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Unit I
Geodesics

1.0 Introduction :

A geodesics is the shortest arc between two points on a surface.It we stretch a rubber
band between two points on a convex surface, the rubber band will take the path of the
geodesic. A geodesic C on a surface S has the properties that at each ponts of C the principal
normal coincides with the normal to S and the geodesic curvature vanishes indentically con-
versely, if on a curve C on a surface S, the principal normal comcides with the surface normal
at every point, or if the geodesic curvature vanishes identically at every point, the curve is
geodesic. If a straight line on a surface, then the line is a geodesic of the surface.

Althogh defining a geodesk as the shortest arc between two points on a surface gives
EE main idea of a geodesic, there is a problem with it as a definition. Not every geodesic is '
a shortest path in the large, as can be seen by noting that on the surface ofa sphere every
arc of a great circle is-a geodesic even though on are will be the shrotest path between two
points only if that arc is not greater than a semicircle. From this example we see that a

. geodesic canbe a closed curve. Because of this difference a geodesic is often defined as an
arc C ona surface S at each point of which the priﬁcipal normal coincides with the normal
to 5-or an are at every point of which the geodesic curvature vanishes identically.

1.1 Derivation of equation of geodesics :
. A curve on a surface joining two points in an n-dimensional space is called the geodesic

if its length 15 extremum.

The distance between any two points A and B lying on a surface is given by

ds? =g (x) dx' dx' -
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which is the differential equation of geodesics.

Note :

The equation of geodesics in n dimensional space is given by

d’x de’ dx*
= —— I == =0[i=1,2,..,
ds’ ; Y ds ds [F n]
It consists of n-2nd order differential equations. But a 2nd order differential equation
must contains two arbitrary constants m its 'gmera] solutions.
Therefore the n-2nd order differential equation must involve 2n arbjtary constants.

For the determination of these 2n arbitrary constants we must be given 2n condition. If

the n co ordinates of a point (x',x*,x*.......... x") and the n components
dx' ;s "
t=—(f.F,...1")
dv

to characterise a direction of the geodesic through that point then the equation of geo-
desic can be uniquely determined. _ '
Hence at every point through one derection, there exists one and only one direction.

1.2 Geodesic co ordinate system :
A co ordinate system ' in an n dimensional space in called geodesic coordinate system

with a pole B, it it is possible to construct a locally constant coordinate system at the pole

o

o -




" For geodesic coordinate system

3|8

=0 at the pole £,

#0else where
By definition of covariant derivative

- A
A=Al

Butat R, I“,._E_zﬂ= Fa

4]

ey
Hence A,J-=3A; at £

Therefore at the pole F, geodesic coordinate system the covariant derivative of a vector
or a tensor is equal to ordinary partial derivative.

1.3 Intrinsic derivative :
Consider a tensor 4”.~* defined along a curve x'= x(¢) of parameter . The intrinsic

|

derivative is defined by the equation

- e T ] dt
[t means that the intrinsic derivative of a tensor is a tensor of the same and similar
character as the origmal tensor.

Similarly intrinsic derivative of " is
o _0opd _, &

o ox' dt /. E
c¢ _d¢
. Also R

Thus intrinsic derivative of ¢ is its total derivative.
In brief the intrinsic derivative of a vector (1') in the derection of a unit vector &is
defined as

“r” o




1.4 First curvature vector :
Let ' be the co ordinate of any point on a curve C inann dnnensmnﬂl space v . Let
x' expressed as the function of the parameter 's' so that
x'=x'(3)
The unit tangent vactor ¢ to the curve C is defined as

i

f=——

ds

1.5 Parallel displacement of a vactor :

A vector 7 of contravariant components ;; (or covariant components ;) of constant
mgnmﬂemsaMMmﬂHgnapmauﬂdspummabngamCdnsmdmwm
along the direction of the curve vanishes ~

ie u,a*=0or u,a" =0

where 4* stands for components of the tangent vector to the curve C.

Solved problems

1. Find the differential equation of the geodesic in the space with the metric
ds® =—e¥(dx? + dy? +d=* ) +dt’

Solution : '

In this case
£1=8:=8n =&
gu=1,2,=0 when isj
=x, =y mzx' =t

.. The christoffel symbols are given by
=k Th=kI} =k

d'x' dv! de*
@ FHE”E‘” — L
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ds’ ds ds
for ; =3 similarly we gét

or,

T o o @)

dt , selfdeY (advY: (dzY
e F”“h[{&?] *[E;] +1{£ }“] (5)

Equation (2), (3), (4) and (5) are the differential equations of geodesies

e

From (2) we get

E :-Zk-&;
ds
4%)
ds/ _
s T——Ek de
s
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Le. 1
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d’t 3 2k . .
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cid ds* _ {9}

where o’ =k4" + B +C?)

From this equation 't' can be solved in terms of s (though non lmear) which can be
applied to (6), (7) and (8) for complete solution.

Equation (6), (7), (8) and (9) are actual differential equations of geodesic

2. The necessary and suffficient condition that a system of co-ordinates be geodesic with
pole at £ are that their second covariant derivatives w. r to the metric of the space all vanish
at F.

Solution : We know that

» dx' , e’ d'x
i ‘_.u-':rﬂ:ﬂ H e e
dx'? ax” ax'  oxax

or ; ad arrf axfj axrlj

o &’ &’ 8 [ax’ \'—r‘*‘ &’
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‘nterchanging ' and x' system

a8 fax). e
Yo o o \ax | Tex’

For a given value of /,x" isa scalar function of co-ordinates x' so that

=1 ()

&‘” -
N )

Now R.H.S of (1) is exprmh:k as
0 ¢ "
o) == (<) =
Using this in (1) we get '
axm &t'ﬁ 3 3 ;
1":# o IJ; @
Case (i) Let ' be a geodesic cn—ordumte sys:cm with the pcle at R o S0 that

++l"‘" =0 at o
Now (2) says that
oy Xj=0at B
Case (i) Conversely suppose that
xy=0 at B~ 3)
Then (2) gives
o
l“:, -l-i‘--;-'—a—;;-—ﬂ at P
&' o’ 0
But arf [ &r‘r * at ‘Pl:l
I‘L},—D at R

This implies " isa gmdesrc co ordinate system with lhe pole at K.

3. What is intrinsic derivative of a vector? If the intrinsic derivative of a vactor in any
derection vanishes. Prove that it is of constant magnitude. ' '

Solution :

The intrinsic derivative of a vactor & (#') in the directiove of a unit vector § is defined

10




as u', d

Let the parametric representation of C be x' = x'(s), s is the are length, then
d.rf :
a,—-=0 along C (1

Let a be the magnitude of 7 this &’ = g,a'a’

d; d ; i
ol s

d s a 5 dx* dx*
a&;(a }EHII =\& : j]ig-
=g, [af,a“ +a’a;.}% _
gr; [ﬂ; "d‘—]ﬂ'r +g”ﬂ'r [ﬂi d_]
=0 by(l)
:g;(a]}-:ﬂ :

—, g° = Constant
= g = Constant

4. Define first curvature vactor p' to be a curve C in V, . What is the curve generated
by p' =0 and what is its peculiarity?
5ﬂ|utinn s ..
First part Ans see .a.bc-w:
2nd part _
The first curvature vector p' to the curve C is defined by
pett |
Let us investigate the case when p' =0
s pt =0 gives

ot =0

11




]
or, EI?EI‘— r’.rF' =0
aet ds
dr’ -a:ﬁ:."'d':c’l
w T
d(a) . &' dd
I oy Al ey
d.r’ dx! ad*
R

which is the equation of a very important curve, called the geodesic.
Agcodcsic'mamm*enfnﬂnhmarchgthjuﬁrhgmnpuirusunamr&;cmmyq:ace.

5. If two vactors of constant magnitude undergo a parallel displacement along a curve
C in V. Prove that they inclined at a constant angle.
Solution :

Let &(a") and E{b" ] be two unit vectors of constant magnitude
~. If g is the angle between them

cosf =g,abt’ =ab’

d d
.‘.E{cﬂsﬂ] - = {aj b‘r}

d dx*
Tt (a H] ds
T
=(ajf¥‘l),}z
=(ﬂ,u l*}b*’ +a}.(bif*}
=0
where ;# represents the direction of the curve C in vV,

. & and j suffer paralled displacement along C.

12




6. Obtain the non vanishing 3 index symbols for the metric

3 3 3 3 1
ds* = f(x)dx’ +dy’ +d=* +
flx)
and hence find the differential equations of the geodesics for this space.

ﬂ;fz

Solufion :

We have

o f{_t.]d‘r: +dy’ +dz’ + f[lxj
: RN«
g =S(x)h&s =185 =hgu =75

‘#]

and g;=0,i#j -
Also x' =x,x’ =y, X’ =z, x* =1t

- for mﬂngnnalspa:-e

: ; ; 1
g,=0,i# jand Eﬂ=?.furalli
The non vanishing christoffel symbols are

NassZ,r

- VR, _"__li
LIl 1.-31‘ 441 141 zf:
A L LY
W r o M 2 e Y T A B
: 18 1 &
r|.|| =5ésr4.4: ?E&{
1 o 1 of

The equation of geodesics are

2 7Y
2 B o i
ds’ ds ds.

for j=1
dx ., de det
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d'x dx' dx' dx* dx?
LA~ St aall i
d*x m 1 zlu
or e g —f =l %l T (0
for i=2
: &, dd de
— T =0
mlr%ﬁﬁ
d’y
— 2 =0
Wﬁ dg] {2}
for j=3
d*x ME&ZG
3 TR
ds ds * ds
. o $=U- : : 3)
-ﬁ:lil'-.!'=4

d’x' ., ax! dd*
T

ds” " dy ds
dt ., dxt dx! g dx' dx’

o ﬁ+ndmﬂ R
A _1ofdedr _
o 4 foxdsds
Pl
o, dt  foxds
ds
d e
=E;~{logf{.x;l]3;
't
. udes = -[:is (log £ (x)) = ds +logC
de
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where log C is constant of integration

or, log % =log flx)+1logC

o =0 (%)

The equations (1), (2), (3) and (4) tepresents the required equations of geodesics

7. Suppose two unit vectors 4’, B' are defined along a curve € such that their intrinsic
derivative along C are zero. Show that angle between them is constant

_Solution :

Let the vectors 4' and g' be of constant magnitudes. Let these vectors suffer paraliel

displacement along a curve C, So that

; '
..
.
at each point of C
Let & be the angle between 4 and g
To prove that g = constant *

A'B, = AB cosf _

%tfig mé):%{xfﬂ.)

;
=[A'lﬂl) dL
T

Lo B iy &

or, nABmTEE =4, —B+4B, —

using (1) we get from (2)
: de
~ABsin8—=10
Sin di

"o, smﬁi—e=ﬂ

15
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dé

o, sin@ =0 or E=ﬂ

or #=0 or, § =constant.

or, § = constant, for 0 is also a constant.
Exercise

1. Define Geodesics. Obtain the differential equations of geodesics in a given space
2. Obtain the non vanishing 3 index symbols for the metric '
di =—d’ —dy* —-d* + f(x,y,2)d’
Hence obtain the equation of geodesics
3. If the intrinsic derivative of a vactopr vanishes then show that the magnitude of the
vector is constant. - ALl

16




. Unit 2
Riemann Christoffel Curvature Tensors
' . and Their Properties

2.0 Introduction :

In the mathematical field of differential geometry, the Riemann curvature tensor after
Riemann and Christoffel is the most standard way to express curvature of Riemannian
manifold. It associate a tensor to each point of a Riemannian manifold (ie. it is a tensor field),
that measures the extent to which the metric tensor is not locally isometric to Euclidian Space.
The curvature tensor can also be defined for any pseudo—Rienﬁmian manifold, or indeed any
manifold equipped with an affine connection. It is a central mathematical tool in the theory of
general relativity, the modern theory of gravity and the curvature of space-time is in principle
observable via the geodesic deviation equation. The curvature tensor represents the tidal force
experlienced by a rigid body moving along a geodesic in a sense made precise by the Jacobi

equation.

2.1 Riemannian Christoffel curvature téensor or curvature tensor :

We have seen that the covariant derivatives of three fundamental tensors g;. g.” and
g';(or &'} are identically equal to zero. In other words there is no tensor of rank 3 which
can be obtained entirely from fundamental tensors and therr covariant derivatives, However
there are two important tensors, one of rank two R, and the other of rank four R}, which
involves only the first partial derivatives of the metric tensor and which are obtained from a
: repeated process of covariant differentiation. '

Consider a covariant vector A, the covariant derivative of 4, w.r to ¥’ is given by

04,
=g Al

which is a cavariant tensor of rank 2

M

A further covariant differentiation of emﬁthn (1) yields

EALI' o a
(A"--f);* (= Aiﬁ:t) = Q_ Azl — Amr;'x

[writting after dropping comma i.e. 4, = 4, ]

17




ox
- g 4 ()G AT —;;i‘—r“ + 4,12,
Au{:ff’.*——&“‘“ ¢ oo 04
O " O R o
+4, 00T |- 4 Simsarias @

Interchanging j and & in (2) we get

o [ 2B a4 )

axtéx &t‘ axt

AL )
. a 'S M
) -3 = A4y = Aa[g(m]-‘g{ﬁ)*‘ﬂfru Ll ]
AR, . @
where we have made of R%; i place of the bracket |
ie. R% Exj( ra)~ a = 1"*')+r';”r LLry 5 5

Since the L.H.S of equation (4) is the différence of two covariant tensors of real suﬂixﬁ
ij,k therefore the R.H.S must also be a resulting tensor of same character. At the same time
there is an arbitrary vector 4, on the RH.S.

Hence the function represmtmg the bracket must be of the form R®j so that the suffix
o stand for a dummy suffix. In this case the R.H.S becomes the inner product of 4, with
R

Hence the quotient law Rj, must be a mixed tensor of the rank four. This is called the
Riemann christoffel curvature tensor or simply curvature tensor of the 2 kind.

18




Properties of R";
(i) R 5 +R®, R 4 =0
Proof : By defnition we have

R =gc—(1"i)4§:(f:}+r:,ri; I )
R. = D:t:‘ (l-a } A (F‘:‘ }"' r:trj- “.F:r'rtl ()
RS = (rg) -2 (Ta)+Tar, -0 (8)
Adding (6), (7) and (8) we get
RI.; + R +RE =0
cy=T e

which is called the cyclic property of the curvature tensor.
(i) Ry =-Rg,
Proof : By definition
R« T d fre o f
RZ =e_ﬂ'(r“}gﬁ(r" )+ FeFe ~Taly (9)
interchanging j and k

RS =-éf'—(r")wa—5—(r*)+ rer, -rir,

i

=_[5‘c (r2)- .‘:!i‘{ )+r“r*—r“r*}
:—R&

A &
ie. Rj=-R
i.e. the curvature tensor is anti symmetric w.r. to the last two suffixes.

{lii} contraction R“
(a) Let us consider the first corntmctmn setting & = jin (5)

RS, ='ﬁxi,(r:*)-§ﬂr: 28 i 0 3 5

(e e b)

19




=z‘%[§'ﬂg@}-£;?[§lnsﬁJ (72 = s |
2 loe e} (mgﬂ |

Rew = &r’&x*

I
(b) Let us consider the confraction in Rj, w.r.to ¢ andj

R:._axﬂ(r")-i{r“)w"r* -l

E I“' (lﬂg.jﬁ)+r (lag\r) —f‘;[‘i. .I(‘.l.[}l]

But R., or R, = Rﬂ, is called the Ricci tensor which will very important in the field

equation of the general theory of relativity.

2.2. Curvature tensor of the first kind R,
The cristoffel curvature tensor of first kind is defined as

o

R;.,,.g = Bhar by

2 2 .08 . =
ax! ax*

)_ra [rhr.n- +_ra;#]+r [rﬂ.u +rxa1+ghur‘r¢ Ehrzrh

: d
['—'I";,._*H"M % ond Ty =g 2 % G

o 6g, g, 8g,] 10 3, 08 .
[J'*'_%'__*]‘Eart[ax: +Bx‘h _Eu“' rigabr& ragﬂrrﬁ

+r;gabr;+r§§n i+r¢§hr rfighnr:r
(aeb)  (aeb)

do'g &g .
axtér:f + ax*a;lj e gcrbrl'*r:,! + gwbr;r:*

:l a:gﬁr £ azg.m__ algjt i a:gi__
2| av'art  aaY adax oo
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[ 5, =C,and g, :gaﬁ:l

_E E:gc‘a ‘algun | a:gn agj# . _
Fin ‘zLx*ax* “aar arax aoow | Belaly*&ulTu 0 (D

Properties of the curvature fensor R,
(D Ry =0
Proof : By defmition

1| &g,  o'g, Vg % | |
lafaf'+&'af- T axaxr oxox' +8.Laly ~8uTaly [+ 8 =81]

it =
=0
"Ry =0
(ii) E,,},J.t =-Rou
ie. mﬁ-smmc w-r to the first two suffexes
Proof : By definition |
1 3 2
F =%{ai*§;* 3 r:riga;c_tr_ ai*EE:T aifgr‘] 8l uly~8ulile (12

Interchanging i and h we get

[ d'g, g, T O - '

'Riﬁ-;g h§|:axrﬁ_tk + axjaxj = axb&tk e axrat.k +gﬂ,l“wl'f,, - gabr‘;l"h [13]
: (e <> b)
Comparing (12) and (13) we get R, =—R;,
Similarly we can'ﬁmve that .~
‘ : R =Ry

(iif) ‘R, =R, ie. symmetric w.r.t two pair of suffexes
Proof : By defmition

_1 azgr;r' g _ﬂjs‘m azgﬂu :
'R-'h'.r't _E[Bx*ax* + By’ oo ‘_&‘*ax_j o ax' +gm.,l";'['; —gnl'*;r: (14)
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Also

R M08 08 O, Ogs
i el e axiext  ax'ax

] + 8o T — ZaT el (15)
(aebd)

: & &'g a
_Sm Bas = gﬁas.ng:,; m:%md r:;::rj:"

Comparing(14) and (15) we get
. Ry = Ry
(iv) R_,,ﬂ., + Ry + Ry =0
Proof : We have from (5)
R +R"ﬂ, +#R%, =0
Cuns:dermg the inner product of it with g, and summing over 'a'
g_.nR TR g+ 81 Ry =0
of, Ru+Ryy+Ry =0 '

2.3 Bianchi Indentity :
By definition of curvature tensor of 2nd kind, we have

o a o a b o T8 ¥
Rﬂaﬂ([‘ )- Lw{r J E 54 A A o (16)
Let us introduce a geodesic co ordinate system ' in the » dimensional space F, at'the

pole P,
But at the pole P,
aA i
4, Ex"i" for T, =0=0

Considering »' covariant derivative of (16) we get

R = éj—%—[rﬂ ] ;ax* (l" ] (1)

at the pole P,

22




l.:,"-:l"l
. oo & o & '
-+&;.,=W(rﬁ}-ﬁ(ﬁ} (18)
at the pole P, _
and similarly we can get
.a a! S 61 5 *
ik Eér‘ax‘{r”]hax*ﬁx"{r") . (19)
at the pole P,
Mow (17) +(18) + (19) gives
R+ Ry + Ry, =0 : (20)

This appears to be a tensor equation , but at every point we can construct the locally
constant co ordinate system and hence it remains valid at every point of the system and so
it is not an equation, but an indentity. This is called Bianchi identity

Now considering the inner product of (20) with g,,, and summing over 'a ' we get

8 R + 8, ROy +uaR%1ix =0
o (guuBm) HguaBow ) Mg RN =0 [ 8, =0]
of Ruygs+ R, +Ruys =0 which is another from of Bianchi indentity

Ex. 1. Define Einstein tensor and show that it is divergence free.
Proof : From the Bianchi identity, we know '
Ry + Roary + Rk =0
or, R%ws—R%my+ R ux=0 ' [ Rw = _Rafﬂt]
Let us consider a contraction w.r.t. 'a ' and 'k’
Ria—R"iaj+R%i5a=0
of, R,—R,;+R%.a=0 ! [ Rfya = Rﬂ,l

L

Considering inner product of it with g" and summing over i * we get
g'Ry, ~g' Ry, +8'Riya =0
of, R'jy =R, +R%ja=0

(l—=i) (a—i)

23




where g"R, = R is the Einstein scalar
or, R—R+R;:=0
OrT, ZRijll - R’j ={.}

i 1 i
or, R‘j_i _“E'R ={:_b

s
cr PRh 2
o, R,—‘E‘g_,ﬂ u-—[_"'
or, G'),,=0 (1)
| S :
where G', =R, ——¢',R @

which is called the Einstein tensor, (1) shows that there arises the contraction with co
variant derivative suffix and so it is called divergence free. )
Ex. 2. If the differential equation A, ; = Uis integrable, they show that R*;, =0

Solve : Given 4;; =0 is integrable

a4,

or, 5 -4, =0
oA, o

o, 7= AL, (1)
ad, ;

or, Eﬂ:‘{: =.Aﬂl'gcir’

-
.

or, dd =ATSdx { L = er
Integrating we get
4= 4T &
i
This shows that the integrand in the R.H.S. must be a perfact differential of the from
dB, (say)
;.dB, = Aﬂrgdf"

=B gei = g reax/

ax’

= [@3;; ~ AT ]dx’ =0

ox
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:>§x = l"'{ dx'is a‘rblfrﬂil'}"]

Differentiating partially w-r to x* we get
B,

ax*tax’

Interchanging jand k in (2) we get

: -aA, _ :
A (E) . ®

._azﬂi ; ) aA o . . : :
= e ) o R I
Fronv2) and (3 - e& - '

T o PN L

e A ..f.‘ﬂ. i | %2 e _
p TR =Ll ot~ Fallst > 2o

s $ |

ot LR ,a,,tr ATLT; =0

a->b o lasn o g

: _

Efg( ,x('d)“"b  1.T5]=0

[ ¢ !bRﬁ 0

Jr=’E, . A, marbm‘a.rjr

oA 3.&1: :ssmyaudsuﬂicmntmndnmthatv bebca]lyiht(urﬂat}mthtnbhd.
of O 5 thag Riesnann Christoffel tensor is zero. -
Proofs Let V, 'belocallyﬂatmth:nhhd.utﬂsuthat,
g, ™ constant, for all i and'j

:}%ﬂ-mﬂ:—r‘* =0, mth:nbhdufﬂ
: SinceR; conﬂ'ﬂmmpmdumsuf[" anddmmmesnfr* Hence R}, = =0, m:h:'
nbhd. of O,
Conversely suppose that R =0, ‘in the nbhd. of O. To prove that V, ulucaﬂyﬂnt it
is enough to prove thatgu constant, in the nbhd. of O.
Given, co-ordinate system x', let us choose co-ordinate system y" st .

.52 ! el ' i ;
T =305 o s e
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We know that

ot ope &1 o X
FERANEY B e

Interchanging ' and "

&' ax' et x &x" &t
ar &' & ax'ex’ ax"

r}=rs
By (1) this becomes

&t x O aeH | o &
M = 7 tab | o= e + M
ax" ox'éx’ &' &x! ax' exox! axt

o™ o’ ox'

i
o Lo o o o

b ox' ax' &'’ '
Multiplying by o o get

[ 8°8%57 =0 [Fw"gr =4 = ‘iﬂ
or [P =0
or, T} =0 | @
Thus R) =0 =>R{.‘jl'* =0 : (3)

Since if a tensor vanishes in one co-ordinate system then it vanishes m all systems. It
follows that (1) is a solution of (3)
 But(3) is given. Hence co-ordinate system ', given by (1) exists

og, '
L= *8;5-= 0=> g, =constant
Consequently a co-ordinate system " exists relative to which g;; is constant, Hence ¥,
is locally flat.
Ex. 4 Show that the number of independent components of the curvature tensor of first
Jond '

. T
Ry is 757 (" <1)
Solution : Since the curvature tensor of the first kind R, is a tensor of order 4

L]
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therefore in # dimensional space it has got n* compontns. But due to the following properties,
this number is reduced considerably

(1) Rm = _R.m
(i) Rh;r'k - "Rmtf i
(i) RM,rk = R.u:-.r

(iv) R+ Ry +Ry, =0
Case (i) when there is one distinct Suﬁii of the type R,,
Ry ==R;;
=2R; =0 ie. R;=0
Case (ii) when there are two distinct suffixes of the type R, (h #i)
The suffix 'h' can be assigned values outofn values in n different ways a.nd no 'i ' can
be assigned values by the remaining (n 1) ways
-, They (both) can be assigned values in n{n—1) ways.
.. The no of independent components is n{n— 1) . But due to the above properties this

number will be reduced.
Now R,,, =—R,, = R,, which is the more out come of inferchange of hand .
Also R,, =R, the third symmetric which is identical.
Further

Rhﬂ + Rbk.n' + R.M.r.ll
= Ry = Ry =0
which 1 identically satisfy due to anti-symmetric property.

1
-, The number n{n— 1) will be reduced to - n(n-1)

2
Case (iii) when there are three distinct suffixes of the type R,

In this case the number of independent components (in general) n{n ~1) (n-2)
But due to aforesaid properties this number will also be reduced.

MO, i Ay (A)
ity ;

Ria; = Ry, (one antisymmetric property)
= =R, (i ) (B)
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The out come of one antisymmetric and the single symmetric property given by {A}. is
recoverable from the other antisymmetric property as given by (B). Hence number of
independent component in this case :

: .%n[n-l]{n—l]

R+ R+ R = R+ R
=Ry~ Ray=0
Hence cyclic property is identically satisfied and so there will be one reduction in the ;
number of components due to this property. '
Hence the . number nf ndependent componenits with three distince’” suﬁxe‘s is

Srin=1)(n- 21

Case (iv) when there are four [i:sr.m suffixes of the type Ry,
- But due to two anti symmetric and. une symmetric properties the actual number

n(n— l]{n 2)(n- 3}mllrcd1madtu%x%x5ﬂ{" 1)(n-2)n- 3} Elesldestherelsthe
c}fchcmpﬂtywz ST
RM+RW+RW =0

or Ry +Rp =Ry

This shuws that, knowing two components the thn'd can be k:mwn nm:u:dmtely
. Due to this cyclic property the numiber "ﬂ[ﬂ 1}{" 2)(n- 3} will be further
reduced to _ '
2 i i2)(n-3)
= %n{n—'l][n—!}[h—ﬂ'
The tutel.m:mber ot m lePendén_t components

;ﬁ-l-%m ; -lj + %n{n— 1)(n —.Z}fén{n—l){n—z?[f-ﬂ

=$n[, 1&4!6[n—2}'+[n¥-1](n—3]]
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-.-%n{n—*_l]l[ﬁd-'ﬁﬂ-—l?.fi.llr5n+6]. :
! A 1 |
=Er.:[n —.1}[H_+ﬂ]=ﬁﬂz(nzhl) 7

45 Exercise
1. Define Riemann Christoffel curvature tensor of 2nd kind and Discuss its properties
2. Show that the vanishing of R.;cmann curvature tcnsur is necessary and sufficient
condition that the space.be flat. ey il . o . '..
3. Establish Bianchi indentities WL - ,

Rus+ Ry + Riys=0

'YL
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_ Unit 3
Theory of Gravitation

3.0 Introduction :

As soon as Einstein’s general theory of relativity appeared as a viable theory of gravity,
physicists started thinking for its modifications. The main reason, which aroused the
tremendous interest, in this direction, was opening of a getway by general relativity to draw
geometry into service to describe a physical field like gravitation.

History of science shows that most of the major advancements, in physics, have taken
place through attempts for unification. Newmnian gravitational theory showed sim-jlﬂ.l'it}p’ .
between plantery motion and kinematics of projectiles on the earth. Quantization of radiation,
. by Einstem, explained aspects of photn~¢l¢ctric effect and removed theoretical difficulties in
explaining the black body radiation and gave a right and‘ﬂun;cessﬁll direction to quantum
theory. In the later part of nineteenth century, Maxwell unified elecm::ty and magnetism, which
explamned the nature of light. S_pcc:al theory of relativity came out of Maxwell's theory and

basic principle of Newtonian mechanics.

3.1. The principle of Covariance :
- Inaccordance with the principle of covariance the general .Iaws of physics {rmture}: can
be expressed in a form which is independent of the choice of space time co-ordinates, In other
words the laws of physics remain covariant ind;:pﬁndent of the frame of reference.

The tensor form of the line element is

ds* =g dr'dx” (1}
where g, is a fundamental covariant tensor of rank 2 obeyirg ilie law

_ - gF o <

g-’.l & E'T: T.";. gsrl'

where the quantities carrying bar correspond to the new co-ordinate system.

An example that the tensor form of a law follows the general covariance principle,
consider that a certain law ﬂ'f nature in & system of variable xis represented by the tensor
equation

. A* = B* (2)
Then the law when transformed to new system of variables ¥ may be written ds

30




_ _;rd_afp o' &" ax

A*-B _ B
1 L axr afv i axf afl' J
{AI —Bj )E = =() using (2) -
Ar =F* 4 3

Equation (3) has exactly the same form as equation (2) _

Thus the law of nature, when expressed in the form of tensor equation follows the general
covariance principle. Hence ac:mrdhlg to general covariance Flmcrple laws of nature must be
expressed in the form of tensorial equations.

3.2 Principle of Equivalence:-

The principle of equivalence gives specific expression to the con&q:ondeni;e between the
results which would be obtained by an observer who makes measurements in a gravitational
field using a frame of reference which is held stationary and the results obtained by a second
observer who makes measurement in the absence of a gravitational field but using an
accelerated frame of reference. In a qualitative way it is immediately evident that some
measure of correspondence between the two sets of measurements should exists, since both
observers would find an acceleration w.r.to their frames of reference for all free particles left
to their own motion.

i3 Some consequences of the principle of equivalence
3.3.1 Gravitational and inertial masses:-

The mass of a body is defined in two ways which differ from each other m a fundamental
manner. There are two types of masses. '

(i) The Kinematic or Inertial mass

(i) The gravitational mass.

The mertial mass characterizes that inertial property of the body, while the gravitational
mass characterizes the force with which the body is attracted according to law of universal
gravitation.

- Einstein appears .10 have found the clue for the principle of equivalence form the

equality of the inertial mass ( m, ) and gravitational mass {m,} of an _ﬂﬁject.
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~ Ifa force F acts on a body of inertial mass m, and produces an acceleration a then we
have from Newton's law of motion
F=ma (1)
pr,if_thishudyisdmwedﬁumthehandéndifitfaﬂswithmaccckmtiunathen
according to Newtun‘s-law of gravitation.
ma= F=G£;{TL | @
where M,,m, mﬂtgrnmahumlmassﬁnfﬂ:curﬁmﬂthebndy{theymsumuad
bmnmcthcymsmthegmmnma!eﬁhﬂmmhmgthemhmdﬁmbodﬂandmsme
: radmofﬂ:wmh.Hmtmﬂy,Nemmmﬂa]brmukth:m:ﬁnimandthegmmmml
msstnbedﬂemmbwmmmwuappmmlymphﬂmlmnwhythcyshuuﬂbc
taken to be the same.
However, in 1980, Newton pﬂfarnndanexpcrmnnwtthapenduh:m{FIgumS 1)
to decide the question. Considering the inertial mass m, and the gravitational iass m;of the

m, g cost
m, gsind mp

~ Fig:3.1 _
) bob,thcaquatmnfmumn. ﬁurndmpiacemem #5in @ = £6 (for all smallg) fmmthe
mean position O s
dl{fﬁ)

i 4t - ng'g '
iff’ )
.-
: , ml '
From equation (2) the period of oscillation is - T = 27~ . )
k B
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But Newton, on measurement of T, found that it agreed with the formula

T=21J—?-
NE

This means that m; = m, However, Newton failed to make out why it was so. Newton
was followed by Bessel (1827), Eotvos (1890), southerns (1910), Dicke (1964) and Bragins
(1971) who also arrived at the same result. Using this equality in equation (2) and writting

M ,
g=G -RJ- we obtain
. @ & g (4)
- (inertial acceleration) (gravitational field)

As already stated, equation (4) provided the clue for Einsteins principle of equivalence
and inspired him to interpret. gtavitation as curvature of space time and demolish the body of
absolute motion. One may thefefi}re say that it is the principle of equivalence that is
responsible for the equality of nertial mass and gravitational mass, [ronically, Newton missed
i 3 '

3.3.2 Effect of grnﬂta_tinnnl potential on the rate of a clock :

In accordance with the principle of equivalence there should be an agreement between
the results obtained by a uniformity accelerated observer, who make measurement in the
absence of any unitrinsic gravitational field, and those obtained in, similar experiments by a
stationary observer in the presence of a uniform gravitational field. Since we can easily make
appmxi:ﬁate calculations as to the nature of the results obtained by the accelerated observer,
this provides a simple method for investigating certain of the effects of gravity.

This method can be readily applied to determine the effect of differences in gravitational -
potential on the observed rate of clocks.

Let us first consider our ;::baewer m the absence of any intrinsic gravitational field who
is subject to the constant acceleration 'g' and is provided with two indentically constructed
t_:ln_cks. place one ahead of the other on a line parallel to the direction of acceleration at
_ distance h' apart. Let the clock have the natural preriod T, and let light signal be sent at the
end of each period from orie clock to the other to permit a comparision of their observed
rates.
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' Since the -time necessary for a signal tu_' pass between the two clocks will be
approximately

wherecﬂthevebcnyafhglﬂ, ﬂuﬁ:rwnrdchckwﬂ]ﬂ:eaddudwbctymthcdnﬂm
of motion.

in the interval necessary for light to pass from the near to the forward clock. hence by
- ordinary Doppler effect where that rate of the clocks are compared, the period of the near
clock, where measured in terms of that of the forward clock with the helps of arriving light
signals, will be found to be approximately

T=T,,[l+__] T(thj - o
C c : s

with the helps of the principle of equivalence however, this results can be re interpreted
asahnwpbmgmﬂrmbgmﬁsimmiunofmemﬁsmhmchchsepmmmwmﬁm
h in the direction of a uniform gravitational field of intensity 'g', $o that we may immediately

write as a :;nnseqme of (1) : ;
a.w E e
T =T 1+—
( 3 ] @
for the relation connecting thf: periods T, and T, of the two indentically constructed

clocks with their différence in gravitational potential Ay = gh, the clock of the lower potential
having the longer observed period.

3.3.3 The clock paradox :

The relation between the rate of a clock and its gravitational potential has also been found
to furnish the solution for a well known paradox, which can arise when the behaviour of clocks
‘15 treated in accordance with the principlc of special relativity withuul making due allowance
for the principle of the general theory.

Consider two identically constructed clocks A and B, originally together and at rest, and
let a force F, be then applied for a short time to clock B giving it the velocity u with which
it then travels away from A at a constant rate for a time which is long compared with that
necessary for a time which is long compared with that necessry for the acceleration. At the
end of this time let a 2nd force F, be applied in the reverse direction, which bring B to rest
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and starts it back towards A with the reverse velocity (-u). Finally when it has returned to the
neighbourhood of A, let the clock B be brought once more to rest by the action of a third
~force F,, ; '
Since by hypothesis the time intervals necessary for the acceleration and deceleration of
clock B are made negligibly small compared with the time of travel at a constant velocity u.
" By special theory of relativity, we ﬁavc

b 2

AT, w300 _war et s
A = 8 3 o
i 4

- AT, > AT, | o
with the idea of the relativity of all motion it should be equally acceptable to regard B
as the clock which remains at rest and consider A as moving away with velocity -u and

o

returning with the velocity +u then we have

AT, = M"‘[l + l“—, +]
2¢

~ AT, > AT, : @
Now equation (2) contradicts equation (1). This is clock paradox.

Resolution of clock paradox :
The paradox arises because we have treated A and B at par with each other. But this

is not correct,

Pefin )
(4,B)—>a, +a,
R ' F,

where as A remain at rest and is not acted upon by any forces, B is acted upon by three
forces F , F,F, in order. So if this lack of parity between A and B is taken into account the
paradox disappear. ' "

Now while A remains at rest B experience acceleration a, due to F, at P, a raterdation
a, due to F, at Q and finally a retardation a, due to F, at P. '

So applying the principle of equivalence so far as B is concerned an accelerationg
. gravitational field g, occurs temporarily when B start from P a reverse gravitational field g,
occurs temporarily when B aparoaches A and finally a retarding gravatational field g, occurs -

temporarily as B comes back at P.
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Let us put
M =T, +T,+Ti+T; ' 3)
Ay =T, + T+ T3 +T; ).
where T, and T, are the time measurement refered to the two clocks during whith the
clock A is now regarding as having thé uniform velocity u and 7,,77,7, and T,,7,,T, are
the time need for the three changes in the velocity of A and which are brought about at the
begining, middle and the end of the expm‘in‘knts by temporary introduction of appropriate
gravitational field. g , g, and g, mentioned above.
Since the clock A is now moving we can write

T, w)?
I, = ' =T[l““,-)
BJ 1__“1__ A g

i':]

u_&
TA = T‘{I_C_EJ ’

: uZ ]
=1, 1""'-—.,,—+,,. ’
: F( 2(-'-

)

- Ts[‘ ~27) )
Equation (5) is in contrast to the result obtain when B was taken_ﬂ_s_mﬂ‘-’i.ﬂg' clock
Since the two clock will be at practically the same potential when the gravitational fields
are introduced at the begining and at the end of the experiment, we can write
T;=T, and IT=T, ' . (©).
On the other hand when the gravitational field is introduced at the middle of the
experiment to produce the necessary reversal in the motion of A the two clocks will be a great

10 | =

distance from each other and we have

B T;[l * glf} | ol

c

Besides practically 2d=uxT, .
Since 2d is the total distance travel at the speed u.

3 2u _ ;
" Ao &% [ v= /1] since 2u is the total change in velocity in time 7,
-]
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using tl'ﬁs result in (7)

2u T,
—'XHX—
Ti=Ty 1+ —— 2
¢
I .
. U
==I;-F;?'T; ; {E]

using this equation in (3) we get
AT, =T, +T +T +T]

b

= Ts[l—”_: +_....]+ T +[T;+l‘;+ T3]+ T
2c° i gl

T ; -
=T3[1+Ez—+:“. +T,+I;4.ri'"3 |
since 7,,7,,7, are very short (small) compared with 7, so we can neZlect the primed
quantities.

AT, =r,[1+-’il,-+....J
' 2

. Hl u ! .
AT, = T,[l + E—:,I —is very sma!f]
¢ e”

swioe Tl .1

Also AT, =T,
AT, =AT.|1 —“3 |
2 Ay . (9)

Comparing this result with equation (1) we see that whether we consider A or B to be
the clock, which moves we obtain the same expression for the relative readings of the two
clocks.

The solution thus provided for the well known clock paradox of the special theory gives
a specially illuminating examples of the justification for regarding all kinds of motion as relative
that has been made possible by the adoption of the general theory of relativity. '
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3.4 Material Energy Tensor (or Energy Momentum Tensor) :

&

If p, is the proper density of matter and i
in relativistic units the material energy tensor is defned as
; : o a *

" In general any of the tensor contravariant tensor 7+ its associated mixed tensor 7 and

refers to the motion of the matter, then

T = py (n
co variant tensor T, Ecalledasnrterh]mgytmsﬁrormg}rmnntnnmtemmorﬁﬂgy

tensor of matter.
In Galilean co ordinate system, we have
ds® =dt* —dx* —dy* —dz® where ¢ = 1

O CRGRE
e (3] (2] (3] -

We have
dg F
j— = I.—"\r'l ;.
&
If p.is the co ordinate density of matter moving with velocity v relative to Galilean co
ordinates then
p=-Lr =2 inrelativisic units
1 1-v
e
g
= p, = pli-v?) (3).

using (2) and (3) we have

dsY :
P = P[E) {4)

Hence i Galilean co-ordinate (1) becomes

oo )]
dt) ds dbs

dv* ds dx” ds e dx’

R . &k

(3)
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If we write
dx' dx’ dx’
E" —u,-;— 'r‘,? = w then (5) becomes
o puv puw  pu
| PV P pw v |
W . pvw s pw 6)
MY pw P
In ﬁmmica]l},r constituted matter, a volume which is regarded as S:IIHH for macroscopic
treatment contains particles with widely varying motions. Thus the equation (6) should be
summed up for varying motion of the particles. For this we have to added to (6) the tensor
formed by the internal stresses ie. :

Pﬂn(a,ﬁ = .r,y,z]
Hence for atomically constituted matter, we have

Patpu' potpuv po+puw pu
Pyt putpv p.tpow pv

T™ & s :
pet+puw p.+pw p.+pw pw| (7)
o o Ppw P
where p represents the whole density and w, v, w. the avarage or mass motion of
macroscopic elements. -
Now consider the equation
ar ; | -
=0
- ®
Taking first =4 and using (7) we get
Apu) , o) Apw) 2p _, iy
ax ay oz Ot

which represents the equation of continuity in hydrodynarnics.
Now taking u =1 and using (7)

P %Py e _ _{a[gi olowv) éimw)+ a(m}]

& oy o » @
z_u[ﬂ[m]ﬁ{,w}ﬁ(w}ﬁ{ﬁu}]_ uﬂ+vﬂ+@+@}
ax dy & t &  d oz b
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using (9) we have

-—‘?r-=u£+v£+w—
where x oy o

similarly for u = 2,3 equation (8) gives
P +§£‘-’_’—'+@-—‘5=-pdv

0y oy TR
@u‘: @.\ 'ap— i d“" -
x Oy & P o (10c)
. duidv  dw " e - _
Here —" and —° represents the components of the acceleration of the element of

Equation (10a) and (10c) are well known equations of motion in hydrodynamics in the
absence of any external forces. '

Equation (9) and (10) express directly the conservation of mass and momentum so that -
in Galilean co ordinates the principles of conservation of mass and momentum are contained

in equation

arey . ) -t
viz. P =0 At '™ =0 relative to Galilean co ordinates
Therefore I, = -Ll-,—
e
Hence in Galilean co ordinate system the equation (8) may be expessed as
T =0 ' (11)

Pl

This equation represents the divergence of 7#v is zero. In fact represents the rate

&‘,V
of creation of mass and momentum in unit valume.

3.5 Energy momentum tensor in case of perfact fluid :
In the case of perfact fluid which we define as a mechanical medium incapable of exerting
transverse stresses, the only components of stress for a local observer will be those

corresponding to the proper hydrostatic pressure p, so that the energy momentum tensor will




then have in proper co ordinates the simple set of components
Tﬂ“ ETDJ: AL Tﬂ.ﬂ =F0‘TI-:H =Pﬂ (!}
T,;=0, a=p
where p, and p, denotes repectively the pressure and density of a proper fluid in proper
co-ordinate system. _
In proper co ordmate system Galilean co-ordinate system holds for which
d¢2=+¢ir:¥aﬁ#=—dzz+ﬂ'f3
where ¢ =/ i.e. the motion of fluid is considered in gravitational system.
Let g,” denote fundamental tensor in Galilean co ordinate system,
50 that
| g =g " =g =-I 2%=1Lg"=0 forisj
Let 7% and g respectively denoted the energy momentum tensor and fundamental
tensor in arbitrary co ﬂrdinate system. By tensor law of transformation.

ox' Bt
Tﬁ' ui: s
IZI &K’d
! ax' ax
; 0 e o [ g ]
,,,, ar‘ E'r m ox’!
*Pu%i" Sy &; Po & o (2) [again using (1)]
and
o' ax'
gl =gy
: II ab
i a.r“ E‘?x"
- 3xﬂ Etr"

3, ox' ox’ Ex" ax’
A ax* axe

Lo oxl g o &

& Bl ol T EJx" Ex*
using this resplt in (2)
[, & Ex‘] ox' ax!

T Y Rocoihccndl) WP N ol
i B s
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/

ax' ox
= (o + 10) 25 oo - pog’ 3)

Since the fluid is at rest in the proper co ordinate system and hence the velocity
components can be taken as

dx, :ir dc" dx} ,
=0,—> =1
ds ds  ds ds @

dd oxidxi o' dxg X ’
| ds ox ds  ox ds  ox fusing (4)]
using this result in (3) we have
dx' dx’ -

T =(py+ o) ————— Po8’
Takingpa=pandpu-pweget . '
5508 :

T:F_ e e
(p+p)————p8’

=(p+pp'v' - pg’
)
where V' ¢E= velocity component

This can also be expressed as

T* =(p+ pWv, - g’ o, T, =(p+ph.v,-pg,
Exercise
1. In general relativity derive the expression for the energy momentum tensor 7 fora
perfect fluid distribution in the from

T =(p+ppv' - pg’
2. Define material energy tensor. Show that in Galilean co ordinates.
dx' dx’

T =p——
pds ds

3. Explam the principle of (i) Equivalence (ii) Covariance

4. What is clock paradox? Discuss the resolution of clock paradox in gencra! theory of




Unit-4

The Gravitational Fluid in Empty Space.in Presence
of Matter and Energy '

4.0 Introduction
There is a major difference in characteristic features of electro-magnetic and gravitational
fields. Electromagnetic fields do not carry any charge and do not interact with itself. So
electromagnetic field eqiations are lincar. Gravitational fields, given by g, , have self
interaction. Moreover, there is energy momentum exchange between matter and gravitation.
These properties of gravitational fields lead to nm-lmeanty of field equations.

4.1 Einstein Field Equations:

Einstein did not derive the field equation but wrote down on the basis of certain
considerations as listed below- ;
(i) In first place, according to the principle of covariance, the field equation must be -
a tensor equation. ' :

(1) In the second place, there is the well-known poisson law in gramatmn

(b

where  is the gravitational potential, o is the density of matter distribution and G
MNewton's gravitation constant. Under appropriate conditions the new law of gravitation must
yield an equation of the form, equation (i) If the metric functions
i ( g, being symmcn‘ic} of Einstein theory are to correspond to a single function ¥ of
Newton’s theory, then according to equation (1), the new law of gravitation must not contain
higher dirivatives of g, then the second. The Rioci tensor R, indeed does not contain
higher derivatives of g, then the second. The left-hand side of equation (i) Should therefore
be related to R,, in an appropriate form.

* (iii) In the third place, the right-hand side of equation (i) contaming the density of matter
distribution should be rclawﬂ to I, the energy momentum tensor, of Einstein theory,

according to special relativeity, the conservation law in flat space-time is
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ar™

=0 2
FYC (2)
Obviously equation (2) would be valid in a geodesic co-ordinate system. [n this co-
ordinate system ' :
=0 &)
Hence using equations (2) and (3) we arrive at the result
v i
1 =2 s e =0 @

Equation (4) is a tensor equation holding in the geodesic co-ordinate system. Hence it
should be true in any other co-ordinate system. So equation (4) holds in a curved space tme.
(i) Finally, ie. in the fourth place, R, occurs in an expression. '

R~ % £, R, such that

[R”' -% gﬂ*R] — 0 [Bianchi identity]
The above four considerations (i- iv) inspired Einstein to write down, as the general
relativistic analogue of the poisson equation, the law of gravitation in the following form:
¢ ;
R ~ 5 Ew R=-kT,, (6)

where k is a constant. ThE_\-'H]jdiT}' of equation (6) would be clear when we work out
the Newtonian approximation from this theory in the next section. We also obtain the value
of k and find justification for the minus sign.

Since (E & }W =0 we can write equation (5) in the following enlarged form with a

constant A

SN [ o :

b4

On cosmological ground. Then we can write the law of gravitation in'the following form
ako: '

1
Rj.rl' = ‘z"g,mrg + ‘ﬁ"g_uv = _kTpnr (8}
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If we consider gravitation in empty space due to some source then from equation (6) we
get

R, —%gwﬂ =0 . )
-On contraction we have
R—%xd-xR:D e (10)
Using equation (10) in equation (9) we have the law of ﬁaﬂtati:-n i empty space due

to a source in the following form. - _
R, =0 (i

4.2 Newton’s equation of motion as an approximation of geodesic equation-
We shall now like to im'esrigat-e as to what is the tmjectﬁr}r of a free particle in the space
time manifold, the geometry of which is specified by the lme element.
ds’ =g, dx"d’ - 0
We shall obtain the trajectory by demanding that the trajectory between two points A and

B of the space time continuum be such that

B

afds=0 - ' @

4

This leads to the geodesic equation of motion of the test particles
2 a g

d x‘“ T, de® dx” _
ds” ds ds

where I, "s are the christoffel's symbols of the 2nd kind and are given by

0 | 3)

[ =8 Lo,

1 ag ag,d'u aga,ﬁf
: r = av =i
with s 2[ o m a

Now in the special relativity the line element corresponds to a Euclidian space time (flat

space time manifold) and all the g, ., are constant and independent of the co-ordinates.
Consequently all the I';'s vanish and in that case covariant equation of the trajectory given
by (3) reduces to the equation of a straight line
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v Sl @)
ie. =

It is remarkable that the metric tensor g, determines both the geometry of the space

time continuum and also the trajectory. In the first case, the components of the metric tensor
g,, determine the structure of the geometry while in the case of trajectory it is the first
derivative of g, 's with respect to ttle_ci:n-ordinal,cs, which make their appearance via the
* christoffel’s three index symbols. Looked at the equation of trajectory in the context, the
g, 's play the role of g}avitational potential in analogy to the Newton’s equation of motion.

Now the equation arises, what is the connection of the geodesic equation given by (1)
with Newton's qulmtiun of motion? For this we recall that for Euclidian space the components
of the metric tensor are all constants and are given by

1 0 0 0
Jo-1 0 of”
™l ‘9. 20 5)
0 0 0 -I

Since ds® = g,,dx"dx" in Riemannien space
= —dt’ ~dy* —d" +cdi® in Euclidian space
Since the christoffel’s symbols of both kinds are zero, equation (3) reduces to equation
(4). Let us now assume that the g, are not constant, but differ from the values given.b}r
(5) by infinitesimal amount viz in a weak static field
Buv =M ¥V v ' (6)

By

where 7, is the flat space time metric co-efficient and }f,cf <<1 (ie. W, are small

quantifies) and we can neglect terms of second and higher orders in |lﬁf ok

- . . ag v,
We obtain by supposing field as static (I_{:‘L &xi = ;:.]

T =g"Tus
:
=——] '[H%J; a=1 23
28, \ &x°
1 d
C2g,, [-ﬁx“ “W“]}




Tl )

" 2(-1 lwm) {_ ai' [Hw“}]

[ Thy = Ty =113 =~y and -*?,,.,_=ﬂ'=gw for ,,u:tv]

.1 9y, ' .
=3 2 (M

In Galilean co-ordinate system x' = x, x’ =y, x’ =z, x* = cf
di‘z=-"dr1"'ﬂf?=—dzl+ﬂ'3dt;1
{0 2Y -
= [I——:] dr _ (8)

c

v
For small velocities = <<l

ds® = c*dt’ =(dx‘): _

cods = de’ =cdt 3 9
- Hence in weak static field i.e. if does not change with time the velocity components can
' ' & dd det L

d!.z 1“14-&; I=U, 1=||, 2,3
d*x' F
= &5 ==L,
using (7) we get
dx ___1oyy

s’ 2 &
using (9) this equation may be written as

£ 1 __51_ OW (10)

dar WS
i=1273
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Newton’s equation of motion are

d’x _ o¢ '
art & (n
where ¢ is the potential function
From (10) and (11) we have
2 (14, )2
o [zc ""“] ax
Integrating we get

I% ;if:%jgg;- dx' + constant

ox

24

=1+, =— +constant
e

MR

= gL.=—+k

Since flat space, g, =1, ¢=0
k=1
Where the constant has been so chosen as to make the potential ¢ vanish at a great

distance from the gravitating bodies, where
By —1

Hence the geodesic equation are reducible to Newton’s equation of motion in case of

s e o 2¢
weak static field if g4, =1+?3—

Thus Newton’s theory of gravitation can be regarded as the first apprmdmaﬁun to the
general theory with the quantity g,, of the general theory closely related to the gravitational
potential ¢ of the Newtonian theory.

4.3 Poisson equation as an approximation of Einstein’s field equation:
Assuming cosmological constant A to be very small quantity, Einstein field equations
are- '

1
an __2' g.wR :_SRGTM\-' “}
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In order to obtain Newtonizn approximation of above equation, consider tie motion of

toe test particle in a very weak static field which in characterized by
&= St N, (2)

.'-lrlim &,,. 15 the metric tensor for Euclidian space and 7,,, is the ﬁnmtipn of (,r. ¥, z)
and is so small that the powers of 17,, higher than the first are neglected. In this case, (for
weak static field) the fine element will differ very slightly from that of the special relativity and
we must have |

€ =Ep=6;=~€,=~1
€p=8,, =0, u2v @
Since the field is static ie. it does'not.e!ung'cwitl'g time and herice velocity camiponents
can be taken
e e e ), ] @

The co-ordinates considered are Galilean co-ordinates
coxtmx, ey Pz, x =
The geodesic equation’s are reduced to Newtonian chatiam of motion if
2o =1+ 2 =142y, taking o1
; &
The components of energy momentum tensor are
dx*  dv”
‘dy  ds
‘Altthe components of energy tensor (in the limit of Newtonian approximation) will be

™ =p

aijpmthtely zero separately, except.
. dd' dr*
T‘“ =p— ——=
Pa &’
T =gwryr =g“TM
1

I
B o

=[l+1;r“]_"ﬂ4§p
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From the field equation (1) we have
. | v
g"R, -58" 8RR = -8rg"T,,

=R-2R=-8rx T
= R=8xT

| : 1
Ry, =~8aT,, +8,,84T

1
- _E‘T[Tyv _E gﬂv]

R, = —EJT|:T“ —--;— ghf}

1
=—34‘T[P'— Emﬂ]
2
.1
ﬂ-E-‘iiﬂ'tl*EHu} =—4ap (5)
Since
: 5 " > .
Ru=2 i 'a—j:'rfw +ILre, "rt‘"‘r"_‘
" From which we get
8 é i a
Ry == Th—oxTu+TiLI -Tule
ox dx

Wiriting upto first order approximation, we have,

G a
R“:E.F 'r:J'"Efri!

Since g, are not the finction of time in static gravitational field

084

ie. E;r=ﬂ
& g '
ARt P ©6)
éx*
9 T4,=0,si -a—g{i*ﬂ and g, =0
Also, 7 T, =0, Since -3 =0 for all values of 4 and y and g, =
m .
For a=1,2,3
CRy=-—= T% a=12,3 U
ox”

50




From equations (5) and (7) we get

d
v Iy =dap (8)
Also for weak static field @ =1,2,3
We have,
i £ =] l :
Iu=g Tuys™g | P WP
Eaa
[ K (L)
(=l v 2 ax”
a1 og
=[]l= g e B
{ qﬂﬂ} [2 axn]
Now (8) is expressible as
i ]:.1_ ag“]zaﬁxp
& 12 ox"
3 .
::-Zﬂﬁf =8xp

(o)

P84, 8y, T 2u
et ay! azz

=Eﬂ¥}

= Vg, =81
=V (1+2y)=87p
= Vi =4mp |

Which is poisson’s equation in relativistic units. Thus the relativistic general theory of
gravitations corresponds to the Newton's theory of gravitation m the presence of matter in the
non relativistic limit of a weak, static gravitational field.

4.4. Solution of Einstein gravitational equations in empty space. Schwarzschild
exterior solution for the gravitational field of an isolated particle :
The first exact solution of the Einstein equation was obtained by K. Schwarzschild
(1916) for static and spherically symmetric field which is a good approximation for the
gravitational field of the sun.
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In empty space the law of gravitation chosen by Einsten
R, =0 (in empty space) (n
Einstein modified equation (1) later on and cosmological constant A was included and
took _
R, =Ag,, (as field equation in empty space) @
The solution of the above equations consists of finding the line element for interval iri the
~ empty space surrounding a gravitating point particle, which ultimately corresponds to the field
of an isolated particle continually rest at the origin. This solution was first given by
Schwarzschild and is of great importance. Since it provides a treatment of the gravitational
field surrounding the sun far use discussing three crucial tests that distinguish between the
predicting of Newtonian theory of gravitation and the more exact predictions of the theory of
In absence of mass (empty space) the space time would be flat so that the line element
- in spherical polar co-ordinate would be expressed as
ds® =—dr* =r’d@® —r*sin’ 0d¢® +dr* (flat space) (
~ The presence of gravitational mass modify the space time. However since the mass is
static and isolated the line element would spatially spherically synmetnc about the point mass.
The most general form of a such line element may be expressed as
ds® = —edr’ —r’d@® —r* sin® 8d¢’ +e**dr* (curve space) (4)
With x' =7, x* =6, ¥’ =¢, x* =¢"and ] and yare functions of r only. since for
spherically symmetric isolated particle the field will depend on r alone not on @ and ¢
Since the gravitational field due to a particle diminishes as we go on infinite distance.
Hence the lone element (4) reduces to Galilean line element (3) at an infinite distance from
the particle:

SA—=0 v—o0, a8 row

-0 0 0

o 0 0

" & 0 0 -risin’@® 0 (5)
0. 0 0 &

£, =g, |=-r'sin? £ ©)
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The elements of matrix corresponding to the mverse matrix tensor are

- ='Co— Jactor of g,

™

. 0 i 0 ®

0 0 -0 e

- e

The surviving cin‘istnﬁ"gl‘s syn:l-bols calculated by using the formula viz

I"' - “Pﬂ'+'agmr_ag.i"’ 4
Hy.a 2 arr Ex.u ata

and I';, =g I"F,J,aﬁ:

-1 Hw-d}
I, == 2 T

2 LI =¥
=4, T elye=, T ==

(9

[, =cotd, Ty, =—sinfcosé,
I, =-re**sin’ @

where prime denotes derivative w. r. to .

s ' . a a a a
—nnd O 2 (5 )Ty Tt

{mgf)f-—( J+Ta T2, ~ [lugJ_) 09

E:?x"&x"

“Alo J:g_ =r’sinfe*™
logE=Eingr+logsinE-f-[,l+v}.
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:_f;(lug\{—_g)z%+ﬁ.’+p'
;—Z(Iug\l':gﬁ)=-%+l”+v"
%(hg@kcmﬂ. (11)

aa—;z(lug J:E) =-cosec’d

55 ios ") =0

From equntiﬁn (10) and (11) we get

R,,=V*+v"-ul‘v'-gé_~ 5 (12) .
r
Similady R, =e™(1-rd'+r/)-1 : (13)
. R, =R,.sin’8 > ] (14)
R, =™ [—-v'+ Avi—p" -Z—V} | (15)

Einstein field equations for empty space are R,, =0
22

LR =0V V=AY - 0 (16)
. r
Rq:t:l]:;e']‘{(]_rl'+rv’]—1=ﬂ (17)
R, =0 : (18)
R, =U=}e:{"'”[-v'+1'v'—v'3—2—v:|=ﬂ (19)
r 4
Equations (16) and (19) give '+ =0 _
= A+v =C (constant) (20) -
when roo, A=v=0 (20)=C, =0 SA+v=0

(17)=>(1+2n/)e™ =1 #(f‘e:v] =l =re =r-2m
where m is a constant of integration
2m

Ba=e =1-T ¥ . 1) :
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Newtonian approximation must hold for weak field ie. for largerr.
For a special body of mass M

GM
p=— (22)
r
Since g, 2142
c:'
2GM
=] e . (23) :
Comparing (21) and (23) we have
GM
mn—_,_—
¢
In other wards m represents the mass of the gravitating body
- e:l’ !:l—z—m 2
i
=1
El.l :E—lr =[1_2_m)
r
The complete solutions is
S S -1 '
ds’=(1—3’1] dr’ —{1-2—”’] dr’ —r’dg’ —r'sin’ 6d¢’ (24)
r r .

This is the well known Schwarzschild solution valid in empty space outside a spherical
object. It holds fairly accurately out side the surface of a star.

Schwarzschild singularity :

-1
dg3=[l__2_f{1) d,z_[;_?ﬂ] & —Fde* —risin’8dF (1)

r r

is seen to have the following singularities.

(i) v = 0; the solution becomes singular at r = 0, but this type of singularity also occure
in the Newtonian theory. '
(if) r = 2m; the solution again becomes singular at the spherical surface r = 2m. This value
of r is known as schwarzschild’s radius. |
(iii) If we include the cosmological constant A then the Schwarzschild solution for empty
space corresponding to Einstem field equation.
R, =Ag,,
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“Leads to the line element

13! .
r drl-ldﬂ]-in':ﬁ*dz
S ] | sin’ 6d¢ ) @
" Comparing the line giem:nt (1) and (2) now see that the effect of the A term on the
field surrendering on attracti.e point particle increase with the size of the region considered.
But the cosmological constant A , even if different from zero, is so small that it does not

produce any appreciable effects within a region of the order of the solar system.
For entirely empty world, we put m'= 0, so the Schwarzschild solution (2) becomes
:I =1 § 2
as? = 1-M | a2 - 16’ - sin? gdg? +| 1- 2 |ar?
' T " :
This solution has a singularity at r=J;. Since cosmological constant A is very small,

‘ hence the value of r is .ver:',f large. It represent the horizon of the world.

4.5. Tsotropic co-ordinates:

Let us consider the Schwarzschild exterior solution

2 -1
ds’ =_(1-“2—’”] dr’ -r*(d& +sin33d¢3}+[1—ﬂ]dﬁ
r r

Here putting
mY 4r’ +4rm+m’
re|l4—| r =|—"—5—1"
2n 4r°
=r +m+—-
4n
m m’
drmd - =] 1= o
4r” 4r
1_3_@:1- 2m
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Then equation (1) becomes

m

{if ] e [‘zﬂ]
ds* = L [;—’" ]dr, rd&® - r*sin’ 0d¢’ +

]‘_E 2 453
2r,

; :
= 1+£] (dr? +71d* +r} sin’ 0d¢’ |+ -—
U 2 mY @
: l+—

2n
This is called isotropic line element and the co-ordinates 5, 6,,¢ are called isotropic

polar co-ordinates.
Substituting the corresponding Cartesian co-ordmates

x=rsinfcosd, y=rsindsing, z=r,cosé, we get.




where i’ =x* +)y’ +7°

To obtain the equation of light pulse we put ds =0

Therefore we get.

(E)2)+(5) “fea]

Thus the velocity of light distance r, from the origin is {l+ i]]
: ¥

which is small in all directions.

4.6. Planetary orbit:
Consider the motion of planets in the gravitating field of the sun, where the planets can
be regarded as fré¢ particle their space time trajectories will be given by the geodesic.

dx"  pe B
: ds ds

(1)

ds
Consider the sun as attracting point particle, its gravitational field may be regarded as
the field of an isolated particle continually at rest at the origin, so the space time is given by

the Schwarzschild line element for empty space viz.
ds® = —e*dr’ —r1d#® =1 sin’ Od¢* + e dr’

o)
r

where 1=-y and €

X=r,x=6x=¢ x'=1

The non vanishing Christoffell’s symbols are

O= A, T, eve™™
1

] -4 2 S
[p=-re™, ru’zru_r .

PN 3 _
I3, ==re "“sin" 8, I'y; =cotd
I;, =-sinfcosd,lj, =v" - |

13

5

3

8




Taking first ¢ equation we have from (1) [ iea=2]

dae _, dv* dx"
& E a?

B N
L e e i T
1
:§+E %’:— %—sm&msﬂ(dﬁj =0 ()]

Let us chose the co-ordinate system such that the planet moves mitially in a
plane @ = x/2, snthatﬂ—— cos @ =0, %_ﬂ

(5)
From equations (4) and (5) we get
d*e - '
— =0
X | (6)

This equation indicates that the planet continues to move in the plane == we shall

simplify the remaining geodesic equation with 6‘=%.
Forrequatjnni.e.gnl,wehavcﬁ'um(l]
d’x' de* dx”
R

&I&

£

(N

For the ¢ equation we have from (1) [w.nr=3] _
d‘r‘ de” dt”

@ " ds ds
2
dgi o, a’ df’ @
ds’ ds- ds
:}df 2afrd¢ [.:dﬂ u]
ds* rdsds
Finally for t equation we have from (1) {:‘.g.a=4)
d’x* de* dx’

+T7 -
ds' " ds ds

=0

—_ —

8)
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ds
where h is the constant of integration. Equgti;:m (9) gives

'i-(eh £]=ﬂ.
ds ds
Integrating .
’ 2
ds
where k is the constant of integration

dt

= —=hke ™
ds .

‘We have from (2)

2
ds® = -e*dr’ -r*df’ —rlsiﬂl-ﬁ(gj- +_ez'(

: 2 2 2
::lz—e”[%] +r [E{E] -r sinzﬁ(%?]' +f"[. :

x df
- 9=_‘ —
Puttng 2" 0

e (Er_] +r (ﬁ]l —e™ [E] +1=0
ds ds ds

24 -I'ﬁ' 2 hz 2 =dv " :
=g (EJ +—=—ke" +1=0" fusing (10) and (11)]

)

(10)

(1)




= L[iu_] +hute™ — ke 4 e =0

u
2 a1
::.(—) +u1eh-——,+%l-1-—='l} [1:—1*}

Differentiating w.r to ¢
| dudu  dy sdu 2mdu

mm—— —— ——— T

2 — 4+ 2u——b6mu 3
dg de” dg d¢ h° d¢
.. T za'u
Dividing by d—¢
:H 3 m
= — +u=3mu +? (12)
This is the required differential equation of the path of a plariet, comparing this with the

Newtonian orbit namely.

d*u m
- = -
de¢” K

We find that 3,;;,° is an additional term in equation (12). This term is defined as the
relativistic correction of Newtonian orbit. '

The ratio of = 2% =3k’
' Lt
hf

= 3[?‘: ﬁ}' —1;-

ds ) re

[ dpY d¢Y' . transveral velocity of planet)

=T == =3 r—| =3 s .

s ds Velocity of light
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For ordinary speeds this ratio is extremely small. For example in the case of the motion
of the earth around the sun, this ratio comes out to be 3% 10~*. Hence for ordinary speed
the relativistic effects are negligible and therefore the extra term 3;y,® in equation (12) in
practical cases represents an in appreciable correction to the Newtonian orbit. Consequently -

" the difference between the relativistic and the Newtonian theory of gravitation is only slight.

" 4.7. Crucial tests in relativity;
There are three im;iortnm consequences of Eimie‘m’s theory of grmtatnn, which has
" been experimentally verified and are known as the experimental or critical tests in the theory
of relativity. Moreover they pm‘ﬂdﬁd a means to compare the relativistic theory with
Newtonian theory.
There are the following :
(i) The advance of purftlehnn of the planets.
(ii) The bending of light rays in a gravitational field.
(iii) The gravitational red shift of speetral lines.
- (iv) The advance of perihelion of the planets:
‘The relativistic differential equation of the path of the planet is

d*u m 21 -
-—+u-—+3mu - Ts ()
P 7
’ with 7 —-=h
ds

As a first approximation, the small term 3,2 can be neglected, so that we have

du m

a# - @
The solution of (2) is '
= —[] +ecos {;ﬁ-m)] (3)
where ¢ and @ are constants, e being the eccentricity of the orbit and @ the mmai
longitude of the perihelion.

To obtain the second approximation, substituting (3) on the second term on R.H.S. of
equation (1) we get
d’u

E-H‘ PR 3m-—[l+e cos" {gb m+2ecos[¢ m]}
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ﬂ+3m 6m
S A
Thtahouaqunhunthctcrmwhu:hcanprodumany:ﬁbctwﬂmthermgeof

observation is the term ms{g#ﬂa.:}.

Now we know that the particular integral of the equation

e cos(¢- w]+— —(I+ cos’ (¢- m})

—+u—Am¢
6m'e
Theadd:tmna]termh—‘cos(ﬁ m}mth:R.H.S 0f{4}gwmapaﬂnfugmby

sin(¢-@) _
Hencf: the solut1un of (1) of the second order of appmxmmnn is

3me

u =

u—?[l+ems{¢—m}]+ut | |
u =-E—[I+ecns {¢*w]:[+3—:;e¢sin:[é&m)

=%+E[ cos(g- m)+—--¢sm(¢ m}]
Substituting

— =0 (6)
Since 5&) is very small so that we may write sin 5o = S» and cosdw=1

S =h—#;+%-[cus (¢ - @)cosdw+sin ﬁh:sin{ﬁ-m]]

é%[l+e(¢_—m—5&r]] m
~ This equation represents the solution of (1) for the orbit of the planet to the second order
of approximation. In this equation the term &y corresponds to an advance in perihelion of -
_planet. Accordingly when a planet moves round the sun through one revolution viz ¢ =27
the perihelion of the planet does not return to its initial position, but advance by an angle,




" 3m 6zm*
T &
Using the standard relation
m_1
ol

where 1 is the semi latus rectum of the orbit, we have
K =ml=ma {l*ez] ;
Also from keplar’s 3rd law, the time period T of the planet is
3 . .
IT= a?
-3 ®
‘a’ being the semi major axis of the orbit
From (8) and (9) we have
24r’a’
S = ————
T (1-¢)
Rﬁtoriﬁg the velocity of light ¢, we get
24}rlal .
o) = ——— - ;
: T [1—.93 ] _ (10)

‘For mercury e=0.2056, a=0.6x10"km C=3K1ﬂ"m3'ﬂc and T = 88 days. The
value of §w per century for mercury has been found from (10) to be 42.9 sec. and the
observed value 43.5 secs.

It thus follows that the shift of the perihelion of Mercury as predicted by general theory
of relativity agrees with the observed tests for general relativity.

(ii) The bending of light says in a gravitational field :
We consider the deflection of a light ray in the gravitational field of the sun. According

“to the general theory of relativity the track of a light ray is given by geodesic equations with

the added condition ds = 0. It means that the differential equation of planetary orbit viz.

d’u m a2
' o
I.. r_ i =h . (2}

is also applicable to the path of a light ray.
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For the track of a light ray ds = 0 so that the equation (2) yields s — «c. Hence the
track of a light ray in the neighborhood of a gravitating mass m is given by

%I-:-+u=3mu! 3)
Neglecting the small term 3,y,? to the first approximation we get
d’u
—+u=0
Its solution is
u=Acos¢+ Bsing (5)
*;'sx x=rcos¢p=~R
z 5
L Fi
R -
r
1o
r LY
LY Fa
where A and B are constants.
du :
5\ = — =—Asin¢ + Bcos
B)== 5 ¢ ¢ ©)
The boundary condition are
1 %
=0, =2 and dé

(5)=-'*%=_A; (6)=B=0

1
Su=—cos4 7
R (M
To obtain the second approximation let us substitute this value of u and the R.H.S. of
(3) we have ’
: d*u im
—+ 1 =—CO05 8
dg” R ¢ @)
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The particular solution u, of (B)is

l 3Im 4

U, =—y—| —COS§
‘D'-&-I[R‘ ']

o
2R D*+1

B ltw1 [Hmzﬂ
2R 1-2

_3m (l 2 cusZ;’t]
2R 3

.. 3%(3:.:.53 ¢+ 3sin? g—cos® ¢+ sin’ )

(1+ cos2¢) v

=E%x1(:0536+25i11!#)=~:—1‘(¢051¢+35h1¢)

Hence the complete s.o'li.u_iun of equation (3) to the second mxinaMn is

u= ]1-!; cosg+ -;—;t? (ms’ #+2sin’ §)

=R =rcns¢+f—;~(rcuszé+2fsinzﬁ}

Introducing the Cartesian co-ordinates, we have,
x=rcosg, y=rsing

2 2
R=x+ﬂx +2y
R Il+y2
x*+2y°
=:-x=R~E( } (%)

R :,ixz +y
In this equation the second term measures the very slight deviation from straight path.
x= R. The asymptotes to (9) can be found by taking y very large as compared _mx,mttu:

m
equations of the asymptotes to curve (9) are = R- E{t E.V]

=:>x=R+—2fy—-'
R

(10)

and Jt:=R—Eﬂ
S -




tang = 2 ( 2”’]

= 4mR
.4m1 "'RJ
4mR
= 4m* + R*

sin &

~ Since 4m® << R* and hence neglected.

: R " IR
This equation represents the total deflection of a light ray passing near a heavy mass M.
For a light ray grazing the surface of the sun.

M=192x10"kg, R=697x10"m _
c=3x10°m/sec G =6.66x10"m’kg™".sec™
' ..5=8.36x10°radian
= 1.75 seconds.

Thigitmliﬂstlnt.atigtﬁmygmzjngint}msmﬁamnfﬂiesmwilibedeﬂectedbynnmgle

1.75 seconds of arc, which is the amount observed by astronomers during the many total .
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eclipses of the sun, since the year 1919, when the first measurement of the deflection of light
was made. Thus the theoretical prediction of the bending of light rays in the gravitational field

agrees with the observations.

(iv) The gravitational red shift of spectral lines: _

Making use of schwaras.cjld line ekﬁmt, let us now investigate whether Einstemn theory
of reativity accounts numerically for the observed red skift of spectral lines emitted by an atom
should in a gravitational field when this light is observed on the surface of the earth. Consider
a number of similar atoms vibrating at different points in the region. Consider an atom to be
momentarily.at rest in co-ordinate system(r, 8, 4, t} |

The Schwarschild line element due tu:": a gravitating mass m is

ds* *_[1_@) dr* +r* (d6® +sin’ 6d¢* ) + (1#3'3] dr’ M
' F

»
Where r, 8, ¢, t are co-ordinates as observed by the distant observers.

For an atom (stationary) on the sun emitting light
dr=df = d¢ = 0so that (1) takes the form

ds* = (1- %ﬁ] d* 2)
=;dr=d.r(1—%) (3)

m
Smae e 15 very small

It dt = T (period of light) as observed by a distant observer thends =T (pmud uf light)
as observed as the sun, which is the proper period of an atom. Hence from (3)

(i)
s

which implies that a periodic phenomena in the gravitational field of a heavy mass will
appear in an observer out side the field as slowed down.

[ -
nT=T, jt+£’—) [E is very sma]l}
. r ;

1 ][ m]
= —=—|l+—
VoW r
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:a,1=j,,{i+ﬂ]
A< ==
= -f)!n
dA m
AT @

i.e. when r is increasing change in wave length is decreasing that means wave length is
.mcreasmgandhenoeﬁ-equemyﬂdecreasmgmredsinﬂed .
'Ihusmemwm'easesasai&avesthegmwmmnaiﬁeﬂﬂnsmﬂmﬂmeﬁashtﬁ
toward !:he red end of the spectrum.
5 A4 GM
lﬂ c’r _
For the gravitational field of the sun this shift is qualitafively observable and the amount
agrees with equation within the error of observation. |

4.8. Schwarzschild®s interior solution:

We shall now determine line element inside the sphere of matter. It is natural that such
a solution must depend of the prﬁpertieé of fluid of which the sﬁhere is composed.
Schwarzschild solved this problem by assuming that the sphere is composed of an
incompressible perfect fluid of proper density p, . The solution of these equations st satisfy
the following boundary conditions:

() - The pressure is zero at the boundary of the sphere.

() The density o, is uniform through out the sphere.’

We take the line element of the from

ds® = —e*dr? —r’d@ ~r*sin’ 8d@’ + e dr’ m
where jand v are functions of » only
We have,
; de dx’
I'=(p+po) 5 =8 Po @) )
Since the distribution of mass is static, all velocity components of the fluid matter must -

be zero Le.
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ds ds ' ds ds ds
So from equation (1) we have
: 4
%=%”w | (3)
CL @ &Y -
{2}=’I;1f{ﬂn+pu) E '&g" = Llpo ==
Similarly we can show '
sz"ﬁ:"nﬂn
. 4 ‘i‘_-i-
Also, L' =(p+p) i O.Py =p,
"'TLI=I.'==I;]=_PM ::,pn (4)

Einstein field equation for the presence of matter are

l ! A - il
R)~>5] R+AS)=-8i T

= -817) = g"R,, -8 R+AS] - ®
The non vanishing components of contracted curvature tensor are the following

r
R, =v'-A'V+v? -2
=

R, =(1-rA"+rv')e™ -1 _
R, =R, sind | 6)
Ry =(—V'+ AV =" -—zi]e""“

r

where prime denote differentiation w.r.t r
From (4) and (5) we have

E:rpn=g"R,,—%R+h )
8zp, =g” R, —%R +A (8)
e
Brp,=g RJa'ER"'ﬁ 9
. | :
-8mp, =g R“'—Eﬁ‘q-h (10}
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Equation (9) can be expressed as

87p, =g”R,, —%R +A

=g“ R, —%R+ﬁ -
It means (8) and (9) are indentical

Aso R=g"R,
=g1l‘ﬁ|“1 +£31Rn +SHRJ;+EHR“_
Using (6) we have _
R=-2e fv'+v” +A'v' Lt +?i)-%
F o E )
(6). (7). (1) =
87p, =_g'3‘(gv—r+—]-1-] —--l-,--H‘a_
rr re
(6).6) (10)= |
| 87 p, =€'I.'L (l"-l’v#v" —1#-'-+ V—]?ﬁ
r .r
(6),(10)and{11)=>
oo =et (1) oo
_ : r rjr
(12)+(14)=
. (24"
srieoep)=e (47

=87 (g, + p )V =€ [21 : +£—]
r r

From (12) we have
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(11)
(12)
(13)
(14)

(15)

(16)

(a7



From (16) and (17) we have

dp A gl A 2 W W] -2
*”[T..«f*(*’v“’ﬂ}“ A

From (12) and (13) we have

W 1. Bic S NI
" s l+-1- ——]:,—ze“ ViAWV ———
F r ¥ r r

:>£-1¢(V._irvr+p-1_i i__l_!]+L1={j
: r -F F ro

Using (19) in (18) we have

35[%+{ﬂu "‘Pn}"r:l =-ﬂ_'

ie. %+:(pn + 2 )V =0
From (14) we have,
(87, + A)r* =™ (2rd"=1)+1

. ﬁg;(re'“ ]'# 1-(8mp, + A)r* .

_ Integrating we get

; r C
et =l-—+—
R r .

In order to remove the singularity at r = 0 take C, = 0

ek T2
i R'
From (20) we have

’ @L-— =—gV

Pot P

= Pt Py =Ce”

rl
=11
& 2
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(19)

(20)




=8x(p,+p,) =87C.e” =Ce™
= 8re" (p, +p,)=C,

Using (16) we have
.zey 'a ikt E‘:i :C}
: r
But _ |
. 2 ‘-?.'Il-i-]..*r . [ i
{_,_,_}E—M ne'“y—+g‘” E,
r ” -
Sice e =1-L.

R!
LA+ 'V')Em 2 a2
G = .

P‘IJII.‘i[gEv=H 5%:&"’?’

2u 2 du r :
'.‘_1+_ L 1"'— :C
R r dr[ R’J 3

-ﬁ'?-tu—+ : H-EiRz r
dr Rz—-rz 2 Rl_r!
du r C,r
St U=— ,
; dr R'-r Ry : (21)
which is of the form
du
—+P(rju= ¥
5 HP(r)u=Q(r)
Hence its solution is
u C‘
= +C
JR -2 R -2 7

=u=C,+CNR -1’

13




:}EV _..CJ...C‘!!#R:-rI

]
r

::A—_E l"&?
where C;R=-B,C,=4 and 77 =—"37—

From (12) we have

3 2 ] =34 l
Bep, =6 Tt Sy +A
2 11 1
24
= — T h__
T AR r
. A R
i -.uT..._Ei_.fﬁ (22)
. r r
-2 8 — =]
er'=—B:-¢-l-— R =B K =
2 1_51_ 1-,-~
. J R :
'8 )
Yo B
r = 2
g
R R
2
i[l_ru]
-z.tf__., : R 2
r r P
,‘h— B Er
R’[ R‘]
1
r l-'_ -
" E:‘__l__ 38 Rl A




using (22) we have,

£ 2 .
33,/1 -% i
&z p,

= - +A
] e O (23)
w(as 3]

The A is an important factor in case the distan:_e from the origin is_, very large in
comparison to 7 (The radius of the massive body).
Hence we take A=( for r<r,
Abo p,=0 for r=n,

S Pe=A=0for r=n

using this result in (23) we get

2
.
A=3BJ1-—, 24
| e | (24)

The line element for an interval in the interior of the massive body

; » %=1 ' e [ 7 2
ds® = - 1-5,-\1 dr —r’d@—r*sin’ 8d¢* +| A-B - | dr
R ) Taade VE "

Which is the schwarzschild’s interior solution.
The exterior solution of the same body

\I' 3 F: w3 3 .1
d32=—[1_2_m. drl—?‘ldg'-r'sm'ﬂﬂ’é'*'[l_zﬂ] dr*
;% r

]

i 2m r
= —?: I—T=4B:(l—?] [using (24)]

M N S (I S
: K R - B

1
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=m=—ﬁ—,-, 4B =1
2R°

4 R
:Exq‘,q, =~2-;E—1, 2B=1

3 R 2

1 A
It is accordance with the equation F=§ﬂ3+— where A =0, r=n

. From (24) we have

1

3 r ) 1
dusliA s e
z[l Rz)’ 2

L,
i 3

The interior solution is real iff
2m r?

Exercise

" 1. - Write a short note on the energy momentum tensor 7#* and discuss the reasons which
led Einstein to chose the field equations in the form : v £

|
R, =38R =-81T,,

Show fiurther that these equation reduce in linear approximation to Newtonian equations.

Viy =-87p

2. Obtain Schwarzschild exterior solution for the g,mvita.tiunlai. field of a single mass at rest
and explain on the basis of this sotion the advance of perihelion of the planet Mercury.

3. Discuss the three crucial tests of general relativity and the support they led to the theory. |
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For the lme element.

- . ; i
ds* =-[1-2—m] dar?-r (d§’+sin1€d¢3 )+[i—-2-f'-] dr*

r r

where m is a constant
Wite down the differential equation of the geodesics and show that in the plane ﬁr=§ .

d’u m 1 L dé
these equation reduce to ':;'?.W N ;;‘*3"*“1, u= e " 3 =h

Solve these equations and discuss any one of the crucial test with the help of your
solution. ;

Derive the equation of‘planetary orbit in the general theory of relativity .

+4¢
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Unit 5
Cosmology

5.0. Introduction:-

The speculation about the nature of the universe are as old as the man himself. However,
it goes to the credit of the General Theory of Relativity that for the first time in the history of
physical sciences, it provide a mathematical frame work to explore the nature of the universe
and shifted the cosmological problem from a purely speculative plane to a quantitative one.
It occurred in 1917, when Einstein paper “Cosmological Consideration in General Relativity™
appeared in Prussian Academy of science.

The three crucial tests of general theory of relatmt:.r do indicate that it has provided
. some significant advance and improvement over the Newtonian theory and has furnished an
accepted solution of the problem of the field of a star in the n=:m]:.~tj.r space surrounding it at
least to distance of the order of the dimensions to extended its applications to regions beyond
the safer system, viz. to the universe as a whole. The justification for such an application of
three gravitational theory to explain the structure of the universe can be near in the observation
that there is a general tendency among the stars to cluster together in the form of a nebulac,
which themselves again show a similar tendency to cluster to some extended.

This indicates that ther;.dpm not exists some sort of gravitational action extending upto
vast distance of the universe, a pherfdmcnon which would be predicted by the relativistic
theory of gravitation. ' ‘

To consider the universe as a whole, certam sin:epl:i_ﬁring assumptions to idealize the
universe have to be made as is done for example by geodesist, who speaking from a large
scale point approximates the shape of the earth by an ellipsoid through on a smaller scale it
represents much cﬁrrmiicated picture.

As a first step in this direction, one should naturally ignore all local concentration of . |
natter, smooth out all irregularities and assume the universe to be filled with a uniform proper
density p,of the matter fluid. At the time when Einstein investigated the problems no large
scale motion of matter was known to exists and he was led to ignore all small disturbances.
Thus according to Emstein, the matter should be chosen in proper co-ordinate system and the

‘proper distances of the nebulac from the observer should not alter with time.
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There are two more assumptions implicitly contained in Enstein’s original pare, these
are i
{(iy Isotropy of the universe,
(i) Homogeneity of universe.

By isotropy we mean that the spatial view of the universe is rotationally invariant

about a point in space i.c. all spatial directions are equivalent. Homogeneity means that the
history of the universe is iavariant under spatial translations. In other words it is impossible to
distinguish one plane in the universe from the other.

Thus Einstein's original investigation are based on the following assumption:

() The universe is static, i.e. in a proper co-ordinate system matter at rest and the
proper pressure p, and pmper'dms_‘ty p are the same every where.
(i) The universe is isotropic i't‘. all spatial directions are equivalent.
(i) The universe is homogeneous i.e. no part of the universe can be distinguished from
any other. ; '

It is interesting at this stages to ask the question “are these assumptions consistant™?
ie. is it possible to satisfy the postulates of the isotropy and homogeneity and of resting
masses in the new theory of gravitation viz Einstein field equation.

- Ry -_—i;: g, R=-8xGT,, (l}.

It will be shown later a straight forward detailed calculation shows that the three
postulates are not compatible with Emnsten’s original equations given by (1) Einstein, however,
found that a modification of his original field equations of general relativity by introducing an
additional small constant term A which is called cosmological constant, does render the
general theory of relativity consistent with the above postulates. The Einstein’s modified filed
equations are

| 8rG
: R#,—EEPVR-*J‘LEJW :_-;TT

Fiid

The constant A is such that its effect is negligible for phenomena in the solar system or
even in our own galaxy, but becomes important when the universe as a whole js considered.

5.1 static cosmological models : The models of the universe based on the above three
assumptions lead to what are called “Static Cosmological Models”. The word “static’ is
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applied in view &fthc first assumption viz the static nature of the matter distribution. The
following three line elements '

() Einstein line element.

(@) De-Sitter line element.

() Special relativity line element exhaust all possibilities which are admitted by a static,

isotropic and homogenesus universe.
The line element of a static, homogenous and isotrepic universe has the familiar form:
ds’ = e'dt* —e*dr® - r*d6® —r* sin® 0 d¢’ (1)
where (r, 8, ¢) are the spherical polar co-ordinates and
- v=v(r) A=Alr) : (2)

are some unk:nm_m functions of the radial distance r to be determined.
The pressure p, and density o, determined by field equations

1 i
Rﬂh’ _E gFrR.'-Algpr =—8x Tpr (3}

where G = c = | are given by

| A 1%-1 ]
BJFIP¢=€J(*;'+F)—?'—I+A

r (4)

. oAl
where a prime denotes derivatives w-r to.ri.e. V = Ev etc (5)
A g :

The solution of the above equation must be compatible with the postulates made earlier
and hence the following requirements must be satisfied. '
(2) The pressure p, the density py, as measured by a local observer should every where

have the same constant value.
(b) For small values of r the line element should reduce to the flat space time of special
relativity. : .

To confirm with the above requirements, the third equation of (4) can only be satisfied

aps _g .
when g 0 ie. we demand that

d ! B R
%:—E{pﬂ-r-pﬂ}v = (6)
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The equatii:-n (6) 1s satisfied with any of the thrée possibilities
(i) v'=0
(i) py+p=0 o
(iii) po+mp,=0.v'=0
These three solutions lead respectively to the Einstein, the De-Sitter and the special

"+ relativity line elements of the universe and exhaust n themselves all the possibilities of a static,
isotropic and homogenous universe.

5.1.1. The Einstein Universe :
Einstein line element arise from the possibility
V=0
The leads on mtegmtinn
v = Constant = C, (say)
Since for small values af r in the line element small reduce to special theory of relativity
from flat space time,
ied =0, v=0at r=0
LC=0=v=0
Substituting this value of v in the expression
8n p, = c"‘[i B L,] —L,a#;\
: Tl
We have

8np,=¢" L——l-'+.|'"!.
e

=et=1-(A-8np,)r’

I @)

; 1 :
where  A-87mp, :ET (3)

i)

dr!

and the resuItiug'Hne element is ds” =~ 3

r
-2

R

o

— ~’d8? —r'sin’ Bde’ +dt”  (4)

This line element is called Einstein line element for static isotopic and homogenous
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(a) Geometry of the Einstein Universe:
The line element for Einstein universe is
v _
drzz{ —-é-i-] dr’ -r’d@* —r’sin’ &d¢* + dr* ()
In order to understand the geometry of the space time characterized by Einstein line
element, it is convenient to rewrite Einstein’s line element by the transformation of co-
() Consider the transformation.

r=

R) 4Ry R} R 4R R
r(p p
GENE
& 'rl
ql_?i;z_

82




Pr-ama 3)
R " 4R}

So the Einstein line element (1) transformed into

ds* = A[HE] ldp* - p*ae* - p‘sm*&w’}mﬁ @)

(i) Further substitutions
x=psinfcosp, y=psinfsing, z=pcosf
The equation (4) leads to Einstein line element in the form.

5 2
ds’=~[l+;1;=] (a.'!:l:’~+_-ti,},»"+a:1;:*)4—dl:1 ' (5)

(m) Again by putting _
r=Rsiny in (1) Einstein line element takes the form
ds* =-R, (cff +sin’ y d6? +sin’® y sin’ 6dg’ ) + df® (6)
. (iv) Finally considering the transformation

T
z,=,=z,,[1-%], 2, = rsinfcos g

z, = rsin #sin ¢, z, =rcost

So that z2 4 23+ 22 + 22 = R?
Thus the Einstein line element (1) takes the form
ds? = —(dz? + dz? + 2} )+ d’ M
Einstein Ime element in this form suggests that the spatial geometry nf the Einstein
universe can be regarded as the immersion at a whole three dimensional spherical surface in
a four dimensional Euclidean space viz. -
' zf+z§'+z§+zi =R§ :
This form also represents the isotropic and homogenous character of Einstein
umIverse:
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(b)  Density and pressure of matter in Einstain universe ;
For the general line element

ds® =—e"dr® ~r’d6* ~r’ sin* 0dg’ +e"dt®

We have,
iy YY) '
8np,=e"| —+—=|-—=+A
Po [r r.} = -l
P 1
. § _
Bipy e [?";?]Jf;? A 3)

For Einstein universe

2 "
r | ;
'~ D= d e*=1-— where —=A-8n

Ul Ry R, P

So that equations (2) and (3) yield

1+3"u

1
O

8rp,=—

3
Eﬁpi, =?—ﬂ
{1

The two unknowns A and R,can be expressed in terms of p, and p,
A=47(3p, +p;)

|
F=Bn {Pn +Pﬂ]

0 g
Now on physical gmﬁnds, both the proper density and proper ﬁreswre p, and p,
are positive quantities, consequently p, and A would both be necessarily positive quantities
also. If we regard A and R} as arbitrary parameters a given distribution of matter fluid having
known p, and p,determine these parameters. '
(¢) Behaviour of particles and light rays in Einstein universe:
Einstein line element is
1 =1
d$3=~{l—r—._, dr’ —r'd@® — ¥’ sin® @d¢’ +dt’ (D
v R _ :
The motion of a test particle in the gravitational field corresponding to line element
(1) would be described by geodesic equations. ’

2. u v
—dx +r“px-didx' =ﬂ

)

ds’ ds ds




For the sake of simplicity let the test particle be initially at rest, so that the
components of the spatial velocity of test particle are zero i.e..

dr d6 dp

s =" =)

ds ds ds
The equatmn (2} becomes

dx” dt g

r& ﬂ .

& [ds} o ™ )
B To=t 28u g of =1
But “=3 B - , since g,,'=

o ddp
™ o

i.e. the particle has zero acceleration. Hence in Einstein universe a rest particle would

remain permanently at rest. We may also interpret that matter in Enstein universe is without
motion. : :

(d) Daoppler’s effect in Einstein universe:
Consider an observer situated at » = 0 and a source of light, say a star at » = r, both

being permanently at rest with respect to spatial co-ordinates in accordance with zero
acceleration for stationary particles.
For a light ray emitted from the star travelling along the radial d‘irecnun we have
ds =0, dé=d¢=0
So that from Einstein line element

5 =1
dsﬂz_[ ;’} dr® —r’d8* —r’sin’ Gd¢” +df’ ; ' (1)

(]

1
——=A-8n
where R: Po

a

The radial velocity of light from or towards the origin is given by

grfi[l-;z] . @)

Lét a light pulse leave the star at time ¢, it would reach the observer at timey,

Pt o d
rz : —
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R

Q

=, -t = Rﬂ',in-'{i}

=3 . P | I
=t, =t +R,sin [.kl—] : . 0

L]
* Since in Einstein Universe the matter has no motion, the star remains at rest ie.g, is
Sa d:ﬂ‘umtinmgQ} we have _
5t, = Bt, : @
iLe. the time interval &, between the reception of two successive wave creat at the origm
is equal to the interval &, between their emission.

According to Einstein line element: (1) the co-ordinate time £ is identical to the proper
time as measured by the local observer at rest with respect to the spatial co-ordinates (d? =
ds) this equality also implies the equality of the proper pcriudsoftheemittedandrece:iyed
light as measured by the observers at rest with respect to the original source and at rest at
the origin. Consequently the wave length of light at emission and at reception would be the
same. Thus there i$ no shift of spectral line i.e. no Doppler effect is observed in Einstein
Universe. - :
Itmmwmmm;mmgmﬂubbkmﬁﬂmad;ﬁnhmd
shift is observed in light from the nebulac, which (red shift) increases at least very closely n
linear propagation with distance. :

5.1.2. The De-sitter umiverse : . ;
The pressure and density p,and p, are determmed by field equations (G=C=1)

1 ; '
Rw ——Egu,R +Ag,, =-8=n | (D

w. r to the lne element

da? = emdi® —otdr? —:=dé°'—-r’ sin® Bdyp’ z)
are given by
Sﬂpu=e'3~[i+—lz-—)--l?+h . (3)
r r)r :
A : ;
87 pn:e"‘[?*?ll-]—rlﬁﬁ @)
For static, isotropic and hu;nmgenuus universe we have the following three
possibilities.
@ V=0 (Einstein Universe)
(@ P+, = 0 (De-sitter Universe)
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(@ p,+p,=0,v'=0  (Special relativity line element)
The De-sitter line element arises from

Po+Py =0 ()
According to (3) and (4) we get
8n {Pu +py )= L Suid
using (5) we have
A+v'=0 (6)
Intégrating

A +v = costant (c)
Applying the boundary condition thatat r =0, A=0=v.=c=0
SAh==y (7
The equation (4) may be written as
e (Ar=1)=(8np, +A)r* -1

= ir—(re"‘)z 1-(8mp, + A)r?

[niergra&g we get

- _Enpﬂ+ﬁr3

e =r +C

3 o) 2
Applying the boundary conditions at r=0, % =0=v we get C,
_Bup,+A
3

of - &t =1__3“Pu3+1""- r?

sret=r

1
Substituting R A get

N s (L
S0 e 5 B
So the line element (1) becomes
3 -1
ds =_(1-Lf] dr® - r’de* —r* sin” 8d¢’ +[t—i]dt1 '
d R; R;
This line clement was discovered by de-sitter and is called de-sitter line element for static,
isotropic and homogeneous universe.

87




(a) Geometry of de-sitter universe:
[n order to under stand the geometry of space time characterized by de-sitter line

element, it is convenient to re-write de-sitter line element by the transformation of co-

ordinates.
The de-sitter line element is

5 g mmoat e e v r ; -
dst = 1-T_| dr*—rd6® -’ sin’ 0dg® +| 1-—5 | dt’
{ R; v b ':_l}

(i} Considering the transformation r =R, sin y
The de-sitter line element transform to
o dsi= ~R2[dy* +sin’ xd®® +sin’ ysin Bdy’ )+ cos’ xdt®
(i) For further simplification of de-sitter line-element, let us substitute & = r sin £cos ¢,

(2)

B=rsinBsin¢, y=rcosé

LI B r] S rZ .
§+E=Rﬂe‘¥* ' _R_;, E—E=RDER" ]—'-R'E (3)

Sothat  do?+dp’ +dy’ =dr? +1°d8’ +r°sin’ odg
d(5*- & )= d(5+€)d(5-€)

-

={1_.I;_;Jd[: +—r_--l—tf:rE
R- [

]

Hence de-sitter line element (1) is reduced to

ds? = —da’ —dp® —dy* —d&’ +d € (3)
(i) Further substituting in (5)
2, =ia, 7, =if, z, =iy, z, =i, Z; =€
we get ds® = dz} +de} +de; +dz] + dzd
(6)

wih z'+2}+z}+22+2 =(R,) :

The above equation determines that four dimensional surface in the five dimensional
manifold which correspond to.the space time and we may regard the geometry of de-sitter
universe as that holding on the surface of a sphere embedded in four dimensional Euclidean
space.

(b) Properties of the de-sitter universe, Absence of matter and radiation:
The de-sitter line element results from the requirement.
(1)

Py +pP, =0
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Now on physical grounds the proper density o, can either zero or greater than zero
ie. o, 20. Hence equation (1) will be satisfied only if
Py=0.p, =0 ; @
This amount to say that the de-sitter universe is completely empty. It does not

contain any matter or radiation in any form whatever.
With this we can write the de-sitter line element as

2 dt T LT W ok P T
ds* =— +—=r'd0” —r*sin” 0dp” +| 1—-— | dt
i " ML ©)]
R,
I A .

But the above equation does not fix up the sign of the cosmological constant A .
Depending on whether the cosmological constant A is positive, zero or negative, we have

for the line element.
2 ' : A
) ds’=- dr —~r'd@® -r’sin’ Bdg’ + j=lip dr?, A>0
(i) A - 3
l-—r~ '
3 g ;

(@ ds®=-—dr’-r’d0’ —r"sin’ 8do’ +dt’;
- 2 ] ik ED Ga A2
(i) ds" =- —r'df” —r sm” Bdy +(l+—r ]dt , A<D
A 4 2
! l+—r _
3 ; :
The models represented by the line element (i), (ii) and (iii) are called respectively

the spatially closed, flat and spatially open but curved.

A=0

{¢) Behaviour of test pﬁrﬁclﬂ in a de-sitter universe :

The de-sitter line element is
ds* = —e*dr® —r’d0® —r’sin’ Bdp? +¢"dt’ ()
; *s A
with e =e' =1-—, _.I.;E.EM._
B R 3
The motiori of test particle is governed by the geodesic equations.
(2)

%" | e 0" dx"
s =0
ds° ¥ ds ds
with ' =r, X’ =80, x' =¢,x* =t

The non vanishing christoffel’s symbol of 2nd kind corresponding to line element (1) are
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,’l—i'ii I"n--t et [}, =-re sm E

| o Ev’e*‘*, ==

| -
e

I3 =-sinBcos, I}; = cot8, I}y =
For a=1,2,3,4 geodesic equation (2) are written as
gt x - 2 '
dlxl d.‘l.' dK! dx; dx-l
) r;,[ds} +l"'[‘h] rslz[ds] 'n‘[ds =U.

2.2 (| @ dx! dx’z
dd:; nldxdx rn_"_“' rjs[ds] =0

? ds ds ds ds _
d‘x’ dx‘ dx? dx* dx! oI dx? dx?
— -—-—-+r*’
R e L i BN R
dixt L dxtdxt o, dx ax'
._.__=1}
ds* e e T ot ds ds
Using (3) above equations give

_Ex_{_].x;.=ﬂ
ds ds

&r 1Y _Ldﬂ_.m_ldcp]!l,,_i[di]=ﬂ
ast 2}"[@] s [ds i 0 S g Y B

pr +?E’?E-—smﬂcnﬂ

d* 2 dr d¢

£2,25 24200

ds' r ds ds

d’t dr dt
e o LA il
ds’ ds ds

4% 2 dr do E{ﬂ)=
ds

(40dp _
T ds*ﬂ

To integrate ﬂaeseeq“mﬂswechmseﬁm initial motion to bemthcphce

=—ﬂ'lvl;‘.u—-
0 )

de
inQ= el
sin@=1,cos0=0, =

R &
The equation (5};‘#7‘;-3 0
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This equation implies that the particle will continue to move in the plane g== usmg(&}

2
in (4), (6) and (7) _ |
d 1, (dr P dq:l) 1 ,,_,{dt) .
— e R — = — |4+ - — (=0
Sl
d*¢ 2dr dd :
de .20 0. ; : 11
ds*  rdsds ; S (52
dt  ,drdt :
L ST i - (12
1df.de)_
[ll}:::rzds[r ds] 0
a(.4d8)_ :
I PR
{1z]=-l-i[e'ﬂj=u
e ds\  ds
d(,.dr)_ A i
=4 %)eo o
Integrating (13) and (14) we have ;
¢ d¢ _h
=h=lr | : (1)
dt dt . Y
V=K —=K|l-— '
=g :ds [ RJ : (16)

where & and K are constants of integration. ;
The constant 4 is a measure of angular momentum of the motion. Further instead of

. working with equation (10) due to trouble some mteg:ratm we use the line element (1) which
by use of (8) yields.

Wfdr), ofdeY L (dtY G
(&) () -+ (&) -0
Using (15) and (16) we have, :
dr IS r 3 r? s
[dg] +rl‘(1"E-J“K +{]“E)-—U

2 2 2 2
or [i‘f’.) =1!f(’—1+-'f-r1-_-£1-=—+f"‘—2
ds Ry, r: Ry

o1




dr P KR
or [_)mi‘JK'—l'*’r—,""_l-—,
ds B N T

Note that the parameter 4 and K can be both positive and negative depending on the
direction of motion, K is positive for r < R, since  is related to proper time ds. '

dr d:ddi_JKi_Hi h* K

]
:}E_%z K‘—l+—t~:3-+ h_,—h—, )
dp r Rg R; r
Puttng, r=—
] u
£
1 1 1132
-h—di={K3 1+-"—r+i—+”—,}
de Ry Ry 7
: 2
h’ 55] =K' -1+ 111+—,-h=u"
d¢ R, o
Differentiating w.r.t. ¢ and simplifying
~LSERAI B I
WE h.a\-'e d¢1 h:R;u! 3 h1u3

This is the equation of the orbit of a particle in the de-sitter universe and corresponds
in Newtonian mechanics to the motion of particle with a central impulsive force proportional
to the distance r, when A >0 : i

(d) Velocity and Acceleration of the particle in de-sitter universe :

ha Emgﬂi—i ]..i K: _1+i_E+H! i 17
wolsWa asdt K( Ry Ry o 47)
dp dpds __h r .
_¢n_‘?;_=—3[|-—7] _ (18)
dr dsdr Kr R,
The radial velocity %f_ is zero, when éither
t
r=R, orKX—t+ t: --Il:—.+ h_, =0 (19)
R; r R,

92




Equation (19) determines the value of r at perihelion.

. d B
The velocity component d_f is zero when r= R

.'.—--=ﬂ=ﬂ at r=R,ie. allmuuuncmusat r-R,, This value of ris called the

. apparent horizon of the universe.
Differentiating (17) and (18) we get

dr - R, (dr} 1 it ' B

B o7 O T l_ t=mllo—| 1og

dt S \CA S G 5 AU HA: Q0
R; :

d’ 2h dr :

dt¢ KPP dt ' @h

From (20) it is obvious that for a particle with radial w,-lo:lty zero, the radial

acceleration %;,i at a point » where 0 < 7 < R, is necessarily positive. Hence a free particlé
'

after reaching the perihelion starts to turn away from the origin and would never return. Also
for a particle at rest at the origin with =0, =0, the ac::elera:mn would be zero and if
would remain at rest for ever.

() Doppler effect in de-sitter universe:

Consider an observer situated in the origin 7 = 0 and the source light, say a star at r =
r in de-sitter universe.
For a light emitted from the star travelling along the radial drectmn,

we have ds=0, dO=d¢=0
rl]dr*
Ry) .

1y
So that =-—[[—£—_‘] {‘J’I‘I-l-{ .
i % R& A
:}EE_ ]_ r: : . v | s
i bt £ gy

Let the star emit the light pulse at timé 1 it would reach the observer at time t* given by

famf e
3

]__
R‘) ﬂ
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Nowlet 5 bc&ntmwiﬂmalufthemnissiuuoftwosmmsivemmtsa: rer

and &¢'be the mnmpundmg time of their reception by an observer at rcst at the origin.

Then differentiations of (2) yiekis 51" = 8t+— - %m
T

1___

Ri

= t'—t=I

whu:h ‘j mthcmdnlv:bcnyoﬂhesmututthctmem:mn
t

Furthermepmpettnm & furmohaeweronthe mvmgpanmkandthz
corresponding co-ordinate time é‘;asmmmgthemtmntubenﬂnphm H=E are related -
b}’ -

1 r? ﬁ " F e
ﬁs=_ﬁ_ I—R—: t s 3)
whfbthdpmwrrhniﬁmnlW&nmﬂmsﬁemuas_rpematﬂmoﬁgmh5:’_.

Thus there is a change in the frequency at the time of emission and reception. If v and ' are
frequencies at the time of emission and at reception respectively, thus we have.

'v'ﬁt"zvat
ds dsdt
Le. vi= Vo iy
dt’ dtdt‘
2 l {1 I! }x—-——-—l LV ;
ey el 4
KU Re) ol & @
l_r_dt :
Rg ]

v .‘u". K ]_l'_ dt {5} .

"If 4 and ' are the wave length at emission and reception respectively we have.
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i R K dr
A r’ o2 1250
, G, i
% = "

Since g is positive and 1—%}0,

L) .l' : ; 3 . =
@ %en%:au then 1’*-‘-'0 i.eA >0 This means there is red shift.

() When %{U,M%ﬁyhmﬂrwk&sm:ﬂnd@eﬁgmﬂu
magnitide of velocity of the distance source. .

Thl&hﬂﬁﬂ%thﬂﬂﬂ?bemdmvhhtsﬁﬂdmwwm@iﬁﬂeufﬂu :
velocity of the source.

Themhtshﬂiﬂunlypossibhwhmﬂwnm\dcnfmgmve“mmlyw
_to make RLH.S. of (6) to be negative.

(i) Atthcpcriheljnn-i-:ﬂ we gt

whmhlspusmve Thus there is a red shift.
Thmwesaethatm&ndo—s[ttcrumvmethemnnyhcbuﬂimdurmht shifts, but the -
possibility of red shift is more prominent. '

5.2. Non Static Cosmological Models :
The models represented by Einstein and de-sitter universe are static solutions of the
Einstein modified filed equations.

Bﬂ:GT

4 »
c B

1 :
Ruu ‘.-.2_ gu.uR +"#E|ﬂ' i

~ Both these solutions requires the cosmological constant A to be positive real
constant greater than zero and it determines the curvature of the space. In the limit A =0 we
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obtain a third model in classical infinite Euclidean space. This model is empty and the space
time is that of special relativiry. These three models exhaust in themselves all those solutions
of the above field ﬁquaria'ns_ which admit static, isotropic and homogenous distribution of
matter in the universe.

To go beyond the Einstein and de-sitter models, one - should dtsca;d some of the
restrictions imposed earlier which led to the above solutions. There are tnwmr&som to.
believe is at the universe is isotropic and homogeneous in nature from a large scale point of
" view. One should therefore retain the hypotheses of isotropy and homogeneity of the unverse
and relax the requirement of static nature in order to obtain more general sojutions.

‘Further progress in studying thése aspects is associated with three names: -

Friedmann (1922), Lemaitre (wﬁ) and Robertson {1929), Each of'them tried to
mtetltmpmbhmm ““what i the most general quadratic Imeelanrntmthe&ur
dimensional manifold of space time which would describe a non static but isotropic.ahd
homeogenous universe?” Each afﬂm;zicneeded mgmmyl;: answer to the above problem

- 5.2.1. Mach’s Principle : o T e
According to Einstein, March’s Principle (1883) denotes “1I1e gcnera] ldea that the
_gﬁumﬂqr of space time is determined by the distribution of matter and energy so that some
Iund of field equations connecting the components of the material tensor g,, with those of
tttﬂn'gymnmmtmmr b 1 arenanycase nrph:d asexplrcntyshmmby Einstein field
It should be mentioned that Mach’s Prmci;:nlr: has been defined by different authors in
different forms. However; Mach’s principle, as undcrstand by Einstein mspn'ed him tn
formmulated his new theory of gravitation. - t i

. 5.2.2. Cosmological Principle : ;
, The Cosmological Principle is stated in the following form :-
At each epoch (t), the universe is homogeneous and isutmpic
This means that at each epoch, the universe has the same pmpert}' at every point in the

spau: like hypersurface and in every diréction about any point. :
" Other, wise the hypersurface has no privileged points and has no *pnwkged dn'ecmns

0




about any point.

There astronomical support for this principle. In the ﬁrst_placc. the spatial homogeneity
bsqmoﬂgdbytheﬁtbmﬁfomdhuﬂmthnnfgﬁhxﬁnndxmhmd,mﬂﬂrbﬂr&yuf
the Hubble law on the other. In the second place in 1965 Penzias and Wilson discovered the
isotropic character of the cosmic background radiation. This is indeed the greatest evidenced
for the isotropy of the universe. '

- §5,2.3. Weyl Postulate :

. This postulate, given H. Weyl, deals with how the universe evolves with time (1)

where as the cosmological principle iridicates the picture or state of the universe at a certain

epoch (#). The evolution, according to his postulate is conceived as follows. The galaxies of

the universe are considered as a particle in a perfect fluid. The three dimensional space

containing the particle is regarded as a hypersurface orthogonal to time. Figure 5.2 shows how

the hypersurface (s) is evolving with time () . It is envisaged that the particles n a
hypersurface travel along time-oriented geodesics, each geodesic being given by

X;, X, X, = constant

where X,,X,,X; define the space co-ordinates of a particle. These co-ordinates are
carried by a particle all along the geodesic and are called the commoving co-ordinates. The
time ¢ being the same for all particles (galaxies) in a hyper surface (F ig. 5.2.) is called the
cosmic time. The geodesics start from a point in the past when ¢ =0 and proceed as lives
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defined by the commoving co-ordinates of the particles. The geodesics as defined here do not

intersect.
The weyl postulatr: can now be stated incorporating the above ﬂeas
The particles (galaxies) in the evolving hyper surface lie in space time on a congruence
(bundle) of time oriented geodesies diverging from a point in the past and orthogonal to the

evolving hyper surface.

5.3. Derivation of the Robertson walker line element :
Robertson Walker derive the line element of the non-static but motmpm and

homgetmus universe under the following hypothesis:
(i) Thr:re msts a cosmic time which is orthogonal to the spana] geomtry
(1)

ds’ =dt’ +g, dx" dx"
() The three dimensionial spatial surfaces belonging to ¢ = constant are locally isotropic

and homogeneous. :
For convenience let us express this line element in spherical polar co-ordinates. The non
static, spherically symmetric line element in moving co-ordinate system is given by

ds? = di* —e*0 [dr® +r%d0° + r* sin’ 8de’ | “(2)
where 4 is a function of r and ¢. The assumption of isotropy and homogeneity restrict

the form of p (r,t) as
u(rt)=£(r)+ glt)
Therefore the line élement (2) may be expressed as
ds? =€ 5 [dr? 4+ 7d6? +1* sin? Bde* |+ d’

0 . on .y
Writing B = c;'l and B = 2 the serving christoffel’s symbol’s are

I l - 1
—e¥ Fl |"‘¢- el
o 2 IVE 2 L 2 o
r .I. 1 " 1
lzzu;+_2“ IJ.3 E[ smn- Eg |’
if;““S]‘IlECD.SB, I-1l-l=ll:l_1-3 [-.3.
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1 1.1
[ ==y, [ ==+—p'l;, =cotd
i 2“ R 2“ 3

- X
I =—[r+é—r‘p‘} F;,:—[H—irzp]smiﬂ

A detailed calculation of the contracted Riemann Christoffel tensor R, now leads to

1 Lo ¥.s
R =f' —fr— H e +_ =
o +r e[zg 4g

v s deal g, & I
.R.-vr:: '_f.-"‘_f'-_+'_f'—t"J s
5 r[z 4 2 (zg

=
It
.
=]
B
@
-
i

and R, =0 for H#v
" Since | Ry=g"R,,

i | 3 " f!
SRY=—g+—gl e+ —
1 2g+l4g € { r}

]

3.
¥ A
43

]

R R ]
=g —eT| =T =1
o .Zg+4g 12 4 2r

R =R% :

3 3

R.t n_..+_,z

4 23 4.?{
arﬂthcscalafm_rvamre

R=R", =3{§+g3].-2e"‘[f'+éf’1+3f'

The field equations are
RF\I - %EH“R + ﬁg”‘v Z-Sﬂ Tﬂu
where G=c=1

r
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Now lead to

8n T, ="f'“[%f'+%f']+§+%g’ -A
8n T =8 T} :-e'-"(lf'+lf']+§+§g’ ~A}
v ] 2 X 4 _

4 ¢ (&)
8T, = -'E"'[f'"+lf’z +--£"]+*-E1 -A
4 r 4

8nT!=0 for ‘p=v

The spatial isotropy of the 3 space requires that the longitudinal and the transverse
stresses be equal i.e.
-T.l - T; i T;} .
~ using this result in (5) we have

1 1
e =0
v r

A first mtegral of this equation is
1y :
%=K|;m! E] K]=Eﬂnstmt
A second integration gives
:
o K :
i el
1..5.!. . K, = constant
K, 4
F'ma]lywepu_t
-K, 1

K R’ where R, is a constant, may be + ve, —ve of. infinite

1
»eflr) = Ki ~ 1

Thus the line element finally we get.

I5,3'1!]

ds? = ~——z. (dr* +r°d6° +7*sin* 6 dg* )+ dt’
Kr?
1422
4R,
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where K =1,0,- IC{:nﬁpDndmg to whether the constant R, is positive, ifinite or
W) line element.

negative.
. This line element is known as Rubcrtsen Walker (R -
Again putting :
r ' '
2
for g =+1

= .
& e
4R;

The R — W line elemient becomes
+r1d9’+r’sm &."w +dt’

dﬁ'z=—l‘3"h i
' F'
“n:
(6),

+1r?d8? +r’ sin’ Bdg’® |+dt

= ds? = —s*(t)
- 11- =
R;
Derivation of Hubble’s Law : ; -
If the co-ordinate distance between two. gahxm Pand Q is fmue a.mi is equal to ¢
'. m

then the phy:ucal distance between their fmm (6)is
D =s(t)¢
Relative velocity of one galaxy w r. to the otheris V=—=8{=- (55} HD

where H =-:'= Hubble constant

(1)

2. Voo D (Hubble's law)
5.4. Red Shift in R-W line element:
Let us show that R-W line element predicts a shift in the wave length of radiation
emitted by a distant source such as a nebula or a radio galaxy. The R-W line element is

- R jr)}

ds* =dt’
{ Kr
14—

(dr TP IR * @dg’)

4
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where e;{ul_Rz{t] and N R il{}

Recalling that a world line of a light ray is along the geodesic ds =0 and ﬂ'{}m
s_t,nmmu'ycnnsﬂunmnsstmevﬂmtﬂmt the light ray will propagate radially, i.e. along a line
g = constant, ¢ = constant. Thus-setting d6 =0, and dp=0 in (1) we get

.dt
2
1+ —
e, 4 _ 4 2
I‘E'r.*lt * R(t) . &

Here positive sign applies when light travels away from origin and minus sign applies
when it travels towards the origin.

Let us now consider an observer located at the origin ‘o” of our co-ordinate system .
and let a light source (e.g. nebula) located at any pomnt (8, @ = constant) emit two successive
light pulse at times #, and 1, + At . Let these puse be received by observer, at ‘o’ at mstants
i and ¢+ At respectively. Obviously 7>, and t+A1>1,+Al,

© Now from (2) we may write
I dt {lr
RE)

I d[tt] f o

i LK &)
4 .

F s 40 df [ I + J'+fr ]
urther we may write .8 _r-} fy+ iy R{f

3 ; ” ; "___ﬁ.tn +I dt Ly At
| RE,) “RO REH 0 @
Using (4), equation [J}hadtn
At At
RO RG)- ®

Thereby indicating that two intervals At, of emission and At of reception are not
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equal unless R(t) is constant. |
Further the proper time of emission A, (say) is equal to the co-ordinate time Af,,
ie. Ar, =At,. Similarly the proper time ﬁ.t’ of reception is equal to the co-ordinate time
_Ar. Let n be the number of waves emitted in a proper time interval Ar having a proper
frequency v,, These n waves are received with different frequency v; thus we have .

n=v,At, = vAt - " g TR (6)
Wl TTL O .
TR - - . ! : Y

g . "
As "-'=—and "u’l_,wemaywrite{?’}as

A At Rl .
,i.u &Iﬂ 1 :i using (5)
A=A, dAa
Introducing a new parameter z, such that zm™ P ZT
w t l+2=£= R(‘)
ol A1, R\,

As At> At,; R(r)> R(z,) this implies z is a positive number, i.c. light emitted from a
distant nebula shows shift towards the red end of the spectrum, which is also an experimental
observation. The shift calculated by R-W line element agrees with experimental value.

Conversely we may say since experimental nhs%wal:inn show a shift towards the
red end of the spectrurm, (i.e. 7 is positive); this implies R(t)> R(z,) i.e. radins R (1) of the

universe is increasing. In other words non static, isotropic and homogenous model of universe
reveals that the universe is expanding .

Exercise

Obtain the line elements for Einstein’s and de-Sitter’s msmﬂk:-gii:al models.
Discuss Einstein’s model of universe and compare it Wiﬂl actual universe,
Derive de-sitter's model of the universe and discuss its physical propertier.

Describe the three possibilities of a static mode] of the universe and bnng out the
snmlarl:,r and difference between them.

5. Obtain the line element for Robertson Walker non static cosmological model.
Show how this model reveals that universe is expanding.

BN

*oe
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