] 'n
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Bernonlli’s Theorem : Let X be number of successes in ‘n’ independents trials with constant prob-
ability ‘p’ of success. Then given >0, 5> 0we can find ‘N’ depending on € and & such that

X Pq
P[l;-PifﬁJ-"l'EET whereq=1-p.

Proof : Let as associate with trials 1,23, .....,n random variables X,, X, .....-, X, as

=1
K-‘ :{p? xq
, X; =0
1 F
Sothat X=X+X* . +X:

 Since trials are independent, variables are independent.
. BE(X)=0g+Llp=p,

VarXEE[XpY] s
=(0-pYq + (L-pF'p = via + 4'p = palP*+D)™ P4
Var (K)=VAr(X AX,+ ... +1) = Var (X} Var () + ... + Var(X )=1pq.

BQRY=E(X X .o A X X JEOC ... +E(X) =0P.
n ) 1] n . n
By Chebyshev’s inequality,
P{if—gicejglmg.: P(1%+u|{s}zl—% g s
Also F(Ii—pias)s 27
n nE
Taking limit asn —» oo We get
. I’[I-E-plzﬂ) =0

which is the law of large number for Bernoulli's trial

Central mit theorem :

LetX, X, ......, X, be independent random variables that are identically distributed and have fmite
mean y and variance ¢°. :
Let S =X +X+..... +X, (n=1,2,3, .........)
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P_I’E as S nu{b] TEIC-

The word identically distributed means all have the same density function ie the random variable

S —np ; .
S 5 which is standardized variable coresponding to S is asymptotically normal
" E(SFE(X X *....... +X“) 'E(}( )+ E{X N +E(X)=nu.

Var (S )=Var(X,) + Var(X,) + ..... + Var(X )=no’
The standardized normal variable corresponding to S is

5w S, =E(S)
" JVvar(s,)

B )-g [ {52 ]
*E{; QH (%2 } E[e'(%:—:"}]
RS

since X, s are independent and identically distributed.
MNow by expantion of e* we have,

{[H]E[[T)_ (—H~ 2]

=E(t)+TE[X p]+ (x ﬁf+....

Thempg.fforS * s

[ (52) (32)

2 2

B i tl O H.=le——...
gn 2g’n . 2n
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a t’ 5
E(c"" )= [l+ﬁ+'"] . Limitofthisasn~» a0 is 1.

Then as J‘” ~N(0, 1)
have Im > npib]fr*-}:—l tfc Eri_{iu
we Ve fogeral ﬂ'. a 4 2:: ;
Solved Examples.
Ex 1. Firid first four moments -
(i) about the origin

(ii) abut the mean for a random variable X having density function

x(9-x¥) if 05xs53

fi{x)=
0 otherwise
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Now =0

F vl 3 : ll 1
= - —_-3.-_- — [ P—
=R —H [5] 25 o

e e 26 .8 (8. 32
K= |-‘1_3@‘1H|+2FL:="3'§*_3'3*3+2{_] T

5 875
- 27 (216)(8 8Y _(8) 3693
ui#4ri ¥ 11_3 H'=-_'__4_'___ 2 ﬁ.j = _3 ___]=
i By I"‘iﬁq"'ﬁi-"zl'h Ky 2 ( 35 }(5]4- {5) (5 —-3?50 ‘

Ex 2. Arandom variable X has density function given by

Ie_zx x‘.:_;_ll}
f(x) =
0 ©ox<0

Find {i}mu:ﬂgmaﬁuﬁmi:rnﬂ
(i) first four moments sbout origin.
Solution : We know, '

MO =E ()= | ™ fgx)dx

P |
M() = E{"“I{zﬂm =[ ;E-E.e[“?-)* -

o assuming t<2
Thusif| t | <2, :
2 3 4
—2-=—-L=I+t+'t—2+ta+t4+ .....
ot g L. A P2
2 3 4
Again, M(t)=1 +pt+ o5 py +3 3+ 25 Bg F v
TOITIORPE, CI, JRTE L
Comparing we have. > H2=7. H3=7-  Ha=3
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Ex 3. Arandom variable X can assume values 1 and -1 with probability 3 each.
F'n:‘l_(:}mg.t‘ (i) first four moments (i) characteristic function
mg.f-M_(t}-E(d"}ﬂ‘“— e"“—---z-{ﬁ-e"}
tl

4
' _Aglm e‘=i+ﬂ-2l = EP**- and im)- b e

- tz Iz
Then ='+¢"'-2{l+'-2“-!+ﬂ+..".....)

2 2
1 t t
=>E{e“+¢") =]+ 2'!+4l+

¢ 8, 1
ABDMK":"=1+;J,I‘+2')‘J'2 3l|.L3+ j.l4+

Comparing we get u=0, - py=1, n3=0, py =l
Characteristic fimction is given by ' '

e i

— 0n—

: E(c*_")ﬂ-c““zﬂ"" 3

So, E{em}a-;-(ew ™ ymcos W

Ex4 X isarandom variable with probability generating fimction p{(s).
Find the probability generating fumction of ((X+land (2X

g :
We have P.(s)= kEﬂ P.S*
: a0 == ’
Probability gencrating function of (X+1) = k‘z‘-u PS™'=§ éu P,S* =SP(s)

@ 0w
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Ex 5. Use Chebyshev's inequality determine how many tosses of a fair coin will be rcq:uimd so that the
probability will be at least 0.9 and the relative frequency of the number of heads will be between 0.4
and 0.6. '

X
Solution . Let X be the number of heads in ntosses. Then p is the relative frequency of heads.

(S
n Ezjﬂﬂ'i-‘u

11
r 1 —_—
By the given condition, 1£—ﬂ.51£ﬂ.1 zl—ﬂ‘ile-l%
n J ne ' DE
X ] 1
——O.SISUJ zl-
Nntgthat g=0.1. So, Fﬂn : 411(&1)1
L 25{]_1 :;na_l__jgmnzsﬂ
4n(0.1) 4.10° 4

Hmthemqui:dmnherbftosmwiﬂhﬁtlﬂst?ﬁﬂ
Example 6. A random variable X has density function given by
2¢—2x x=20

fix) =
0 x<0

FindP[| X-p|>1]. Use Chebyshev's inequality to obtain the upper bound of P[ | X-pu[>1].

Solution : From example 2, p= }5 :

Thea P[| X~ u|<1J=P[[X- 3 [<1].

3
T - =Ix
P(iqx-:}-]-]'le"!‘dxu{—-u ]
2 2) ~Z 4

v Tf
o P 3 | 2 1] = 1- (e

(IR

=—(e” -1)=1-¢"




R Y
PIX- 5 | 2115 0™=0.25

Example 7. A random variable X have the density function !
2
ﬁﬁ—_i—) ﬁsl_ss
#y1 8 '
0. . otherwise

_Fﬁﬂm@nﬂuﬁk&w&uﬂhﬂnﬁi& il
| TR T

. 2 P -
Mnﬂu:immmhl.wem o=0% “3="'ﬁ§ Jﬂdhrm
Co:ﬁcnntofw %ﬁ-ﬂ 1253
o 3
Dodﬁmntot‘hmw =2.172

Mﬂuenam&mteﬂgmmﬂr leftandit sunmvdmtl:sspealmdthmmmnldshhmn
which has a lartosis 3. '

990
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Unit 2
Distribution.
Introduction :
Theoretical or probability distributions are such distributions which are not obtained by actual
observations or experiments but are mathematically deduced on certain assumptions. The importance
of theoretical distribution cannot be overemphasized They provide us data on the basis of which the

resiilts of actual observations or experiments can be assessed In fact, where theoretical distributions
are availble, there is ho need of having observed distributions.

Discrete Probability distribation:

A random variable that takﬁnmaflmcm m@mwaﬂm ﬂﬁlhdadm
random variable.

LctXbeadmmermdamvmd:kwnhﬂmpossﬂ:hmﬂmucmmbex, xrxj ......
Lctmepmbahﬂnmsofthmwhmsbﬂp\mby '
P(X=x)=fix) k=1,2,3,.

Itmmmeﬁmtmmmmepmhabﬂnyﬁmﬁomnhmsﬁnﬂwumwdﬂm
Ewmb??(xﬂ} fx). '

~ f{x)is known as probability mass fanction also.
In general f{x) is a probability function if
1.fx)> 0 2. Z0=1.
The distribution function F for a random variable X is defined by -
F(x)=P(X<x) where x is any real number.
The distribution function F(x) has the properties :

L F(x)is non decreasing 2. M0 Fx)=0and | "“‘ F{:}=l

Binomial distribution.

Suppuscwehavemcxpanmﬂsuchastommgammordmmamalﬁumﬂpﬂnfm
Each toss or draw is called a trial . Suppose that a trial is repeated, so that we have a series of u-trials. Let
s call the occurrence of an events a ‘success’ and its non occurrence a ‘failure’. Let p be in probability of
mmmandthﬂ::pmhabﬂﬂynfﬁihmmamghtmlsnﬂntwq-l In some cases this probability will
not change from one trial to the next. Such trials are said to be independent and are often called Bernoulli
trials. The numbes of successes in trials maybe 0,1,2, ..., r,...;n and is obviously a random variable.

Let us find the probability that the variable takes a particular value r (say). Then the probability of
1 success will be associated with[m}faihuﬂNowﬂmpmbaﬁltyuﬁw_imFmdmda
will be pi{(i-p)y™ of p'q™*. We are interested inanyr trails being successes and since r trials can be chosen
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out of n trails in *C. mutually exclusive ways, by theorem of total probability the chance.P(r) of r successes

na series of n independent u'n;th is given by .

| P(X=r)=Re)=*Cpq™ forr=0,1,2.3,....,0 _

Thus the number of successes can take the values 0,1,2,3,..., n with corresponding probabilities
¢, C,q'p, "C,q7p "CAP b’ a

Since fr) > Ov rand I f{)= 3::, *C,q"" p' =(q+p)* =1, flr) s a probability mass fimction of
random variable X. ' ;

Since different terms of the expansion (q+p)* gives the different probabilities for r=0,1,2,.... the
above probability distribution is known as Binomial distribation.

_ mmmmmﬁepmduﬁsznmdp Tbcyarem.’[hd
pummam&ui:m G

uwy,mmmhwgﬂmp,qsmmm
Moments of the binomial distribwtion. : ,
Letus take an arbitrary originat ‘0” success. Hence by definition of moments we have.
}l.r =t i r. IC prqt-t_
. =0+, Cpq+2°Cpig +

"m{q""‘c,pq‘% *C P+ +p'*} (utngmpmmﬂfbmunmlmtﬂicm]
=op(q+p)'=mp. = Thusmeanisnp.

=L,

g{m{r-m'c P

=Zr 'C, pq""'+£r{r 1) Cpq

=opi; +n(a-1)p £ €, 9" g™
=np+a(-1)p*(p+q)"™?
=0p +n(a—1)p? =np[1+1p—p] = 0p (q+0p) = npq +n’p’.

By=p;—u; =npq+n’p’ ~(ap)’ =npq

Hence variance is npq.
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Shﬂupq{q:l,asq{l itﬁalhwsﬂmtﬁarthcbhumhldimﬂ}mhn,nm?vaﬁamc.

r . B=r

Ir "Cp'q

= E r+3r{r-1}-1-:{r»1){r-2] *Cp'q™”

=np{qtp)~'+3 n(wl}p’(wr‘ﬁmn{n-iip‘{q’rp)“
=np +3n(n~!)p’+t(n—l]{n-1}p’ _

By = =3 i + 20
=np+3n(o-1)pHn(n-1)(n-2)p*-3(npq+’p’)np+20'p’
=np{1+30p-3pH?-3n0+2)p*-30pg-3n’pH+207p7]
=np(1+3np-3p+0’p’-3np™+2p*-3npq-3n'p+20’p’)
=np{1-p}(i-2p)
=npq(p+q-2p)
=npq(q-p)

n

4rnﬂ

n-r

= % {f+‘?1{r—1}+6r(r.—!)(r—~I]ﬁr{rﬁl]{r-i]{r-?;}} nCr prq
r=0 .
= np+Tn(n-1)p+6n(p-1)(n-2)p’ +n(p-1)(0-2 (-3 )p*

4=y —4nh] +6H501> ~3u;’*
=np[1+?{n-llp+6{n-1}(n-2)plﬂn-iHn-Z)(wﬁp‘H{npqﬂs‘p-}nw

6(npq+o’pn’p’-3n'p!
naniplquﬂpq(l-qu} . (after simplification)
222 2
gt 0 @9 -
Now P1% p% n3p3q3 s

| Tlﬂﬁ=ﬁ.




8 _Hg _30p%q® +opq(1-6pq) ,, 6%
2 u% n?p2q? ' npq

i—ﬁpq

Tz =Bz -3=

-Agam ¢—p =q+p ~2p =1-2p.

; 1
For symmetrical distribution ﬂ*-0=>q=p="2‘
Skewness is positive ify,> 0 in if 1-2p > 0.

: ! 2
For positive mp‘*'j

1
For negative s P>z
' ifﬂumnbnufmmwi:bfie. ifn—y oo then B, -0, B,— 3, v,—0, v,—0.
Moment generating function of binomial distribution :
Imkawmmmﬁﬁhﬂtnmﬁﬂmﬂmomnkghmw

. {x)=P(X=x)="C p'q™*
T'hmﬂnmnmmﬁmmnumby

o n
M[t}nﬁ[gﬁ].nzt ﬁx}—ze“‘“c;q xzz“{:(pc}‘“"
x=0 x=0

M(O=(a+pey RO
Differentiating (1) w.r.t. ‘t’ and putting t=0,

.
' Differentiating (1) W.r.t t’ twice and putting t=0,

p.'l =n2p2+npq and so on.
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Recurrence relation for binomial probabilities

we know b(x n,p) = f{x) ="C p'q™*= F{n-;x} Ll

: . n! x+l ﬁ-x-l
b(x+1,mp) = f{x+1) ="C,, p*"'q**'= (x+1) ! (o—x~1)!

n-x . n! x an:EE
“‘x+tx!(n-n}!_pq ‘q

D-X{fp~ X .A—X}P
n-x(n e ]
x+l[ xP 4 q

bx+Linp)=—E. fix) =f(x+1) ==—.E. fix)
: x+l q x+l g . ;
This is called recurrence relation for probabilities, since fx+1) can be calculated if f{x), nand p are -
Theorem 1 : The rth order moment about arbitrary point ofbinomial distribution is given by

P s
R #[p-g—,] @+9"

we know, (p+q}°== }-" iCp q
Dﬁmmmmﬂywrtpmgﬂ

a e n = 5
: —é;(p+q_] -z “crp‘ ~1qgn- rr mp%{pﬂl“- =r£ﬂr-”crp.’q_" T ap

Differentiating again w.r.t p,
ad

a - 2.:1,: T _0-r 2\ n_,..
BIRTY LT P Y

Thus the result is established for r=1,2

ﬂ J E
using method of induction we get. [PEE] (P+a" =
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" Theorem 2. For binomial distribution the recurrence relation for central moment is

+
."1' =pq m'.l'lfu-'[ d]}

n
we bave, B =x§ﬂ N (x—np)"*

- Differentiating w.c.t p,
d - x-1_n-x r S on n-i-l r
—L= % "C_xp™7q" " (x-mp) - T "C, pla-x)q" " (x-0p)

dp x=0 x=0

- E i p q® nr{x—np]
x=0

EB“C p’“ “1{! np)’[xq—mp +xp]—nrp
X

dp D pe LX.on-X r+l -
=pq—L= £ °C_p"q  -(x-np)  -(arp_.)pq
dp x=0 X . r-1

Deductions.

1. Putting r =1, %=_N{%+.ﬂ#ﬁ) since =0 and p =0 we have 1=0pq
2. Putting r=2, u,*'l"{‘gg”'“z-ﬂl)m pq(ng-np +0) = 0pq(q—p)

3. Putting = 3 B= "‘{ “‘3“2) =pq[n(6p>-6p+1)+3nnp(1-p}=npq[1-6p(1-p)+3u pq]
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Theorem 3. Most probable number ufmcceminasaiesufnhdapmdmmiah, the probability of
successes m each trial being p. '

If X=x be the most pmhablc number of success then P{){nx-ljg P(X=x) 2 P(X=x+1)

:'"ncx—lpx lqn—rx-i-lg C pan xzncx_'b I:‘)|:+I'. n—x~1

ol x=1_n-x+1 n! X n—x .. 0l x+1 n—x.—I
Ao
=& @-x+D)! gy Y LA R P 1Y TP L
LB B i
n-x+l p x+l q
That gives xq < np-xp+pand xqtq > np-xp. iex<nptpandx>np-q
Hence np-q< X< np+p
= (@+)p-1 <x < (o+1)p.

Casel. Whm{nﬂ)p is an integer. Smxmmnzcguﬂ:uewilhnmmmohabhmuf
successes.

Case 2 When(ot+l)pis mtmmgathmht{ﬂl}pﬂmlwhmmnwmdlﬁpmpﬁ
fraction. then m-1+A < xgmtA

This suggests ﬂntﬂicmnamghmﬂpmbabhm :
The most probable number of successes gives the mode of the binomial distribution. lf(n+1}p-l ﬁm
megummﬂtdﬂuimhumsbmdﬂmhﬁwﬁcﬂbﬂumgﬁ:m :

Example 1. Find thaprohnbi]n}'ﬂm ina famlynfdchﬂ:hmtbaewﬂlba(a)nﬂmit one boy (b)at.

least one bay and at least one Girl
m“mmﬂ:p-ohnbiﬁrynfmkh&this%
PR o (12 (1Y
_4 i ]: _l =4 _].:. l =§
P(1boy)= Cl{_j) (5) - P(2boys) cz(z] [z] 8
L -
Ao (LY (LY 2L ' e l] =i

" Thus P( at least one boy) = P(1 boy) + P(2boys) + P(3 boys) + P(4 boys)
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1 3 1. .1 15
e o o= e o e—
4 8 4 16 16

P(at least one boy and at least one girl) = P(at least one boy). P(at least one girl)
15 15

T 16716
= 0.8789

Example 2. The mean of a binommial distribution is 5 and s.d is.3. Verify whether the given statement is
true.

From given condition np =5 and npq=9
9 ,
" Hence g= g?-l.ﬂ.

But q cannot be greater than L. Hence the statement is wrong.

Example 3. Reliability of a missile is reported to be 0.9. Assuming the test firings to be independent
obtain the probability that in 4 test firings (a) 3 or more are failures (b) not more than one is failure.

The number of failures in 4- test - firing has binomial distribution with parameters u=4 and p=1-9=.1
P(X=4)=(0.1)*=0.0001
P(X=3)='C,(0.1)(0.9)=0.0036
P(X=2)=4C (0. 1)%(0.9)=0.048
P(X=1)=4C'(0.1)(0.9)*=0.2916.
P(X=0)=(0.9)=0.6561

(i) Probability of 3 or more failures=P(X > 3) :
=P(X=3) + P(X=4) =0.0037
(b) Probability of not more than one failures =P(X < 1)
. =P(X=1) + P(X=0) =0.9477.
Example 4 .Two dice are thrown until a seven is obtained. Find the most probable number of throws:

Probability of obtaining a total of seven is % =% 3

Let X be the random variable denoting the number of throws required.
Then X may take any values0,1,2,3, .......
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sy=-1
P(qu(EJ = x=0,123,...

. 1 2 : .
1 @ 5“-11[5) [5] i, Y2 .1
& 2 =l 192 Sl 3] S| i 2 2122 ] = 2l =
ot ) oA e 2 e
IfX = x be the most probabile value, P(X=x) will be maxinmm when x-1 is mininmm.
; . X~1=0=>x=1 as the most probable number.
fe : L} 1
Example 5.X and Y are two independent binomial variates with parameters [3- E] and [?s E]

: ; : ; 1
respectively. Show that X+Y will also a binomial variate with parameter (15, "i]. Hence find the

probability that X+Y=2
8 7 8 7
My, @M= E I %8 (l) Tc [l]
+Y K"-‘*ﬂ!ﬂ"’ﬂ x\2 ¥Y.2

1 ¢
Which is the m.g.f of a binonnial variate with parameters [1 5, *1-) Hence X+Y follows a binomial

| | 15 15
1
distribution with parameters [1 3, 5} . P(X+Y=Z)= “C:(%) =105 [%] .

Poisson Distribution.

Let us consider the binomial distribution. P(X=x)=C _p*q>* enables us to calculate the value of the
probability of x successes in n Bernoulli trials, with probability of success p in each trial. For small values
nfnwecancalculateth:pfnh&bﬂiqmsﬂy.ﬂMwﬁmnbed:muh:gemughﬂnughhmbemhuhmd,' ?
the calculation would be tedious and time consuming. Of course tables of binomial probabilities are available
which give probabilities for certain values of n and p. But no table will give the probabilities for all possible

vahues of n and p. Moreover we want to study the limiting behaviour ofbinomial distribution.

50




The binomial distribution exhibits an interesting limiting behaviour for large n and small p where
np is constant.

This fimiting form of Binormial distribuition will be known as Poisson distribution,

Derivation of Poisson distribution.
In binomial distribution, the probability of x successes is givenby "C p'q™.

[ﬂu&mmﬁkr&eﬁnﬁhgcasewhﬁp'ﬂvﬁymmﬂmﬂuishrgetmughmthaithﬂamg:
_ number of successes np is a finite constant m.

Now P(x)="C p'q™.

n! mY( m»* . m
r—rkiles i

m -X
n I~ *‘J _ :
”ﬁ[l-‘.ﬂ) ( - _n! _ weshall use Stirling’s formula for n !.
n* (n-x)! ) '

lim (of)z 27 o™}
n—»x0 '

Now taking timit of P(x) ns-n;h cowe get.

a* (o-x)!
+
=mxe*"" o J2z ¢ %n 2 1
x! powo n=x+l X

xle® - n—wm ~x+1

3l




X =
ol

= —-—-x—'-l"-—- since e*, g™ nl,xbﬂiﬂg ﬁnjte

Thechance for 0,1,2,3, ............ successes are e™, me™

L

P e~m :
e s respectively.

In other words the random variate assumes the values 0,1,2, ........... with corresponding _

tn2 el m* ¢~ ™

T Y

probabilities e ™, me™,

~ The probability distribution of the number of successes is called Poisson distribution.
oc mxe—m
The sum of the probabilities= £ ————
x=0 x!

=g "
=1
Thus we have verified that the lmiting function

m* ¢~ M

P(X=x)— — = of

P(X=x)="C p'q™* which is a probability function.
The Poisson distribution involves only one parameter m.

Definition : A random variable X, taking a set of values 0,1,2,3 --—-- is said to have Poisson distribu-
tion with parameter m if for m (>0)

( e~ mX

P(X=x)= x!
: 0 otherwise

=01 2, ...

The random vanable X having Poisson distribution is known as Poisson random variable.

The above expression gives the probability of x occurrence of an event, the probability of one
occurrence is small. An event with a small probability of occurrence is a rare event. Hence Poisson
distribution is also known as distribution of rare events.
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Applications of Poisson distribution :

A Poisson distribution is a widely used model , particularly to explain the probabilistic
behaviour of events with small probability of occurrence. The Poisson model is good for the number of
occurrence of rare events. The following are the some examples. '

|. The number of accidents occurring in large factory during week.

2. The number typographical errors per page in typed materials.

3. The number of bacteria observed under a microscope in smail volume of liquid.
4. The number of monthly deaths due to a rare disease like AIDS ina city.

5

. The number defective screws per box of 100 screws. In each of the above examples, the prob-
ability of success is small and n is large.

Moments of Poisson distribution :
Let X be a Poisson variate with probability

m* e ™

P(X=x)= -1 2k ), L3
) X —m m 2 -m 3 -m
H'l NP L G S R R
x=0 x! 1! 2! 3t
2
=m-m[1+m+£_+........]
1t 21
=me MeM=m Hence mean=m.
- ] X -m 0 mXe ™
W= x2BE = F |{x+x(x-1)}
2 x=0 x! x=0 2!
@ X ,-m @ _x-2_-m
. ane + I mz m e

x=0 - x! x=0 (x-2)!

' 2
=m+m2 {[H |:!;:|+P"2'L—~I +————'}¢_m }

=m+ mz.e_m eB=m+m’

2

M2 =H2—H] =m+m’-m =m . So, Vanance =m.

5 -




Thus in case of Poisson distnbution, mean= variance.

XeMm o mX e~

"E [+ 3x(e I )]

(= i}
"l:_q.= T s
il x!

mxe-m_ Wmlc m mmle-ﬂl

D! g DI g &)

=mc;m _ +3m-zeTm ;Ex_{ + m31:_m§ ¥
: 7 (x-2)! . g (x-3)!

=ml+3 e+ m'e™ e
= mr+Im+m’

| u; u3 3u2u1+2u'3

= (m +3m*+ m’) -3(m + m)m +2m’.
=m+ 3m’+ o'~ 3m?-3m’+ 2u:‘=_-m. _

o 4mx¢"m o —m
=2k =2 [x+7x(xc1) +ﬁx{x—1){x—2} + 1) A=
I:lz:rmxe m+ aumx¢ m S 6 mxc m mmxc—m
0 1! .o (x2)! o (x-3)! p x-H!
=m+7m?+ 6m*+ m*
=m(mM6r+7m+1)
' 4
By =hg —HaHy *'5*‘1" 4 i

=m(m’ 6+ T+ -4 3 mm' a6 )e-3m*
=m [0+ 6P+ Tm +l- 4m +12m- 4’ + 6m’ + 6nr')-3m’ |

=m(3m +1)
2 Hq _m3m+l) 3m+l 1
m~ 1 4. =3+—
ﬁ| %- .T_E‘r i ﬂzq 2 2 m +m :
"'ﬁﬁ’"\m, M T s,
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Thus when m— coboth y,and y,— 0. Again whenm — w
1 . |
Coefficient of skewness is T _coefficient of kurtosis is 3+—-
m m
Recurrence relation:

X _ —m

11111

1. Le'lﬁx}wP(Xﬂ)=m =1

m
Then fix)=— fix-1)

ml e-[l’.'l

Proof: Since T(0)=""7

'I'htm fix)= -;E fix-1).

. e
Pesl hm[“‘rul +E§]

mxe

x!

Proef: Smee P(X=x)= x=0123,..

it

x!

w0 x
E (x-m)’ =
x=0

r

Bl

dp, rymie ™

o0
e = L —n{x~-m)

x=0 x=0
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o mx-l‘-__,-m m
_'“f[ (x-D! ]=-;.f{x~l}

+ Z (x#m}tx.:m

B, —>0and p,—3.

=] -m = X _—m.
b {1+m}1fm £
x! x=0 x!




d
b eas
_ Deduction : we know =l and p=0
Putting r=1, pz=m[ﬂ+l.p,}=m
Puttingr=2, p=m(l+2.pj=m

Puttingr=3, w=m[l+3.p]=m(l+3m)

2 . ;
ﬂii%gl and ﬂ2=i‘;=3+i,
S ] m K3 -

Moment generating function.
. -
Myoo®=E(e™)= Z % p(x)
x=0

o X _—m

L3 xmE 1
x=0  x!

~m 3 x(me o
x=0 x!

t
—e—m me _ e ~1)

Thmnm:ltmhﬂepmdetnmndehaxlde!hanuiﬂmmwﬁhmq
and m, respectively then their sum X +X, is a Poisson variable withmeanm,+m, - .
Let M, (t) and M,(t) be the m.g.fofx, mdx,mdleth!{t)heth:mg.fufﬂnrsm

M;(O=exp[m,(e*-1)],
“M,(t)exp[my(e-1))
Now, m.g.foftheir sum X, +X, is gwmbjf

M(t) =M, (t)x M(t) =exp [m,(e*-1)]. exp[m,(e-1)]= - E{m.ﬂ'm} (e-1)

This is the m.g.fof Poisson distribution with mean m, +m,.

Mode of I_’nism.dhtﬂhutiun ;

P S
This mode is that vahue of x for which
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Hmne the result.

is greater than the term that precedes it and the




t&mﬂm follows it.

Hence

x-1_—m X _—-m X+l -m 2
- : m
m- e . m’e m- e l<m£

x-! = x! (x+1)! = X {(x+1)(x)

So, x<mand x+1 >m.
Thusm-1< x<m
Thus ifmis an integer, there will be two modal values (m-1) and m. |
If mis not an integer these will be asingle mode at x=[m), the greater integer contained inm.-

[Hustrative examples.

Example 1. [fthe probability that an individual will suffer a bad reaction from mjective of a given serum
is 0.001, determine the probability that out of 2000 individuals (a) exactly 3 (b) more than 2 individual
will suffer a bad reaction.
Le{denbeﬂwnumhwafhdiﬁdu&lmﬁerﬁ:ghaﬂ reaction.
X is Bernoulli distributed but since bad reactions are rare events, we can suppose that X is Poisson
tistributed o :
m*e™™

P(X=x)= x'!_ whem;n#(muﬂ.mnkz'

23 c_z

3!

(a) P(X=3)= =0.18

(b) P(X>2)= 1-P(X=0)-P(X=1)-P(X=2) = 1=2 : P X

0.2 702 p 22 2

=1-e~2(14+2+2) =1-5¢"2

Example 2. If the number of accidents occurring in an industnal plant during a day is given by Poisson
‘random variable with parameter 3, find (a) probability that no accident occurs in a day (b) the expected
number of accident per day ' ' ;

f 3%
- PX=x)=

o x=0,1.2..........

(2)P(X=0).-3=0.05  (b) E(X)=3 and var (X)=3.

57




Example 3. Find the probability that at must 5 defective fuses willbe found in a box 0f 200 fuses if
experience shows that 2 percent of such bases are defective. :

nrnp=200(.02y=4
=§e—44x
o x! :
22 a3 44 &P
PX< 5}=c"4 {1+4+4—~+i—+f—+~¢—J
21.31 41..51

=(.785

Example 4. A car hire company has two huxury buses, which it hives out day by day. The number of
demands for such a bus an each day is distributed as a Poisson distribution with mean 1.2. Calkulate the
pmpunjmofdaysﬂnwhﬂsumcdmrdsarcreﬁmd. : :

Lntxbemndumvariabhdcmth:gnumbwofdmﬁdsonmhdéy.

2 1202
Required probability=P(X>2)=1-P(X g =1~ ¢ =57

2
=121, .12 {12
il_{ﬂ [i'l"-l-'!—'F-'-z'"l"—'}]

=1-e12(141.2+0.72)

Example 5. Screws are packed in boxes containing 300 screws each. Onanaverage 1 % of the
screws are defective. What is the probability that a box contain 3 or more detectives ?

np = 300 (.01)=3.
" Required probability = P(X > 3)=1-P(X<3)
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Hypergeometric Distribution
Concept of Hypergeometric variable :

We shall explain through example.

Leaabox contains 3 red and 5 black balls- ane ball is drawn at random. Probability of getting a red ball
is 7 - Ifwe want to make a second draw, there will be two ways (i) replacing the ball drawn (i)
without replacing the ball drawn.

Let us consider the first case. Smccﬂmnmnbernfbaﬂmmmnsmesame the result f the first
draw has no effect on the second draw and probability of drawing a red ball will be same o . .If4 such
drawingm&threplnmmemarenmdﬂamiXisﬂmnumhanfmdbaﬂsdmmtthwﬂlbcabhmmial
randony variable. Hence

P(X=k)=*C,p'q"* where k=0, 1,2,3,4 and 0=4.

Let us now consider the second case, where drawn ball s not replaced. Definitely it will effect
the successive drawn and hence trials are not independent. For second draw there will 7 ball, for 3rd
there will 6 balls and so on. After 8 drawn the box will be empty. As it is not a Bernoulli trials, the
random variable will be di&rentﬂ‘nmbimmial Such randnmvariables willhem]]udhype.tgcomtric
random variable. :

lftwadrawmgsarcumde,wemyg:ti!redbaﬂs 1redand 1 black balls, 2 black balls. ifX
is the mumber of red balls then X can take values 2,1, or 0.

Let us take the case X=1, then out of the two ball | is red and the other is black, Two balls out
of (3+5)=8 can be drawn in *C, ways; 1 red ball can be drawn in °C, ways, and 1 black ball canbe '
drawn in *C, ways. Each way to drawing red and black ball can be combined and the number of ways
of getting 1 red, 1 black ball willbe *C ,*C..

3cl e

PX=1)"

Letus nowgenﬂ'ahse thepmbicm

Suppose that r balls are drawn are at a fine without replacement from a box containing mredandn
black balls. Let X be the number of red balls drawn . Then X=x implies that ofr drawn x are red and -
k are black ball. We have : '

59




'mC ne
—A __IX:. x=0,1,2,..1; rsm,r<n
m+n
P(X = x) =
0 - otherwise
L
T T
where X P(X=x)=1 since e o o R e
B~ B X “r—x r.

If r<n then X assumes values from x=0 to x=min (r,m)
Ifr>n and Z=r-n then X assumes values from x=r(>0) to x= min (r,m) _
The above distribution is known as hypergeometric distribution with three parameters myn,x.

Mean and variance
r n i
"y =
E(x)= Zx PX=x)= X x ——l-u-r—s-m+n
' x=0 x=0 C
m+n
C = A
i f Z e * x~1 g - since 'ﬂcx_E m llC:r.-l
x=1
11'1ﬁ1~11|,.l-:r y=0 Y
_. m m_.;.ﬁ jm+m-1 |m+n-l |r o
e ir—l m+n-1" |m+n T i

So, Wy= mean = m+n

: 2 [ . 2 r T
By =E(x")= Zux Px)= L x(x-)P(x)+ ZxPx)
x= :

x=0 x=0




i =
g Ix(x~1) Cy ncr-x
¥ x(x-1) P(x) = X=2

x:ﬂ m-H:iCr
= m{m—l} 1 m-2 4]

m+ncr xil Cx-2 €r—x

mm-1) T
= m—2 n

m+::.cr yEJ.‘] C:,r an-y
_ m{m-1) :

m+'|.'|Cr MTZ"'"Cr-i.

|m+0-2 ~ |r|m+n-r e pye(e-l)

=m@D | men—r |[m+m ~(m+n)(m+m-1)

; m(m-Dr(r-1)
I""'4-“'“{l.'ﬂ-!-*I.'!i}l[l:tl+l!‘l—].} m+o

m{m-1)r(r-1) mr ., mr .2
S BT (m+n)(m+m=1)" m+n  m+n

o (m-1)(r-1)

=(m+n)2 - m+n-1 -(mrtn)H(mr+n)-mr]

mr

- r-mr-o-HoHmnr-nr oo - Hmn-mmn e -+
(m+n)? m +n-1 [or-mor o-n0'T 1

mar {m+n-ri}

Var Ly (r|.1+:1.}2 m +n-1

Multinomial Distribution

Definition : ;
Let us suppose that the event A ,A,, ......., A, are mutually exclusive and can occur with
respective probabilities p,,p, ........ p, Where p + p+p;t ... +p =l I X, X e X are random

variable respectively giving the number of times that A , A,; ey A OCCUr natotalofn trials,
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P(X ‘xl' Xz—xz Xk=x .
: 0 otherwise

B g F +n,=nis the joint probability function to the random vanables x ,x,, ......., X,.
This is a generalisation of bmomial distribution and ishmwasmﬂﬁnauialdimﬁulhn.simeh
is the general term in the multinomial expansion of (p +p,* .......+ p,)".

This is not a univariate distribution but amhwmmtedlsu'hmon involving k variatesn,,0,, ....,0,.
Out ofthese k variates only (k-1) ar:mdqmﬂenx

Hlustrative examples
Example 1. Ifafardm is thrown, the prubabd:tynfgﬂtmg 1,2,3,4,5 and 6 points exactly twice each
5

{12 11-212'.1212
- OI0IC (EJ B8

Example 2. Abox contains 5 red balls, 4 white balls, and 3 blue balls. A ball is selected at random
from the box, its colour is noted and then ball is replaced. Find the probability that out of 6 balls se-
lected 3 are red, 2 are while and 1 is blue.

5 .
P(rcdatan}rdmwing}='rz' ; P{wbil:atanydrnwmg]nﬁ

P( blue at any drawing ) =

12 5184 °

Iﬁ {5 2 2 3 2 625
Then P(3 red, 2 white, ll:-lue]—!3|2|1 ] (11] [_} = e




Example 3. Abox contains 10 red, 6 black and 9 white balls. 5 balls are drawn at random without
replacement. What is the probability that there are
(i) 3 red, 1 black and 1 white balls. (i) 1 red, 3 black and 1 white balls.

It will be problem of hypergeometric distribution.

=
s
1’

g
]
o
&
S
=
|:
s
E3

|

=35 -69 252423.22.21|20 = 875520 |

‘ 10¢, 6c,%c; 10.15.9.. 1350
(i) Required probability =" zscs = .25(_-5 - 25(3‘5

Coatinuous probability distribution.

W:havescﬁardmkmmmmhabﬂnydlsﬁ:mﬂ%smnmwmmidﬂa&wpmb-
abi]mymndelsfmmutmmwrmblm.Suchvmbksmntakcmyva}mmmmmmlﬂnmn]hrm
are associated with measurement data. Examples are measurement of height, weight, amount of rainfall,
temperature etc. The basic difference between a discrete and a continuous variable is that former
mvolves counting and the latter involves measuring. These variables (X) can take any valie in a given
interval ina. < x < b. These variables are called cnﬂtnuuuswnatﬁandthwpmbahﬂnydmmbuhm
are known as continuous probability distribution.

- Thcdmmhmonufmntmunusrandomvmablﬂmnberepmsemdbyam such that the total
area between the curve and the x-axis is equal tol.

It f{x) a continuous finction of x, defines the probability distribution of a random variate X by
the relation that the probability of the vahie of the variate falling in the interval (x- ¥ du) to (x+ ¥ du) is
expressible in the form f{x) dx.

P{x-%‘- <% _sx+%)=- fx)dx.
f1x) is called probability density function and fix)dx is called probability differential . The continuous
curve y=f{x) is called probability curve. -
Thusmepmbabﬂirydensﬁyﬁmc&}nﬂx}afawnthmusmndumvarhbleissmhthat
(N fx)=0
{n}tmalmaufthemgmnhetwcmthnm}*t{x)anithex -axis is 1.

(iif) P(a<x<b)= area between the curve y=f{x) and x-axis bounded by the ordinate x=a and
x=h.
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In general, y=f{x) is a straight-line

Normal distribution.

So far we have discussed discrete probability distribution. Here we propose to study a very
important continuous random variable and its distribution, normal distribution. As in the previous unit viz
Poisson distribution here also we shall study limiting case of binornial distribution when x is very large
but unlike Poisson distribution the probability of successes p is finite. The common properties of nnrrna]
distribution will be studied here.

The normal dlsmhrmnnhy for the most used distribution for drawing mfu‘cnms from statistical
data because ofthe following reason:

1. Number of evidences are accumulated to show tha: normal distribution pmwds agoodfitor
describe the ﬁ'eqummes of occurrences of' many variable and functions in the field of ph:.rsaca.l and
social sciences. ;

2. Normal distribution is of great value in educations evahiation and educational research. Normal

distribution is not an actual distribution of scores an any test of ability or academic a:mwemt,
hut it is a mathematical modes.

In solving problems we take vahues of different prubahi]iﬁes from standard table which are
available in any statistics book. We have not given those tables here, as it mamnnlﬁarthmmua!
smdms But students areamfuadtu take help of those tables

The density function of Normal distribution is given by

{x—LIJI
JI_: 2“1 —‘nt':{x{m
o n ¢ '
fx) = e
0 otherwise .

where p and g are mean mdstmdarddwmimofthe dﬁtﬁhutmn. The corresponding dﬂu'ibumn
function is given by , :

x__[x—l-l}z
F(x]:P{Xﬂx}=f{x}=-—-j=v _Ie 26° dx

The normal distribution has two parameters, the mean p and standard dcmtmn . |
The actual shape of the frequency curve y=f{x) is bell-shaped. It is shown the figure below
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The curve is symmetrical about the point x =m. Themulmbemamthcmmdxmﬁom -
to w is | . The frequency curve of normal distribution is known as normal curve.

I frodxe ;_}. m["" W ]dx=1.

' Derivation of normal probability distribution fanction. -

The normal distribution can be wuummmmmm
number of trials n is very large but p is not very small

Inﬂ:ebmmtdmrhmu,ﬂ:prohbﬁlyhﬂxvmmnhﬂ:ﬁhnu

P(0="C p'q" = __al_ ron-r
rl(n-r)!

Applying Stirfing's formula. .
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r-np r q o-r 'p;
= —=1+2 |- —=1=-Z.|F
e we op ™ g /mq

{5 o T )

Asm:mhgﬂm!Zchcmnﬂu.ufth:muqmﬁtiﬁ Emﬁ'aﬂmﬁgw:m
| np+Z/opa++ ZF*—Zﬂ—+0(n_}é)
2 np 2nop
h | | (nq—ZJ_ [ZJL——-*O@ 2)]
: 3
el )55 o
q

z? 172
Thuswbenn—-pm,hg,.ﬂ—r 3 ie. Ny e2

Now Z=

: o _
As rruns through integral values the increments in 2 are each equalto (ypq) 2 which we denote by dz

e T ,
wh:t_m—rm,'rhmifdpdmumﬂ:;pmbabi&yﬁnrth:varm=2mh=mﬂ:umalz-3dzmz+idz
e 1
we have dP= 1 'e_zz -0<Z<w
321: 0%

: > |
1} x= t
Replacing z by ﬁ dp . w.‘@e 1[77'3] | -<X<o

But np = p, the mean and .anq = o thesd.




1 x-w?
dp= 1 2 42 -m< X<
o2n :
=fx)

1 1 o
tl-.lﬂ-ﬂ}"g h'ﬂ 0’2 .

The continuous variate X which is distributed wnhptohnhﬂ:ydensty{:)nﬂ!hdmmﬂmmm
' mean p and s.d o and denoted byN(u,0)

Let X bean N(}1,0) so that E(x)=p and var (x)=c’
Let us now transfer X to another random varisble Z such that Z==—"". ThenZ basalso a oormal
distribution. :

L+ ]

oot

W{z}-w( }azﬁ'ar(x]---l

ThusZisaN{ﬂ.l]tsannmnIMﬂ:umnwithmﬂn{_lmds.d. I.

X-
Z"_&E‘_ = X=p+Z0

a b-
So that P(a< x {h.)"?(3{H+26{h}=[‘(—;ﬂ'{2-¢?p]_

Features of normal curve:

The normal curve is symmetrical about the ordinate x=j. The ordinate at x = u divides the area
under the normal curve into two equal parts. Hence the median of the distribution coincides with the mean
and mode. No portion of the curve lies below x-axis since the normal probability function cannot be
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- The normal curve changes its direction ﬁ'nmmnwxmmmaveﬂa.pnrhuofhﬂcxm Ifwe deaw
perpendiculars from these two points in the x-axis these two will meet x-axis at a distance 1o fromthe x=
B '

Approximately 68.26% area of the curve falls within the limits of + 1o unit from the mean. The
total area under the normal curve may be considered to approach 100% probability.

sy
A \
! gaary !
! |
1
: .
1
! i
| ’ 1
. psasy |
1 -
"y 1
3¢ ~be -} s |siw R SEERY-
= BT ) el 1]

Lntl-:awvegmphwchnwmm:mmwhn 10,20 and 3o of the mean. Tbe)raremspectrwly
68.26%, 95.45% and 99.73% of the total area. .

P(-1 < z< 1)=0.6827, P(-z<Z<2)=0.9545, P(-3<z<3)=0. 99‘?3 50% area of the curve lies to the
left side of maximum central ordinate mdsm-'-ﬁﬁ_mthcngm side.

Properties of normal distribution:
1. Mean deviation from the mean.

m‘dﬁ“mll— IFX FIT

X
Z= —;—P so that x = p+20.

_l 22

m.d from “"T jdz;e .adz’

2
dz

1
P

S Tie 2
= Z|e
3211:__&:
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1 2 1.2
0 -=-z o -2
=2l fze 2 dz+fze 2 &z
E+m ﬂ
2

l-h

35; T ze /27 dz=aJ_-um9u{w)'5 :

Mouments about the mean J.

2
_ 4 I+l 1 _{1*1.[.]' dx
2417 ]U‘- ¥ aJ2n ﬂp[ 202 ]

1,2
-y
oA R AT iR
T— ¥ a
=0 since the integral is an odd function of z
' y}:pf ......... ={)

Hence in normal distribution these is no skewness.

1 m(x* }Zn l(.’:l‘_‘]z dx
s i Ao B £

=00

1.2
n o - =z
O [0 2 4 ot
2% o o
: i T : ” 1,2
| T | m-22
o u-l, 2z od - 2
= z e + 2n-1) !Z‘ ¢
I 3211{ Gy
—n
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=(@2n-1)o'y,,, _
Putting =0,1,2, ....... and noting =] we have
K=o’, p=3c’pu=3¢" andsoon

ﬁ Llﬂ'-.gﬁ:
2 2 44
M2
Moment generating function.

(a) wrtorign:

-. LtI. o - 4] tl. I -l[ﬂ]E
ngﬁ{t}--E{e ] __Le .'EJE—H:'EXP[ 2\ o d‘

T I‘:{ltnMﬂ [ ‘]] : z=(x*l‘]
I 2
.=ep:+—t 62 ?2_ ui:e—i{z-tu} o
- watla?

(b) w.r.t mean p:

| 1
x_pm.:]g(ﬂt(! l-l)) "i"tE(g“] —t G by(a)

2 n
1'252 .l.gzgz [-;-1252] (%tzdz)
e Ty S

1
Now 30 Ll A
e =1+ T + X e I T

since these is no odd powers of't, the coefficients of t*! =0 for =0, 1,2,.......
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1 2]"'{1“},
-ﬂ andph=m:fﬁcmuf th _(2 -1,3.5.._,,+..aﬂ—l)02n
(2n)! n'!

Mean and mode of normal distribution.
Wei_:avt,

i I ?
fix) = mﬂ?[‘ E(K*Il) ]
1
Taking log ofboth sides log f(x)=-log o+/2x 7 2 by

f =___
Dlﬂ?m:ntmngwrtx. ;x;=';2'(x -p) = flx) f(x).

2
x) —B
Differentiating again, f'Ex)x“ [ﬂx}+(x u}ﬂx}]-—?[ (EU—)]

fix)=0= x=p

1 1 1
o Oy~ ey

Hence mean = p=mode.

Median of normal distribution .
Let a be the median

* 1
Then | flx)ydx=3
=

1

f fix)dx = I Tm["{o!'f’(x'l‘) ]d“i-]—-exp{——{xfp} J

1

=E+T ( —5 (x-) }3! T T l[x—p] ax=1,

I}




1 —E{x—u)z . |
So, TI‘: dx=0 je, u =a.Thus for normal distribution mean = median = mode.

Recurrence Relation :

We know, | : '
- 1 @ 2 l—p]l
z gl f(x-n) ma{ z[a dx..

differentiating w.rt o,
a O e
___'_""_g_[_l: (x— }11' 2\ o dx + 1 (x }21“""1.‘ 2\ o 7 &
B S B e s T

3
ﬂasf'_";"lrﬂlhﬂ

= W42 “'-’"2:""3 da

Putting r=0,1,2,........weget
ptxﬂl:ﬂlﬁo’.{hu‘ since p =1.

3 )
Th g TR e (o)=0*+20'=3c¢’ and 5o an.

Area under normal curve. :
The probability P for the interval from the mean p 10 a value x is given by the definite integral

. [[ _“] 12
- 275 zZ =5 X—p
P(psX<x)= Rt dx= e dz wh:rc z=—

(r ) ey I 3—1 .
Thevahmnnfl‘ﬁ:rwhﬁnfzat'htcrmlsnfﬂ.ﬂltnwbmhbuhtcdhsmdnrdubh.'mwalu:
gwmbyﬂuabuwdcﬁnitthﬂtgﬂb_mlbdthgmrmipﬁbﬁﬁﬁtywcgrﬂl

The probability that a random value of the normal variate will fall within the mterval x=p-gto
x=p+cis
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p+o

__[ x—)’
P(x- uﬁxﬂﬂ-t)-j— !

¢ J dx

1 122 1 = ;
-1<Z<1)= 2 dz= - |& 2 dz= 2:-:11.3413-0,6326&01:1&1:%.

Thcprqhbi&yﬂnunndumm:qufmemrmlmwﬂldmm more than & from the

: ! i
mean is (1-0.6826)=0.3174 which is less then '3' 2

mmm&mm&mmmmmmhm&m ;

: p+25 lﬂ] .
( 122]"1 P[u—?u*‘-:x{i.ﬂlﬂ] BI—T I e 2\ %/ &x i

g 22 |
IP(- Y] 2 2 .
_.lﬂzszsz)—l 2;:@;3; dz whm: : z 2
=1-2(0.4772) from table =0.0456

=+ P(]z]>2 )=0.0456 which is less than 5%
For further illustration let X be N(100,10)

Then Z= x’;;m s N(0,1).
; - . 130-100
ForP(X<130),  X=130and Z=——7—=3.
© P(X<130)=P(Z<3)=0.9987 (From tablc)
' 120-100
whenX=120, 2= =2

10
P(X>120)=P(z>2)=1-P(z<2)=1-0.9772=0.0228.
P(120< x <130)=P(2< z <3) =P(z < 3)-P( z < 2) =0.9987-0.9772 =0.0215

Thus from the tables of probabilities P(z < ¢) where z is N(0,1) we can find probabilities of X where X
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is N(,0) lying m any interval

[lustrative Examples related to application .
Example 1. ;

In 2 normal distribution it is known that 8% of the items are below 4.4, while 90% of then are between
4.4 and 18, Find the mean and s.d. of the distribution P(X<4.4)=0.08 and P(4.4<x<18)=0.90.

Solution : From the table of areas under normal curve we get corresponding z-values to be -1.4 and 2.

p S ; ;
Now Z= *'q—“ = X=p+z0. , 44=p-l.4c anod 18=p+lo.

- From these two equations. 13.6=3.40=c=4and p=10.

Example 2.

If skulls are classified as A.B.C according to the length -breadth index is undex 75, between 75 and 80,
over 80, Find the mean and s.d of series in which A are 58%, B are 38% and C are 4% being given

x2

that if ft=fx) = ?;_ﬂ fe 2 dx thenf(0.20)=0.08 and §1.75/-0.46
0

Solution:  Ift=0.20, the area ofthe curve from t =0 to t is 0.08 in the area to the left of the
ordinate t is (. 50+.08)=0.58 - :

The area corrasponding to x=75
R L .
a
: 75—u
Hence - =020 = 75-0.200=p - (D
80—p

For t= ST the area to the right of the ordmate at x=80 is given to be 0.04. Hence the area to ‘
the left ofthis ordinate is (1-.04)=0.96.
Thus the area of the curve from 0 to t=0.96-0.50=0.46. The corresponding value of tis 1.75

80
Hence - —G—“=1.?s =5 1 =80-1.75c @)

Solving (1) and (2) We get 75-200=80-10750 = 1.550=5=>0=3.2 and p=74.4




Gamma Distribution
Definition: The continuous random variate X which id distributed with probability density function fx)
givenby

]

g
.Et—.xt-le_'m, if O<x<oo, 120, m20
T
f{x}=']
0 otherwise
L

is called Gamma variate with parameters tand mand its distribution is called Gamma distribution.

Tf(x}dﬂc _m’ ufe;m“ xT 1 ax
= mx=I
0 It o T
= (2] e
vy - @) =
T w 1-1 o £
e (€5 . [e2z% gz = LI o
T m* | 0 fr -
Hence f{x) is a probability density function.
Mean and variance
T a0

p'l =E{X]=-T-—~ j  { pt - t-ldl
It o -




T oo
K2 =T-— [x2e X Tl gy
* 0
T T+l ®
=Fl—-l'e—3[_§_) : E:l_%[ﬂ sz+ldz

! } 2 T
¢ J = ¥ t+l — _..: o
.‘u"ar e m? m? m?°

In Gamma distribution mean = variance ifo=].

In general
T oo
W' i }'e'mxr_l'”dx
r T
oml G ZT bz L L Gz vy
|t 0 m1+r-1 ‘m !t m' o
= li T+r
|t m*
rg}:;;f} = la%f{f-h D(E+2) F - T{T+l];‘t+2}
i" m : ; m
- , 1 1 (el (+2)(1+3)
r=4= Hy I-'I.‘ 4.E1+ -
m- - m

Now,
e r 3 r r 2 13
B3 = B3y —3Hp B T4l

; 3
G+2-30)+ 25

.
1 2 +1) 1 T t(1+l)
_TE)(E£2) L rtHl) T oo :

'I:T.I-3 l:l'.'l.2 m - If!:l.:]I m3 m

L2
s
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kg =Hy = 4wy + 6137 —3ug"
W+ t+2)t+3) |, tr+IXt+2) T t(t$l) 2 14'
= — 4 . —+6 3 3 -3 '—4
m* : m> m m“ m m
= L“{ (t#+1) (1+2)(1+3-1)+312 (2142-1)]
m .
1 | >
= —[3(r+D) (z+2)(1=1)+31" (1+2)]
4
m a
_ 3:{1:2) &_tzﬂz}: 31{::2}
m
Measures of Skewness and Kurtosis :
n 42 mb 4 B _ 3t(r+2) m* _ 5
ﬂ-1=—i==—-—,—=— ﬁzs: 2— i —2_ +:
13 m® 2 L 13 m T

The distribution is therefore positively skewed and leptokurtic. _
: - Ift— oo then B, - 0,8, >3 and y, 50y, 0 .
This suggest that the limiting form of Gamma distribution is symmetric and meso-kurtic.

Definition : the continuous random variate X which is distributed with probability density fimction f{x)
givenby
JB x 1 -0™1 0<x<l,nm>0
B (r,m)
f(x) =+ :
' 0 otherwise

is a Beta vanate of 1st kind with parameters © and m.
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1
-1 [l+x]m_“1 dx

o Bleam) o
H
- ﬂ{t m}ﬂ{r‘m}=l
- Hence f{x) is a probability density function.
Mean and variance T it
W = EX)= s jm‘ La-x™t gx
B{t m) 0
_Beslm) _[t4lm [rem o
Bltm) - |t+m+l Itimx'ﬁ-—n;
So, Mean= -
t+m
E x*1 (joxym=t
2 = e é" e B
o r+2r T+m
~ B(r,m) Pivedm)= t1+m+2 |t|m
t(t+l)

. (t+m+1)(t+m)
Vﬁr(}g“l-lz_“l-lrz -1112

1'{1:+1) \ %

i (t+m+D){t+m) (r+m)? {t+m+l}[1+m)2(

"I.‘2 +mi+T+ m—'[z —rm-r)

) {t+m)2{r+m+l]
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Moments :

1
1 _ | +y-1 - -1 d
o = B(t,m) éx Qe s
. 8(t+y,m)
B(t,m)
_ 1 ~ (r+2)(x+1)r
Putting F=3, #3 = B(am) Blr+3,m) = (t+m+2)t+m+1)fr+m)
2 O o (t+3IN1+2)t+1)1
-t ¥y ™ B{t.m) L (t+m+3)} t+m+ 2} {t+m+1)}7+m)

Now, B3 =H3 -3 MoK "'1“;3

(t+2)(t+1)t g t(t+l) w( T )*'1 o
(v+m+2)(r+m+l)(t+m)  (+m+)(t+m) \+m)  (eym)]

2rmim-1)

{t+m}3{t+m+l}{r~—m+2}

|
3tm{’rm(t+m—~6}+2{ r-r-m.}2 { B

(r+m) ¥ (rrm1 )(r+m+2)(r+m+3)

() -

kg =y~ ui +6uy ui? 3u)

Skewness and kurtosis

I{r+m+1)mm (t+m—6)+2(t+ n'tjll2
m{t+m+2)(t+m+3).

] Hq
- 1, et A i B,=—2 =
By 2 ].1%

—  2(m-=t)yJ1+m+l
11 =B ==

Jtm (t+m+2)

12 =py-3.

B- distribution of 2nd kind

The continuous random variate X which is distributed with probability density function fix)
defined by




-1

1 X ; ;
Blrm) (14x)T+M ’hmi o
f(x)=+
0 if x<0.
is a - variate of second kind with parameter rand m.
a [ B 1=l
fix) dox=-
1 m-1 -1 1
= — 1- : -
Bem E{r (1=¥)" " dY mig 1+x ¥
= 1 pam)
| Bmm)
Hmne{x)dcﬁﬁuaprohabiﬁyﬂ:ﬁy_ﬁmm
Moments
_-:? 1 1('|:+l'»l
0 ﬁ{*;'r,.n]-(l_bx}?d-m
L 1 '}Ym—'r—];“_?tnl;-r—ldy pul:ting -l—=1+1
B[t,m,] H . y
: _"ﬂ{t!m} IZT-I"!'—I{l z)m r-1 where z=1-¥y
0

. B+, m-1) '

B(r,m)

B(x+1,m-1)

if m>r

|_+1 m-1 |

r-l:::p.‘l Beem)

|t+m
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T
Mr.an=-*_—l

Hence mean of the distribution exist only if m>1

ﬁ(ﬂg m-ﬁ} 1‘I:+th+m T+m (t+l)x

Pirkaa Bem | joem  |fm @-D@-2)

Var (x) = pz—u‘iz

- -r(t+l}-'_ rz 5 G - . e .

T
Di.'l!'r.-renthl E.q-nam for Pearsoniai system.

&lmmmmmmmwmmnf&aqmym :
in addition to normal curves. Hemmdmdttzﬁaﬁomdmmmofa frequency distribution.

L Aﬁemmcydmﬂummnﬂymatmandmumamghm{un&}mdﬂmﬁm
again . Hmagnraﬂya&equmdmﬂmmnmmnﬂ

If y=fix) be a frequency curve then,
P R

‘E;-ﬂfor!om:x--a,

2. At the ends of the frequency curve there is often highmmw-hﬁ_'rﬁe_x-aﬁs.

gy
p 0 where y =0.

3.Genmﬂyﬁrstfammomarewﬁcmmdﬂcmﬁmth:dimhuﬁm
'I'imwnhm[l}mﬂ{l]gwe :
X+a
1 dx “F{x]} . M
~ where F(x) is an arbitrary function ofx, not vanishing atx =-a.
'ﬁmﬂlﬁmffx]b?mclﬂmm
F(x) = b+b x+b,x~1h s SRS
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Empirically we retain only first three terms in the expansion of F(x).
| Hence F(x) =b;+b x+b,x’
Equation(1) '
:d_:f g__ﬁ!;ﬁ}_.__ :
d bu+blx+b2x2 e {2}
This is the differential equation for determination of Pearson’s type of curves.
Solutions of the D.E.
The general formof (2) s -
{b xﬂ.+blxn+l 2 n+2}dy_ F{xn+l ""ﬂn}dx {3)
lntegranug{i}bypanmmﬂwmmlrangmfvmmx,
| 1 2\ T -1 +]
; [hﬁx +byx" ™ +byx 1t )y] - I [nhﬂ,x.n +(n+1 ]blx +{n+2}h x0 ]judx

=0 —m"
e ? y(xﬂ+l mn)dx _. mmmm

mm&mmmmﬂmmmummmmmmd
moments we have, :

nhﬂpn;l o +l}ht Pa ) bz Mol ""‘u+l.fa:p‘n . @
Measuring x from the mean of the curve and putting n=0,1,2,3 we get |

bu=ap,= b=a since p.=1,u =0

byhg+3b,p=p, |

3b F}Ljﬂbi.ui—‘rp]ﬂ o,

30y +4b, 1+ 5byp =p ap,

Elimmating b, from 2nd and 4th relation,
3b,u,+b,(5B,0*-9c")=(B,-3)c"
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Eliminating b, form 3rd and 5th relation,

. .
27 2(58,-6B;-9)

o2 (48,-38;)
o7(48-38)
From2nod relation, bg 258, -661-9)

r'ﬁ _ oA B+

From 3rd reation

25268 -9)

T o iy

where “z""l-‘gml .
: L K

Suhmnofﬂ:aquatnn&}dtpmdsmthemofﬂ:moﬁummbﬁrﬂw Th:
_muﬂhemu bl =4bb,. ' :

5 ; :
Letusdefine k= ‘4—&@ mmmmdb.b:fk—l)

Different trpu of curves _ ; :
Casel: Roots ofb;+b,x+b,x=0. are real and nfnppnak;sign. -

2
bQ 51
Product of the roots = and bb,<0 Hml@:ﬁ

by  bgby : '

Shifting the nri;gjnmthemod: X=-awe hn_ve.

L PR e e R = »
y dx Bu+511+32*2 BI(x—-u.l}(x-ﬂI) (5)

‘where uqand a, mﬂrmotsoftheaqum Exprmsmgmpamalﬁnctm _

-X K. ml +_1'

BZ{x-ul‘_i{x—uz}__ X-ay X~0g

=;—x¥ B,[m, (x-a,) + my(x-a,)]




Putting x=q , and a,ﬁtgﬂ,

_al-Blml(al_u'lj_
md a,*Bm(a -o,)
Dividing —L* _Lﬂm,a;l-m,u'ﬂ E; (6

-Ehmmatmg a andu Eumahuwtwnmhhcm, B(u a,}{mﬁm,)-—{u —u,}_
1 Al

==~m=+m='*_§§ P, b 554D
10y .0 ™.
: an{ﬂbmomuydl x—a)  x—0
logy=m, log (x-a ) +m, log(x-a,) + constant.
Let us choose _
o Pl and o =8,
log y=m, log (x +a,) + m, log (x -,) +constant.
= my log ay(1+-X) + myag log (~a)(1-—-)+constant |
S | e 2. '
i 3 X = x ™2 : ¥ 5
=:jr;jrn[l+-;] [—;] where y isaconstant =~ @®
whnrc ma-ma= ﬂ#:} EZ. {B}_il-thtfrequencrepmd.ﬁpe'l.
Case II

_ Roots ofthe oquation by+b,x+b,x*= 0 are equal but of opposite sign.

Here b,=0 and b,and b, areof opposite sign so that "b_g""ﬂ

mwmﬂmmmmmm




o i b
%i— = - - = = where cz =—Q—[nteg;mting.

72 b
o) s
by ) :

- |-

e S 2.2 '
Integrating, ©8 Y= %, log (x“+c”)+log .!fu
1_2;1 _—y Yu'““*—‘xz}_m where € < x<c
-, ; <<x
=>}"=]|"ﬂ (12+C} Cz

This is pearsonian curve of type LL
CoroBiary : Ifm=0 then y=constant and the distribution becomes rectangular.

Case III
One root of b +b,x+b,x*=0 is mfinite. "
In this case b, =0 and b, » 0 so thatk — co-

X

5
dx bu+btx

1
y

dy xdx ' b

- 0
y by(x+8) where c= bl

LB e
hl bI(x+c]

hgynmm{" bil) + E;lﬂg (x+¢)

_px/ 2
=&}=Fn{1+£}pt o - whmpﬂgand-cﬂ‘!m
c

This is pearsonian curve of type I11.
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Case [V _
Roots of the equation b, +b x+b x*=0 are real and of same siﬁn.
In this case k>1
This will follow the case 1.
Accordingly let the roots be a ;and a ,so that
a,=-a, and a,=—a

s SO
then a 2,
In ths case equation of the curve is -
X ml. X -mz
Yoy, [ o= l+—
ﬂ.l I‘Z .
' Thlsis_l‘unoniﬂcnmm‘typeﬁ’.
Cumhﬂnnuﬂnegmion

huﬂudﬁﬁumdmummhwbmmnﬁnadmasmkmmm“
have discussed is umivariate distributions only. But in statistical work we have often to deal with prob-
lems involving more than one variable. First let us consider the case of two variables. So we shall extend
our discussions to bivariate distributions. In particular we shall study the simultaneous, variation of two
variables X and Y. These variables for example may be heights and weights of sudents of a class,
marks secured by students in mathematics and physics, records of rainfall and yiclds of crops etc. So
our interest lies in studying the relationship between two variables. The relationship may be of any type.
But the easiest and of great interest in Statistics is that of inear type. So we shall confine our discussion
to linear type only. :

Blvnrhte dhuﬂmtiun

- So far in our discussions we have confined to asmghvmblecxwplmthcmscufmnml
bivariate distributions. We shall now study in simultaneous variation of two variables X and Y. The
relation between the two variables may be of any type, but we shall confine our discussion to linear

tpe -

We know that E(X-% Jand E (Y-¥) givena measure for the variation of X and Y respectively.
_ Normally we expect E[(X- z (Y-¥)] to give a measure for simultaneous variations of X and Y. But this
will depend on units used for X and Y. To make it independent of units. We divide it by quantity having
same dimensionas E[(X-x }(Y-¥)}

The quantity E[(X-z XY-¥)]. mmﬂedmwmmeanandYandmdmutudbymv{x.y}cr
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o, =cov(xy)=E[(X-x X¥-¥)].
=E[(XY-xy-¥x+x ¥]
E[(XY)-XE(Y)-FE(HE(x ¥)
E[(XY)x¥-Fx+x¥
=E(XY)x ¥

The measure of the linear relationship between two variables X and Y is depoted by, oryand ..
called the product moment correlation coefficient.

e cov(X.Y) i Xy
XY Far(X),var(Y)  ox0y.

ey (Zx)Zy)

n

= ) 1 IxLy
[ e 2],

n
n

obviously ¥y, Yix

The concept of correlation coefficient was formulated by Karl Pearson.

s 5 b
Change of origin and scale. Let U=x—hE Eﬂd‘“’=%—' so that

E(x)=a+hE(U) and E(y)= bHE(Y).

v o EXRY-P]__ BE@DT)
XY e e uv
JEX-D) JE(Y-7)?  hkyE@u-0)? YE(-V)?

This value of correlation coefficient is independent of the origin of reference and the unit of measurement
in scale. In other words y is a real number and it has no dimensions.

Theorem: If X and Y are independent random variables they are un correlated.
X and Y are independent => E(xy)=E(X)E(y)=XY -

Now Oxy = E(xy)-X ¥=X y-X y=0

.
o, Oy

So Txy™

Hence X and Y are un correlated.
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Before discussing different properties of correlation coefficient let us first establish Schwarz’s in equality
for random variable X and Y.

(ECCT < EQXE(Y?)
Proof : For every real constant a we have.
E(aX-Y)!2 0
= a'E(X°)-28E(XY)+E(Y?) > 0
In particular this hold for
_EQY)
EX?)

a
F;uhstiruthgthiswlu:nfaw:tmt,
EONP _,ECNE | 2.0

2 o
E(X*) _1-:(:{ )

= - [EXY)J4EQC) E(Y) 2 0
= [E(XY)F < EGX)E(Y?)

Limits of the coefficient of correlation: _
If x', ¥’ denote deviations ofthe variate x and y from respective mean then from Schwarz'sin.
equality we have

- [E(XYOFS E(x DBy )]
Dividing both sides by E(x ) E(y' ) weget
Eenf

T)47)

| =7r, 51 =-1gr¥ <l
interpretation of the value of y : o
The value of y is a measure of strength of the linear relationship between the set of vahies ofx,

and y,. A large value of'y indicates that there is a strong linear relationship between x and y, in the

points ( x,, ,) the near a straight line . A large positive value ofy indicates that the straight line has a

positive slope and a large negative value of'y indicates that the line has negative slope. The value y=1
“ory =-1 indicates that all pomnts lie in a straight line. A small value of'y indicates that these is no lmear

relationship between x and y, i.e. the points ( x,, y,) do not lie near a line. Thus ifa relationship exists it

is not linear.
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Regression _

From above discussion we have seen that a high value of y imply that the points will lie near
about astraight line. The method to study this line, how to find it and its usefulness is called regression
method. The objectives of the regression analysis are the formulation and determination of the math-
ematical form of the relationship between the variables and use its for prediction purposes.

When the ponts ( x ,y) i=1,2, ......,nare plotted in the xy-plane of a rectangular coordinate
system, th set of points is called a scatter diagram. From scatter diagram it is possible to visualize a
smooth curve approximations the data. The curve is called approximating curve. The problem of finding

equation of approximating curves that ﬁtgwmmofdamn:calhdcuwe fitting . Inpracuneth::ypeof
equations often suggested from scatter diagram is either

y = ax+b : straight fine
ory=ﬁ+bx+cx’ quadratic curve
A curve is completely known when the values of the parameters are known. Thus fitting ofa straight line

to aset of points( x,, y,) F1,2,~----namounts to finding the values ofa and b, with the helpof x,, y,
such that the line will fit the set of pomnts wall. Similar the processes for fitting a quadratic curve.

Let us consider the case, mwhich the points are (x,y) i=1.2,..... ,n.Forag;i‘vmwhmxinﬁthmewﬂ]
bedlﬁ'ermcebﬂweenthevahm}r Lattheckﬂ'emnned.

Dfaﬂmmamfamﬂyufmmuammmimgasﬂuf@pomamwﬂl

:113’-44-_122+.........+d“2 = minimum, i the best fitting curve in the family. A curve having this property
is called least square regression curve.

Derivation of normal equations for the least square line : -

Since the equation of the line is assumed to be y=ax +b the values of y and the least square
line corresponding to x,,X,, ....., X, are a + bx,, a+ bx,, ......., a+bx . The corresponding deviations are

d=atbx-y,
The sum of the squares ofthe deviations is
n n -
S=Xd?=X(a+bx -y)2
21 1 :
A necessary condition for this to be minirmum is
b
—=0=Z 2(a+bx—y) =0
P. =X2(a+bx-y)

%=U=&Elx(a+bx—}r} =0

B9




50 we obtam,

Ty=an+bIx
¢ 2} m

and Ixy=alx+bZIx

(1) are called the normal equations for the least square line.
Solving (4) for values of a and b we have,

oo ENEXD)—(ExNExY)
aZx? ~(Zx)

b By ~(EX)(EY) ' @
2w -
nEZx“—{Zx)
L Z(x=X)y-¥)
E(x-%)2

) Dividing first equation of (1) by n we get.
y=a+tbx | O}
Eliminating (3) and from |
E least square line y=a+bx )
Y-y =b(x-¥) ' ()
(5) shows that b is the slope of the line (4) and the line passes through (% , 7).
The constant b is known as the regression coefficient of y on x and hence some times ‘b’ is written as
b

=
From (2),

=Hu
byx=g2 , where b, =Cov(xy)
X

o a
B 5o 00 PO
g2 9%

X

- "ry )
—“a=yV—-¥—2X
3) a=y rdx
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o :
ad  (5) =Y-y=r XD (6)
Similarly the equation of the line ofregression of x ony 15
et @
x-X=y-2(y-9
o 4
y
The regression coefficient ‘b’ is independent of origin of coordinates.
Let us change the origin such that x=x*+h, y=y +k wherehk, are constants. Then

b= DEXY'-(EX)ETY) _ ZXTNY'-Y
nEx'% —(Zx')? ' -%)%
Proof x=x'+h, y=y'+k=X=X+h, ¥=V+kL
Then
b T(x-XNy-¥) _ E(x'-X)Wy'-¥)
E(x-%)° B(x'-T)>
_nExy'-(ExNZy)
\ nEx’2 ~(Ex)?
where x,y have been replaced by ', y’. Thus it is invariant under change of origin and scale.
Rank- correlation : i

[f'we have a group of individuak ranked accordmg to different characters, it is natural to enquire
whether the ranks can be made to give us measure of degree of relation between the two characters.
Suppose we have n individuals, whose rank according to character Aare X ,x,,........X_and according to
character B are y ,y,,.......,¥, Where X’s and y’s are discrete nnumbers from 1 to n.

_n{n+l) .
Exi o —E}ri =X=y=

n+1
2
E{Ki —I}z =Exi2 —Zﬁxi +}32

2
=p{n+l)(2n+11 L+t nin+1) & (n+1) 55
] 2 4

=%[4n+z-ﬁn-ﬁ+3n+3]

o1




i _
. o) PR, ) TR
i)l

2
n*-1
var (x) —E-"VII(F}

If d_ stands for difference in ranks of th individuals we have
d;= (zi —i}—{?i -?}:x;." u}{ -xi‘wyi; since X=¥ -

where x] and y} are deviations of x,and y, from ¥ and ¥

n n 0 n
rd? =Ex2+Ey2-2Ex}y,;
Eall 1

- i n3—n n oo
ﬁvfxifizi[ 6 _:fdl

coefficient of correlation between x and y will be _

_ fo L %
. 1{a -0 .2
£y} 5[ 6 ’3‘*-]

y=—1 =
zxgizggl 1{n*-n
12{ 6

| 2

.=]- _?..ﬁ_, [T}
n(n?-1)

Maultiple and Partial Correlation :

Let us suppose that we are given n sets ::rf-::ﬁrrespundiﬁg values of three variables, x ,x,x, and
they are measured from their respective means. The regression equation ofx,on x, and x, canbe

written as y _ B

: : xtﬁﬁﬂuaxz"'hmxa (8)
where the constants a,b, b, , are such s to give on the average the cost estimate of x,, correspond-
h}gtnmyamigmdmhesoﬁggndxr '

The sum ofthe squares of the residuals s
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S=L(x,-X )=L(x,-a-b,x,-b, X )=Ix’ ,
* where xzﬂﬂxl'a'bluﬁ'hluxr

Now weareto finda,b,,andb, , sothatSis fmmirmurn. Then we have the equations
ds
£ =0=> I(x,-a-b, x-b,, x,)=0

B, =0 = EX XD, x5, X)=0
ds
and Tﬁ:;: =0= Zx,(x,-8-b,, x,-b;, X )=0
 These equationis can be written as

kin#ﬂ
zlelﬁﬂﬂ “ % (9}
Ex;x,_,,:ﬂ . ]

(9) are normal equations for determining a,b ,, and b, , . The first of these equations givesa=0.
The 2nd and 3rd can be writtenas

2 v .
Ixyx9-byp 3Ex3 by 3 2Expx3=0

= 13919 =5y 353 +by3 37530,05=0  (Dividingby)
=71201=b)2.302+by3 272303
Similarly  yj30)=bj3 372302+bj3 703 0

where ¥, 1s the coefficient of correlation between x, and x, and o, isthe s.d. of X

Let A5 be the co-factor in the ith row and jth colurmn of the determinant

L 72 m3
A=l Y21 Y23
Y31 Y32 1
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Then solving (10) forb,, and b , , we have

132

Y1291 72393
Y1391 a3

92 Y2393
Y2392 93

4

b53=

Y12 7123
3 1
l 723
123 1

9193

o ok

8 4
o7 4

_9 4

Similarlyb,,, o3 “511

‘=:,x =,_.El_'_.'¢_i_2_ x _EL__ﬁ_l_l_x
oy Ajp 2 o3 44

41\ 92 o3
b,,, and b,, , are called partial regression coefficients.

(8) 3

Now coriting X, , =X, — b, X, from normal equations.
We get

Ix =LX, _u(xl-bu}x.!-ﬁ XX, 3

!_JJIIJ
and  IX, X, ,,=IX, ,(X-b,Xb, X)LK X, (11)
Also  Ix X ;,={13-b3 2% )%, ,,=0
and I, x =(x-b,x)x =0

Denoting the variance of the residual xmb:.ru’mw: have,

no? ,, = I, =2k, ,, =IX'x, ,, by (11)
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“xlixl'bu.}x:'hu.zx:]

= n ¢,nb,,,v,,0,0,-ub

F | I.'I;.l.'III l.ldlﬂi

==\‘[1 o? }“1 =0123712°2*%13.2713% 2

Eliminating b ,, and b, , &um(m}m(u}mm

g
1"‘1"21‘;2 TiI2 N3
i .

‘121 1 yy3(=0

31 Yz |

P S (13)
where 4, is the co-factor "1 in

Ti:. 2 T3
A=lY2]1 Y22 Y23
T31 Y32 Y33

. Multiple co-relation coefficient.
Let us define the correlation between x (observed value) and X (expected value ) given by (8) as

Ix X,

- R
1(23
2 zxfzxi’-’

Again Ix, X, =Z{x, (x| =X, 53)} since a=0

a5




o G
=Ixy —EX|X) o3-

uzzf—lez_ﬂ | by 2nd equation of (1)
=l —ei3)
Exf“ﬂ?‘l“u_:;}z |
' 'EE'EIl?l.zé%tﬁlzﬂf&lz*n'ﬁu*&lz.zs =nlof o1 23)

R G e 1)

Rien ™7 (of ~0123) (4)
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since Ri(23) is non-negative.
From(14),
Ry23)=1
=0 23=0
Thus when residuals x, 53 =0 the observed and éxpecied vahues of x, coincide and x, i a linear

ﬁmthnufxlandx,,

Partial correlation coefficlent.

Th!:mrn:hnunmcﬁcm:tbetwemxunnixumbﬂwem:gmdxlnﬂerthelmmeﬁeﬂof.
the third variable x; has been eliminated from both x, and X, is defined as partial correlation coefficient
and is denoted by, , .

From(11),
Ixp 3% 23=0
=Ixy 3(x1-byp 3%x3-b;3 9x3)=0

=S TX. X o oB o EXn o =X =D, EX. oKy =0

g S s © e e M i - & o e
. 2
=Ex 3%2 3-by2 32x3 3=0
Lo JIX3%3
=b53 5l | (15)
23 :

Thusb,, , is the coefficient 0frcgmsmnnf‘xu ouxuSmihﬂyb,ulsthzcueﬁcm ofregmsnn of
X3 unxusu thatr , , is given by

_ o
. B R L, 5D
23="123°213 411 Az Atz

Sinr::r,”hasthems:gnasbmwhmhhasttmmgnnf -8y5.

__ 82 _ nfa-n3ny
> Jﬂuﬂlz ;;i——rl% :il—r223 . (16)
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Now,

2
N35!

2 2
= -5353)” SU-g3)(1-5y)
=:-r122+r123+r223+.21:|2 n3 sl andr, ,

Hlustrative examples.
Example 1 Shuwthatthcmeﬂimunofmrrelmunrbetwemnmmblmxmﬂym given by

_ ( +oy-a2_y )

21:: xTy

Var (x-y)=E[{(x-y)-K-}°]
= E[{(x-D)}(y-7}*)

| = E(x-D)2-2E(x-D)F-P+E(y-5)2
=Var x+Var y- 2 cov. (x,y)

So, i'!l’ =a2 +cry--2m' Oy
. s T S
=:~21-:::x-:r!'r -¢x+ay ux-y

8 T
ux+a}r—u%_f

—=T=

Zﬁiﬁy
Example 2 : x, and x, are two variates with variances q? and u% respectively and r is the correlation
; o
coeﬁicimtbetwesenthemDetermine:h:vaheufksuchthatu=x1+bnzmdvrxl+;;'xlm

uncorrelated.

Since u and v are uncorreleted Cov (u,v)=0

08




C{W{tl.. V} =0= %{{Kl '_l'-.l}+k{lz-iz{llﬂil‘i‘?—[lz*iz]}]‘= 0
2
S | a | ér = i "y
= E{(x_l'-xl} +k;;{:2—il}2 {k"'_;;' Xy —xl}(xz—xz}] =0

2, kA 24 k+ L =
="El+qu uz+[k+ﬂz]rqla2 0

=0) +koy+kro, +19; =0
={]+_r}al+_k(l+r}52=ﬂ
=0oy+kay=0 _ . :

=>k=—EL
va ;
Example 3 : Iﬁusmmﬂummm 3Ix+2y=26 and 6x+y =131
Let the first Ime be regressionof yon x. Then

2'{:- -3x +26=Y¢=-£x +13.
: 2

Hm_e . P72 .
Now the other tine will be regression of X on Y.

6Xo=-y+31=X, ;_%F.ﬁ}g

2

o |
=r-=—=>r<l.
4

Let now consider that first line is regression of X on Y.
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26

: .
Then 3X=-2y +26.= Xcs-; Y+

: s

Sbyy =23
The other line will now be regression of Y on X

Y_gs-ﬁxtiil

bq, =—6

bxy-Pyx =4=r>1 whichis absurd.
Hence regression lines are pot mutually reversible.

Example 4 Show that 111{23)2r|;
Weknow, of 93 =X x{ 23

=Ix) 93(x;=b123%2b132%3)

=2x{ ~by32 B 2%3 npsrintaqonie
2 2

=noj 5 ~b3) 2 b3y pn0j 7 -

il ol iy o By o

- B 31.2°31.2

=af 23 =0] “'ftzz_ )(1-13 2)

From (14) we have,
= R o Lot
1-Rj(23) =(1=-q2)(1-113 2)s1-1j3
| =Ry23)212
. Bivariate normaldistribution :

A generalization of the normal distribution to two continuous random variate X and Y is called a
bivariate normal distribution. A normal distribution ofa single variable X is given by

_(x=p).

1 2 ;
X)= e g —WCK <D
4 o020

100




where p and o are mean and s.d respectively.
- Generalising to two contimuous random variables X and Y we get,

, " i
) A
5 | ™ 1 2 92
eXp | \
215,05 1-p2 20"

fix) =

~LEXLW, ~VLY<® (A)

where p, 1, are the means of X and Y; 5, azueﬂms.d.anandeﬂRBth:cum!aﬁnnmfﬁcimt
between Xand Y.

Above expression gms the univariate normal distribution. If the correlation coeffieient p=0 then,
1 | x-p . 1{ y—p ’
- il Lo
200y ¢ [ o ] +5( o2 }

2 .
| 1| X=H; 1 1| Y-H2
= exp{- 3 expq ——
;Elual Sl o) ] 3211::2 » 2[ d, }

Thus f{x,y) is the product of a function of x-alone and a function of y alone for all values ofx and y.
Hence X and Y are mdependent.

f(x,y)=

Conversely if X and Y are independent, f{x,y) given by (A) must for all values of x and y be the
product ofa function of x alone and a finction of'y- alone.

Thus ina bivariate normal distribution for random variables X and Y, the two variables will be
independent if and only if their correlation coefficient is zero.

‘The m.g.fof the bivariate normal distribution (,,1,.7,,0,,0) about the mean is given by
Mycy (1 t7)=Elexp(t)(x-p 1+t (y-12)}]
oo od

= | I-‘-'w{tlfx By )+t (Y=ho )X, y)dxdy

=00 =00

= it — ; R —g®
Let X—x——p.l ﬂ']tl pﬁiﬂztz. Y—}r l“lz WIGI"E Uztz.wtﬁﬂdthat
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1 l
MXY {l‘l " tz} = CK[{E( L‘%Ulz +2t Itzﬂlﬂzp*-t%(!% )] x

2nojoy J l—plr2
@ ©

2 202 yZ
X | f epl—tn 18205,
o0 * 2{1—;:1}{:: o192 o}

= “p [ %{:15% +2t;t56;0 zpn%c% )] .

r s

4yt
Now o= mﬁcmnf s in the expansion of M, (t,.t.).
For different mhmofrnnﬂs we set following results
2 S
H20=0] :H]1=PO|92:402 =92
= = ) 2
H30=H21=H125B02702
n3u4 = 30'4
K40=30] 131 =3pP102 =Ho4 =302
3 3
K13=°P0,02
Cor: If p=0in X and Y are uncorrelated then
MXY{tl’t2)"m[§{.tzalz.H-%G%J]

=> XandY are independent.
Conversely if X and Y are independent then p =0

102




Unit3
Principles of least squares of curve fitting.

itroduction.
Let us suppose that we have m independent linear equations in 0 UDKDOWDS X)X, +.cueenes X,
XM AE i H8 A
5 B B o PRy . B S T
R B U 5 SRS | W L B
n

- equivalently JEI 25 X3=b; #=1,2———m——(1) where a’s and b’s are constant . [f men then we can

1d a unique solution of the given system of equations. If m 3 n, no such solution exists. We therefore try
1 find those values of x X, ........ x_which will satisfy (1) as nearly as possible. The method we adopt is
mprmmienﬂeastsquares Thevah;esthatwenbtammthebﬁtnrmustposﬁbhwhmhthcm

puare such.
[ethod of least squares.
rom (1) Let us form
o .
S= ? (“il X|+ap Xq +,._,__,__h+ainxn—bi)2
m _
=?Ei where Ei =a, X, +a, xz. et B X -—b
Againﬁ'ﬂmdiﬁ'emmialcahuhmﬂnemen:levahmsofﬂ:eﬁmﬂdnﬂxl,xz,......_...x.)=fm;ivm
of :
L =12, o
:f | . ax_i .1 12} n.
rovided partial derivatives exast.
Applying these results, S will have maximum of mminmum ﬁ:'-rt:'lmsevnh.les ofx {}= e SO,
vhich satisfy the following equations
8 =0 5 o :
ax,] L] ,’=l:2:3:—""“"!u‘
. m
:>Ea E =0, Ea E =0 ... .. 28 E=0 (2)

it 11 =1 21 = o1
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Curve fitting:

Often in practice a relationship s found to exist bctwecn two variables. We want to express this
relationship in mathematical form by determining an equation cotrecting the variables. A first step is the
collection of data showing corresponding values of the variables x and y say.

A next step isto plot the points (x,,,), (X,,¥,), --...(X_,¥,) an a rectangular co-ordmate system.
The resulting set of points is called scatter diagram.- From scatter diagram it is possible to visualise a
smooth curve approximating the data. Such curves are called approximate curves.

Th:gnrmImbhnafﬁ:dmgaqmmmnfapnummlgmmﬂtawmofdaHEmﬂud
mﬂmg.

Feragmnvahmofx,myxl,ﬂ:scmdlbcadiﬁmmbﬂwmmcmhmy‘mdmceumspond-
ing value determined from the curve, C. This difference is denoted by d, and is called deviation, error or
residuals which may be positive, negative or zero, similar results for other variables. :

A measure of goodness of it of the curve C to the sets of data s provided by fd?.ifmis'umn.
the fit is good, if . is large fit is bad. Ofall curves in a given family of curves approximating a set of n data |

- .
points, a curve baving the properly fdizzmi:hmmiscakdabm fitting curve of the family.

Lml square line :
The least square Ime approximating the set of pnmts (11*3':}’{ Xys¥y)s ek X,Y,) hias the equation
y=atbx (1)
where a,b are constants to be determined.
mvahms_nfy on the least square line corresponding to x, X, ......,X, are
' - atbx, atbx,, ..., atbx .

B
Therefore deviation from Y]'s are given by
di%ﬁztr-y. i=1,2....n
The sum ofthe squares of the deviations are given by

Zdz (a+bx ~% }

This isa function ofaand b.
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. 2
ie. flab) =?{a +bxi . YEJ

For minimum vahe of f'we have,

o, o
da oh
Now,

n

X a0 =T(a+bx.-y.)=0

oa 1 1 1

= an+bIx, =1y,
This can be written as

Ly=na+blx
similarly Exy=n£x+h2x2

These are the Emnmlaqn.mtiuns corresponding to equation (1).

Ilustrative example
Example 1. Construct a straight lme that approximates the data given below
£ B Fds G AT LISE..oN TN
; y : TR 4 4 5 7 8 9
Let us construct the table ' ' '
% ¥y Xy x?
1 1 l
3 2 6 9
4 4 16 16
6 4 24 36
8 5 40 64
9 7 63" 81
i1 g 88 121
14 9 126 196
- Ix=56 Zy=40 Zxy =364 Ix*=524
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The equation of the line is vy=atbhx
Normal equations give.
Ly = na+bZx—> 40=8a+56b—= 5=at7b
Ixy=alx+ bIx’= 364=56a+524b=91=14a+131b

Least square parabola :

(i) Let us extend the idea of least square line to second degree curve. Parabola ﬁthcsnmlﬁtum The
least square parabola that fits a set of points isgiven by

y=a+bx+cx? 3
where a,b,c are constants to be determined.
Let the sample ponts be (X,,y,)(X,.¥,); ----o(X,¥,)- The values of y onthe least squa.'rﬂ
parabola corresponding to x X, ...... x_area+bx +cx}, atbaex;, ..o 210X FoX]
Therefore deviation from Y; s arcghmby

d=a+bx+cx? -y, i=12,.....,0
The sum of the squares of the deviations are given by

n n
£d2 =¥ (a+bx, +cx2 —y.)2
1 I 1 1 1 1

This is a function of a,b,c, n f{a,b,c)
ie. flab c) E (a+bx +{¢x },1}2

For minimum value of f we have, -

2l
]
=
i

2
i

i

Now,

.n
g=li] =:~E{n+bx.+r:x.2-y.}zﬂ
da 1 O
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2
= an+bIx;+cIx] =Ty;

This can be written as

_ Ey:riz +h£x+r.:£.:r.2
similarsly Exy=aIx+bExZ+cIx> (@)

and Ex2y=1212 +bEx> £ex?

(4) arethe aormel equations corresponding to equation (3).

Example 2.Fit a least squares parabola to the data given below

X 12 18 31 49 57 11 86 98
: y 45 59 70 78 712 68 45 27
Let the equation of the parabola be y = a+bx+ex?
Normal equations are
Zy=na+bIx+cIx’
- Exy=aLx+bIx*+cIx’
Exly=aZx+bEIx*+cIx!
X y 'y - x' . Xy - xly
1.2 45 1.44 1.73 2.08 . 5.40 6.48
18 59 3.24 5.83 10.49 10.62 19.12
3.1 7.0 9.61  29.79 92.35 2170 6727
49 7.8 24.01 11765 576.48 38.22 187.28
B o R 32.49 185.19 - 1055.58  41.04 233.93
7.1 6.8 - . 5041 357.91 2541.16 4828 - 34279
8.6 43 7396  636.06 5470.12  38.70 332.82
9.8 2.7 96.04  941.19 9223.66 26.46 259.31
Ex=42.2 Ty=464 Ixi=29120 Ix’=27533  Ic=I897192 Exy=2042  Ix'y=1449

Since n =8, the normal equation are
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8a+42.2b+291 .20c=46.4
42.2a+291.20b+2275.33¢=230.42
291.20a+2275.33b+18971.92c=1449
Solving with the help of calculation we have.
a=259, b=2.07, c=-021
Hence the required parabola is _
P W §=2.59+2.07-0.21%

(ii) Let us fit a general parabola.
The equation ofsuch curve will be of the type
Y=atax+ax+.... +ax (5)
where 2,3 ,4a,, ....... 2= (- are constants to be determined.
Let the given points be (x..y) =12,
Equation (5) is called a parabola of degree p of best fit. Substituting values of x in (5) we get,

X p
b R e R +ap X]
Y, is called expected value of y corresponding tox =x and y, are cal' - sserved value.

The difference y-Y, is error of estimate or residual

n n T
2 "
Let F[a'}=?{}=.-&fl}==? AP Y < SO a,xP)

According to the principle of least square we choose theconstants a(i=0,1,2, ..., n) so that F has
minimum value. Accordingly we get.

E}’=nnﬂ+ali'.x+azl".xz+ ......... +a pExp

i Exy:ﬁuf.x-fa‘zxz _!_;12}_.—3{314T _________ 3 apzxp-l-} o
%

2 z 3 4 +2
Ix“y=apix +a|Ex +aEIx +.....,.._+apExp _

le’y:aﬂle"+alsz_+1+azsz+2+ ......... +a Exzp

P ]

These are normal equations for fitting of a parabola ofdegree p.
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Unit4
Theroy of Sampling
Introduction

Often we are interested in drawing valid conclusions about a large group of individuals or objects.
Instead of examining the entire group, which may be difficult to do, we examine only a small parc. We do
this with the aim of inferring certam facts about the group of mdividuals.

The entire group of individuals is known as populations. The word ‘population’ used in stai .tics
has altogether a different meaning. ’

A population is the totality of any kind ofunits under consideration. It may be finite or mfmite.

Asample is any portion of the population selected for study. The process of obtaining ex_a.mﬁlcs is
called sampling. :

The aim oftheory of sampling is to get as many information’s as possible about the population form
which in sample has been dravwn. '

A characteristic of the population is called a parameter. For example mr.an p and s.d o are
parameters.

The fundamental assumption underlying the theory of sampling is random sampling, which consists
in selecting the individuals from the populations, in such a way that each individuals of the population has
the same chance ofbeing selected.

Two types of sampling will be discussed-(i) Random sam;:-hng and (2) simple sampling.

A “Statistic’ is a function of the sample. Examples are arithmetic mean and sample variances o2 .
Simple sampling: -

Sampling of attributes may be regarded as the drawing of samples from a population whose
members possesses the attribute A or not (-A): The choosing of an individual in a sampling is called an
event or trial. Possession of a specified attribute A by the individual is called a success.

Simple sampling means random sampling in which each events has the same probability p of
success and the probability of success is independent of the success or failure of the events in the preced-
ing trials. Thus simiple sampling is a special case of random sampling in which trials are independent and

. probability of success is constant.

Let us consider an example. [n an urn there are two white and 3 black balls. Probability of drawing

2 ' _ . 2
awhite ballis 5 Ifa white ball is drawn on the first trial, probability of drawing a white ball will he"s- Jn

; i .
the second trial if the ball is not replaced the probability of drawing a white ball will be 3 Hence the
sampling though random is not sumple.

A random sampling from an infinite population is always a simple, since drawing of one individual
cannot effect the probability. But a sampling from finite population may or may not be simple.

Let us take a simple sample ofn members which will be identical with a services ofn independent
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trials with probability of success p (constant) . The probabilities 0f0,1,2, ..., n successes are the terms of
binomial expansion of (p + q)** The distribution so obtained is called sampling distribution of number of

successes in the sample . The mean value and s.d. (standard error s.¢) are np and ,,||"n pq respectively.

: _anpmporﬁnnufmmashplcisummmhﬁsumemdjvkhdbythemmof
members in the sample. Hence .

Mean of proportion of successes= p.

s.e of proportion of successes = \i Esl'-

Sampling with and without replacement.

Sampling where each member ofthe population may be chosen more than once iscalled a sample
with replacement, while sampling where each member cannot be chosen more than once is a sample
without replacement. s

If we draw an object from anurn, we have the choice of replacing or not replacing the object into
the umn before we draw again. In the first case a particular object can come up again and again, where as
in the second case it can come up only once. 1 ; :

Random sampling ; ; . .

Ifin a sampling each member of the population has the same chance ofbeing selected then it is
called a random sampling. ' _ ;

Amﬂmwhufshenukmwﬁhrapm&umapowmnwﬁhdimﬂmﬁm :
p(x) = P(X=x) is a collection of randomr variables X, X,,, ....., X each having the same distribution as

Now E(X)=p and var (X)= ¢ ,
Then E(X J=E(X )= .......=E(X)=p and V(X )=V(X}=...=Var X)=¢’

Theorem 1: [f 1 and o® are mean and variance of a population and if a mndomsaﬁplesefs‘m:nis
taken, then the sampling distribution of sample mean X has mean p and variance @

N e K FRp oo ovX,
oW -
S ER,)
X
Ei:i}: ] =-r:1—p..—_|,1|
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Theorem 2 : The sample mean 3 ﬁﬁmamﬂumsmrpl:ofsb:pﬁnmumrmlpopuhthnwim
% 2
mean p and variance o has also normal distribution with mean i and variance -ti‘ :
Armdammknfszenmamﬂmhnnofnuﬂmmderﬁmﬂomvmwb&uxm each
lnmgsmdm-bnmnasx.
The sample mean

% is the sum of n independent random variables

IT each of which is again normal
Sum of a number of independent random variables is normal
=> X isnormal

: 2
Hence from theorem 1, we get, E(X)=pand Var (%) ,"?_

Theorem 3. Ifthcbbﬂx]atiunignfsizcﬂ.andsmphisofsizenmiifﬁ is without replacement then

2(N=
the variance of the mrplmgd:strhum ofthe mean is —[E)

The factor %_11_ s caﬂedmnecmnﬁcmr When N is largeemughmmpnmdmnthm M*-bl

; : 2 ;
and correction factor is 1. Variance ofthe samplingdism'bution becomes 2— asinthe case of sampling
o

with replacement.
Large Samples:

Suppos:ttntahrgrnumbernnfnﬂepaﬂmt Bernoullian trials is performed and x successes an
_obtained. The hypothesis we want to test is that the probability of success in each trial is p. Assuming the
hypothesis tnhemnmnﬂwnranmﬂmmmnfthemhzgdsuibumnofmcmmbmofsumesswm
be np and npq.

Agamn we know for large n,

x-
z“'T?; is distributed as a standard normal vanate.

From table P(| z| >3)=0.0027. Therefore we conclude that the hypothesis is improbable in the
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difference between the observed number of successes x and the expected number of successes np is
highly significant.
If] z|<1.96 the data is consistent with the hypothesis. If| z| >1.96 the distance is significant.

. X
Let the observed proportion of successes in a sample ofn observation be p then E(;J =p

X\ _opg_pq
Van — |[=—=1-2,
s E{n] 2

This test is valid for large n only.
We shall state central lirnit theorem without proof

Central limit theorem:

Letx,,x,,........x_be independent random variables with same mean E(x =y and same variance .
mmmwhnnﬁhrgcthcdarhmmnfihem51+xl+ .x_approximately normal with mean=ny
and variance =na’.

Exact sampling Distributions: So far we are discussing problems of testing a number of parametric
hypothesis, where the population distributions are assumed to follow certain standard forms and the
hypothesis tested are on the parameters of these basic distributions. Now we shall discuss some tests
which are not of these nature. ' ;

Here we shall discuss three exact sampling disuibuﬁ_am&

The Chi-square d:stnhutmn This is a distribution of the sum G:F squares nf mdependem standard
normal variates.

Let X X ---—-X_be n independent normal variates, each of which distributed nﬂm:ajl},rmth
mean ‘zero and Varance unity.

This is dencted by the Greek letter ¢-.
The probability that the random value of the variable X, will fall m the interval dx. is
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.~ Since x, s are mdependent, ﬂmmbﬁhyﬂmﬂrwhesufﬂmmmwﬂifaﬂsmhmwﬂy
mth:msmctwcmt:rvahdx 1-1,2 ....... s

1.2
1 *Ex dx dx dx
dp= e £ dxdx,.....
(2m) LR

If we represent the sample by the point E{i,.xl'--_-x‘) in n-dimensional Euclidian space then dp
is the probability that E will fallin the vohume element dx dx,.......dx,, : _

' . =LA ' : ;
Iins'tonstmt,thmE’!’-i2=xz wiﬂbeahypcrsplmewithnc at.origin and radius X. As

JEx bnﬁb:tw:mxmxﬂxth:pomtEmﬁthcb:twemmumomtrdh}'pﬂsphamcfmx

andX-I-anud the volume ofthe annuhus will be proportional to d(x®) in to X*'dx. Hm:ethepruhhihty
that value of X from the sample will fall in the interval dx is proportional to

1 2 __._.I E:E
e_“ix 1“'_ld:t into e 2 (2 ]2 d(xz_]

Since 12 lines between 0 and oo and integral of the Probability density function over the whole
range must be unity, the probability dp is adjusted as

-

2 v el

dp=ﬁ:w 2 (%12] 2 ?(12}

n n 0< 11 < m

222

. (1) s called 12 distribution with n degrees of freedom (d.f). The number of independent vanates is the
number of d.£, |
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Cor 1. If x5 are n ndependent normal variates with mean W, sd.s {i= 1,2, .....,n) then

X:—H;
A | i
y AR WL |

.

is a standard normal variate and all Z; s the independent variates. Hence

. ’ 2
n T n
. [u} 322
i=1\ % 1

isa o2 distribution withnd £ _
ChrlShneforamfmalmﬁngﬁumamnmlpnpuhthnwﬁhmnpmds.ds, X is distributed
c.
nnnmllyaboutmnuanis.d;r;,
A

o/ _ is astandard normal variate.
/~a

e
Hence Jn_[iﬁ—u-J isa 42 variate with 1. d.£
Properties of ;2 distribution
1. The m.g.fof 42 distribution w.r.t origin is given by
2 w 2
M 2{t]=E[etI 1= [e'X f(:rcz)d:it2
X 0

; -2
1 2 B 1T 42
= jo .2 v A

X -2ty n-2
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o

={1-2t]hi for |2t]<1

(n [n+1)
o 202 b
Fi:&-E{Zt)-i- 2 ~(2t)" +

+++++++++

; M ot . ML)
l1,=mcfﬁmmtoflr in the expansion of 12
Thus mean =p{=n
. 2 e 2 2
Variance of % =H,y —H =n(n+2)-n"=2n
x2-n -
Thusjz—— is a standard variate.
n
Additive property :
If xj and X are independent x? variates with d.f 0y and n respectively then 7 + X3 is

a Iz vanate withd.£ (n;+n5).
mg.fof {112 + I%'," =m.g.f Iiz * m.g.fx%

“nys ~ny/ _Dyeng
=(1-20 “2.(1-20) ‘2=-(1-2tp 2

2

3 v S ;
1ty isaX variate with (ny+n5 )d.f

Hence 3
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3, 1“ Distribution tends to a normal distribution as n—» oo.

nt Ak " S
—e VIn t 2 2t ]_P"'Z
M(t) = 0 1 R n{_
s ﬂ[|2n] » [ 20
: ot 2t _9£
=g MO sty [‘":rz:]

2
ot .n| 2t 1f 2t 1o (1
= +—|+ =+ *oreens | = =t 0] =
B 2[ Jn@ 2 Jzn} ] g [n]
. T l 2
Asn—» oo, log M(t) —» Et

# [ 2
C = M(t) > E‘ which is the m g. f of standard normal variate.
: .
Students t- distribution:

X-u : :

z=y  is approximately normal with mean and s.d.
S

We know for large samples the statistic

¢ when o is unknown, let s be the estimate of ¢ . For large sample use of's as an estimate of o does not
effect the distribution of Z. But it makes a difference in case of small samples. Hence let use another
statistic for small sample defined by - '

o Xt _ G-win
g7
.// o

The distribution of this statisstic is known as ‘Student’s {- distribution’.

(2)

Differential form of t- distribution: We know S’ = —IZ(x.. %)’
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Now

18
ot _E-w =ﬁ_“} g

n-1 & sz;l:;_ _
A ~w)
Nuw-—;_-— dtsu-ilmadasax varmtewnhldfa.ud—max vma!twtth{n-i]d.i
2 : : ' :
'I'hus.n_ is the ratio of two y? -variates distributed with 1 and (p-1) d.£
Let us assume without proof
_/
ayife
o=l n-1
dp= o : i
B(l n—t] 2 2. At
- 1+—
2 2 n-1 _ ;
= dp= 2 7 ®
LY, 1%
“n-1 B(u,—) 44—
2 2 n-1
This is t-distribution with (p-1) . d.£
Properties of t-distribution:

1.(@) Let X, (=12, .0, and Xj (3=1.2,....0,) be the vahues oftwo random samples ofsize 0, and
n, respectively from the same normal population N(p,c).
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2 : G n . " " 2 n2 e 2
o B S T -X2+ ¥ (xj-X3)
I='_'L! x2=“l and 52=1 i ]
" "2 n;+n9-2
1412
Then the statistic |
.
s |1+ L has=cdistribution with (n +n,-2) d.£
n By

(b) N:xtlctussﬁppose thatx (i=1,2,......, n,},"l:i (=1.2,...., n,) be values -:_rf_rwu ramiumsanq:lﬁ from

two different normal populations N(u,,0) and N{pl,n‘)wliem u, and p, are means and o is s.d. Then the
e

- {xj*xz}'{ﬂt‘.ﬂﬁ _
S|+l hasa t distribution with (n +n.-2) d.£
IJ.I ﬂz

2. All odd moments about the origin is zero. For convenience let us replace n-1 by nin (3).

2dt .
n+l

: dp=
)= ' 15] )2
-Eﬂ(z,z {Hn]

This is symmetrical about t=0 and hence all odd order moments about the origin is zero.

In particular, u} =0 = mean=0. Hence all odd order central moments py, .1 =0
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, 5 gy 5
2 [;_J a[—] Lt—] ?
an n i AL
| : n+l _f‘[l n)f{ S d[n]
10Y,.2/Y2 Pl2n2 A4
ln t s & %)
B[l’ 2]{11— /,1‘] (l+ ,anJ
2t
dt tZ// .
(1+4)
n+l
RSN B o G R
Z T afnl '7;9 ¥ .- ¥
2! 2Vn (1-y)"2
e 2
S | 4
E I
- n - IF 2 (1-y) }éfb’
r
n n-2r 4
_B n ¢/ E{ z ,H}E}
2'/2
3 " 7 o+l
B{%“L—) 5_11}2 2
= 51) e gl
3% 5 A2
‘?‘é'll 2. a2 2 -
2 n-2 n-2
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2

s " 3x
Similarly, kg4 = ©-2)(0-4)
: 11 n-2 ;
Hence ﬁ.'ﬂ, Bzf;‘%‘=3(a:]—>3un—rm |

'Thusﬁnrhrgedegrmdfﬁmdnﬁ:tmmmdswnmnnldmﬁm -
F - distribution Fld |
Letx,,(r-lz ...... n,)and xﬁ{]-l.?.. ...... ,11, ) be the values of two independent random
mmmmmmmmmmmmmafma;

Let X, and X, be sample means of the two samples.

1 % g i 3 e
Lmsl2 = P ); (xli—xl)z and 5% = _ﬁ;-l); (x95-%2)

Then we define the statistic Fby the relation -

2 .
Elf [ﬂi"l: ~x3) }
uz [52:-5 _n- -1 51_

ng-1
u.%_ i 1 ‘{f(xlj 12) :t
ﬂ'z 52 :

Tlms::sI'm:i:m.rmlsF—d:strii:n.:lu:mi.!-l'ﬁthrt1 | ¥ nzul d.f

[fwe assume that the two samples are drawn fmmthennrma]populamn wﬂh aqunlwnance
th:ﬂmdcﬁm

(4)

1 -2]
—| (ny-1)S
v 1 2| where vy=n;-1,09=n5~-1
2 ;‘—;[(‘12'13_52] 1771772

The numerator and denominator of he 2nd number are independent y* -variates with v and
v df '
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u]F U vy i
Hence *_ isaP ‘2' =" | variate so that the probability that a random value of F willin the .
mterval dF is

= 1 ; vy -2
- ulj.’ _uz 1
i 2 Vg 72 F

TR _{“1 +v3)
B['%"iz'],{“lf""“l) x

This distribution is called the distribution of the variance ratio F with v and v,d £

dF (5)

dp:

-

Fisher’s Z- distribution.
Putting F=e® i (5) we get.

£
2»{“1}/2 v :."/2 eulz
' [ul +u2}
B(P% 322.) {ule +u2}2

This distribution is known as Fﬁ]:l:l’ s z—dmhnmandls more marbrsymmmmlthmF-
distribution.

dp=

Test of Significance based on t, F and y’ distributions
Application of t-distribution: '

(a) For a given random sample from a normal population we are to test the hypothesis “mean of the
population is u”. We assume in hypothesis to be correct and then see whether the given data is consis-
tent with hypothesis or not.

- To carry out the test we calculate in statistic ‘t’

L=

. .
{_-E--—I’Slh{[_l where 52 = EE{KFE}E

For different values of d.£.(v)the table gives the value of ty g5 and tq.o1 Which are defined by

P[] t|>tg0s)=05and P[ | t |>1tqg1]=01
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If calculated value oft exceed s ty g5 the difference between 5 and p is significant and if it
exceeds 1 o the difference is high]y significant.
(b) Given two independent random samples x, (i=1,2.......,n,) and xlj(i L) 17 S ng'withmcans

X and EZ and s.d. 6] and 05 from normal populations with same variance we are going to lest the
hypothesis “the population means are same””.

<2 ———({y 1):;5 +(@, -noz]

where

ﬂrl*ﬂz"’l

-t f-l[xu‘xl) *’fi"z -X3) }

1'.|1+I'I.2""2

This statistic follows t-distribution with n, +n,-2.d.£fthe calculated vahue of t>tg 05 (10,01)

the difference between the sample means is said to be significant (high'v significant); otherwise they are
said to be consistent with the hypothesis.

Examplel. A census of retail stores ina particular year game the mean annual turn over of Rs.
1,50,000. A random sample of 10 stores in the following year game the mean tumover of Rs. 1,57,000
and a s.d. of Rs. 11,180. Has the mean tarn over changed in the following year?

Hypothesis : The mean tum over has changed in the following year.
m=1,50,000  %=1,57,000 S=1,118asn=10

t= (-0 _ (7000110 =1.97
S 1,118

From t-table for (10-1)=9 d.f. tg g5 = 2,262. The calculated value oft is less than table value.
Hence there is no evidence that the mean turn over is changed in the following year 1.

Emm.ple 2. For a random sample of 10 pigs fed on diet A, the increase in weight in gun for a certain
period were 10,6,16,17,13,8,14,15,9 gun

For another random sample of 12 pigs fed on diet B the increase in weight in the same period
were 7,13,22,15,12,14,18,8,21,23,10,17, gun.

Test whether diets A and B differ significantly as regard the effect on ncreases m weight.
Hypothesis : Diet A and B differ significantly.
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1 o 5 12
L% . B it s =
S I_1I+-IE where S ny+n5-2 1i 3"1:I +{x2_] 12} ]

D’iﬂtﬂﬁ,ﬁiﬁﬂﬁlm=xi?ﬂiﬂtﬂﬂﬁﬂhﬁlm=xﬁ

DietA DietB
il % |e-%p %5 %2~ %2 {"zj"iz)z
10| -2 £ - Ef o T 64
6 6 . 36 13 | -2 P A
16 | 4 16 53 | ke b s B
17 | s 25 5] o 0
13 | 1 o 2] 3 9
121 o 0 14 | -1 '
g | -4 6 18 | 3 9
14 | 2 1 4 g | -7 49
15| 3 9 | 2| s 36
9 3 - 9 ‘23 | 8 64
wl| s | 25
177 2 4

= - 180 .. .- 1204314 \(434 - \
2——=]2 =— =5 S5= = =4+21.7=4.65
1500 T 2% \lmnz-z 20 _

I=‘"““15_:2 1 i 3 - e
4.65,| —+— 4.65,|—
;Jufu : iﬁﬂ
From table value of tj g5 fur{iﬂ+li2=2ﬂd.fislﬂ§Hmccdiﬁ'c:‘cnﬁc of the sample means are not
omifs

Application of F- distribution in testing hypothesis.

Given two independent random samples from normal populations we are to test the hypothesis
“the population variances are same”.
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-F 512 2 ? 1
— Q- =

n n

- 1 B
ﬁ{?{.“—ll}z and S% A r—— f{ij-—Xz)g.
1 -1y

and 57 >S5 confirms to the F distribution with ny ~1 and ny ~1 d.£
Example 3. Intwugmmoflﬂchﬂdrcnmchtt:mmsmw:ghtdmtuhmd:ﬂ'ﬂmtd:tsmﬂ:
-same period were mgun. -« :
wi 8°.8 7 g @ 2771 638
X: 3 " 5 6 5 . -5 5 3
Find whether the variances are significantly different.
- Hypothesis : The variances in the mean are same.

X = 58 Xq = 4.8 . n1=n2=lﬂ-
Deiet 1 Diet 2.
o .
| *1i~% (x1i-%; }2 oo | X2 . {xij -X3 :'2
8 |22 AREL 3. | 1.8 3.24
5 -.8 64 7 2.2 4. 84
7 g Lol e 5T et
8- |22 4.84 6 1.2 1.44
3 |28 7.84 s |2 04
2 38 . 14.44 4 -8 .64
7 1.2 04 4 |-8 64
5. 413 04 5 2 .04
s -1-8 64 3 |as 3.24
7: |12 5 ] aa4 6 |12 1.44
58 362 48 15.6
sf =402 2 =173 F=232

also F g5 for9 and 9 d.f is less than 3.07. Hence the calculate value is not signiﬁﬁant

124




Application of %’ in testing hypothesis

" : -  &xi
Let X, =1,2,---nbe a random sample from a normal population N(j,o) and X = =

be sample

. .—)2 ;
meanand s2 = El_iil_ be sample variance.

2
Y(x—
ﬂmlzf“'@";‘)‘-‘“-

. a

Example 4: In 200 tosses of a coin, 115 heads and 85 tails are observed. Testtl'nehypothemtitntthe
coin is fair. x =115 and x,=85

Ifthe mmlsfamtheexpectcdﬁaquencm ufhcadundtmismup,-lﬂﬂmdupflm

22 =ZX0 _115-100)? _(85-100)% _
opy 100 100

=2.25+2.25=4, 5

'I‘hetablﬁvnhmuf 2 at 5% level for 1 d.fis 3.84 since 4.5 >3. deere]mtthuhypathsn 'nms-;um
is biased. '

Example-5 A die mthmmﬂ-ﬂtmmmdﬁmnumbemfﬁcrs shown are as indicated b:lnc

Face - | 2 3 4 - 'ﬁ_
Frequency - 18 14 13 i5 14 16
Is the die a fair one. .

Hypothesis : Dic is fair.

1
Pmbahiljryufsh::whgonﬂbn:=g.

2 (18152 (14152 (13-152 (15-152 (14-152 (16-15)2
y + + + + +
RS T 15 15 i 15

15 15 15 15 15

Table value of 2 at 5% level for 5 d.fis 114, Hence dic is fai.

*e e
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Unit S

Introduction
The principal bpcmrmnfmnsmulmlys-nmdmwmfemnbmnﬂrpnputhTh:m&
ence to be drawn relates to some parameters of the population. In absence of complete information about

the population, it would not be possible to determine the true value of the parameter. So we try to obtain
from the sample data an estimate of the exact value of the paramsctm' uranm:ewal of values in which

parameter lies.

Gwmarandomsanml&xl,xl, ,x‘ufsizcuﬁ-uma population mthpmbabiﬁtydmmyﬁ.mm
(pdf) ofknown from f{x,6) wﬂhmknompmt:rﬂompmbl:mmmﬁnimmﬂfﬂmmaf
mtplcwhms

Fishers Crlterln for best Esﬂmatiun
i) Anyﬁ:aﬂstieusadtu estimate a parameter is called an estimator. Itsq:mﬁcvnkmmanm
According to Fisher an estimator is said to be the best if it is (i) unbiased (ii) consistent (fii)
efficient and (iv) sufficient.
(D) unbiased : Anﬁl:ummnﬂt(xi,x.‘,. ..... ,&)dmwnﬁﬂmasamplnofszunnsmdmbcunbmad
mtnmmr of a population parameter 8 if E(t }=0 :
Ifamndnmsmmh{x] - B ,x.)nfsmensdramﬁ-nmamzmaipﬂpulatnnmthmnpmd

g2 | B
s.d othen E (X)=y and "-rlS]*u' where =—~I§{xi-i)3

Thus X and g2 are unbiased estimates of the population mean p and s.d a2 ;5[52}@ o2, the
sample variance is biased estimate. The quantity E(t )-8 is called the bias of the estimate .

(i) Consistent : An estimator £ =(X,,X,.......x ) drawn from a random sample ofn values is said to be
consistent estimator for a population parameter 8, if it converges in probability to 8 as as n — co. Thus
for given £>0,y > 0 we can find N depending €,y onsuch that

P[|t-B]<g]>1-y forall n>N.

:>plm1t-ﬁ
+ O=—»00

(iii) Efficient Estimates: Let for large samples two consistent estimators t and fﬂ be both distributed

b ' y, 2
asymptotically normally about the true value of the parameter 8 with vaniance © 2/;1 and 2 Iespec-
& n
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v if o <o,
<l

If we can find a consistent estimate ¢ whose variance is less than that of all other consistent -

estimator for alln then t_ will be said to he most efficient. The efficiency E is defined as the ratio of the
variance of the most efficient estimator to the variance ofthe given estimator.

(iv) Sufficient estimator : An estimator t_ issaid to be sufficient for estimating a population param-
eter 8, ifit mmamaﬂthcnfumxmmthﬂsamphaab(mtmepammcter

Ifﬂ:x,B]Edmsltyﬁurmnsﬁ}rapopu]amﬂ, ﬂxmtbe]ikeb'-hmdﬂmcan{g,ngx.;ﬁ}ﬁ}r
rmdnmsumplax,g . 3 :sdcﬁmdb:.r = o

L(x,X,» ...,.,xn;E_)=g f(x,0) = 1x,,8)= fx, 0)= .......=Hx,.6) Ifit is possible to write

L(x, X, e X 8L (L O)L (X, X, ..., ) then T will be said to be sufficient for 8.
There are two types of estimation: 1. Point estimation - 2. Intervalestimation.

Point estimation :
An estimate of a population parameter given by a single number is called point estimate of the
Letx X, .....X_beasample drawn from a population and the unknqwﬁ'pmmt;rbe 8 (ifmay
be %, 0" etc). The point estimation of 8 will be based on the sample observations X(i,1,2, ......n). It
will be a function of these observations and a statistic. The statistic to be used for point estimation of @ is
called point estimator and is denoted by § . When an actual set of sample values is given we can
‘compute a numerical vahie which is the point estimate of § .
| Since X, s are identically and independently distributed random variable having the same
'  distribution as population, the point estimator ) willlso be a random variable and hence it will bave a
probability distribution. :

Interval Estimation :

Let mean and variance of the population be p and u“rﬁ:peﬂw&lywhﬂre u is unknown. We are
to estimate .
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E@=p o, =5.d(2)=j'r:.:l,

If the population is normal, ¥ will be approximately normal We have from table,

20 2a 20 _ 25} =t
Pip-—=<X<p+ =0.954 = P{p-—=<X<p+ =0.954
_{”7; “7?}' . {“?TE ey
Thmwcmnﬁndthcprohnhﬂﬂynfd:ﬁ‘ermnfxup. ' .

Anﬁtmmnufapapuhmnpamnﬁugmbynmnumbembﬂwemwhmhthcpmnttﬁ '
may be considered to lie is called an interval estimate of the parameter.

Let pg and 0g bemeanand s.d of the sampling distribution ofa statistic S. Ifthe sampling
distribution is approximately normal we can expect to find s lying in the intervals pg -k og to p +kog
where k depends on particular level of confidence.

For large samples the distribution ofthe sample mean 3 Bwnxmb'mmwlw:thmn

2e, _ 2 -
e ands.d:f:« Then P{ 7; {-x-P. <3;‘}=ﬂ-93 at5%level
Iﬁeimquaﬁ:yi—# {3-!-20 ﬁ@hm u-ﬁf-fzu andthcmqualn‘y |
;i 4 ry § n ' ’ n.. . i
KW, ST H PN
7: K, is equivalent to K, _Tn'

;Mg w26, = 2o :
5 5 X - 3 rx.+ $ < P
'Ih:@avahmqfu_, l:lmscmth:m( i = . T n}fmhprobaba]:yﬂﬂ_‘j. :
Maximum Likelihood Estimates. |

Although confidence limits are vahuable for l:stmumg a.popu]ahonpamnx-ter, itisoften
connivent to have a point estimiate. To obtain abeﬁtsuch estimated, Fisher employ a technique known
as maximum likelihood method.”

In this method it is assumed that the population has a density function that contains the popula-
tion parameter 8 which is to be estimated by a certain statistic. Let the density function be f{x,0). If
there are n observation x,,X,,......,X, the joint density function will be L = f{x 0} f{x,.0)........f{x ,8),

L is called the likelihood (a) Let mean p be unknown and s.d o be known.
1 ‘(Kk“‘lv‘)z sz .

Smf(xnsﬂ)= A zc [mrm]dﬁllﬂmmtl} p
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5 a —(xk-m 21262

B

we have, .l.={2m ]
=?th=——th‘“§. ]—-——zz{xk_“} (
2 26° 1 _
' : 1oL 1 :
Taking partial derivatives w.rtit, - 1 a=?z(xk —;;)

; L. Ix
For maximum, %=ﬂ=}?xk -np=0 :g-—;k-
' Ilm';mﬁnnnﬂmﬁmodmhmﬁsdrmhnm

(b) Letubelmﬁwnmdu‘bnmhnwn. 'Ih:nd:fhummg {1}pu-naliywrt. - o

1 dL n
E(xk"'}l)z
(S e 2(::
n
x(xk-m?
—2=ﬂ=:~u2:=
- n

Cramer-Rso in :qn;lny

_Let X be a continuous random variable with p. d.fﬂx;ﬂ)andLﬂ::]ﬂwod fanmonL Lettbe an
unbiased estimates nfsomeﬁmcm:: B{-:(B]]L'I'hm ‘

e @
: E[[%ML)E]

q ; 3 n
Hypothesis is t(8)=E(1)= [t Ldx. where L = IlIf (x,46).

r’(ﬂ}#% ).

and [fx O)X,0)........ A O)dx,dX,.......dx = fdx
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r{a}sh[ log LJ Ldx = J{t-z{a}}[ th) Ldx. =
By Cauchy-schwerz inaquality.

[t‘tanzsf{t—z{é)sz(%mg Ly? ]I..dx

= Vart=E {t—1(6)} 2 [r{x(6)? aE[%{haL}lz}

?artiscaﬂedmvmthmeboum for estimation of T(0)
Cor Ift=0then 10 =1(8)and ¢ 6=1

1

é
El —log L
[aa g )
Illustrative examples. '

Example 1. Show tkmtmamdomsmmhng from anormal population the sample mean s a
consistent estimator for the population mean.

Let x(i=1 .2-+-=u} be the sample drawn from a normal population with mean p and s.d.o,

Var(t) >

Then the statistic z=(_—li)'\~'f— a standard normal variate.
Jae e !
Pl z-nica<pizctle G L 77
~PX p]-::a]—P[!zj-: - ]— {nsﬁe dz .
e

Hence for given y>0 we can choose n 5o that the area under the staadardnmmalmmeberween

e g

——— and —— becomes greater that 1-y.

Example 2. Measurement of the diameters of a random sample of 200 balls bearing made by certain
machine during one week showed mean 0f0.824 and s.d 0f0.042. Found 95% confidence limit for the
mean diameter ofall the ball bearings.

Since n=200 is large we can assume that ¥ is approximately normal.
the 95 % confidence lumits are
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(o] 0.042 .
b 1,96T = 0.824+1.96
e n s :iﬂﬂ
=().824 + 0.0058=0.824 4 0.006. Hence the interval is (0816,0.830)

EumpleShdiaryproducﬂacanahmiﬁnpmductwhich'unmrkﬂadintincnmaimrs.ltiﬁmtedthat
means of the contents of tins very from batch to batch bur s.d is constant at 0=0.10gm. Asample of 25
tins from a batch is taken to find an accurate estimate of the mean of the batch. How accurateis the '
sample mean as a point estimate of the bateamean b7 G i

As t]w:populatinni.ammL the sample mean 5 will be notmalands.dof will be Normal
and s.d of x will be ' ; :
; c 0.10
sd(X)=—== =0.02
BEEds o
Again P{-2x0.02<x -u<2x 0.02}=0.95
= P{-0.04<5x -1<0.04}=0.95 :

Thus the probability is 0.95, that the difference 5 -| between sample mean and population
. mean will not exceed 0.04. 3 : -

Hence the manager can be confident that 95% of cases the saniple mean will be within 0.04 gm
ofthe populationmeanp. T

Example 4. A random sample x,(#=1,2,-—u) is drawn from the exponential population density function

fix_ o,p)= }'HE_B&TE} : x<n<w,f>0. Yy, being constant.
Find maxiroum likelihood estimator for e and B.
To calculate y, we have

o "
'yfu je‘ﬁ(x-mjdx =1=Yyg ]t:-Bzdz =] X-c=Z .
- . 0

c-ﬁz

B

==Y I =l:Yu.=ﬂ

n
- g O -BE(xi—x)
Now L=IIf (x;c,B)=p" ! -——(2)
1

=logL=ulogpf-uf(X—x)
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Differentiating w.r.t oc and 8 we get,

: a ) "i ::E.-— T — ;

" 'uB = 0= B=0 which is impossibal since >0
u ! i . .
E -.u{ia—a:}=ﬂ=¢|3=§:-' '[‘h.-:s fails to determine finite x.

From (2) for all B>0,L will be maximum when o tanes its largest possible value. From definition, since
population range is from o t0 0, oc must be less than or equal to every member of the sample. Then

1
I-Il

&-‘=Zl and ﬁ=
Example § Find maximum likelihood estimator of the parameters ofa N(u,0”) population based on
the random sample x (=1,2,---~u) (i) o® is given (ii) p is given.
—— i - n
]e Jd'? Ii’ i~# :hlnngcnnsuntf_z—li ?{xi“p}z
¢

Lr’ﬂcrz){ﬁ;

o
(0 a-tuslmﬂ:»ﬂ 2 (xj-1) = 0=f=—Ti=x

Thos x s the maximum likelihood utimatur of .

n
E‘,[x )2 ={ :>Gz=;l;z{xi --|.i.]2.
|

which 15 the maximum likely-hood estimator.
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