
(5)

BLOCK I:

INSTRUCTION SET ARCHITECTURE

AND PROCESSOR DESIGN

Unit 1 : Instruction Set Design and Architecture

Unit 2 : Combinational Circuit and its Applications

Unit 3 : Computer Arithmetic

Unit 4 : Register Transfer Language and Processor Logic

Design

7 | P a g e

Space for learners: UNIT 1:INSTRUCTION SET DESIGN AND
ARCHITECTURE

Unit Structure:

1.1 Introduction
1.2 UnitObjectives
1.3 Instruction Set Design

1.3.1. How many addresses
1.3.1.1. 3-address machines
1.3.1.2. 2-address machines
1.3.1.3. 1-address machines
1.3.1.4. 0-address machines

1.3.2. Types of Instructions
1.3.2.1. Data Transfer Instructions
1.3.2.2. Arithmetic Instructions
1.3.2.3. Bit Manipulation Instructions
1.3.2.4. Program Execution Transfer Instructions
1.3.2.5. Processor Control Instructions
1.3.2.6. Iteration Control Instructions
1.3.2.7. Interrupt Instructions

1.4. Addressing Modes
1.4.1. Immediate Addressing
1.4.2. Direct Addressing
1.4.3. Indirect Addressing
1.4.4. Register Addressing
1.4.5. Register indirect Addressing
1.4.6. Displacement Addressing
1.4.7. Stack Addressing

1.5. Processor Organisation
1.6. Register Organisation

1.6.1. User visible registers
1.6.2. Control and status registers

1.7. Instruction Cycle
1.7.1. The Indirect Cycle
1.7.2. Data Flow

1.8. Data Representation
1.8.1. Number Representation

1.8.1.1. Complements
1.8.2. Fixed point representation
1.8.3. Floating point representation

8 | P a g e

Space for learners:
1.8.4. Character representation

1.9. Summing up
1.10. Answers to Check Your Progress
1.11. Possible Questions
1.12. References and Suggested Readings

1.1 INTRODUCTION

In this unit, we will discuss addressing types, addressing modes and
representation of characters. The organization of computer
processor as well as various registers is explained in brief. Here,
machine language program using different addressing type is
elaborated. We will also know about the instruction cycle. At the
end of the chapter integer, fixed point representation, floating point
representation and character representation inside computer are
discussed.

1.2 UNIT OBJECTIVES

The objectives of the unit are:

 To know the addressing type
 To know the addressing mode
 Overview of processor
 Overview of registers
 To know about instruction cycle
 Data representation in computer

1. 3 INSTRUCTION SET DESIGN

An instruction set is a collection of machine language or assembly
language instructions that are understood by central processing unit
(CPU). The following issues are considered in instruction set
design:

 Whether operands are to be stored in registers, memory,
stack or accumulator

9 | P a g e

Space for learners:
 How many operands are present in instructions 0, 1, 2, or

3
 Whether access modes of operands are register,

immediate, indirect and so on.
 What are the operations that are supported in instruction

add, sub, mul etc.

1.3.1 How many addresses

Let us assume the statement in a high level programming language
given bellow

a = a + b + a * c

It is clear that the value of a multiply with cis added with a, b and
the final result is stored in the variable a. You know the precedence
and associativity rules of high level languages. However, you cannot
expect the computer hardware to directly understand these rules.

It requires operations to be performed in small steps. The desired
result will be produced after going through sequence of simple
steps. Hence, it eliminates the necessity for the machine to
understand about these rules. In most of the cases operands name
i.e. address is used rather than value. The machine may be
following types depending on addresses:

 3-address machines
 2-address machines
 1-address machines
 0-address machines

Here number 0, 1, 2, 3 indicates maximum number of
address/operand the machine can have.

Here we will use the convention that ‘first operand is destination’ in
an instruction. This means we will consider that the result of
operation will be stored in first operand of the instruction.

STEP TO CONSIDER
 The address may be either memory or computer registers. In a
particular machine final result of operation may be stored in first,
or last operand. Here, we consider that the first operand will hold
the result of the operation.

10 | P a g e

Space for learners:
1.3.1.1 3-address machines

The general format of a 3-address machine instruction is:

Operation dst, op1, op2

Here, operation indicates opcode of the operation to be performed,
the first operand dst represent destination operand i.e. where the
result of operation will be stored, op1 and op2 indicates two source
operands between which operation is to be performed. Thus the
following instruction means:

ADD R2, R1, R0

Add the values stored in register R1 and R0, and store result in the
register R2.

When all operands of instructions are only in register then we call it
a register-register machine or a load-store machine. Instead of that
if all operands of instructions are only in memory then we call it a
memory-memory machine. The following is such an example:

ADD X, Y, Z

Add the value of variable y to the value of variable z and then store
the result in the memory location x. In a memory-memory machine
the CPU has to get the operands from memory prior to execution of
the operation. After that it has to store the result back in memory.
There are several ways to specify the address of an operand. We will
discuss this topic in addressing mode section.

Let us now see how to implement a 3-address instruction for the
statement

a = a + b + a * c

Answer:

MUL R4, a, c # store a*c in R4
ADD R1, a, b # store a + b in R1
ADD R1, R1, R4 # Store result in R1

The final result of the expression can be found in register R1.

11 | P a g e

Space for learners:
1.3.1.2 2-address machines

The general format of 2-address machine instruction is:

Operation dst, op

where, operation is opcode of the operation, dst represent the source
operand as well as destination, op represent the second source
operand. Let us see the following instruction

ADD R1, R2

The meaning of this instruction is to add the values stored in
registers R1 and R2, and then store the result back in register R1.

The advantage of 2-address instructions over three-address
instructions is that it helps in preserving memory, since they are
shorter. More over shorter instructions take less time for fetching.
The drawback having two-address instructions is that one of the
source operands is destroyed. It requires extra moves to retain the
operand as sometimes operand may be needed later.

Let us now see how to implement a 2-address instruction for the
statement

a = a + b + a * c

Answer:

MUL c, a # multiply a, c and store in c

MOV R1,c # move content of c to R1
ADD b,a # add a, b and store in b
MOV R2,b # move content of b to R2
ADD R1, R2 #add R1, R2 and store in R1

The final result of the expression can be found in register R1.

1.3.1.3 1-address machines

In a 1-address machine accumulator has a source operand and result
of operation is put back implicitly in the accumulator. The
instruction needs to indicate the second source operand. The format
of a 1-address instruction is as follows:

12 | P a g e

Space for learners:
operation op

The opcode ‘operation’ is the name of the operation to be done, op
indicates either source or destination operand. Here the instruction:

ADD a

It means addition of value of variable a with the content of
accumulator. The result of addition is put in the accumulator. The
accumulator is a special purpose register.

Let us now see how to implement a 1-address instruction for the
statement.

a = a + b + a * c

Answer:

LOAD a # load content of a in accumulator
MUL c # multiply accumulator i.e.a and c
ADD b # add b to previous contents of the

accumulator i.e. a * c + b
ADD a # a * c + b + a
STO a # store the final result in location a

The final result of the expression can be found in the memory
location a.

1.3.1.4 Zero-address machines

The zero-address machines are implemented using stack. A stack is
last in first out (LIFO) data structure that is operated by using PUSH
and POP. PUSH moves an operand from computer
memory into top of stack, on the other hand POP gets out the last
item from top of the stack. Only PUSH and POP indicates an
operand. No other opcode specify any operand. This is the reason
why it is called a zero address machine. The question is how then
operands are handled by the machine for the operation. It is done by

STOP TO CONSIDER
 As the number of addresses reduced the number of instructions
increases to do the same task.

13 | P a g e

Space for learners:
extracting top two elements of stack and putting the result back into
stack.

Let us see how to implement a zero-address instruction for the
statement

a = a + b + a * c

Answer:

PUSH a # push the value of a
PUSH c # push the value of c
MUL # multiply top two value a * c
PUSH b # push the value of b;
ADD # add top two value b + a * c
PUSH a # push the value of a
ADD # add top two value a + b + a * c
POP a # store in top of stack in a

The final result of the expression can be found in the memory
location a.

1.3.2 Types of Instructions

The computer supports the following types of instructions:

 Data Transfer Instructions
 Arithmetic Instructions
 Bit Manipulation Instructions
 Program Execution Transfer Instructions
 Processor Control Instructions
 Iteration Control Instructions
 Interrupt Instructions

1.3.2.1 Data Transfer Instructions

These instructions transfer data from the source to the destination
location inside the computer. The common data transfers are
among registers or between registers and memory or between the
register (s) and the input/output devices. Different computer uses
various mnemonics for the same instruction. The following are
some of the data transfer mnemonics with their meaning.

14 | P a g e

Space for learners:
 MOV: Transfer data from register to resister or resister to

memory.

 ST: Store from register (accumulator) to memory

 LD: Load data from memory to register

 PUSH: Transfer data from CPU register to top of the stack.

 POP: Transfer data from top of stack to CPU register

 XCHG: Exchange data between two given locations.

 IN: Read data from an input port to accumulator.

 OUT: Transfer data from accumulator to particular output
port.

1.3.2.2 Arithmetic Instructions

The basic arithmetic operations are addition, subtraction,
multiplication and division between two numbers. These arithmetic
operations are performed between two operands. Some of the
arithmetic operations may be performed on a single operand too.

Following a few arithmetic instructions:

 ADD: Add the contents of two source locations.

 MUL: Multiply the contents of two source locations.

 DIV: Divide content of one source locations with the other.

 SUB: Subtract content of one source locations from the
other.

 ADC: Add the contents of two source locations with carry.

 INC: Increment the content of source location by 1.

1.3.2.3 Bit Manipulation Instructions

These instructions manipulate data in bit level i.e. operations like
shift or logical. Below isa few instructions of this group with
meaning are given:

 NOT: This invert each bit of source bit pattern.

15 | P a g e

Space for learners:
 AND: Logical AND operation between each corresponding

bit of both source operand.

 OR: Logical OR operation between each corresponding bit
of both source operand.

 XOR –Perform logical Exclusive-OR operation between
each corresponding bit of both source operand.

 SHL: Perform bits shift towards left and fill zero in LSBs.

 SHR: Perform bits shift towards left and fill zero in MSBs.

1.3.2.4 Program Execution Transfer Instructions

These instructions transfer the control during an execution of
instructions. The transfer of control during execution of instruction
may be conditional or unconditional. A few such examples are
listed below:

 CALL: It calls a subprogram and saves the return address
on top stack.

 RET: Returns from subprogram/function to the main
program.

 JMP: Jumps to the given address and process the next
instruction.

 JC: Jumps when value of carry flag is 1

 JNC: Jumps when value of carry flag is 0

1.3.2.5 Processor Control Instructions

These instructions set or reset the flag values and thus control the
actions of the processor. Following are the instructions under this
group:

 STC: Set the carry flag (CF) to 1
 CLC: Reset the carry flag i.e. CF = 0
 CMC: Complement state of carry flag.
 STI: Set the interrupt flag to 1.
 CLI: Reset the interrupt flag to 0.

16 | P a g e

Space for learners:
1.3.2.6 Iteration Control Instructions

These instructions can execute a group of instructions repeatedly.
A few list of iteration control instructions are:

 LOOP: Execute a group of instructions repeatedly until the
condition is true.

 JCXZ: Jump to a given address if CX = 0

1.3.2.7 Interrupt Instructions

These instructions call an interrupt during execution of
instructions.

 INT: Interrupt the process and call service routine.

 INTO: Interrupt the process if OF = 1

 IRET: Return to main program from interrupt service.

CHECK YOUR PROGRESS-I

1. When all operands of instructions are only in register then
we call it a ____________machine.

2. If all operands of instructions are only in memory then we
call it a ____________ machine.

3. The drawback having two-address instructions is that one of
the source operands is ____________.

4. In a one-address machine the result of operation is put back
implicitly in the _____________.

5. The zero-address machines are implemented using ______.

State TRUE or FALSE:

6.The processor has three types of organization.

7. The advantage of two-address instructions over three-
address instructions is that it helps in preserving memory.

8. The accumulator is a special purpose register.

9. MOV is control transfer instruction.

10. POP insert an operand from computer memory into top of
stack.

17 | P a g e

Space for learners:
1.4 ADDRESSING MODES

In a typical instruction, we see the address fields are relatively
small. The purpose of addressing mode is to reference main memory
locations as large as possible. This is the reason why a variety of
addressing modes have been implemented. The most commonly
used addressing modes are:

• Immediate
• Direct
• Indirect
• Register
• Register indirect
• Displacement
• Stack

Mode Algorithm Advantage Disadvantage
Immediate Operand=A No memory

reference
Limited operand

magnitude
Direct EA=A Simple Limited address

space
Indirect EA=(A) Large

address place
Multiple memory

reference
Register EA=R No memory

reference
Limited address

space
Register
indirect

EA=(R) Large
address place

Extra memory
reference

Displacement EA=A+(R) Flexibility Complexity
Displacement EA= top of

stack
No memory

reference
Limited

applicability
Table 1.1Basic Addressing Modes

The Table 1.1depicts the address calculation procedure for each
addressing mode. Each of the addressing modes will be represented
with different opcodes. The opcode may be one or more bits in the
instruction format.

STOP TO CONSIDER
 The effective address of operand is calculated after decoding
the opcode.

18 | P a g e

Space for learners:
1.4.1 Immediate Addressing

The immediate addressing holds the operand value in the
instruction.

Operand = A

This addressing mode is generally used to set initial values of
variables or constants. The primary advantage is that there is no
need of memory reference. Thus it saves one memory or cache cycle
in the instruction cycle. The disadvantage of immediate addressing
mode is that size of the number is limited to size of the address field.

1.4.2 Direct Addressing

In direct addressing mode the address field holds the effective
address of the operand:

EA = A

The advantage of direct addressing mode is that it needs only one
memory reference. The disadvantage this addressing mode is limited
address space accessibility.

1.4.3 Indirect Addressing

In direct addressing mode usually length of the address field is less
than word length. It causes limitation in address range. If the address
field refers to address of a word in memory, it can access a full-
length address of the operand. This way of accessing memory word
is known as indirect addressing. In indirect addressing mode the
address field contains address of another memory location where the
value of actual operand remains.

EA = (A)

The parenthesis interpreted as contents of ‘A’ is another address.
The disadvantage of indirect addressing is that it requires two

19 | P a g e

Space for learners:
memory references to fetch actual operand value, first to get its
address and next to get its value.

1.4.4 Register Addressing

The register addressing mode has similarity to direct addressing.
The difference here is that address field indicates a register instead
of main memory address:

EA = R

The register R specifies the address where the operand value
contains. The advantages of this mode are that a small address field
is needed and no memory references needed means less time
required for fetching instruction. The disadvantage of this mode is
that the available address space is limited to registers only.

1.4.5 Register Indirect Addressing

The register indirect addressing mode is similar to indirect
addressing mode. The only difference is that address field refers to a
register instead of memory location. Let us see the register indirect
address.
EA = (R)
The advantages and disadvantages of register indirect addressing
mode are similar to indirect addressing mode. But, register indirect
addressing mode has one more advantage since it uses one less
memory reference it saves one cycle time when it is executed.

1.4.6 Displacement Addressing

The displacement addressing mode combines the direct addressing
with register indirect addressing. The effective address in this mode
looks like as:

EA = A + (R)

This addressing mode the instruction contains two address fields,
out of which at least one of it is explicit. The value stored in one of

20 | P a g e

Space for learners:
the addresses field (i.e. A) is used directly. The contents of second
address field i.e. register is added to A to obtain the effective
address. We will discuss three most commonly used displacement
addressing:

 Relative addressing
 Base-register addressing
 Indexing

RELATIVE ADDRESSING: The relative addressing is also
known as PC-relative addressing. In this mode of addressing the
register that implicitly referenced is program counter (PC). As
we know PC contains the address next instruction to be
executed. Hence, it is added to the address field in order to
produce the EA. This is how the effective address in this
addressing mode is a displacement relative to the address of the
instruction.

EA= PC + address field value

BASE-REGISTER ADDRESSING: In the base-register
addressing mode, the referenced register contains a main
memory address. The address field indicates a displacement
from that address, which is usually an unsigned integer.

EA=base register + address field value

INDEXING: In this addressing mode, the effective address of
the operand is calculated by adding content of index register
with address field value.

EA= IR+ address field value

The indexing mechanism is extensively used for implementing
iterative operations. Suppose a list of numbers present in
memory location starting from A and we want to add 1 to each
number on that list. Here, we have to fetch each number and
after adding 1 to it, store it back to that location. The effective
addresses that requires are A, A + 1, A + 2, . . ., and so on to last
location. It can be done easily with indexing. The value of A is
stored in the instruction’s address field value, and the index

21 | P a g e

Space for learners:
register is initialized to 0. At the end of each operation, index
register is incremented by 1.

1.4.7 Stack Addressing

The stack addressing is also referred to as a last-in-first-out or queue
pushdown list. In this addressing mode items are placed to the top of
the stack. Hence, the stack is partially filled at any given time.

The stack is associated with a pointer called stack pointer (SP)
whose value refers to the top address of the stack. If the top two
item of the stack is in processor registers, the SP references the third
item of the stack. The stack pointer is a dedicated special purpose
register. It is a form of implied addressing. The instructions do not
require a memory reference; it always implicitly indicates the top of
the stack.

CHECK YOUR PROGRESS-II

11. The purpose of addressing mode is to reference
______________ as large as possible.

12. The immediate addressing mode generally used to set
initial values of _________ or ________.

13. In direct addressing mode address field holds
__________address of the operand.

14. In indirect addressing mode the address field contains
________ of another memory location.

15. The displacement addressing mode combines the direct
addressing with _____________ addressing.

State TRUE or FALSE:

16.The advantage of direct addressing mode is that it needs
only one memory reference.

17. In register addressing mode one memory references
needed.

18. The stack is associated with a pointer called stack pointer.

19. Effective address is calculated after decoding an
instruction.

20. In stack addressing two memory references needed.

22 | P a g e

Space for learners:

1.5 PROCESSOR ORGANISATION

The computer processor needs to do the following things to execute
an instruction:
• Fetch instruction: The processor has to read instructions from
memory i.e. from register, cache or main memory.
• Interpret instruction: After reading an instruction it is decoded
to know what action to be performed.
• Fetch data: During the execution of an instruction it may need to
read data from computer memory or input/output (I/O) module.
• Process data: In execution time of an instruction, it may have to
perform either arithmetic or logical operation on data.
• Write data: At the end of an instruction execution, the results may
need to write data to main memory or an I/O module.
In order to do these, it clears that the processors sometimes have to
store intermediate data. Hence, the processor requires a small
internal memory.

Figure 1.1 is a block diagram of a processor depicting its connection
to the rest of the system through system bus. The vital components
of the central processing unit are

 Arithmetic and logic unit (ALU)
 Control unit (CU).
 Registers

Figure1.1: The block diagram of CPU

23 | P a g e

Space for learners:
The ALU performs the actual processing of data. The CU controls
the data and instructions movement in the processor. It also controls
the operations of the ALU. The figure also depicts internal memory
of processor, called registers.

In general, CPU or processor organization has three categories
depending on the number of address fields:

 Single Accumulator organization
 General register organization
 Stack organization

In accumulator based organization, a special purpose register
called accumulator is used for performing the operations. In
general, register organization involves different registers in the
computation tasks. In the stack organization the calculations
performed on top of the stack. The instruction of stack
organization does not contain any address field. In general, a
combination of different organizations is mostly used.

1.6 REGISTER ORGANISATION

The computer system consists of memory in different level called
hierarchy. At top levels of the hierarchy means memory is faster
than the below level. In this level it is smaller as well as more
expensive. The register inside the processor is top level memory
followed by cache memory and main memory respectively. The
registers have two categories:

• User-visible registers
• Control and status registers

STOP TO CONSIDER
 The address bus, data bus and control bus are together called
system bus. Operand address bits can travel through address bus,
data bits travel through data bus and CPU generated signal travel
through control bus. The processor interaction with main memory
is done through these buses.

24 | P a g e

Space for learners:
1.6.1 User-Visible Registers

The user-visible registers are used by assembly language
programmer in order to minimize main memory references. It can be
in the following types:

• General purpose register
• Data
• Address
• Condition codes

General-purpose registers are used to store temporary data during
execution of instruction. For a given opcode the general-purpose
register can hold the operand. This is true use of general-purpose
registers. The general-purpose registers sometimes can be used for
addressing purpose (e.g., register indirect, displacement).

Data registers can be used to hold data only. It cannot be used for
calculating of operand address.

Address registers may either general purpose or devoted to an
individual addressing mode. The following are examples of it:

• Segment pointers: The segment register is used to hold the
address of the base of the segment.

• Index registers: These registers are used for auto indexing in
indexed addressing.

• Stack pointer: In stack addressing a dedicated register is used
called stack pointer.

Condition codes (flags): These are bits set by the processor
depending on result of an operation. As we know, result of
arithmetic operation may be positive, negative, zero, or overflow. In
this case a condition code (flag) is set and result is stored in memory
or register. Subsequently the code may be tested during execution of
conditional branch operation.

25 | P a g e

Space for learners:
1.6.2 Control and Status Registers

The operations of processor are controlled by variety of internal
registers. In general, these registers are not visible to programmer or
user. Here, we will discuss four such essential registers.

• Program counter (PC): It holds the address of the next
instruction to be executed.

• Instruction register (IR): It holds the address of currently
executed instruction.

• Memory address registers (MAR): It holds the address of an
instruction to be fetched.

• Memory buffer registers (MBR): Holds data that needs the
current instruction or result produced by the instruction.
Another register that is included in a processor is called the program
status word (PSW). It contains condition code and other status
information. The followings are status flags:
• Sign: It holds sign bit of the recent arithmetic operation.
• Zero: It is set when the result of operation is 0.
• Carry: It is set if addition operation produce a carry or borrow
(for subtraction) from lower order bit.

• Equal: Set if a logical comparison of two operands is equal.

• Overflow: When arithmetic operation produces overflow it is set.

• Interrupt Enable/Disable: This flag is used to enable or disable
the interrupts.

• Supervisor: It indicates the execution mode of processor
(supervisor or user). Some of the privileged instructions are
executed only in supervisor mode. Similarly, certain memory
location can be accessed through supervisor mode only.

1.7 INSTRUCTION CYCLE

An instruction cycle goes through the following stages:
•Fetch: The processor reads the next instruction from PC

26 | P a g e

Space for learners:

•Execute: Decode the opcode and perform the required operation.

• Interrupt: If interrupt occurs, pause the current process, save

status of it and go to the interrupt.

Before elaborating instruction cycle it’s important to know one

additional stage called indirect cycle.

1.7.1 The Indirect Cycle

During instruction execution it may have one or more operands that

need memory access. In case of indirect addressing additional

memory accesses are needed. The Figure 1.2 depicts instruction

cycle.

After fetching the instruction it is checked to see if it involves any

indirect addressing. If indirect addressing involves, the operands are

fetched according to indirect addressing. After execution, an

interrupt will occur before fetching the next instruction.

CHECK YOUR PROGRESS-III

21. The _______ performs the actual processing of data.

22. The CPU organization has _______ categories.

23. The computer system consists of memory in different level

called _______.

24. __________registers are used to store temporary data

during execution of instruction.

25. The execution mode of processor either _______or _____.

State TRUE or FALSE:

26. The CU controls the data and instructions movement in the

processor.

27. The segment register is used to hold the address of the base

of the segment.

28. PC holds the address of current instruction executing.

29. MBR holds the address of an instruction to be fetched.

30. Carry flag is set if addition operation produces a carry.

27 | P a g e

Space for learners:

Figure 1.2 Instruction Cycle

After fetching the instruction the operand are fetched from memory.
If the operand is in register then fetching is not required. Once
execution of instruction is completed the result may be needed to
store in main memory.

1.7.2 Data Flow

In an instruction cycle sequence of events occurs according to the
design of processor. Suppose, a processor consists of a program
counter (PC), a memory address register (MAR), a memory buffer
register (MBR), and an instruction register (IR).

Figure 1.3 Data Flow, Fetch cycle

Figure 1.3 depicts the data flow during fetch cycle. The PC holds
the address of the next instruction to be fetched. This address is
placed on the address bus through the MAR.

28 | P a g e

The CU requests a main memo

the instruction. The requested

goes to the MBR and finally re

PC is incremented for fetching

fetch cycle, the CU checks the

operand specifier using indirect

found, indirect cycle is perfo

depicts this simple cycle. The a

transferred to the MAR. After

request. Then desired address

through address bus.

Figure 1.4 Data

The fetch and indirect cycles

may have various stages. It ma

transfer of data, read/write ope

other hand the interrupt cycle

cycle. It is depicted in figure 1

status of the PC must be in orde

interrupt. So, the contents of th

written to memory. For this p

reserved and it is loaded into

memory may be a stack pointer

interrupt routine. Henceforth, t

the desired instruction.

memory read to fetch the required data for

ested result is placed on the data bus and

ally reached the IR. In the mean time, the

tching the next instruction. At the end of

ks the IR to know whether it’s holding an

ndirect addressing. If indirect addressing is

 performed after fetch cycle. Figure 1.4

 The address reference bits of the MBR are

 After that the CU places a memory read

ddress of the operand is placed in MBR

4 Data Flow, Indirect cycle

ycles are very simple. The execute cycle

many involve ALU operation, register

ite operation from memory or I/O. On the

cycle is as simple as fetch and indirect

gure 1.5. Before going to interrupt, current

in order to resume normal activity after the

s of the PC is transferred to the MBR and

 this purpose special memory location is

 into the MAR from the CU. The special

ointer. The PC is filled with the address of

, the next instruction cycle will fetch

Space for learners:

29 | P a g e

Space for learners:

Figure 1.5 Data Flow, Interrupt Cycle

1.8 DATA REPRESENTATION

A digital computer represents all types of information in binary
number system due to following reasons:

• In digital computers all electronic components operate in binary
mode.
• Computers use binary system where only two digits present.
• Whatever can be done using decimal number system can also be
done using a binary number system.

1.8.1 Number representation

The numbers in computer are represented using binary number
system. An r base number system uses r distinct digits. The decimal
number has 10 digits. So, decimal numbers are 10-base number
system. The binary numbers system has two digits ‘0’ and ‘1’. It is
called base 2 number system. The octal numbers system has eight
digits 0, 1, 2, 3, 4, 5, 6 and 7. The decimal number 831.6 can be
written as follows with power of base 10.

STOP TO CONSIDER
The instruction cycle has different stages fetching, decoding
opcode, effective address calculation, execution of operation on
data and writing data in memory that are executed in sequence.

30 | P a g e

Space for learners:
8 x 102 + 3 x 101 + 1x 100 + 6 x 10-1

When a binary number 101101 is written in this way with power of
base 2, it provides decimal equivalent.

1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 = 45

The decimal number can be converted to r base number system by
using the steps:

 At first the number is separated into its integer and fraction
parts and then each part converted separately.

 The integer part is converted to r base by dividing it
successively with r until it becomes zero.

 The remainders in reverse order give the r base equivalent.
 The fraction part is converted to r base by multiply it

repeatedly by r until its fraction part becomes zero.

Suppose, decimal number 112.8125 has to convert into binary. Here
integer part is 112 and fraction part is 0.8125. At first, we will
convert integer part 112 into binary then fraction part according to
above rules. Since binary number system is 2 base we will divide
112 by 2 until it become zero. The following table depicts the
process.

Division Remainder
112 / 2 = 56 0
56 / 2 = 28 0
28 / 2 = 14 0
14 / 2 = 7 0
7 / 2 = 3 1
3 / 2 = 1 1
1 / 2 = 0 1

Now write down the remainder in reverse order i.e. 1110000 which
is binary equivalent number of decimal integer 112. Next, the
fraction part 0.81252 is multiplied by 2. The fraction of that result is
again multiplied by 2until fraction part become zero.

STOP TO CONSIDER
The hexadecimal numbers system has 16 digits 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E and F.

31 | P a g e

Space for learners:
Multiplication Resultant integer part (R)

0.81252 x 2= 1.625 1
0.6252 x 2= 1.25 1
0.252 x 2= 0.50 0

0.50 x 2= 1.0 1
0 x 2 = 0 0

The binary equivalent of fraction will be 0.11010. Using the same
rules we can convert a decimal number to any base system.

1.8.1.1 Complements

Complements simplify the subtraction and logical manipulation in
digital computer. There are two types of complements present in r
base system namely r’s and (r – 1)’s complement. If a number N in r
base contains n digits, the (r – 1)’s complement of N is calculated as
(rn – 1) – N. For a decimal number, the 9’s complement of N is (10n
– 1) – N. Thus, 9’s complement of 545700 is 999999 – 545700 =
454299. In case of binary number, the 1’s complement of N is
calculated as (2n – 1) – N. Thus, 1’s complement of 1011000 is
1111111 – 1011000 = 0100111. Simply, 1’s complement is obtained
by just toggling all bits. The r’s complement of a number N with n-
digit is calculated as n – N. This is like adding 1 to the (r – 1)’s
complement of the number. Thus, 10’s complement of 2389 is 7610
+ 1 = 7611. Similarly, 2’s complement of 101100 is 010011 + 1 =
010100.

1.8.2 Fixed-Point Representation

CHECK YOUR PROGRESS-IV

31. Computers use ________ system where only two digits
present.
32. The octal numbers system has _______ digits.
33. The hexadecimal numbers system has _______ digits.
34. Complements simplify the ___________ operation.
State TRUE or FALSE:
35.The decimal integer part is converted to r base by dividing it
successively with r until it becomes zero.

36. There are two types of complements present in r base
system namely r’s and (r + 1)’s complement
37. 1’s complement is obtained by just toggling all bits.
38. The binary number system has base 2.

32 | P a g e

Space for learners:
All positive integer numbers and zero can be considered as unsigned
number. In order to represent negative numbers in computer signed
numbers must be used. Because + and – signs are not present, rather
these sign are represented by either ‘0’ or ‘1’. The most significant
bit of signed number is 0 for positive and 1 for negative. The fixed-
point number representation has three parts as depicts in figure 1.6.

 Sign field
 Integer field
 Fractional field.

Figure 1.6: Fixed-point number representation

The 2’s complementation representation is common in computer
due to easier for arithmetic operations.

In a 32 bit register 1 bit reserved for the sign. Assume 15 bits are
reserved for the integer part and 16 bits for the fractional part. The
number -43.625 can be represented in register as depicted in figure
1.7.

Figure 1.7: Representation of -43.625

The sign bit 1 represent - and 000000000101011 is 15 bit binary
equivalent for decimal 43 and 1010000000000000 represent 16 bit
binary equivalent for fraction 0.625.

1.8.3 Floating-Point Representation

The floating number consists of two parts. The first part is a signed
fixed point number that is called mantissa. The second part exponent
represents the position of the decimal (or binary) point. The fixed

33 | P a g e

Space for learners:
point mantissa is either fraction or integer. The floating point
number always represent in the form M x re.

Figure 1.8: Floating point representation in register

The mantissa M and the exponent e present in the register with their
sign as depicted in figure 1.8. A floating-point decimal number use
base 10 for the exponent and binary number use base 2 for the
exponent. A floating-point number is called normalized if the most
significant bit (MSB) of the mantissa is 1. For positive integer, the
MSB, or sign bit, is 0 and the remaining bits represent the
magnitude. On the other hand for negative number, the MSB, or
sign bit, is 1. The rest of the number can be represented in one of
three ways

Signed-magnitude representation

Signed-1’s complement representation

Signed-2’s complement representation

Using floating point representation any non-zero number can be
represented in the normalized form. Suppose, in 32-bit register 1 bit
use as sign bit, 8 bits use for signed exponent, and remaining 23 bits
represents fractional part. Now the decimal number −53.5 can
represented as depicted in figure 1.9. The binary equivalent of -53.5
is (-110101.1)2 and normalized representation is (-1.101011)x25

Figure 1.9: Floating point representation of -53.5

1.8.4 Character Representation

Different character codes are used to represent alphanumeric
characters in bits 0 and 1. The most commonly used character code
is American standard Code for Information Interchange (ASCII).

34 | P a g e

Space for learners:
ASCII uses 7-bits that provides 128 bit-patterns. In ASCII there are
26 lowercase and uppercase letters, 10 digits, and 32 punctuation
marks. The remaining represents whitespace characters and special
control characters. The uppercase A-Z, lowercase a-z and the digits
0-9 are in continuous series.

Bit positions 654

Bit
positions

000 001 010 011 100 101 110 111 3210

NUL DLE SP 0 @ P ‘ p 0000

SOH DC1 ! 1 A Q a q 0001

STX DC2 “ 2 B R b r 0010

ETX DC3 # 3 C S c s 0011

EOT DC4 $ 4 D T d t 0100

ENQ NAK % 5 E U e u 0101

ACK SYN & 6 F V f v 0110

BEL ETB ‘ 7 G W g w 0111

BS CAN (8 H X h x 1000

HT EM) 9 I Y i y 1001

LF SUB * : J Z j z 1010

VT ESC + ; K [k { 1011

FF FS , < L \ l | 1100

CR GS - = M] m } 1101

SO RS . > N ^ n ~ 1110

SI US / ? O _ o DEL 1111

1.9 SUMMING UP

 An instruction set is collection of machine language or
assembly language instructions that are understood by
central processing unit (CPU).

 The machine may be 3-address machines, 2-address
machines, 1-address machines and 0-address machines

35 | P a g e

Space for learners:
 The computer supported instructions types are Data Transfer

Instructions, Arithmetic, Bit Manipulation, Program
Execution Transfer, Processor Control, Iteration Control and
Interrupt Instructions.

 The most commonly used addressing modes are Immediate,
Direct, Indirect, Register, Register indirect, Displacement
and Stack addressing.

 CPU or processor organization has three categories: Single
Accumulator organization, General register
organization and Stack organization.

 The register inside the processor is in top level memory
hierarchy followed by cache memory and main memory
respectively.

 The registers have two categories: user-visible registers and
control and status registers

 General-purpose registers are used to store temporary data
during execution of instruction.

 Data registers can be used to hold data only. It cannot be
used for calculating of operand address.

 Address registers may either general purpose or devoted to
an individual addressing mode.

 PC holds the address of the next instruction to be executed.
 IR holds the address of currently executed instruction.
 MAR holds the address of an instruction to be fetched.
 MBR holds data that needs the current instruction or the

result produced by the instruction.
 The use of status flags:

Sign: It holds sign bit of the recent arithmetic operation.
Zero: It is set when the result of operation is 0.
Carry: It is set if addition operation produce a carry or
borrow (for subtraction) from lower order bit.

 The numbers in computer are represented using binary
number system.

 The floating number consists of two parts. The first part is a
signed fixed point number that is called mantissa. The
second part exponent represents the position of the decimal
(or binary) point.

 In ASCII there are 26 lowercase and uppercase letters, 10
digits, and 32 punctuation marks. The remaining represents
whitespace characters and special control characters.

36 | P a g e

Space for learners:
1.10 ANSWERS TO CHECK YOUR PROGRESS

1. Register-register
2. Memory-memory
3. Destroyed
4. Accumulator
5. Stack
6. True
7. True
8. True
9. False
10. False
11. Memory location
12. Variable, constant
13. Effective
14. Address
15. Register indirect
16. True
17. False
18. True
19. True

20. False
21. ALU
22. Three
23. hierarchy
24. General
25. Supervisor, user
26. True
27. True
28. False
29. False
30. True
31. Binary
32. Eight
33. Sixteen
34. Subtraction
35. True
36. False
37. True
38. True

1.11 POSSIBLE QUESTIONS

Short answer type questions:

1. What is an instruction set?
2. Write the type of instruction for the following:

JUMP, ADD
3. What are the types of CPU organization?
4. Arrange the followings in ascending order of access time:

Secondary memory, Register, Main Memory, Cache
Memory

5. What type of buses the system bus has?
6. What is the use of immediate addressing?
7. What is the Indirect Addressing? Give examples.
8. What is an accumulator?
9. Write assembly language code to evaluate

X = (A-B) + (C-D) for stack based CPU
10. What are the categories of registers?
11. What happens to PC when interrupt occurs?

37 | P a g e

Space for learners:

12. What is floating point representation?
13. What is 1’s complement of 10011010?
14. What is 2’s complement of 11000111?
15. Convert the decimal number 26.578 into binary number.

Long answer type questions:

1. Briefly explain the various addressing modes.
2. Briefly explain the instruction cycle.
3. List any five instruction types with adequate examples.
4. Convert decimal number 56.789 into binary, octal and

hexadecimal number.
5. Briefly explain the data flow process with block diagram.

1.12 REFERENCES AND SUGGESTED

 READINGS

 Computer Architecture and Organization by B.
Govindarajalu.; TMH publication.

 Advanced Computer Architecture A systems Design
Approach by Richard Y. Kain; PHI Publication

 Computer Organization and Architecture Designing for
Performance by William Stallings; Pearson Education

 Computer System Architecture by M. Morris Mano, PHI
Publication.

Space for learners:

38 | P a g e

UNIT 2: COMBINATIONAL CIRCUITS AND ITS
 APPLICATIONS

Unit Structure
2.1 Introduction
2.2Unit Objectives
2.3 AND-OR logic combinational circuit
2.4 AND-OR-Invert logic combinational circuit
2.5 Exclusive-OR logic
2.6 Exclusive-NOR logic
2.7 Implementing Combinational logic

2.7.1 Logic circuit design from boolean expression
2.7.2 Logic circuit design from truth table

2.8 The universal property of NAND and NOR gates
 2.8.1 The NAND gate as a universal logic element
 2.8.2 The NOR gate as a universal logic element
 2.8.3 Combinational circuit using NAND gate
 2.8.4 Combinational circuit using NOR gate
2.9 Combinational logic circuit Functionalities
 2.9.1 The comparison function
 2.9.2 The Arithmetic function
 2.9.3 Basic Adders
 2.9.3.1 The Half-Adder
 2.9.3.2 The Full-Adder
 2.9.3.3 Parallel Binary Adders
 2.9.3.4 Truth table for 4-bit parallel adder
 2.9.4 Binary Subtractor
 2.9.4.1 The Half-Subtractor
 2.9.4.2 The Full-Subtractor
 2.9.5 Comparators
 2.9.5.1 Equality
 2.9.5.2 Inequality
 2.9.6 Decoders
 2.9.6.1 The Basic Binary Decoder
 2.9.6.2 3-to-8 line Decoder
 2.9.7 Encoders
 2.9.7.1 Decimal to BCD Encoder
 2.9.8 Multiplexers
 2.9.9 Demultiplexers
2.10 Summing up

Space for learners:

39 | P a g e

2.12 Answers to Check Your Progress

2.13 Possible Questions

2.14 References and Suggested Readings

2.1 INTRODUCTION

This chapter describes the combinational circuits and the

applications of combinational circuits. Sum of Product (SOP) and

Product of Sum (POS) forms are the basic building blocks of the

combinational circuits. When the logic gates are connected together

to produce some specific output the resulting electronic circuit is

known as combinational circuits. The output of the circuit always

depends on the combination of the input variables.

2.2UNIT OBJECTIVES

The unit is describing the designing and applications of

combinational logic circuits. After completing the unit students′ will

able to:

● Analyze and apply different combinations of the

logic gates.

● Design combinational circuits from the Boolean

expressions.

● Design combinational circuits from the truth table.

● Describe the universal behaviour of NAND and NOR

logic gates.

● Explain and describe adder circuits.

● Analyze the comparator circuits.

● Describe decoders and encoders

● Describe multiplexers and demultiplexers

2.3 AND-OR LOGIC COMBINATIONAL CIRCUIT:

The Figure 2.1 shows an AND-OR circuit consisting of two input

AND gates and one two input OR gate. The Boolean expression for

the AND gate outputs and the resulting SOP expression for the

Space for learners:

40 | P a g e

output Y are shown on the circuit diagram. The AND-OR circuit
can have any number of AND and OR with any number of inputs.

Figure 2.1 AND-OR logic diagram

The truth table for the above combinational circuit is shown in
Table-2.1. The outputs of the AND gates are also shown in the table.

INPUTS
PQ

RS

OUTPUT
Y

P Q R S
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1

Table 2.1 Truth table for the logic circuit of Figure 2.1

2.4 AND-OR-INVERT LOGIC COMBINATIONAL CIRCUIT

If the output of the AND-OR circuit is complemented i.e. inverted,
the resultant circuit is called AND-OR-Inverted circuit. The AND-
OR logic implements the SOP expression and the corresponding

Space for learners:

41 | P a g e

POS expressions can be obtained using the AND-OR-Inverted logic.
The logic circuit diagram Figure 2.2 shows an AND-OR-Inverted
circuit and development of the POS output expression.
Y = (P′+Q′)(R′+S′) = (PQ)′(RS)′ = (((PQ)′(RS)′)′)′ = (((PQ)′)′
+((RS)′))′)′ = (PQ + RS)′

Figure 2.2 AND-OR Invert logic

In general, an AND-OR-Invert circuit can have any number of AND
gates each with any number of inputs. A truth table can be
developed from the AND-OR truth table in Table 2.1 by simply
changing all 1s to 0s and all 0s to 1s in the output column.

STOP TO CONSIDER

● The AND-OR logic implements the SOP expressions, in
other words, the SOP expressions are implemented using
AND-OR logic.

● The AND-OR-Inverted logic implements POS expressions,
in other words, the POS expressions are implemented using
AND-OR-Inverted logic

2.5 EXCLUSIVE-OR LOGIC:

The exclusive-OR gate is considered a type of logic gate with its
own unique symbol; it is actually a combination of two AND gates,
one OR gate, and two inverters (NOT gate) as shown in Figure 2.3.
The output is 1 only if the two inputs are at opposite levels.

Space for learners:

42 | P a g e

Figure 2.3 Exclusive-OR logic
The output expression for the circuit in Figure 2.3 is Y = AB′ + A′B
i.e. Y = A ⊕ B
 The truth table for exclusive-OR is shown in Table 2.2.

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.2: Truth table of exclusive-OR

2.6 EXCLUSIVE-NOR LOGIC

The complement of exclusive-OR is known as exclusive-NOR,
which is derived as follows:

Y = (AB′+A′B)′ = (AB′)′(A′B)′ = (A′ + B)(A+B′) = A′B′ + AB

The output Y is 1 only if the two inputs A and B are at the same
level. The exclusive-NOR can be implemented by simply inverting
the output of an exclusive-OR. The following Figure 2.4 (a) shows

Space for learners:

43 | P a g e

the exclusive-NOR and Figure 2.4(b) shows the direct
implementation of the expression A′B′+AB.

Figure 2.4(a) Y = (AB′+A′B)′

Figure 2.4(b) Y = A′B′ + AB

STOP TO CONSIDER
● Exclusive-OR (XOR) logic is a combination of two AND

gates, one OR gate, and two inverters (NOT gate)
● Exclusive-NOR (XNOR) logic is a combination of two AND

gates, one OR gate, and three inverters (NOT gate) or XNOR
is obtained by applying an inverter at the output of XOR.

2.7 IMPLEMENTING COMBINATIONAL LOGIC

This section will describe the methods of implementing the logic
circuits. The first method describes the implementation from the

Space for learners:

44 | P a g e

Boolean expression and the second method describes the
implementation from the truth table.

2.7.1 Logic circuit design from Boolean expression

 Let us consider the following Boolean expression:
 Y = (A+B)(C+D+E)
A closer observation shows that the above expression ′Y′ consists of
two terms.
The first term is formed by doing OR operation between A and B,
and the second term is formed by doing OR operation among C, D,
and E. The two terms are then AND together to produce the final
output Y. The OR operations must be performed before the AND
operation.
To design the combinational circuit, a 2-input OR gate is required to
form the term A+B and a 3-input OR gate is required to form the
term C+D+E. A 2-input AND gate is then required to combine the
two OR terms. The resulting logic circuit is shown in Figure 2.5.

Figure 2.5. Logic circuit for the expression Y =(A+B)(C+D+E)

Let us implement the following expression as another example.

Y = (A+B)(C′D′+EF)
Like the previous example, let′s have a closer look at the expression.
The terms A+B and (C′D′+EF) are AND together to form Y. The
term C′D′+EF is first formed by doing AND between C′ and D′, E
and F and then performs OR operation between these two terms.
Before getting the expression C′D′ +EF, you must have the C′D′ and
EF, before these two terms you must have C′ and D′. So, the logic
operation must be performed in proper order. The logic gates

Space for learners:

45 | P a g e

required to implement the expression Y = (A+B)(C′D′+EF) are as
follows:

a. Two NOT gates to get C′ and D′
b. Two 2-input AND gates to form C′D′ and EF
c. Two 2-input OR gates to form A+B and C′D′+EF
d. One 2-input AND gate to form Y.

The logic circuit of this expression is shown in Figure 2.6

Figure 2.6. Logic diagram for the expression Y = (A+B)(C′D′+EF)

2.7.2. Logic circuit design from truth table

Instead of using the SOP expression to design the combinational
circuit you can use the truth table and from the truth table that you
can derive using the SOP expression. Table 2.3 shows one example
of such an implementation.

Inputs Output
Y

Product Terms

A B C

0 0 0 0
0 0 1 0
0 1 0 1 A′BC′
0 1 1 0
1 0 0 1 AB′C′
1 0 1 0
1 1 0 0
1 1 1 1 ABC

Table 2.3: Truth table for logic function

Space for learners:

46 | P a g e

The Boolean expression obtained for the Table 2.3 is given below:
Y = A′BC′+AB′C′+ABC

The expression Y is obtained by doing OR operations among the
product terms for which the output is 1. The first, second, and third
are formed by doing AND operations among (A′, B, C′), (A, B′, C′),
and (A, B, C) respectively. The logic gates required to implement
the circuit are as follows:

a. Three NOT gates.
b. Three 3-input AND gates.
c. One 3-input OR gate.

Figure 2.7 Logic diagram for the expression Y =

A′BC′+AB′C′+ABC

Reduce the combinational logic circuit shown in Figure 2.8 to a
minimum form.

Figure 2.8 Combinational logic circuit to be reduced

The expression for the output of the circuit is Y =
(A′B′C′)′C+(A′B′C′)′+D

Space for learners:

47 | P a g e

Applying D′ Morgan′s theorem and Boolean algebra,
Y = ((A′)′+(B′)′+(C′)′)C+(A′)′+(B′)′+(C′)′+D
 = AC+BC+CC+A+B+C+D
 =C(A+B+1)+A+B+C+D

 Y=A+B+C+D
The simplified circuit is a 4-input OR gate as shown in the Figure
2.9

Figure 2.9 Reduced form the logic circuit of Figure 2.7

Note: Before implementing the logic circuit directly it is better to
reduce the algebraic expressions to its minimized form so that the
number of gates required to implement the circuit is minimum. This
leads to reduction of propagation delay among the gates. More the
number of gates, the more the propagation delay and also the heat
produced by the circuit will increase.

STOP TO CONSIDER
● The implementation of combinational logic circuits is either

from the Boolean expression or truth table.
● The expression should be carefully observed and has to

identify the number of AND, OR, inverters required.
● Before implementing the logic circuit, it is advisable to

reduce the expression by applying the boolean algebra
● If the number of gates are less in the final combinational

circuit then the propagation delay will also be minimal.

CHECK YOUR PROGRESS-I
1. POS stands for _______
2. SOP stands for _______
3. An Exclusive-OR can be represented as ______
4. The number of AND gates required to implement the

boolean expression ABC is ____

Space for learners:

48 | P a g e

2.8 THE UNIVERSAL PROPERTY OF NAND AND NOR
GATES

Till now, you have studied combinational circuits designing with
AND and OR, and NOT gates. This section will describe the
universal property of NAND and NOR gates. The universality of
NAND means it can be used as an inverter and the combinations of
NAND gates can be used to implement the AND, OR, and NOR
operations. Similarly, the NOR gate can be used to implement the
inverter, AND, OR, and NAND operations.

2.8.1 The NAND gate as a universal logic element

The NAND gate is a universal gate because it can be used to
produce the NOT, the AND, the OR, and the NOR functions. An
inverter can be made from a NAND gate by connecting all of the
inputs together and creating, in effect, a single input as shown in the
Figure 2.10(a) for a 2-input gate. An AND function can be
generated by the use of NAND gates alone as shown in Figure
2.10(b). An OR function can be implemented with only NAND
gates, as shown in Figure 2.10(c). Similarly, the NOR function can
also be produced as shown in Figure 2.10(d).

Figure 2.10(a) NAND gate as inverter or NOT

Figure 2.10(b) Two NAND gates are combined to produce AND

operation

Space for learners:

49 | P a g e

Figure 2.10(c) Three NAND gates are combined to produce OR

operation

Figure 2.10(d) Four NAND gates are combine to produce NOR

operation

In Figure 2.10(b), a NAND gate is used to invert a NAND output to
form the AND function which is given below:
 Y = ((AB)′)′ = AB
In Figure 2.10(c), NAND gates G1 and G2 are combined to invert
the two input variables before they are applied to NAND gate G3.
The OR gate output is derived as follows by applying DeMorgans′s
theorem:
 Y = ((A′B′)′ = A + B
In Figure 2.10(d), NAND gate G4 is used as an inverter connected
to the circuit of part (c) to produce the NOR operation (A+B)′.
Finally, we can conclude that using the NAND gate it is possible to
implement any logic function.

2.8.2 The NOR gate as a Universal logic element

The NOR gate can also be used to produce the NOT, AND, OR, and
NAND functions. A NOT circuit, or inverter, can be made from
NOR gate by connecting all of the inputs together to effectively
create a single input, as shown in Figure 2.11(a) with a 2-input
example. Also, an OR gate can be produced from NOR gates as
shown in Figure 2.11(b). An AND gate can be produced using the

Space for learners:

50 | P a g e

NOR gates as shown in the Figure 2.11(c), the NOR gates G1 and
G2 are used as inverters and the final output is derived by the use of
DeMorgan′s theorem as follows:

Y = (A′+B′)′ = AB
Figure 2.11(d) shows the implementation of NAND function using
NOR gates. Hence we can conclude that the NOR gate can also
work as a universal gate like the NAND gate.

Figure 2.11(a) NOR gate used as inverter

Figure 2.11(b) NOR gates are combined to produce OR operation

Figure 2.11(c) NOR gates are combined to produce AND operation

Figure 2.11(d) NOR gates are combined to produce NAND

operation

2.8.3 Combinational circuit using NAND gate

NAND gates can work as either NAND or negative OR by applying
DeMorgan′s theorem.
 (AB)′ = A′ + B′

Space for learners:

51 | P a g e

Consider the NAND logic as shown in Figure 2.12. The output
expression is developed in the following steps:
 Y = ((AB) ′ (CD) ′)′
 = ((A′+B′)(C′+D′))′
 = (A′+B′)′+(C′+D′)′
 = (A′)′(B′)′ + (C′)′(D′)′
 = AB + CD

Figure 2.12 Implementation of the Boolean expression Y= AB+CD

using NAND gate

2.8.4 Combinational circuit using NOR gate
The NOR gate can work as either a NOR or negative AND, as
shown by DeMorgan′s theorem.
 (A+B)′ = A′B′
Consider the NOR logic in Figure 2.13. The output expression is
developed as follows:

Y = ((A+B)′+(C+D)′)′ = ((A+B)′)′((C+D)′)′ = (A+B)(C+D)

Figure 2.13 Implementation of the boolean expression Y=

(A+B)(C+D) using NOR gate

STOP TO CONSIDER
● NAND and NOR gates are called universal gates.
● NAND and NOR can be used to implement all the primary

logic like AND, OR, NOT(invert).
● NAND can produce NOR and, similarly, NOR can produce

NAND.

Space for learners:

52 | P a g e

CHECK YOUR PROGRESS-II
5. The number of NOR gate(s) required to implement OR is/are

6. The number of NAND gates(s) required to implement AND

is/are ____
7. The number of NAND gates(s) required to implement Y =

A′+B is/are _____
8. The number of NOR gates(s) required to implement Y = A′+B

is/are _____

2.9 COMBINATIONAL LOGIC CIRCUIT
FUNCTIONALITIES

In this section, many types of fixed functions of combinational
circuits are introduced, viz. Adders, comparator, decoders, encoders,
code converters, multiplexer, demultiplexer etc.

2.9.1 The comparison function

The magnitude of comparison performed by a logic circuit is called
a comparator. A comparison compares two quantities and indices
whether or not they are equal. Figure 2.14 represents a comparison
function, one number in binary form is applied to input A, and the
other number in binary form is applied to input B. The outputs
indicate the relationship of the two numbers by producing 1 on the
proper output line. Suppose that the binary representation of 3 is
applied to input A and a binary representation of the number 6 is
applied to input B. A ′1′ (HIGH) will appear on the A<B output,
indicating the relationship between the two numbers.

Figure 2.14 Basic magnitude comparator

Space for learners:

53 | P a g e

2.9.2 The Arithmetic functions

Addition is performed by a logic circuit called adder. An adder adds
two binary numbers on inputs A and B with a carry input (Cin) and
generates a sum (Σ) and a carry output (Cout) as shown in Figure
2.15.

Figure 2.15 Basic Adder

Subtraction is also performed by a logic circuit. A subtractor
requires three inputs, viz.,the two numbers that are to be subtracted
and a borrow input. The two outputs are the difference and the
borrow output. The subtraction operation is a special case of
addition operation.
Multiplication: A multiplier is a logic circuit that performs
multiplication. Because numbers are always multiplied in twos, two
inputs are necessary. The product is the multiplier′s output.
Multiplication can be achieved using an adder in conjunction with
other circuits since it is merely a series of additions with shifts in the
positions of the partial products.
Division: Division can be achieved with a series of subtraction,
comparisons, and shifts, therefore an adder can be used in
conjunction with other circuits. The division requires two inputs,
and the quotient and remainder are generated as outputs.
Code conversion: The logic circuits can also be used for code
conversion. A code is a collection of bits arranged in a specific
pattern and used to represent data. A code converter converts one
type of coded data into another type of coded data. For example,
Conversion from binary to Binary Coded Decimal (BCD) or Gray
code.

Encoder: The encoder is a logic circuit that performs the encoding
function. The encoder turns data into a coded representation, such as

Space for learners:

54 | P a g e

a decimal number or an alphanumeric letter. One form of encoder,
for example, turns all of the decimal digits, 0 through 9, to binary
code.

Decoder: A logic circuit called a decoder performs the decoding
operation. The decoder translates coded data, such as binary
numbers, to uncoded data, such as decimal numbers. One form of
decoder, for example, translates a 4-bit binary code into the
appropriate decimal digits.

Data selection function: The multiplexer and the demultiplexer are
two types of circuits that select data in the data selection function. A
multiplexer, often known as a MUX, is a logic circuit that transfers
digital data from many input lines to a single output line in a
predetermined time sequence. A multiplexer can be thought of as an
electronic switch that links each of the input lines to the output line
in a sequential manner. A demultiplexer (DEMUX) is a logic circuit
that converts digital data from one input line to multiple output lines
in a predetermined order. The demux is a reverse mux. When data
from numerous sources needs to be sent across one line to a distant
place and then redistributed to multiple recipients, multiplexing and
demultiplexing are utilized.

STOP TO CONSIDER
● The AND, OR, and NOT can be used to design the

complex logic circuits to perform specific operations.

2.9.3 Basic Adders

Adders are essential not only in computers, but also in a wide range
of digital systems that process numerical data. The study of digital
systems requires a basic understanding of the adder action. The half-
adder and full-adder are described in this section.

2.9.3.1 The Half-Adder

Recall the basic rules for binary addition
0+0 = 0
0+1 = 0

Space for learners:

55 | P a g e

1+0 = 1
1+1 = 10
A logic circuit known as a half-adder performs the operations.
The half-adder takes two binary digits as inputs and produces two
binary digits, a sum bit and a carry bit, as outputs. Figure 2.16
shows a half-adder represented by the logic symbol.

Figure 2.16 Logic symbol for a half-adder

Half-Adder Logic from the operation of the half-adder as stated in
Table 2.3, expressions can be derived for the sum and the output
carry as functions of the inputs. Note that the output carry (Cout) is a
1 only when both A and B are 1s, therefore, Cout can be expressed as
the AND of the input variables. Cout = AB.

Table 2.3 Half-adder truth table
A B Cout Σ
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Now, observe that the sum (Σ) is a 1 only if the input variables, A
and B, are not equal. The sum can therefore be expressed as the
exclusive-OR of the input variables. Σ = A ⊕B. The logic
implementation required for the half-adder function can be
developed using Σ and Cout. The output carry is produced with AND
gate with A and B on the inputs, and the sum output is generated
with an exclusive-OR (XOR) gate, as shown in Figure 2.17.
Remember, the XOR is implemented with AND gates, an OR gate,
and inverters.

Space for learners:

56 | P a g e

Figure 2.17 Half-adder logic diagram

2.9.3.2 The Full Adder

The second category of adder is the full-adder. The full-adder
accepts two input bits and an input carry and generates a sum output
and an output carry. The basic difference between full-adder and a
half-adder is that the full-adder accepts an input carry. A logic
symbol for a full-adder is shown in Figure 2.18, and the truth table
in Table 2.4 shows the operation of a full-adder.

Figure 2.18 Logic symbol for a full-adder

Table 2.4 Full-adder truth table
A B Cin Cout Σ
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Space for learners:

57 | P a g e

Full-Adder Logic The full-adder must add the two input bits and
input carry. From the half-adder you know that the sum of the input
bits A and B is exclusive-OR of those variables. A⊕B. For the
input carry (Cin) to be added to the input bits, it must be exclusive-
ORed with A⊕B, yielding the equation for the sum output of the
full-adder.
Σ = (A⊕B)⊕Cin. This means that to implement the full-adder sum
function, two 2-input exclusive-OR gates can be used. The first
must generate the term A⊕B, and the second has as its inputs the
output of the first XOR gate and the input carry, as shown in Figure
2.19(a).

Figure 2.19(a) Logic required to form the sum of three bits

Figure 2.19(b) Complete logic circuit for a full-adder

The output carry is a 1 when both inputs to the first XOR gate are 1s
or when both inputs to the second XOR gate are 1s. You can verify
this fact by studying Table 2.4. The output carry of full-adder is
therefore produced by the inputs A ANDed with B and A⊕B

Space for learners:

58 | P a g e

ANDed with Cin. These two terms are ORed, as expressed in the
expression of Cout. This function is implemented and combined with
the sum logic to form a complete full-adder circuit, as shown in
Figure 2.19(b). Notice that in Figure 2.19(b) there are two half-
adders, connected as shown in the block diagram of Figure 2.20(a),
with their output carries ORed. The logic symbol shown in Figure
2.20(b) will normally be used to represent the full-adder.

Figure 2.20(a) Arrangement of two half-adders to form a full-adder

Figure 2.20(b) Full-adder logic symbol

2.9.3.3 Parallel Binary Adders

Parallel binary adders are formed by connecting two or more full-
adders. The basic operations of such adders, as well as their
associated input and output functions, are described in this section.
A single full-adder can add two one-bit numbers as well as an input
carry. Additional full-adders must be used to add binary numbers
with more than one bit. As shown above with 2-bit integers, when
one binary number is added to another, each column creates a sum
bit and a 1 or 0 carry bit to the next column to the left.

 10
 +10

 100

Space for learners:

59 | P a g e

In this case, the second column′s carry bit becomes the third
column′s sum bit. A full adder is required for each bit in two binary
numbers to be added. So two adders are required for 2-bit numbers,
four adders are required for 4-bit values, and so on. Each adder′s
carry output is connected to the next higher-order adder′s carry
input, as shown in Figure 2.21 for a 2-bit adder. Because there is no
carry input to the least significant bit location, either a half-adder or
the carry input of a full-adder can be set to 0 (grounded). In Figure
2.21 the least significant bits (LSB) of the two numbers are
represented by A1 and B1. The next higher-order bits are represented
by A2 and B2. The three sum bits are Σ1, Σ2, and Σ3. Notice that the
output carry from the left-most full-adder becomes the most
significant bit (MSB) in the sum Σ3.

Fig 2.21. A 2-bit adder

Four-bit Parallel Adders
A nibble is a collection of four bits. As demonstrated in Figure 2.22,
a basic 4-bit parallel adder is developed with four full-adder stages.
The LSBs (A1 and B1) of each number being added are applied to
the right-most full-adder; the higher-order bits are applied to the
gradually higher-adders as illustrated; and the MSBs (A4 and B4) of
each number are applied to the left-most full-adder. The carry output
of each adder is connected to the carry input of the next higher-order
adder as indicated. These are called internal carries.

Space for learners:

60 | P a g e

In terms of the method used to handle carries in a parallel adder,
there are two types: the ripple carry adder and carry look-ahead
adder. A ripple carry adder is one in which the carry output of each
full-adder is connected to the carry input of the next higher-order
stage (a stage is one full-adder). The sum and the output carry of
any stage cannot be produced until the input carry occurs. This
causes a time delay in the addition process. The carry propagation
delay for each full-adder is the time from the application of the input
carry until the output carry occurs, assuming that the A and B inputs
are already present.

Figure 2.22 A 4-bit Adders

Look-ahead carry addition is a technique for speeding up the
addition process by eliminating the ripple carry delay. The look-
ahead carry adder predicts each stage′s output carry and produces it
using either carry generation or carry propagation based on the
input bits of each stage.
Carry generation occurs when an output carry is produced
(generated) internally by the full-adder. A carry is generated only
when both input bits are 1s. The generated carry, Cg, is expressed as
the AND function of the two input bits, A and B. Cg=AB.
Carry Propagation occurs when the input carry is rippled to become
the output carry. An input carry may be propagated by the full-adder
when either or both of the input bits are 1s. The propagated carry,
Cp, is expressed as the OR function of the input bits. Cp = A + B.

2.9.3.4 Truth table for 4-bit parallel adder

Table 2.5 is the truth table for a 4-bit adder. On Some data sheets,
truth tables may be called function tables or functional truth tables.
The subscript n represent the adder bits and can be 1, 2, 3, or 4 for

Space for learners:

61 | P a g e

the 4-bit adder. Cn-1 is the carry from the previous adder. Carries C1,

C2, and C3 are generated internally. C0 is an external carry input and

C4 is an output.

Table 2.5 Truth table for 4-bit parallel adder

Cn-1 An Bn Σn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

STOP TO CONSIDER

● A half-adder has two inputs and two outputs.

● A full-adder has three inputs and two outputs.

● A 4-bit parallel adder can add two 4-bit binary numbers.

● Two half-adders can be used to design a full adder.

CHECK YOUR PROGRESS-III

State whether true or false

9. The sum expression for a half adder is A+B

10. The carry out Coutexpression for a full adder is AB+Cin

11. A 4-bit parallel adder has four full adders.

12. There are two types of carry, they are ripple carry and look

ahead carry

13. Carry generation occurs when an output carry is produced.

2.9.4 Binary Subtractor

Binary subtractors are special circuits which subtract two binary

numbers from each other. Binary subtractor produces a difference

and borrow output after the completion of the subtraction operation.

Binary subtraction has two digits, subtracting a “0” from a “0” or a

“1” leaves the result unchanged as 0-0 = 0 and 1-0 = 1. Subtracting

Space for learners:

62 | P a g e

a “1” from a “1” results in a “0”, but subtracting a “1” from a “0”
requires a borrow. In other words, 0-1 requires a borrow and if you
borrow 1 then the minuend 0 becomes 10 and the operation 0-1
becomes 10-1 which will give the output 1, this also leads to set the
borrow bit 1. The half-subtractor and full-subtractor are discussed
below.

2.9.4.1 The Half-Subtractor

A half subtractor is a logical circuit that performs a subtraction
operation on two binary digits. The half subtractor produces a
difference (D) and a borrow out (Bout) bit for the next stage. The
Figure 2.23 shows the logic symbol of a half-subtractor circuit.

Figure 2.23 Logic symbol of Half-Subtractor

Table 2.6: Truth Table of a Half-Subtractor
Inputs Outputs

A B Difference(D=A-B) Borrow (Bout)
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

From the Table 2.6 of the half subtractor, the difference (D) output
can be obtained by doing exclusive-OR between A and B and the
Borrow (Bout) can be obtained by doing AND operation between A′
and B. The Boolean expression for a half subtractor is as follows.

D = A⊕B
Bout = A′B

Space for learners:

63 | P a g e

Figure 2.24 Logic circuit for Half-subtractor

The Boolean expressions for ‘sum’ in half-adder and ‘difference’ in
half-subtractor are exactly the same. The only difference is the
output carry of the half-adder and the borrow out of the subtractor
circuit, difference between these two quantities is the inversion of
the minuend input A.

The disadvantage of the half-subtractor is that if you subtract
multiple bits there is no option for ‘borrow-in’ from its earlier
stages. So, we need a full subtractor circuit to take into account this
borrow-in input from the earlier stages.

2.9.4.2 The Full-Subtractor

The full-subtractor has three inputs. The two single bit data inputs A
(minuend) and B (subtrahend) are the same as before plus an
additional Borrow-in (Bin) input to receive the borrow generated by
the subtraction process from a previous stage as shown in Figure
2.25.

Figure 2.25 : Logic symbol of a Full-Subtractor

Space for learners:

64 | P a g e

The “full subtractor” combinational circuit performs the subtraction
operation on three binary bits resulting in outputs for the difference
D and borrow Bout. Like the adder circuit, the full subtractor can also
be thought of as two half subtractors connected together, with the
first half subtractor passing its borrow to the second half subtractor
as shown in the Figure 2.26 and the complete logic circuit of the
full-subtractor is shown in the Figure 2.27.

Figure 2.26: Arrangement of two half-subtractors to form a full-

subtractor

Table 2.7: Truth for the Full-Subtractor

Inputs Outputs

A B Bin D Bout

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

The truth table Table 2.7 shows the subtraction operation between A
and B, the truth table operations are explained below:

a. If A = 0, B = 0, and Bin= 0, then the output D and Bout both
are 0.

b. In the second set of inputs the A = 0, B = 0, but the Bin =1,
so before performing the subtraction operation, first, you
have to increment the B by 1 unit then the B will change to 1

Space for learners:

65 | P a g e

(Bin=1 indicates there was a borrow in the previous step of
the series of operations here previous step is not referring the
first set of input operation of the Table 2.7), now if you
perform the A-B i.e. 0-1 you need a borrow then only the
operation will be possible, so, if you borrow 1 then the A
will change to 10 and the subtraction operation 10-1 will
give 1, i.e. D=1, since the operation was performed using
borrow, the Bout=1.

c. In the third set of inputs A=0, B=1, Bin= 0, since Bin= 0, so,
it is not necessary to increment the B, but A-B i.e. 0-1 in this
step needs a borrow, so you have to borrow 1 to A, the A
will change to 10 and the operation will change to 10-1=1,
so, D=1, Bout=1.

d. In the fourth set of inputs A=0, B=1, Bin= 1, this time Bin= 1,
so, you have to increment the B by one unit, then B will
change to 10, now, if you perform the subtraction operation
A-B, i.e. 0-10 then you need a borrow, if you borrow 1 the A
will change to 10 and the operation becomes 10-10=0,
therefore D=0, since the operation was completed using a
borrow so, Bout= 1.

e. In the fifth set of inputs A=1, B=0, Bin= 0, since Bin= 0, so
the B will not change and the A-B i.e. 1-0 does not need any
borrow therefore D=1 and Bout= 0.

f. In the sixth set of inputs A=1, B=0, Bin= 1, since Bin= 1, so,
B will be incremented by 1 unit and B becomes 1 i.e. B=1
and the operation A-B will be 1-1=0, hence D=0 and Bout= 0.

g. In the seventh set of inputs A=1, B=1, Bin= 0, since Bin= 0,
so, B will not change and the A-B i.e. 1-1 does not need any
borrow therefore D=0 and Bin= 0.

h. In the eighth set of inputs A=1, B=1, Bin= 1, since Bin= 1, so,
B will be incremented by 1 unit and the value of B becomes
10, now, the operation A-B becomes 1-10 which is not
possible therefore A needs borrow to complete the operation,
after 1 borrow to A the A becomes 11 and A-B = 11-10.
Hence D=1 and Bout= 1.

Space for learners:

66 | P a g e

Figure 2.27: Complete logic circuit for a full-subtractor

STOP TO CONSIDER
● Subtractor circuits are similar to the adder circuits.
● Subtraction operation in binary works in the same pattern

that works in normal mathematics.
● The difference expression of the subtractor circuit is the

same as the sum expression of the adder circuit.
● The Full-subtractor supports borrow in from the previous

stages.
● Bin= 1 indicates there is a borrow in the previous step.
● If A<B+Binthen A needs borrow from its

2.9.5 Comparators

A comparator′s primary role is to compare the magnitudes of two
binary quantities in order to identify their relationship. A
comparator circuit, in its most basic form, determines if two integers
are equal.

2.9.5.1 Equality

Because its output is 1 when the two input bits are not equal and 0
when they are equal, the exclusive-OR gate can be used as a basic
comparator. As a 2-bit comparator, Figure 2.28 depicts the
exclusive-OR gate.

Space for learners:

67 | P a g e

Figure 2.28 Basic comparator operation

An additional exclusive-OR gate is required to compare binary
values comprising two bits each. Gate G1 compares the two
numbers′ least significant bits (LSBs), while gate G2 compares the
two most significant bits (MSBs), as seen in Figure 2.29. If the two
numbers are equal, their corresponding bits are also equal, and each
exclusive-OR gate′s output is a 0. If the corresponding sets of bits
are not equal, the exclusive-OR gate output is set to 1.

Figure 2.29 2-bits binary number comparison

Two inverters and an AND gate can be used to produce a single
output representing the equality or inequality of two values, as
shown in Figure 2.29. Each exclusive-OR gate′s output is inverted
and applied to the AND gate′s input. When each exclusive-two OR′s
input bits are identical. The numbers′ corresponding bits are equal,
resulting in a 1 on both AND gate inputs and a 1 on the output.
When the two numbers are not equal, one or both sets of
corresponding bits are different, and a 0 appears on at least one
AND gate input, resulting in a 0 on the AND gate′s output. As a
result, the AND gate′s output indicates whether the two numbers are
equal (1) or unequal (0).

Space for learners:

68 | P a g e

2.9.5.2 Inequality

Many IC comparators have additional outputs in addition to the
equality output that show which of the two binary integers being
compared is greater. As indicated in the logic symbol for a 4-bit
comparator in Figure 2.30, there is an output that indicates when
number A is larger than number B (A>B) and an output that
indicates when number A is smaller than number B (A<B).

Figure 2.30 Logic symbol for a 4-bit comparator

To determine an inequality of binary numbers A and B, you first
examine the highest-order bit in each number. The following
conditions are possible:

1. If A3=1 and B3=0, number A is greater than number B.
2. If A3=0 and B3=1, number A is less than number B.
3. If A3= B3, then you must examine the next lower bit position

for an inequality.
These three operations are valid for every bit position in the number.
The general procedure used in the comparator is to check the
inequality of the bit position, starting from the most significant bit
(MSB). When such an inequality is found, the relationship of the
two numbers is established, and any other inequalities in lower-
order bit positions must be ignored because it is possible for an
opposite indication to occur; the highest-order indication must take
precedence.

CHECK YOUR PROGRESS-IV
State whether true or false
14. The exclusive-OR gate is a basic comparator.
15. The HIGH output will appear if we compare 112 and 112.
16. LSB stands for Least Significant Bit.

Space for learners:

69 | P a g e

2.9.6 Decoders

A decoder′s basic task is to identify the presence of a specific
combination of bits (code) on its inputs and to signify that presence
with a specific output level. A decoder contains n input lines to
handle n bits and 1 to 2n output lines to signal the presence of one or
more n-bit combinations in its most basic form.

2.9.6.1 The Basic Binary Decoder

Assume you need to figure out when a binary 1001 appears on a
digital circuit′s inputs. Because it provides a HIGH output only
when all of its inputs are HIGH, an AND gate can be utilized as the
basic decoding element. As a result, when the binary number 1001
occurs, you must ensure that all of the AND gate′s inputs are HIGH;
this may be done by inverting the two middle bits (the 0s) as shown
in Figure 2.31.

(a) (b)

Figure 2.31 Binary decoder

The logic equation for the decoder of Figure 2.31(a) is developed as
illustrated in Figure 2.31(b). You should verify that the output is 0
except when A0=1, A1=0, A2=0, and A3=1 are applied to the inputs.
A0 is the LSB and A3 is the MSB. In the representation of a binary
number, the LSB is the right-most bit in a horizontal arrangement
and the top-most bit in a vertical arrangement, unless specified
otherwise. If the NAND gate is used in place of the AND gate in
Figure 2.31, a LOW output will indicate the presence of the proper
binary code, which is 1001 in this case.

Space for learners:

70 | P a g e

2.9.6.2 3 to 8 line Decoder

Figure 2.32 shows a decoder circuit with three inputs and 23 = 8
outputs. It uses all AND gates, so the output is active high. Please
note that for a given input code, the only valid output (HIGH) is the
output corresponding to the decimal equivalent of the binary input
code (for example, only when CBA = 1012 = 510, the O5 output will
become HIGH). The decoder can be referenced in various ways. It
can be called a 3-8 line decoder because it has 3 input lines and 8
output lines. It can also be called a binary octal decoder or converter
because it takes a 3-digit binary input code and activates one of the
eight (octal) outputs corresponding to that code. It is also called a 1
of 8 decoder because only 1 of the 8 outputs is activated at a time.

Figure 2.32 3-to-8-line decoder

Table 2.8: 3-to-8-line Decoder truth table with decoding function
Inputs Decoding

Function
Outputs

C B A O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 C′B′A′ 1 0 0 0 0 0 0 0
0 0 1 C′B′A 0 1 0 0 0 0 0 0
0 1 0 C′BA′ 0 0 1 0 0 0 0 0
0 1 1 C′BA 0 0 0 1 0 0 0 0

Space for learners:

71 | P a g e

1 0 0 CB′A′ 0 0 0 0 1 0 0 0
1 0 1 CB′A 0 0 0 0 0 1 0 0
1 1 0 CBA′ 0 0 0 0 0 0 1 0
1 1 1 CBA 0 0 0 0 0 0 0 1

CHECK YOUR PROGRESS-V
17. An n-bit decoder can have ____ output lines
18. Determine the logic expression for the input 0111 by producing
HIGH level on the output

2.9.7 Encoders

An encoder is essentially a combinatorial logic circuit that does the
opposite of a decoder. An encoder accepts an active level from one
of its inputs representing a number such as decimal or octal and
converts it to a coded output such as BCD and binary. You can
devise an encoder for encoding various symbols or characters. The
process of converting the familiar symbols and numbers into a
coded form is called encoding.

2.9.7.1 Decimal to BCD Encoder

As shown in Figure 2.33, this form of encoder has 10 inputs, one for
each decimal digit, and four outputs that correspond to the BCD
code. This is a simple ten-to-four line encoder.

Figure 2.33 Logic symbol for a decimal to BCD encoder

Space for learners:

72 | P a g e

Table 2.7 lists the BCD (8421) code. To evaluate the logic, you can
use this table to explore the relationship between each BCD bit and
the decimal digits. For instance, the most significant bit of the BCD
code, A3, is always a 1 for decimal digit 8 or 9. An OR expression
for bit A3 in terms of the decimal digits can therefore be written as
A3 =8+9. Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 can be
expressed as an OR function as follows:
A2 = 4+5+6+7
Bit A1 is always 1 for decimal digit 2, 3, 6, or 7 and can be
expressed as
A1 = 2+3+6+7
Finally, A0 is always a 1 for decimal digits 1, 3, 5, 7, or 9. The
expression for A0 is
A0 = 1+3+5+7+9

Table 2.9: Decimal to BCD encoder truth table

Decimal
Digit

BCD code

A3 A2 A1 A0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

Let us now use the logic expression we just generated to implement
the logic circuitry required for encoding each decimal digit to a
BCD code. Each BCD output is easily formed by ORing the
relevant decimal digit input lines. Figure 2.34 depicts the basic
encoder logic that results from these expressions. The circuit in
Figure 2.34 has the following fundamental operation: The
appropriate levels are displayed on the four BCD output lines when
HIGH occurs on one of the decimal digit input lines. If input line 9
is HIGH (and all other input lines are LOW), for instance, this

Space for learners:

73 | P a g e

condition will result in HIGH on outputs A0 and A3 and LOW on
outputs A1 and A2, which is the BCD code (1001) for decimal 9.

Figure 2.34 BCD encoder logic circuit

STOP TO CONSIDER
● Encoders perform the reverse operation of the decoders
● Encoders convert familiar symbols or numbers to coded

forms.
● An encoder having 2n input lines in the input will have n

output lines in the output.

2.9.8 Multiplexers

The multiplexer (MUX) is a device that allows digital information
from multiple sources to be routed to a single line for transmission
over that line to a common destination. The basic multiplexer has
several data input lines and one output line. It also has a data select
input, allowing you to change digital data from any input to the line
out. The multiplexer is also called a data selector.
Figure 2.35 shows a logic symbol for a 4-input multiplexer (MUX).
Because there are two data select lines, any one of the four data
input lines can be picked with two select bits.

Space for learners:

74 | P a g e

Figure 2.35 Logic symbol of a 4-input multiplexer

In Figure 2.35, a 2-bit code on the data-select (S) inputs will allow
the data on the selected data input to pass through to the data output.
If a binary 0 (S1=0 and S0=0) is applied to the data-select lines, the
data on input D0 appear on the data-output line. If a binary 1 (S1=0
and S0=1) is applied to the data-select lines, the data on input D1
appear on the data output. If a binary 2 (S1=1 and S0=0) is applied,
the data on D2 appear on the output. If a binary 3 (S1=1 and S0=1) is
applied, the data on D3 are switched to the output line. A summary
of this operation is shown in Table 2.8.

Table 2.10: 4 to 1 line multiplexer truth table
Data select inputs

Input selected S1 S0

0 0 D0
0 1 D1

1 0 D2

1 1 D3

Let′s have a look at the logic circuits that this multiplexing process
requires. The status of the selected data input is replicated in the
data output. As a result, you can construct a logic expression for the
output from the data input and the inputs you choose.

The data output is equal to D0 only if S1=0 and S0=0; Y= D0S′1S′0
The data output is equal to D1 only if S1=0 and S0=1; Y= D1S′1S0

The data output is equal to D2 only if S1=1 and S0=0; Y= D2S1S′0

The data output is equal to D3 only if S1=1 and S0=1; Y= D3S1S0

When these terms are ORed, the total expression for the data output
is

75 | P a g e

Y = D0S′1S′0 + D1S′1S0 +D2S1

The implementation of this e

gates, a 4-input OR gate, a

complements of S1 and S0 as

can be selected from any one o

referred to as a data selector.

Figure 2.36 Circuit dia

STOP TO

● Multiplexers are also kn

● A 4-input data lines mul

● A 8-input data lines mul

● A 2
n
 input data lines mu

● The output depends on t

2.9.9 Demultiplexer

The demultiplexer (DEMUX)

function. It takes digital inform

to a specified number of outpu

is also called a data distributor

also be used as a demultiplexer.

1S′0 + D3S1S0

this equation requires four 3-input AND

ate, and two inverters to generate the

as shown in Figure 2.36. Because data

 one of the input lines, this circuit is also

cuit diagram of 4-to-1 multiplexer

P TO CONSIDER

lso known as data selectors.

es multiplexer has two select lines.

es multiplexer has three select lines.

es multiplexer has n select lines.

ds on the input data and select lines bits.

UX) basically reverses the multiplexing

information from one line and distributes it

 output lines. Therefore, the demultiplexer

ributor. As you will learn, the decoder can

plexer.

Space for learners:

Space for learners:

76 | P a g e

A 1-to-4-line demultiplexer (DEMUX) circuit is shown in Figure
2.37. The data-input line is connected to all AND gates. Only one
gate is enabled at a time by the two data-select lines, and data on the
data-input line passes via the selected gate to the associated data
output line.

Figure 2.37 Circuit diagram of a 1-to-4 line demultiplexer

Table 2.11: 1 to 4 line demultiplexer truth table
Select code Outputs

S1 S0 D3 D2 D1 D0

0 0 0 0 0 I
0 1 0 0 I 0
1 0 0 I 0 0
1 1 I 0 0 0

The algebraic expressions for the functions shown in Table 2.9 are:
D0 = IS′1S′0

D1 = IS′1 S0

D2 = IS1S′0

D3 = I S1 S0

Space for learners:

77 | P a g e

CHECK YOUR PROGRESS-VI
19. Demultiplexer basically ______ the multiplexing function.
20. In demultiplexer only _____ gate is enabled at a time by the
data-select lines.
21. Data on the data-input line passes via the selected gate to the
associated data _____ line.

2.10 SUMMING UP

● AND-OR logic produces an output expression in SOP form
● AND-OR-Invert logic produces a complemented SOP form,

which is actually a POS form.
● Combinational circuits are designed either using Boolean

expression or truth tables.
● The operational symbol for exclusive-OR is ⊕. An

exclusive-OR expression can be stated in two equivalent
ways: AB′+A′B=A⊕B

● To do an analysis of a logic circuit, start with the logic
circuit, and develop the Boolean output expression or the
truth table or both.

● Implementation of a logic circuit is the process in which you
start with the Boolean output expressions or the truth table
develop a logic circuit that produces the output function.

● Minimization of Boolean expressions should be tried before
implementing a logic circuit.

● NAND and NOR gates are called universal logic gates.
● All NAND or NOR logic diagrams should be drawn using

appropriate dual symbols so that bubble outputs are
connected to bubble inputs and non-bubble outputs are
connected to non-bubble inputs.

● When two negation indicators (bubbles) are connected, they
effectively cancel each other.

● The basic logic functions are comparison, arithmetic, code
conversion, decoding, encoding, data selection, storage, and
counting.

● Addition, subtraction, multiplication, division, encoding,
decoding, multiplexing, demultiplexing, etc. are the
functionalities of the combinational logic circuits.

Space for learners:

78 | P a g e

● To perform the addition operation half-adder, full-adders,
parallel adders are used.

● Half-adders can be combined to design the full-adders.
● Ripple carry and look-ahead carry are the examples of

carries seen in the adder circuits.
● Comparator circuits are used to compare any two binary

numbers and MSB are given more precedence while
comparing two binary numbers.

● Subtractor circuits also have a similar design like the adder
circuits.

● Encoder and decoder are the code converter circuits, they
perform reverse operation with each other.

● Multiplexer and demultiplexer are data selector and data
distributor, they also perform reverse operation with each
other.

2.11 KEY TERMS

● SOP: Sum of Product expressions
● POS: Product of Sum expressions
● Half-adders: add two binary numbers and produce sum and

carry in the output.
● Full-adders: add two binary numbers with input carry and

produce sum and carry in the output.
● Half-subtractor: subtract binary numbers and produce

difference and borrow out.
● Full-subtractor: subtract two binary numbers with borrow

in and produce difference and borrow out.
● Comparators: Compare two binary numbers
● Decoders: Detect the specific combination of bits in the

input.
● Encoders: An encoder converts understandable alphabet to

numbers into the coded forms.
● Multiplexers: Multiplexers are the data selectors.

Multiplexers transmit data coming from different sources
over a single line.

● Demultiplexers: Demultiplexers show the reverse operation
of multiplexers. It takes digital data from a single line and
distributes them in several lines.

Space for learners:

79 | P a g e

2.12 ANSWERS TO CHECK YOUR PROGRESS

1. Product of Sum
2. Sum of Product
3. A′B+AB′
4. One (one 3-input AND gate)
5. Two
6. Two
7. Four
8. Three
9. False
10. False
11. True
12. True
13. True
14. True
15. True
16. True
17. 2n
18. I′3I2I1I0
19. Reverses
20. One
21. Output

2.13 POSSIBLE QUESTIONS

Short answers type questions

1. Determine the output (1or 0) of a 4-variable AND-OR-
Invert circuit for each of the following input conditions:

a. A=1, B=0, C=1, D=0
b. A=1, B=1, C=0, D=1
c. A=0, B=1, C=1, D=1

2. Draw the logic diagram for an exclusive-NOR circuit.
3. Determine the output of an exclusive-OR gate for each of the

following input conditions:
a. A=1, B=0
b. A=1, B=1
c. A=0, B=1
d. A=0, B=0

4. Implement the following boolean expressions:
a. Y = ABC+AB+AC
b. Y = AB(C+DE)

5. Reduce Question 4 to minimum SOP form.

Space for learners:

80 | P a g e

6. Use NAND and NOR gates or combination of both to
implement the following logic expressions:

a. Y = A′B+CD+(A+B)′(ACD+(BE)′)
b. Y = ABC′D′+DE′F+(AF)′

7. Find out the full adders input for the following set of
outputs:

a. Σ =0 ,Cout=0
b. Σ =1 ,Cout=0
c. Σ =1 ,Cout=1

8. Implement the expression Y = ((A′+B′+C′)DE)′ using
NAND logic.

9. Implement the expression Y = ((A′B′C′)+(D+E))′ using
NOR logic.

10. Develop a logic circuit that produces a 1 on its output only
when all three inputs are 1s or when all three inputs are 0s.

Long answers type questions:

1. Define combinational logic circuits. Explain the various
components used to design the combinational logic circuits.

2. Design combinational logic circuit for the following
expression

Y = AB(C+DEF)+CE(A+B+F)
3. Develop the truth table for a certain 3-input logic circuit with

the output expression
Y = AB′C+A′BC+A′B′C′+ABC′+ABC

4. Develop truth for the following expressions and draw the
circuits:

a. A′B+ABC′+(AC)′+AB′C
b. P′+QR′+ SR+PQ′R

5. From the following truth table draw the logic circuit in
minimized form

Inputs Output
Y

A B C

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1

Space for learners:

81 | P a g e

1 1 0 0
1 1 1 1

6. Design a 6-bit parallel adder.
7. Design a 4-to-2 line encoder using logic gates.
8. Design a 8-to-1 line multiplexer using logic gates
9. Design a 4-to-16 line decoder using logic gates
10. Design a 1-to-8 line demultiplexer using logic gates
11. Design an adder-subtractor circuit.

2.14 REFERENCES AND SUGGESTED READINGS

1. Mano, M. Morris, Digital Logic and Computer Design,
Pearson Education.

2. Mano, M. Morris, Computer System Architecture, Pearson
Education.

3. Jain, R. P., Modern Digital Electronics, Mc Graw Hill India.

82 | P a g e

Space for learners: UNIT-3: COMPUTER ARITHMETIC

Unit Structure:

3.1 Introduction
3.2 Unit Objectives
3.3 Multiplication of Numbers

3.3.1 Multiplication of Unsigned Numbers
3.3.2 Multiplication of Signed Numbers
3.3.3 Hardware Implementation of Multiplication Operation
3.3.4 Booth’s Multiplication Algorithm

3.4 Division Operation
3.5 Floating Point Arithmetic Operations

3.5.1 Addition/Subtraction of two Floating point numbers
3.5.2 Multiplicationof two Floating point numbers

3.6 Summing Up
3.7 Possible Questions
3.8 References and Suggested Readings

3.1 INTRODUCTION

A separate section in central processing unit used to execute
arithmetic operations is called arithmetic processing unit. The
arithmetic instructions are performed generally on binary or decimal
data. Fixed-point numbers are used to represent integers or fractions.
We can have signed or unsigned negative numbers. Fixed-point
addition is the simplest arithmetic operation. In digital computers
data is manipulated by using arithmetic instructions. Data is
manipulated to produce results necessary to give solution for the
computation problems. The addition, subtraction, multiplication and
division are the four basic arithmetic operations. We can derive
some other operations by using these four operations.

83 | P a g e

Space for learners: 3.2 UNIT OBJECTIVES

This unit is an attempt to give an idea of multiplication and division
of numbers in digital computer. After going through this unit you
will be able to-

• understand the multiplication operation
• understand the division operation
• explain the floating-point arithmetic operation

3.3 MULTIPLICATION OF NUMBERS

Multiplication of two fixed point unsigned binary numbers can be
done by a process of successive shift and add operations. But the
multiplication of two fixed point signed binary numbers in 2’s
complement representation requires special consideration.

3.3.1 Multiplication of Unsigned Numbers

Multiplying unsigned numbers in binary is quite easy. We already
know that with 4 bit numbers we can represent numbers from 0 to
15.

For Multiplication of binary numbers only we have to remember the
number facts: 0*1=0 and 1*1=1 (this is the same as a logical
"and").

Multiplication is different than addition. Multiplication of an n bit
number by an m bit number results in an n+m bit number. Let's
discuss with an example where n=m=4 and the result of
multiplication is 8 bits:

84 | P a g e

Space for learners: Example 1:

Decimal Binary

 10

x 6

60

1010(Multiplicand)

x 0110(Multiplier)

0000

1010 Partial Product

1010

+0000

0111100 (Product)

In this case of binary multiplication the result is 7 bit, which can be

extended to 8 bits by adding a 0 at the left.

Example 2:

Decimal Binary

7

x 6

42

0111

x0110

0000

0111

0111

+0000

0101010

3.3.2 Multiplication of Signed Numbers

For multiplying binary integers in signed 2’s complement

representation requires special consideration.

Example 3:

Decimal Binary

7

x -6

-42

0111

x1010 (2’s complement)

0000

0111

0000

+0111

1000110 (The result is incorrect)

So, there is an error

85 | P a g e

Space for learners: Solution: We must sign extend to the product bit width. The
additional values out to the MSB position are called sign extension.

Decimal
Number

3 bits 4 bits 8 bits 12 bits

6 110 0110 0000 0110 0000 0000
0110

-6 110 1110 1111 1110 1111 1111
1110

7 111 0111 0000 0111 0000 0000
0111

-7 111 1111 1111 1111 1111 1111
1111

As we know that multiplication of two 4 bit numbers results in8 bits.
So for signed multiplication of two 4 bit numbers we must sign
extent the numbers to the product bit width i.e, 8 bits.

Example 4:

Decimal Binary
 7
x -6
 -42

 0111
x 1010

After Sign extension
 00000111
x 11111010
00000000
00000111
00000000
00000111
10000111
00000111
00000111
+00000111_______
 |11010110 (2’s complement of 42)
Stop after 8 bits

So the result is correct

86 | P a g e

Space for learners:

3.3.3 Hardware Implementation of Multiplication Operation

The multiplier and multiplicand are stored in two registers Q and M.
A third register A is initially set to 0. A 1-bit register C is used to
store the carry bit resulting from addition. Control logic reads the bit
of the multiplier one at a time. The multiplicand is added to the
register A if Q0 is 1 and then stored the result back to register A with
C bit is used to store carry. Then all the bits of CAQ are shifted one
position right. No addition is performed if Q0 is 0. The process is
repeated for each bit of the multiplier. The resulting 2n bit product is
the contained in QA register

Figure 1: Hardware for Multiplication Operation

3.3.4Booth’s Multiplication Algorithm

Booth’s algorithm gives a procedure for multiplying binary integers
in signed 2’s complement representation.

CHECK YOUR PROGRESS-I

1. Do the binary multiplication of (-7) and (-6)
2. Do the binary multiplication of (-7) and (-6)

87 | P a g e

Space for learners: Figure 2: Flow chart of Booth’s Algorithm for multiplication of
signed numbers

Example 5:

Here, number of bits (n) required for this calculation is 4 bits (1 bit
to represent the sign and 3 bits to represent the numbers). Since 6
can be represented using 3 bits and negative sign is represented
using 1 bit.

Decimal
 - 6 (Multiplicand)
 x 3 (Multiplier)
 - 1 8 (Product)

88 | P a g e

Space for learners: So, the size of registers M, Q, A(Accumulator) is 4 bits and register
q0 is 1 bit.

M=(-6)10

= 2’s complement of (0110)2

= (1010)2

-M = (0110)2

Q = (3)10 =(0110)2 = Q (q4q3q2 q1)

Operations:

(i) If q1q0 bits are 1 0 then then do A = A – M = A + (-M)
(ii) If q1 q0 bits are 0 1 then then do A = A + M
(iii) Otherwise Arithmetic Shift Right of (A Q q0) is done.

Suppose (A Q q0) = (0 1 1 0 0 0 1 1 0)

Then ASR will yield the result = (0 0 1 1 0 0 0 1 1).
Here sign bit(MSB) is restored and all bits (including the
sign bit) is shifted one position right.

TABLE 1: Multiplication of Example 5 using Booth’s Algorithm

n A Q
(q4 q3 q2

q1)

q0 Action/Comment

4

3
2

1
0

0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

0 0 1 1
0 0 1 1
0 0 0 1
1 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

0
0
1
1
1
0
0

Initialization
A = A – M

ASR of (A Q q0)
ASR of (A Q q0)

A = A + M
ASR of (A Q q0)
ASR of (A Q q0)

Result is content of AQ i.e, 1 1 1 0 1 1 1 0

Here, LSB (Sign bit) is 1 so the result is –ve.

89 | P a g e

Space for learners: Therefore result: - (2’s complement of 1 1 1 0 1 1 1 0) = - (0 0 0 0 1
0 0 1 0)= - (18)10

3.4 DIVISION OPERATION

The division operation involves repetitive shifting and addition or
subtraction.

First, the bits of the dividend are examined from left to right to
search a number greater than or equal to the divisor. Until this event
occurs, 0s are placed in the quotient from left to right. When such a
number is found and the divisor divides the number, a 1 is placed in
the quotient and the divisor is subtracted from the partial dividend.
The result is referred to as a partial remainder. In the subsequent
cycle, additional bits from the dividend are appended to the partial
remainder until the result is greater than or equal to the divisor. The
divisor is subtracted from this number to produce a new partial
remainder. The process continues until all the bits of the dividend
are exhausted.

3.5 FLOATING-POINT ARITHMETIC OPERATIONS

Arithmetic operations on floating point numbers are addition,
subtraction, multiplication and division.

A floating point number can be represented as m x re, where m is
called mantissa, r is called radix and e is called exponent part. In
computer memory two registers: mantisa and exponent is used to
represent a floating point number.

SAQ

1. Do the binary multiplication of -7 and 3 using Booth’s
Algorithm.

CHECK YOUR PROGRESS-II

3. Divide 1001 by 11
4. Divide 111000 by 111

90 | P a g e

Space for learners: For example, the decimal number 423.75 can be represented in a
register with m=42375 and e=3 and is interpreted to represent the
floating point number

. 42375 x 103

3.5.1 Addition/Subtraction of two Floating point numbers:

Steps to add/subtract two floating point numbers are as discussed
below:

(i) Alignment: Compare the magnitudes of two exponents
and align the number with smaller magnitude of
exponents

(ii) Addition/Subtraction: Addition or subtraction is done
following the addition or subtraction rules.

(i) Normalize the result: If MSB of mantissa part of the
product is 1, the product is already normalized. If it is 0
underflow occurs and the mantissa of the product is
shifted left and decrement the exponent value. If
overflow occurs, mantissa is shifted right and exponent is
incremented

Example 6: Add 1.1010 x 24and 1.101x 22

Solution:

Step (i),Here 1.101 x 22 is aligned to 0.01101 x 24.

Step (ii), Add the two numbers 1.1010 x 24 and 0.01101 x 24 to get
10.00001 x 24

Step (iii),Result = 10.00001 x 24. So, overflow in the result.

After normalization the result is 0.1000001 x 26

SAQ

1. Add 1.1100 x 24and1.100 x 22.

91 | P a g e

Space for learners: 3.5.2 Multiplication of two Floating point numbers:

(ii) Add the exponents: Exponents of two numbers are
added to get the exponent of the product.

(iii) Multiply the mantissas: Multiplication of mantissas are
done following multiplication rule.

(iv) Normalize and round the result: Overflow cannot
occur during multiplication. If MSB of mantissa part of
the product is 1, the product is already normalized. If it is
0, then the mantissa of the product is shifted left and
decrement the exponent value.

Example 7: Multiply 1.000 x 2-2and 1.010x 2-1

Solution:

Step (i), (-2) + (-1)=-3, this is the exponent value of the product.

Step (ii), Multiply the mantissas: 1.000 x (1.010) = 1.010000

Step (iii),Result = 1.010000 x 2-3

Underflow in the result. So after normalization result is = 0.10000 x
2-2

3.6 SUMMING UP

 Procedure to do multiplication of signed and unsigned
number is different.

 Multiplication of two fixed point unsigned binary numbers
can be done by a process of successive shift and add
operations.

STOP TO CONSIDER

In floating point multiplication if either operand is equal to zero,
the product is set to zero and operation is terminated. Procedure
for arithmetic operations on floating point numbers is different
than integers.

92 | P a g e

Space for learners:  Multiplication of signed numbers can be done using Booth’s
Algorithm.

 The multiplier and multiplicand are stored in two registers Q
and M.

 The division operation involves repetitive shifting and
addition or subtraction.

 Arithmetic operations on floating point numbers is done in a
different way.

3.7POSSIBLE QUESTIONS

1. Perform binary multiplication of -8 and -3 using sign
extension method

2. Perform binary multiplication of 9 and -4 using Booth’s
Algorithm.

3. Write the steps of Booth’s Algorithm.
4. Discuss the hardware implementation of multiplication

operation.
5. Write the steps of division operation.
6. How the alignment and normalization is done in addition of

two floating point numbers?

3.8REFERENCES AND SUGGESTED READINGS

1. Computer System Architecture, M. Morries Mano

93 | P a g e

Space for learners: UNIT4: REGISTER TRANSFER LANGUAGE AND

 PROCESSOR LOGIC DESIGN

Unit Structure:

4.1Introduction

4.2Unit Objectives

4.3Register Transfer Language

 4.3.1 Representation of Registers

 4.3.2 Register Transfer Representation

 4.3.3 RTL Representation of Memory Transfers

4.4Datapath

 4.4.1 One-Bus Datapath

 4.4.2Two-Bus Datapath

 4.4.3 Three-Bus Datapath

4.5ALU Design

 4.5.1 Arithmetic Circuit

 4.5.2 Various Arithmetic Micro-operations

 4.5.3 Logic Circuit

 4.5.4 Some Applications of Logic Micro-operations

 4.5.5 Shift Micro-operations

4.6Control Unit

 4.6.1 General Model of the Control Unit

 4.6.2Hardwired Control Unit

 4.6.3Microprogrammed Control Unit

4.7Summing Up

4.8Answers to Check Your Progress

4.9Possible Questions

4.10References and Suggested Readings

4.1 INTRODUCTION

As you know, all the operations or instructions in a digital

computer are carried out by a processor with the help of various

other interconnected modules. The elementary operations are also

called as micro-operations that are performed on the data stored on

the processor registers. This unit contains the fundamentals of

micro-operations and the language used to represent various

micro-operations which is known as Register Transfer Language

94 | P a g e

Space for learners: (RTL), the concept of Datapaths and other significant parts of the

Central Processing Unit (CPU) such as the Arithmetic and Logic

Unit (ALU) where you will be able to understand the functioning of

the Arithmetic Circuit and Logic Circuit and lastly in the Control

Unit (CU) part, you will be able learn the design of CU and its

functionalities and also about alternative designs of the CU -

hardwired and micro-programmed control unit.

4.2 UNIT OBJECTIVES

After completing this unit, you will be able to learn:

 The concepts Micro-operation and representation of Register

and uses of Register Transfer Language (RTL)

 Concepts of one-bus, two-bus and three-bus organization

 Concepts related to ALU (basic design of Arithmetic Circuit

and Logic Circuit)

 Concept of the Control Unit (Micro-programmed and

Hardwired Control Unit)

4.3 REGISTER TRANSFER LANGUAGE

The internal hardware organization of a digital computer exhibits an

interconnection of digital modules such as registers, decoders,

arithmetic logic and control logic etc. The complete digital system

is interconnected with data and control paths commonly known as

bus. The elementary operations performed by the CPU on the data

stored in one or more registers are termed as micro-operations.

clear, count, load and shift are some examples of such micro-

operations.

Various categories of micro-operations:

The most commonly used micro-operations in a digital computer are

listed below-

 Register transfer micro-operations: The micro-operations

that are used to transfer binary information among various

registers.

 Arithmetic micro-operations: The micro-operations that are

used to perform various arithmetic operations (add, subtract,

95 | P a g e

Space for learners: increment, decrement) on arithmetic data stored in the

registers.

 Logic micro-operations: The micro-operations that are

used to perform logical operations (AND, OR, NOT) on the

data stored in the registers.

 Shift micro-operations: The micro-operations that are used

to perform either left or right shift operations (logical,

arithmetic, circular) on the data stored in the registers.

The Register Transfer Language (RTL) is the representation

system used to describe the sequence of micro-operations in a

symbolic form. The term register transfer refers to the transfer of

binary information among the registers via a common path or bus.

4.3.1 Representation of Registers

In a digital computer system the registers are represented using

upper case letters (and followed by a numeral sometimes). PC-

Program Counter, IR- Instruction Register etc. are examples of

special purpose registers and R1, R2, R3… etc. are examples of

general purpose registers. A register is represented by a rectangular

box containing the name inside and the bit numbers can be marked

at the top of the box starting from left to right as shown in figure 4.1

(a) & (b). Each bit of the data stored in the register can be

represented as shown in the figure where each individual bit is

assigned a letter along with a numeral subscript that indicates the

position of the bit. Considering a 16-bit register with bits numbered

from 0 to7 are termed as low byte (L) while the bits from 8 to 15 are

termed as high byte (H) of the register as shown in figure 4.1 (c) &

(d).

A7 A6 A5 A4 A3 A2 A1 A0

A7 A0 R1

A15 A0

(a)

(b)

96 | P a g e

Space for learners:

Fig4.1: Block diagram of Register

4.3.2 Register Transfer Representation

The transfer of contents from one register to another register can be
shown with the help of replacement operator (). For example,
transfer of data from register R1 to register R2 can be symbolically
expressed using the following statement in RTL.

 R2 R1
When this statement gets executed contents of R2 will be replaced
by contents of R1, but the contents of R1 remains unchanged. The
execution of this statement can be controlled by putting some
control condition also. That means when the control condition
satisfies then only the transfer takes place, otherwise not. This is
shown in the following expression:

 If (P = 1) then (R2 R1)
Here, P=1 is the control statement or control function which is a
Boolean variable.

The statement can also be written as

 P: R2 R1
 The colon (:) separates the control condition from the rest.

The hardware implementation of the statement P: R2 R1 is
shown below:

H L

R2

A15 A8 A7 A0

(c)

(d)

97 | P a g e

Space for learners:

Fig4.2: Hardware implementation of P: R2 R1

4.3.3 RTL Representation of Memory Transfers

Data flow from memory to external environment is known as
memory read operation while data from external environment is
stored in memory is referred to as memory write operation. In RTL,
the memory word is symbolized by the letter M followed by square
brackets [] having the address of the memory word. For example,
transferring a data word M from memory whose address is stored in
Address Register (AR) to Data Register (DR) can be symbolized as:
 Read: DR ←M[AR]
Similarly, the write operation can be symbolized as:
 Write: M[AR] ← R1
which means transfer of data from register R1to the memory word M
whose address is stored in the Address Register (AR).

CHECK YOUR PROGRESS-I

1. The operations executed on data stored on registers are
called _______________.
a) macro operations b) micro operations
c) Byte Operations d) Bit Operations

2. Which of the following register transfer statements is
correct?
a) P, R1←R2b) P : R1←R2 : R3←R4
c) P : R1←R2, R3←R4 d) None of the these

 3. What does the following transfer statement indicate?
 R2 ← M[R1]

a) Read a memory word at the address stored in R1
b) Read a memory word at the address stored in R2
c) Write a memory word at the address stored in R1
d) Write a memory word at the address stored in R2

98 | P a g e

Space for learners:

4.4 DATAPATH

The Central Processing Unit of a digital computer can be divided
into a data section and a control section. The data section, also
called as data path, contains the registers and the Arithmetic Logic
Unit (ALU) and the Buses. There are three types of buses- Address
bus, Data bus and Control bus. The data path is accomplished for
performing certain operations on data items stored in various
memory units. The control section is basically comprised of the
control unit, which issues various control signals to the data path.
Internal data (which may be data, instructions or addresses) transfers
are carried out via local buses. Externally, data transfer from
registers to memory and Input-Output devices, often carried out by a
system bus. The local bus organization to perform internal data
transfer among registers and the ALU may be of different
organizations like one-bus, two-bus, or three-bus organization.

4.4.1 One-Bus Datapath

In this organization, the CPU registers and the ALU use a single bus
to transfer data. This bus organization is least expensive and
simplest in design, but it restricts the amount of data transfer that
can be done in the same clock cycle, which results in decrease of
overall performance of the system. Figure 4.3 shows a one-bus data
path organization comprising of a set of general-purpose registers, a
memory address register (MAR), a memory data register (MDR), an
instruction register (IR), a program counter (PC), and an ALU, all
are interconnected via a single data path.

4. State TRUE or FALSE:
a) Considering a 16-bit register the bits numbered

from 0 to7 are termed as low byte (L).
b) Shift micro-operations are used to perform various

logical (AND, OR, NOT) operations.
c) A register transfer can’t occur unless the specified

control condition becomes true.

99 | P a g e

Space for learners:

Fig4.3: One-bus data path

4.4.2 Two-Bus Datapath

In two-bus organization, two buses are used which results a faster
performance than the one-bus organization. In this case, the general-
purpose registers are connected to both the buses. Data can be
transferred from two different registers to the input point of the
ALU at the same time. Therefore, an operation having two operands
can fetch both operands in the same clock cycle. There may be a
need of an additional buffer to hold the output of the ALU when the
two buses remain busy in carrying the two operands. Figure (4.4-a)
shows a two-bus organization. There may be another
implementation of two bus organization where one of the buses is
dedicatedly used for moving data into registers (in-bus), while the
other bus is dedicatedly used for transferring data out of the registers
(out-bus). For this purpose, the buffer register may be used
additionally, as one of the ALU inputs, to hold one of the operands.
The ALU output can be connected directly to the in-bus, which
transfers the result to one of the registers. A two-bus organization
with in-bus and out-bus is shown in Figure (4.4-b).

(a)

100 | P a g e

Space for learners:

(b)

Fig4.4 :(a) Two bus data path(b) Two bus data path with in-bus and out-
bus

4.4.3 Three-Bus Datapath

In case of three-bus organization, two buses may be used as source
buses whereas the third bus is used as destination. The source buses
are used to transfer data out from registers (out-bus), and the
destination bus may be used to transfer data into a register (in-bus).
Each of the two out-buses is connected to an ALU input point and
the output of the ALU is connected directly to the in-bus. As we
have more buses in this organization, more data can be transferred
within a single clock cycle. However, increasing the number of
buses also increases the complexity as well as cost of the hardware.
Figure (4.5) shows the organization of a three-bus data path.

Fig 4.5 : Three-bus data path

101 | P a g e

Space for learners:

4.5 ALU DESIGN

The arithmetic and logic unit (ALU) is a combinational circuit in a
digital computer which performs the following operations-

 Arithmetic operations such as add, subtract, increment and
decrement etc.

 Logic operations such as AND, OR, XOR and compliment
etc.

 Bit Shifting operations such as logical left and right shift
used for multiplication purpose.

Therefore, we can say ALU is the combination of arithmetic unit,
logic unit and shift unit all the three circuits together. It is usually a
part of the central processing unit (CPU). Many CPUs have separate
units for arithmetic operations (Arithmetic Unit-AU) and for logic
operations (Logic Unit-LU).

4.5.1 Arithmetic Circuit

The 4-bit arithmetic circuit which is shown in Figure 4.6 is able to
perform different basic arithmetic operations such as add, subtract,
increment and decrement. It employs parallel full adders (FA) to
perform these operations depending on the inputs. The select inputs
S0 and S1 are used to provide different inputs to the multiplexers
(MUX) present in the circuit in order to obtain different arithmetic
operations as outputs.

CHECK YOUR PROGRESS-II

5. The data section of the CPU is also known as ________.
6. In-bus, out-bus organization is related to ____________.
 a) one-bus data path b) two-bus data path
 c) three-bus data path d) None of these.
7. In __________ all the General Purpose Registers (GPR),
Special Purpose Registers (SPR) and the ALU are connected
via a single data path.
 a) one-bus data path b) two-bus data path
 c) three-bus data path d) None of these.
8. Two-bus data path is more efficient than Three-bus data
path. (State TRUE or FALSE)

102 | P a g e

Space for learners: The output of the arithmetic circuit is calculated from the following
arithmetic expression-

 D = A + y + Cin

 Where A is the 4-bit number (A0,A1,A2,A3) to the x input
(X0,X1,X2,X3) of the full adders, y is the 4-bit number (the outputs
from the multiplexers) to the y inputs (Y0,Y1,Y2,Y3) to the full
adders and Cin is the input carry which is either 0 or 1.

Depending on the values of S0, S1and Cin, the arithmetic circuit
performs eight different microoperations as listed in the function
table shown in Table 4.1.

Let’s consider a few cases for better understanding the functioning
of the arithmetic circuit.

CASE I:S1= 0 andS0 = 0

In this situation, the input pins of multiplexers I0(i.e. the bits of B)
are chosen as the output and as a result B directly goes to they
inputs of the full adders (FA). i.e. y = B. Now, if Cin= 0 then the
output becomes D = A + B and if Cin= 1 then D = A + B +
1. This is how add microoperation is performed.

CASE II:S1= 0 andS0 = 1

In this situation, the input pins of multiplexers I1 (i.e. the
complimented bits of B) are chosen as the output and as a resultBഥ
goes to the y inputs of the full adders (FA). i.e. y = Bഥ. Now, if
Cin= 0 then the output becomes D = A+Bഥwhich is equivalent to D
= A-B–1 and if Cin= 1 then D = A+Bഥ+1 which is equivalent
to D = A-B. This is how subtract microoperation is performed.

CASE III:S1= 1 andS0 = 0

In this situation, the input pins of multiplexers I2 (connected to logic
0) are chosen as the output and as a result0 goes to the y inputs of
the full adders (FA). i.e. y = 0. Now, if Cin= 0 then the output
becomes D = A+0 i.e. D = A which means transfer operation is
done from A to Dand if Cin= 1 then D = A+1 which means
increment operation is performed.

103 | P a g e

Space for learners: CASE IV:S1= 1 andS0 = 1

In this situation, the input pins of multiplexers I3 (connected to logic
1) are chosen as the output and as a result 1 goes to the all y inputs
of the full adders (FA) and we know that if all bits of a number are 1
then it’s equivalent to -1. So, y =-1 here. Now, if Cin= 0 then the
output becomes D = A-1 which means decrement operation is
done and if Cin= 1 then D = A-1+1 i.e. D = A which means
which means transfer operation is done from A to D.

Fig 4.6 : A 4-bit Arithmetic Circuit

104 | P a g e

Space for learners: Table 4.1 Function Table of Arithmetic Circuit
Inputs Outputs Microoperations S1 S0 Cin Y D = A + y + Cin

0 0 0 B A + B Add
0 0 1 B A + B + 1 Add with Carry

0 1 0 Bഥ A + BഥorA – B - 1 Subtract with
Borrow

0 1 1 Bഥ A + Bഥ + 1 or A - B Subtract
1 0 0 0 A Transfer A
1 0 1 0 A + 1 Increment A
1 1 0 1 A – 1 Decrement A
1 1 1 1 A Transfer A

4.5.2 Various Arithmetic Microoperations

Add, subtract, increment and decrement are the basic set of
arithmetic microoperations which are described below-

 Add: To add the contents of two or more registers and store
the resultant sum in either one of the registers or in a third
register, this microoperation is used. For example, to add
the contents of two registers R1 and R2 and store the result
in a third register R3, the microoperation can be
symbolized as:

 R3 = R1 + R2

 Subtract: When the contents of one register needs to be
subtracted from another register and store the result in
either one of the registers or in a third register, then this
microoperation is used. The subtraction operation is
implemented through complement and addition operation.
For example, to subtract the contents of register R2 from
register R1and store the result in a third register R3, the
microoperation can be symbolized as:

 R3 = R1 +R2 + 1 [Equivalent to R3=R1-R2]

Here, first we take the complement of R2, add 1 to it and
then the content of R1is added to it. In other words, the 2’s
complement of R2 is added with R1 in order to carry out
R1-R2 operation.

105 | P a g e

Space for learners:  Increment: This type of microoperation is used to increase
the contents of a register by 1. For example, to increase the
contents of register R1 by one the symbolic microoperation
will be:

 R1= R1 + 1

 Decrement: This type of microoperation is used to
decrease the contents of a register by 1. For example, to
decrease the contents of register R1 by one the symbolic
microoperation will be:

 R1= R1 – 1

4.5.3 Logic Circuit

The basic logic circuit of the ALU performs various logic
microoperations such as AND, OR, XOR and Compliment at bit-
level.

Fig 4.7: Single stage of Logic Circuit with Function Table

Fig 4.7 shows the hardware implementation for four common logic
microoperations. The circuit is consisting of a 4×1 multiplexer with
four inputs (I0, I1, I2 and I3) and two select pins (S0 and
S1) to perform one of the four logic microoperations and direct it as
the output Ei as shown in the function table.

106 | P a g e

Space for learners:

4.5.4 Some Applications of Logic Micro operations

The basic logic operations (AND, OR, NOT, XOR) can be applied

to achieve various operations like set, clear, masking and inserting

new bits etc. Let’s discuss such common applications here-

 Selective-set: To set selected bits in register R1to 1 where

there are corresponding 1’s in register R2. The 0’sare not

considered. For example, before operation if R1=0011 and

R2=0101then after selective-set operation the contents of

R1will be 0111.This operation is achieved by the OR

logic micro-operation, for above example this will be

symbolized as:R1← R1∨ R2

 Selective-clear: This operation clears those bits in register

R1to 0 where there are corresponding 1’s in registerR2.

For example, before operation if R1=0011 and

R2=0101then after selective-clear operation the contents of

R1will be 0010.This operation is achieved by the AND

logic micro-operation with R1and complement of R2, for

above example this will be symbolized as: R1← R1∧ R2

 Selective-complement: This operation complements those

bits in register R1where there are corresponding 1’s in

register R2. For example, before operation if R1=0011 and

R2=0101then after selective-complement operation the

contents of R1will be 0110.This operation is achieved by

the XOR logic micro-operation with R1andR2, for above

example this will be symbolized as: R1← R1⊕ R2

 Mask: This operation clears those bits to 0 in R1 where

there are corresponding 0’s in R2. For example, before

operation if R1=0011 and R2=0101then after mask

operation the contents of R1will be 0001.This operation

is achieved by the AND logic micro-operation with

R1andR2, for above example this will be symbolized as:

R1← R1∧R2

 Clear: To compare the contents of two registers and results

in all 0’s if the contents of both the registers are same. For

example, before operation if R1=0011 and R2=0011then

after clear operation the contents of R1will be 0000.This

107 | P a g e

Space for learners: operation is achieved by the XOR logic micro operation

with R1andR2, for above example this will be symbolized

as: R1← R1⊕R2.Thus, XOR operation can be implemented

to determine whether two binary numbers are equal.

 Insert: This operation is used to insert new group of bits in

a register. To perform this operation, first the unwanted bits

of the register are masked and then OR operation is

performed with the desired value. For example, if

R1=00111100 and we want to insert 0110 in the

rightmost four bits. For this, first we mask the rightmost

four bits which is done by ANDing the contents of R1 with

the value 11110000. After this mask operation we get

R1=00110000. Now the contents of R1 are ORed with the

desired value (00000110) and after this operation we get

R1 = 00110110. Thus, the new bits (0110) are inserted

at the rightmost four bits.

4.5.5 Shift Microoperations

The shift microoperations move the contents (bits) of a register

either to the left or to the right. There are three types of shift

microoperations: arithmetic, logical and circular shifts. Let’s

discuss them one by one here.

 Arithmetic Shift: It shifts a signed binary number either to

left or right without changing the sign of the number. To

understand the arithmetic shift operation, let’s consider a n-

bit signed binary number bn-1, bn-2,……, b1, b0 where

bn-1 denotes the sign bit and bn-2 denotes most significant

bit (MSB) and b0 denotes the least significant bit (LSB).

 The arithmetic shift operations can be symbolized as:

108 | P a g e

Space for learners: R1←ashr R1[1-bit arithmetic shift right R1]

 R1←ashl R1[1-bit arithmetic shift left R1]

 In arithmetic shift right operation, as the sign bit

must be kept unchanged; all the bits including the sign bit

are shifted to the right. So, the rightmost bit is lost. The bn-1

remains the same, while bn-2is replaced by bn-1, bn-3 is

replaced by bn-2, and so on and at last b0 is lost.

 In arithmetic shift left operation, all the bits are

shifted to the left and a 0 is inserted in the previous b0 bit

position. The original value of bn-1 is lost as it is replaced by

bn-2;bn-2is replaced by bn-3 and so on. After this operation

if the value of bn-1 changes, then a sign reversal occurs

which happens because of overflow which occurs if bn-

1≠bn-2 before the shift operation. The overflow condition

can be checked by XORing the bit bn-1 with bit bn-2. If the

XOR operation results in 1 then there is overflow; otherwise

not.

 Logical Shift: This micro-operation moves the contents

(bits) of a register either to the left or to the right. After left

or right shift the empty/lost(the leftmost or the rightmost) bit

is replaced by a 0. Symbolically they are represented as:

 R1←shr R1[1-bit shift right R1]

 R1←shl R1[1-bit shift left R1]

 Circular Shift: This micro-operation is almost same as the

logical shift, except there is no bit lost occurs here as the

leftmost or rightmost bit which is shifted out at one end is

circulated back to the other end. Symbolically they are

represented as:

 R1←cir R1[1-bit circular shift right R1]

 R1←cil R1[1-bit circular shift left R1]

109 | P a g e

Space for learners:

4.6 CONTROL UNIT

The main unit of the CPU is the control unit (CU) which generates
control signals to the data path to direct the entire system operations.
Data inside the CPU, memory unit and I/O devices are controlled by

CHECK YOUR PROGRESS-III

9.The full form of ALU is ____________________

10.The ALU gives the output of the operations and the output
is stored in the ________.

 a) Memory Devices
 b) Registers
 c) Flags
 d) Output Unit

11. The content of an 8-bit register is initially is 10011100. The
content of the register after an arithmetic right shift operation
will be _________.

 a) 11001110 b) 11001111

 c) 11001101 d) 01001110

12. In arithmetic left shift, overflow occurs when __________.

 a) bn-1=bn-2b)b0=bn-1
 c)bn-1≠bn-2d)b0 ≠bn
13. A digital computer performs which one of the following
microoperations to subtract R2 from R1?

 a) R3 = R1+R2+1 b)R3 = R1-R2
 c) R3 = R1+𝑅2തതതത+1 d)R2= R1-1

14. State TRUE or FALSE:

 a) The ALU performs logic operations only.

 b) XOR operation can be used to check whether the
 contents of two registers are same.

 c) In Circular Shift the bit in either end is circulated
 back to the other end.

110 | P a g e

Space for learners: these control signals issued by the control unit. The CU generally
uses the control bus to carry the control signals to control the data
flow between the CPU and other external units. The two basic tasks
performed by the CU are:

 Sequencing: The CU is responsible for generating a proper
sequence for the microoperations depending on the program
currently being executed by the CPU.

 Execution: The CU causes the execution of micro-
operations by generating control signals for opening and
closing of gates to let the data pass through, while
performing ALU operations.

4.6.1 General Model of the CU

The Control Unit (CU) has inputs that empower it to identify the
state of the system and outputs that empower it to control the
function of the whole system. In addition to input and outputs it
must include the logic required to perform the sequencing and
execution which are the main functions of the CU. Fig 4.8 illustrates
a general model of a control unit consisting of four major inputs:
clock, Instruction Register (IR), flags, and the control signals from
the control bus. The outputs from the CU are: control signals within
CPU and control signals to control bus.

Fig 4.8: General Model of the CU

The inputs of the control unit are described below:

 Clock: The control unit uses a clock to keep track the time
and sequence of microoperation execution. For each clock

111 | P a g e

Space for learners: pulse the control unit executes one microoperation or a set
of concurrent microoperations which can be referred to as
clock cycle time or processor cycle time.

 Instruction Register (IR): Microoperations that are fetched
from the memory are stored in the IR. The opcode part of
the instruction used for decoding the type of instruction to
be executed.

 Flags: These are certain memory units capable of holding
just 1 bit of information that are used to indicate the CU the
current state of the processor and the results of recent ALU
operations.

 Control signals form control bus: Interrupt signals,
acknowledgement signals are such signals that are received
by the CU from the control bus.

The outputs from the CU are described below:
 Control signals within CPU: Two types of control signals

are generated by the CU within the CPU; one of these
causes the register transfers and the other one is used to
activate specific ALU functions.

 Control signals to control bus: Two types of control
signals are generated by the CU to the control bus; one goes
to the I/O modules and another goes to the memory.

The control unit of a digital computer can be implemented in two
alternate ways: hardwired and microprogrammed implementation.
In hardwired implementation the control unit is comprised of logic
gates, decoders, flip-flops and other control signal generating digital
circuits etc. In microprogrammed implementation, the control unit is
comprised of a control memory where the control information is
stored, which is programmed in such a way to initiate proper
sequence of microoperations as required. Let’s discuss both the
implementations one by one.

4.6.2 Hardwired Control Unit

If the control signals are generated by the hardware using
conventional logic design then control unit is said to be hardwired
controlled. Fig 4.9 depicts the block diagram of a hardwired control
unit consisting of a sequence counter (SC) and a number of logic

112 | P a g e

Space for learners: circuits which may include decoders, flip-flops and other control
logic gates.

Fig 4.9 : Hardwired Control Unit

The hardwired organization is very complicated if we have a large
control unit. In this organization, if the design has to be modified or
changed then it requires changes in the wiring among various
components. Thus the modification of all the combinational circuit
may be very difficult.
Advantages:

 It works fast because of the use of combinational circuits to
generate control signals.

 It can be optimized to operate in fast mode.
 It is faster than microprogrammed control unit.

Disadvantages:
 Hardwired control unit is expensive.
 If the design has to be modified or changed then it demands

changes in the wiring among various components.
 The design becomes complex if the number of control points

in the CPU is large.

4.6.3 Microprogrammed Control Unit

A microprogrammed control unit’s design is based on the concepts
of microprogramming. Unlike the hardwired CU where the control
signals are generated via combinational circuits, here control signals
are generated using a sequence of microinstructions that specify the
internal control signals for executing the microoperations. Fig 4.10
depicts the organization of a micro programmed control unit.

113 | P a g e

Space for learners:

Fig 4.10 :Microprogrammed Control Unit

The microprogrammed control unit comprises of four components,
which are described below:

 Control Address Register (CAR):The CAR specifies the
address of the microinstruction that is read from the control
memory. It can also be termed as the microprogram counter
(𝝁𝑷𝑪).

 Control Data Register: Depending upon the address
specified in the CAR the control data register holds the
microinstruction fetched from the control memory. It can
also be termed as microinstruction register (𝝁𝑰𝑹)

 Control Memory: In addition to the main memory, a micro
programmed CU has a separate memory called the control
memory to hold the microinstructions and fixed
microprograms that cannot be changed by a general user.
The control memory can be read only memory (ROM) as
changes in the microprograms are not required once the CU
is under operation.

 Next-address generator: After having executed all the
microoperations generated by a microinstruction, it is
required to find the address of the next microinstruction.
The next-address generator is responsible for computing the
address of the next microinstruction to be executed. This is
why it can be termed as microprogram sequencer.

Advantages:

 The design of a microprogrammed control unit is less
complex.

 It is cheaper as number of hardware units is lesser and less
error prone to implement.

 It can efficiently compute complex functions such as
floating-point arithmetic etc.

114 | P a g e

Space for learners:  It offers more flexibility to modification or change; as the
modification can be brought just by changing the micro-
program residing in the control memory to specify a
different control sequence.

Disadvantages:
 It is slower than the hardwired control unit that means it

requires more time to execute an instruction.
 In case of limited hardware resources it costs more than the

hardwired control unit.
 For smaller CPU, the design duration of microprogrammed

control unit is more than the hardwired control unit.

4.7SUMMING UP

 In a digital computer, the elementary operations are also
termed as micro-operations which are performed on the data
stored on the processor registers.

CHECK YOUR PROGRESS-IV

15. Control Memory is associated with _____________.
a) Hardwired CU b) Microprogrammed CU

 c) Both a) &b) d) None of these
16.Which one is not a function of a Control Unit?
 a) Control Signal b) Execution
 c) Sequencing d) Programming
17.Which one of the followings is also known as
 Microprogram Counter?
 a) Address Register b) Program Counter (PC)
 c) Control Address Register d) Data Register (DR)
 18. State TRUE or FALSE:
 a) Control Data Register is also known as
 Microinstruction Register (𝜇𝐼𝑅).
 b)Microprogrammed CU is faster than Hardwired CU.
 c) Control Signals are carried by Control Bus.

115 | P a g e

Space for learners:  The language used to specify the sequence of
microoperations is known as Register Transfer Language.

 Various types of microoperations are register transfer
microoperations, arithmetic microoperations, logical
microoperations and shift microoperations.

 The data section of the CPU is data path. There are three
types of Buses: address bus, data bus, control bus. One-bus,
two-bus and three-bus are the various types of data path
organization.

 The arithmetic logic unit (ALU) performs arithmetic, logical
and bit-shifting operations using various circuits. Arithmetic
circuit for various arithmetic operations and logic circuit for
logical operations. The shifting operation can be done with
the help of Arithmetic Logic Shift Unit.

 Another major part of the CPU which is the control unit
(CU) responsible for generating control and timing signals to
maintain the proper sequence of microoperation executions.

 The CU can be differentiated based on its design approach as
hardwired CU and micro programmed CU.

4.8 ANSWERS TO CHECK YOUR PROGRESS

1. (a), 2 (c), 3 (a), 4.a True, 4.b False, 4.c True, 5. Datapath, 6. (b),
7. (a), 8. False, 9.Arithmetic Logic Unit, 10. (b), 11. (a), 12. (c), 13.
(c), 14.a False, 14.b True, 14.c True, 15. (b), 16. (d), 17. (c), 18.a
True, 18.b False, 18.c True.

4.9 POSSIBLE QUESTIONS

Short answer type questions:

 What do you mean by RTL? Explain.

 What is control function of an RTL?

 How memory transfers are represented by RTL?

 What is data path? What are its types?

 What are the operations performed by the ALU?

116 | P a g e

Space for learners:  How subtraction operation is performed by the arithmetic
circuit?

 How overflow occurs in arithmetic shift left operation?

 What operations can be performed by the logic circuit of the
ALU?

 What are the functions performed by the CU?

 What are various types of CU available?

 What are the components of a hardwired CU?

 What are the components of a microprogrammed CU?

Long answer type questions:

 Explain the arithmetic circuit with its function table.

 Explain the logic circuit with its function table.

 Explain the general model of the Control Unit? What are the
various types of CU available?

 What is hardwired CU? Discuss its advantages and
disadvantages.

 What is microprogrammed CU? Discuss its advantages and
disadvantages.

 List out various differences between Hardwired and
microprogrammed Control Unit.

4.10 REFERENCES AND SUGGESTED READINGS

 M. Morris Mano, Computer System Architecture, Pearson
Education, Latest edition.

 Express Learning Series- Computer Organization and
Architecture, ITL Education Solutions Limited.

