
(6)

BLOCK II:

MEMORY AND INPUT OUTPUT

ORGANIZATIONS

Unit 1 : Memory Organization

Unit 2 : Cache Memory

Unit 3 : Virtual Memory and Paging

Unit 4 : Basic I/O System-I

Unit 5 : Basic I/O System-II

118 | P a g e

Space for learners: UNIT 1: MEMORY ORGANIZATION

Unit Structure
1.1 Introduction
1.2 Unit Objectives
1.3 Memory Operations
1.4 Memory Chip
1.5 Memory Locations and Addresses

1.5.1 Byte addressability
 1.5.2 Big – Endian and Little – Endian assignments
1.6 Memory hierarchy
1.7 Secondary memory
1.8 Main memory

1.8.1 RAM
1.8.1.1 SRAM
1.8.1.2 DRAM

1.8.2 ROM
 1.8.2.1 PROM
 1.8.2.2 EPROM
 1.8.2.3 EEPROM
1.9 Cache memory
1.10 Virtual memory
1.11 Classification of memory based on the access method
 1.11.1 Sequential access
 1.11.2 Random access
 1.11.3 Direct access
1.12 Memory management hardware
1.13 Solved Examples
1.14 Summing Up
1.15 Answers to Check Your Progress
1.16 Possible Questions
1.17 References and Suggested Readings

1.1 INTRODUCTION

A computer consists of three primary building blocks as input

/output unit, control unit, and memory unit. It is used as a storage

device in a system to store programs or a set of instructions, data,

119 | P a g e

Space for learners: and the intermediate results of arithmetical and logical

computations. Depending on storing strategy the memories are

classified into two prime categories – main memory or primary

memory and auxiliary or secondary memory. Memory can be

classified into different categories based on some key characteristics

such as:

a. Depending on location, memories are classified as CPU-

based, internal memory, and external memory.

b. Depending on media used for manufacturing memory i.e.

physical type memory is classified as semi-conductor based

and magnetic surface-based.

c. Depending on physical characteristics volatile / non-volatile

and erasable / non-erasable.

d. Depending on the access method memories are classified as

sequential access, direct access, and random access memory.

1.2 UNIT OBJECTIVES

After completing this unit, you will be able to learn:

 Functions of the memory unit.

 Memory operations

 Representation of memory location in terms of byte

 Big-endian and little-endian assignment

 Composition of a memory chip.

 Learn about the memory hierarchy.

 Learn about the key factors that affect memory

performance.

 Know about the different types of RAM and ROM

 Mapping of a memory chip and required amount of

memory.

120 | P a g e

Space for learners:  Learn about the memory access methods.

 Learn about the concepts of cache and virtual memory.

 Learn about the hardware used in memory management.

 Concepts of secondary memory

 Functions of MMU.

1.3 MEMORY OPERATIONS

Computer memory is used to store both program instructions and

data operands. To execute an instruction the processor should load

or transfer the instruction or set of instructions into the processor

from the primary memory. During the processing of instructions, the

operands or the results are also transferred between the memory and

the CPU. Thus the basic operations involving in the memory can be

classified into two categories such as Load or Read / Fetch and store

or Write.

The READ operation transfers a copy of the contents from the

memory location specified by the CPU. During the transfer, the

memory contents remain unchanged. The READ operation is

initiated by the CPU sending a request to the memory with a

specific memory location in the address bus. The memory unit will

read the contents from the specified address by the CPU and send

them to the processor by loading the data into the data bus.

The WRITE operation transfers data from the processor to a specific

memory location specified by the instruction. This operation will

overwrite the contents in that memory location. The processor sends

the data along with the memory location where it has to be stored or

written. In a single operation, one word or 1 byte of data can transfer

between the memory and the processor.

121 | P a g e

Space for learners:

1.4MEMORY CHIP

An integrated circuit (IC) consists of several capacitors and

transistors with the capacity of storing information can be defined as

a memory chip. Memory

chips can be used for

process code also. Memory

chips can hold data either

temporarily or permanently

through RAM and ROM

respectively. The size or

shape and storage capacity of the memory chip can vary.

A RAM chip is used to communicate with the CPU through control

lines. Through a bidirectional data bus, RAM chips are allowed to

communicate either from memory to CPU during a read operation

or from CPU to RAM during a write operation. Following figure

Fig.1.1 shows a typical block diagram of a RAM chip. The chip

capacity is 128 words of 8 bits per word. This 128 x 8 chip required

a 7-bit address and an 8-bit bidirectional data bus. The signal RD

and WR are used to specify memory operations Read/Write

respectively during communication. The chip select (CS) line is a

control line through which the microprocessor can select and enable

a particular chip. The functions of a RAM chip can be depicted as

shown in Table 1.

STOP TO CONSIDER

 The two main memory operations are READ and WRITE
 READ operation perform to fetch data from memory to

processor
 WRITE operation perform to store data from processor to

memory

122 | P a g e

Space for learners:

The RAM chip is in operation only when the value of CS1 = 1 and 𝐶𝑆2തതതതത= 0. The barin 𝐶𝑆2തതതതത indicates that the input is enabled for its

complements i.e. for the value 0. If the select controls are not

enabled or if it is enabled, but Read and Write lines are not enabled,

then the memory is inhibited and the data bus is in high impedance.

The high impedance is a state where it behaves like an open circuit

i.e. the output does not carry any signal .It leads to very high

resistance and hence no current flows. When the CS1 = 1 and 𝐶𝑆2തതതതത =

0 the memory can be in reading or write mode. When the WR input

line is enabled, then a byte of information will be transferred from

the data bus into the memory location specified by the address lines.

When the read input line is enabled, a byte of information from the

memory specified by the address line is transferred into the data bus.

The ROM chip is also organized the same as that of the RAM chip.

In the ROM chip there is no need for reading and writing input

control because the unit can only read. Thus if the chip is selected

the bytes as specified by the address line will be appeared in the data

bus.

Table 1: Functions table for RAM Chip

CS1 𝑪𝑺𝟐തതതതതത RD WR Memory function State of data bus

0 0 x x Inhibit High impedance

0 1 x x Inhibit High impedance

1 0 0 0 Inhibit High impedance

1 0 0 1 Write Input data to RAM

1 0 1 x Read Output data from RAM

1 1 x x Inhibit High impedance

123 | P a g e

Space for learners:

Generally, the size of RAM and ROM varies from machine to

machine. If a system required more memory storage than the

capacity of a chip then many chips are required to get the necessary

memory size. If the required size of memory is M x N and the chip

capacity is m x n then the required number of chips can be

calculated as

 k = 𝐌∗𝐍𝐦 ∗ 𝐧

1.5 MEMORY LOCATIONS AND ADDRESSES

Program instructions, operands, and results of arithmetical logical

operations are stored in computer memory. The computer memory

is composed of millions of storage cells. Each storage cell can store

one bit of information in the form of 0 or 1. To perform basic

memory operations the cells are grouped into a fixed number of

cells. Each group with n-bit is referred to as a “word” of

information and the “n” will be known as “word length”. It can be

depicted in figure 1.2. Now a day’s modern computers are typically

ranging between 16 – 64 bits of word length.

STOP TO CONSIDER

 Memory chips hold data temporarily or permanently
through RAM and ROM.

 A RAM chip is used to communicate with CPU through
control lines

 Depending on the requirement of memory the number of
memory chip may vary.

124 | P a g e

Space for learners:

A computer with 64 bit means that the address bus can carry an

address of 64 bit for a specified memory location in computer

memory. The address of memory locations is represented by 64-bit

numbers. A computer with 32bit can represent 232 = 4294967296

Thus the addressing scheme of a system determined the maximum

size of computer memory or address space. For example, a system

with a 16-bit computer i.e. with an addressing scheme of 16-bit

addresses can address up to 216 = 64 K number of memory

locations. Similarly, a machine with 32-bit addresses can generate

232 = 4GB memory locations. The memory location of a system

determines the address space. Thus the addresses of each memory

location are represented with k bits and using k address bit, 2k nos.

Figure 1.2 Memory words

125 | P a g e

Space for learners: of locations or addresses can be represented. The address bit and

number of locations is depicted in Table 2. Most computer systems

are byte-addressable and memory is usually designed to store or

access data in word-length quantities. For a computer, the word

length can be defined as the number of bits that store or are retrieved

in one access. The processor reads the memory data by loading the

address of the required memory location into the Memory Address

Register (MAR). Similarly, during a write operation, the processor

writes data into a memory location by loading the address of that

location into MAR. To perform the read/write operation on a set of

consecutive memory locations in the main memory, then a block

transfer operation may perform by sending the first address of the

memory locations.

1.5.1 Byte addressability

A nibble is always 4 bits and a byte is 8 bits. The word length of a

computer system can range between 16 – 64 bits. To assign an

individual address for each of the bit locations in memory will

increase the complexity of memory organization. In modern

practices, each successive address refers to successive byte locations

in memory. For a computer system with 32 bits, successive words

will be located at addresses 0000, 0004, 0008,………. with each

word of four bytes.

Table 2: Address bit and number of locations

K Number of Locations

10 210 = 1024 = 1 K

16 216 = 65,536 = 64 K

20 220 = 1,048,576 = 1 M

24 224 = 16,777,216 = 16 M

126 | P a g e

Space for learners: 1.5.2 Big – Endian and Little – Endian assignments

To assign the addresses across the words, there are two ways known

as big-endian and little-endian assignments. The big-endian is used

when the lower order byte addresses are used for the more

significant bytes (MSB) or the leftmost bytes as shown in Figure

1.3. The little-endian is used when the lower order byte addresses

are used for the less significant bytes (LSB) or rightmost bytes of

the word as shown in Figure 1.3. Commercial machines are used

both ways of assignment. To specify the address ordering of bytes

within a word it is mandatory to specify the labelling of bits within a

byte or a word as shown in Figure 1.4.

Figure 1.3 Big-endian and little-endian assignment

127 | P a g e

Space for learners:

1.6 MEMORY HIERARCHY

Memory performance mainly depends on some key parameters –

a. Memory access time –It is defined as the total time

requirement from submission of a request for the required

piece of information by the CPU for getting or availability of

the information in the CPU. CPU registers are local memory

for the CPU and the access time is few nanoseconds. Cache

memory takes small multiple access times of CPU registers.

Cache memory is portions of memory made up of very high-

speed static RAM (SRAM). Primary memory access time is

Figure 1.4 labelling of bits within a byte or a word

STOP TO CONSIDER

 The processor reads the memory data by loading the address
of the required memory location into the Memory Address
Register (MAR).

 A computer with 64 bit means that the address bus can carry
an address of 64 bit for a specified memory location in
computer memory.

 To assign the addresses across the words, there are two
ways known as Big – endian and little – endian
assignments.

 In modern practices each successive addresses refers to
successive byte locations in memory.

128 | P a g e

Space for learners: few tens of nanoseconds. For secondary memory, the access

time is at least 10 msec. and it may measure in seconds if the

data is to be fetched/write from or to a drive.

b. Storage capacity: The storage capacity of memory has a

greater role in performance. As the capacity increase, the

access time of the memory is also increased. CPU registers

are good for almost 128 bytes. Cache memory can be range

as for L1 cache – 8 KB to 64 KB, for L2 cache – 256 KB to

512 KB, and for L3 cache 8 MB to 32 MB. Primary memory

storage capacity ranges from 512 MB to 32 GB. The storage

capacity of Secondary memory can vary from few gigabytes

to terabytes or more than that.

The memory hierarchy shows the organization of different

types of memories depending on their performance. It can be

explained with a block diagram as shown in the following

figure Fig.1.5. At the top of the memory hierarchy, CPU

registers are located which are compact and accessible at full

CPU speed. The next high-speed and high-cost memory is

cache memory. CPU collects the required piece of

information from cache memory. From the peak to the

bottom of the hierarchy, memory access time and size of the

memory are gradually increase and the costs of memory

Figure 1.5 The memory hierarchy

129 | P a g e

Space for learners: decrease. The memory hierarchy primarily depends on some

key parameters such as access time and storage capacity of

the memory.

1.7 SECONDARY MEMORY

Memory devices where data are kept permanently for a long time

can call secondary memory. Secondary memories are non-volatile

i.e. can store data permanently during a power cut or off mode.

Some of the secondary memory devices are computer hard drive

disk, pen drive, floppy disk, CD, etc. In comparison to the main

memory size of the secondary or auxiliary memory is very large.

The memory access rate of auxiliary memory is comparatively very

less than main memory. Hence the cost is also relatively

inexpensive. Thus we can say that cost is directly proportional to the

storage capacity of the memory.

1.8 MAIN MEMORY

The CPU directly communicated with a memory unit known as the

main memory. The storage capacity of this type of memory is very

large in comparison to cache memory and very small in comparison

to secondary memory. The main memory can be classified into two

different categories such as RAM and ROM.

STOP TO CONSIDER

 Depending on the key factors such as storage
capacity, accessibility, average access time memory
can be organized in a pyramid structure known as
memory hierarchy.

 Fastest and smallest memory lies on top or peak of
the pyramid structure.

 Slower and bigger storage capacity memories lie in
bottom side of the pyramid.

130 | P a g e

Space for learners: 1.8.1 Random Access Memory (RAM)

RAM can be defined as a read/write memory. Users can read the

memory contents from RAM and also can write into RAM. It is

volatile, i.e. it loses all the data when the power goes down. As the

power supply goes down the memory contents or stored information

in RAM are lost. In RAM any memory location can be accessed

randomly without going through any other memory location. The

access time for each location is the same. RAM can be classified

into two categories as static or SRAM and Dynamic memory or

DRAM.

1.8.1.1 Static RAM (SRAM):

SRAM consists of CMOS technology and uses transistors. For

storing binary data it is used two cross-coupled inverters which is

similar to flip-flops along with two other transistors for access

control. The binary information exits in SRAM as long as the power

supply is on. Figure1.6 illustrates how an SRAM cell is

implemented. Two inverters are cross-coupled to form a latch. Two

transistors T1 and T2 are used to connect the latch with the two-bit

lines. Using the word line the transistors can be open or closed.

When the word line is at ground level, the transistors are turned off

and the latch retains its state.

To read the state of the SRAM cell, the word line is activated to

close the switches T1 and T2.The signal on bit line b will be high

and b/will be low for cell state 1. Similarly, for cell state 0, the

signal on bit line b is low and the signal in b/ is high. Thus b and b/

are complements of each other. The state of the cell is set by

activating the word line and putting the appropriate value for the bit

131 | P a g e

Space for learners: line b and its complement b/. Required signals on the bit line are

generated by the sense/write circuit.

Figure 1.6 a static RAM cell

1.8.1.2 Dynamic RAM (DRAM):

DRAM is constructed using capacitors and few transistors. The term

dynamic in DRAM indicates that the charges are continuously

discharging even in presence of an uninterrupted power supply and

hence the capacitors must refresh periodically through refreshing the

DRAM. DRAM is available in the market as it is less expensive.

SRAM is an on-chip memory with very little access time whereas

DRAM is off-chip memory with a large access time in comparison

to SRAM. So SRAM is faster than DRAM. The storage capacity of

SRAM is less than DRAM. Cache memories are comprised of

SRAM whereas the main memory is comprised of DRAM. Power

consumption in DRAM is more in comparison to SRAM.

STOP TO CONSIDER

 Memory can be volatile or non-volatile in nature.
 RAM is volatile and ROM is non-volatile memory.
 SRAM and DRAM are the two categories of random

access memory (RAM).

132 | P a g e

Space for learners:

1.8.2 Read Only Memory (ROM)

ROMis a non-volatile memory, i.e. contents of this type of memory

remain the same or permanently in the memory and not erased due

to power cut. Contents of ROM can be read or accessed during

operation and nothing can be written into it by the user or

programmer. The manufacturing company decides and writes

permanently into the ROM during manufacture. Different types of

ROMs are PROM, EPROM, and EEPROM. Programs or sets of

instructions that are required for starting a computer i.e. bootstrap

programs are stores in ROM. ROM is used in some electronic

gadgets such as fridges, refrigerators, washing machines,

microwaves, etc.

1.8.2.1 Programmable read-only memory (PROM)

PROM was first developed in 1956 by Wen Tsing Chow. It is a

memory chip that can be programmed once after is created. Once

the memory chip is programmed, the information written on it

becomes permanent and cannot be erased or deleted. PROM was

used in computer BIOS in early day’s computers and now it is

replaced by EEPROM.

1.8.2.2 Erasable Programmable Read-Only Memory (EPROM)

EPROM is a memory chip that can store data even after a power cut

also. Data from EPROM can be erased using ultraviolet light and

makes it re-writable or programmable. It was first developed by Dov

Frohman in 1971 at Intel. The contents of EPROM can be erased

limitedly. Too much deletion can make the memory unit unreliable

133 | P a g e

Space for learners: by destroying the silicon dioxide layer. It is not possible to erase the

EPROM contents partially. The whole data from EPROM is erased.

For erasing and reprogramming the EPROM, the chip has to remove

from the computer system and it consumes lots of time to erase data.

The process of programming on EPROM is known as Burning and it

is not a reversible process. It was developed to overcome the

drawbacks of ROM and PROM. EPROM is successfully used in

some microcontrollers such as Intel 8048, bootstrap loader, video-

game, personal computers, etc.

1.8.2.3 Electrically Erasable Programmable Read-Only Memory

(EEPROM)

Itis a memory chip that can be erased by exposing electrical charge.

Like other ROM, EEPROM retains its stored data even power is

turned off. In the year 1978, George Perlegos developed the concept

of EEPROM at INTEL. To erase the contents of EEPROM

consumes approximately 5 milliseconds. In EEPROM erasing and

reprogramming can be done without switching off the electrical

circuit of the system.

1.9 CACHE MEMORY

The processing speed of the CPU in comparison to the access time

of primary memory is very high. Due to this bottlenecking CPU

cannot be utilized at its utmost level and remains idle. To remove

this barrier a smaller memory is used in the system such that the

average access time got increases and makes the computer memory

more efficient. This chip-based smaller and faster memory is known

as cache memory. It is a temporary storage area from which the

134 | P a g e

Space for learners: CPU can retrieve data easily during processing. Sometimes it is

called the CPU Memory as it is typically integrated directly with the

CPU chip or placed on a separate chip that has a direct connection

with the CPU through a separate bus. As the cache memory is

smaller in size and faster access time in comparison to primary

memory, it increases the average access time and efficiency of the

processor. The access time of cache memory is 10 to 100 times

faster than the primary memory of a system. Cache consumes only a

few nanoseconds to respond to a CPU request. Cache memory built

with high-speed SRAM. It can be categorized into three different

levels such as L1, L2, and L3 cache. L1 cache is extremely fast and

usually embedded in the processor chip. L2 or secondary cache can

be implanted on the CPU with a system bus. L3 cache is used to

increase the performance of L1 and L2. The speed of L3 is

comparatively slower than L1 and L2 but two times faster than

DRAM.

1.10VIRTUAL MEMORY

A computer has a limited amount of memory space in primary

memory or RAM. During programming, a user or developer has to

concern about the limited amount of free memory address in RAM

which increases the complexity of programming. To overcome this

difficulty a technique called virtual memory has arisen. Virtual

memory allows using more addresses than that the amount

physically exists in the system. The main advantage of this memory

is that the program may be larger than the size of the primary

memory that physically exists. Using the concept of virtual memory

the logical and the physical memory can be separated. This

separation allows using of a large virtual memory for the developers

over the actual physical memory in the system. It gives an illusion to

135 | P a g e

Space for learners: the programmer that large memory locations are available at their

end even though the system has a smaller main memory.

The address generated by the user program is called a virtual

address. A set of virtual addresses makes the virtual address space.

The set of main memory addresses or locations are called memory

space or physical address space. Usually, the virtual address space

is larger than the physical address space. To map between virtual

addresses with physical addresses, memory mapping techniques are

used by the memory controller of the system.

Consider a computer system with RAM of a storage capacity of 32K

words. To specify a location in RAM with 32K physical address

space (32K = 215) 15 bit is required. Consider that the system has

220= 1024K storage capacity auxiliary memory. Assume the

memory space is M and the P is the address space. Hence M=32K

and P=1024K. Thus the address bit of the instruction code will have

20 bits whereas the memory address must be specified by 15bit

only. CPU will ask for reference instructions with the address of

20bit, but at this point, the reference address must be taken from the

primary memory of the address with 15 bit rather than auxiliary

memory. Thus there is a requirement of mapping of virtual

addresses of 20 bit to physical 15 bit.

STOP TO CONSIDER

 Cache memory is typically integrated into CPU chip or
placed on a separate chip that has direct connection with
the CPU through a separate bus.

 To specify a location in RAM with 32K physical address
space (32K = 215) 15 bit is required.

 Speed of CPU is very high then the average access rate of
primary memory. Cache is used to remove this bottleneck
between CPU and RAM.

 This bottlenecking problem can decrease the performance
of the computer system.

136 | P a g e

Space for learners: 1.11 CLASSIFICATION OF MEMORY BASED ON
 THE ACCESS METHOD

There are three types of memory access methods as Sequential

access, Random access, and direct access.

1.11.1 Sequential access:

In this system, the stored data are accessed in affixed ordered

manner i.e. in a specific linear specific manner. Here the access time

depends on the location where the data exist. To go from memory

location 1001 to 1010 in sequential access, it has to pass through all

intervening memory locations. No one can jump from 1001 to 1010

directly as shown in figure 1.7. Examples of sequential media access

memory devices are magnetic tape, magnetic disk, optical

memories, DVDs, CDs, hard drives, etc.

Figure 1.7 Sequential and random access method

137 | P a g e

Space for learners: 1.11.2 Random access:

It refers to access data randomly from the storage device. In the

random access method, one can jump from memory location 1001 to

1010 directly without passing through all the intervening locations

i.e. 1002, 1003,…. etc. Examples of random access memory devices

are disk, RAM, ROM.

1.11.3 Direct access:

In this method, a unique address has been assigned for each block or

record based on physical location. It can be seen as a hybrid of

random and sequential access methods. The direct access method is

used in magnetic hard disks as it contains a huge number of rotating

storage tracks. Each track is associated with its own read/write head.

Magnetic tracks are accessed randomly, but within the track, the

data are accessed sequentially. Magnetic hard disk is a good

example of using a direct access method for accessing memory

contents.

STOP TO CONSIDER

 Data stored in memory can be accessed in three different
ways.

 Sequential access READ or Write data sequentially
where as in Random access READ or WRITE operation
are performed randomly on memory locations.

 Magnetic hard disk is good example of using direct
access method for accessing memory contents.

138 | P a g e

Space for learners: 1.12 MEMORY MANAGEMENT HARDWARE

To manage the operations performed by memory dedicated

hardware is placed in between the processor and main memory

called Memory Management Unit (MMU). If the processor does not

have an on-chip MMU, then use an external MMU. The operations

done by MMU are performed by the operating system. But to reduce

the load on the operating system MMU is used. The logical address

can be defined as the memory address which is being used by a

program. A logical address represents or specifies the location of an

instruction or data in a program relative to the starting address of the

program. During the compilation of a program statement, the logical

addresses are represented by a memory pointer consisting of two

parts namely segment selector and offset. For a page-oriented

system, the memory pointer has a page address and page offset. The

physical address will be represented in terms of page number and

page offset. The virtual memory concept is also performed by the

MMU to provide a very large memory space to users. The concept

of virtual memory allows the users to use more memory than that a

system has in reality. A computer processor can access the data

from the main memory during the execution of an instruction. For

the execution of a program statement, it has to store or load into the

main memory. The MMU allows users to store the program

instructions into the secondary memory and it transfers a block of

instructions to the main memory which is currently required by the

processor. Similarly, the parts of the program statements are sending

back to the secondary memories which are not being used by the

processor currently. This to and fro data transferring process

between main memory and secondary memory is known as

swapping.

139 | P a g e

Space for learners: When a request for data or instruction is sent by the processor to the

MMU by specifying a logical address, the MMU checks the

segment containing that logical address in the main memory. If it is

available in the physical memory then the MMU calculates the

physical address corresponding to the logical address specified by

the processor. If the required segment is not available in the physical

memory then MMU interrupts the CPU. On receiving an interrupt

signal from the MMU, the CPU access or read the desired segment

from the secondary memory.

1.13 SOLVED EXAMPLES

1. 16K x 8 RAM chips are used to construct 64K x 16 RAM.

Calculate the required number of chips for construction.

Solution: Number of chips required =
଺ସ ௄∗ଵ଺ଵ଺ ௄∗଼ = 8 chips

2. 1K x 4 RAM chips are used to construct 1K x 8 RAM.

Calculate the required number of chips for construction.

Solution: Number of chips required =ଵ ௄∗ ଼ଵ ௄∗ ସ = 2 chips

3. Direct Mapping Question: Assume a computer has 32-bit

addresses. Each block stores 16 words. A direct-mapped cache

has 256 blocks. In which block (line) of the cache would we

look for each of the following addresses? Addresses are given in

hexadecimal for convenience.

a. 1A2BC012

b. FFFF00FF

c. 12345678

d. C109D532

Solution: Of the 32-bit address, the last four bits denote the

word on the line. Since four bits are used for one hex digit, the

140 | P a g e

Space for learners: last digit of the address is the word on the line. With 256 blocks

in the cache, we need 8 bits to denote the block number. This

would be the third to last and second to last hex digit.

a. this would be blocking 01, which is block 1

b. this would be 0F which is block 15

c. this would be 67 which is block 103 (remember, 67 is a hex

value)

d. this would be 53 which is block 83.

CHECK YOUR PROGRESS

1. Choose the correct options from the following: (Multiple choice
questions)

i. What is true about the memory unit?

A. Memory is the collection of storage units or devices
together.

B. The memory unit stores the binary information in the form
of bits.

C. Both A and B
D. None of the above

ii. When the power of a computer system shuts down, then which

type of memory loses its data?
A. Non-volatile memory
B. Volatile memory
C. Both A and B
D. None of the above

iii. The fastest data access is provided using______________

A. Cache memory
B. DRAM
C. SRAM
D. Registers

iv. The minimum time delay between two successive memory

read operations is_________.
A. Cycle time
B. Latency
C. Delay
D. None of the above

141 | P a g e

Space for learners: v. The effectiveness of the cache memory is based on the
property of____________.
A. Locality of reference
B. Memory localization
C. Memory size
D. None of the above

vi. The drawback of building a large memory with DRAM is

A. Large cost factor
B. Inefficient memory organization
C. Slow speed of operation
D. All of the above

vii. The memory which is used to store the copy of data or

instructions stored in larger memories, inside the CPU is
called ____________.
A. L1 cache
B. L2 cache
C. Registers
D. TLB

viii. Four memory chips of 16 x 4 sizes have their address bases

connected. The system will be of size
A. 64 x 64
B. 16 x 16
C. 32 x 16
D. 256 x 1

ix. In a virtual memory system, the address space specified by the

address lines of the CPU must be ____________ than the
physical memory size and __________ then the secondary
storage size.
A. Smaller, smaller
B. Smaller, larger
C. Larger, smaller
D. Larger, larger

x. For the synchronisation of the read head we make use of a

____________.
A. Framing bit
B. Synchronization bit
C. Clock
D. Dirty bit

xi. The BOOT sector files of the system are stored in

__________.
A. RAM

142 | P a g e

Space for learners: B. ROM
C. Hard disk
D. Fast solid-state chip in the motherboard.

xii. The technique where the controller is given complete access

to the main memory is
A. Cycle stealing
B. Memory stealing
C. Memory con
D. Burst mode

xiii. How many address bits are required to represent a 32K

memory?
A. 10bits
B. 12 bits
C. 14 bits
D. 16 bits

xiv. Which of the following memories stores the most number of

bits?
A. 64 K x 8 memory
B. 1 M x 8 memory
C. 32 M x 8 memory
D. 64 x 6 memory

xv. In a virtual memory system, the addresses used by the

programmer belongs to
A. Memory space
B. Physical address
C. Address space
D. Main memory address

1.14 SUMMING UP

 The memory unit is a key part of a computer system.

 Computer memory can be divided into two categories namely

primary and secondary memory.

 The central processing unit of a system directly communicates

with the primary memory.

 The processor can access the secondary memory through

primary memory.

143 | P a g e

Space for learners:  Primary memory can be categorized as RAM and ROM.

 To increase the throughput of a system cache memory is used in

between the primary memory and CPU.

 Different types of ROMS are available such as ROM, PROM,

EPROM, and EEPROM.

 If the required chip size is M x N and if the chip capacity is m x

n, then the number of the required chip is k = ெ∗ே௠ ∗ ௡

 A set of physical addresses is known as memory space.

 The address space can be divided into groups of equal size

known as a page.

 The memory space is broken into groups of equal size called

blocks.

 A computer processing speed can represent using the address

bit.

 Big-endian and Little-endian assignments are used in byte

addressing.

 MMU is used to control the communication between the CPU

and memory.

 The concept of virtual memory allows users to use memory

space during programming which does not exist physically.

 Lower order bytes are used to represent MSB in big-endian

assignments.

 Lower order bytes are used to represent LSB in little-endian

assignments.

 In modern practices, each successive address refers to
successive byte locations in memory

 Cache memory can be categorized into three different levels

such as L1, L2, and L3 cache.

 SRAM is an on-chip memory with very little access time

whereas DRAM is off-chip memory with a large access time in

comparison to SRAM.

144 | P a g e

Space for learners: 1.15 ANSWERS TO CHECK YOUR PROGRESS

Answers to question no. 1:

i. C ii. B iii. D iv. A

v. A vi. C vii. A viii. B

 ix. C x. C xi.B xii.D

 xiii.D xiv.C xv. C

1.16 POSSIBLE QUESTIONS
1) How many 128 x 8 RAM chips are needed to provide a

memory capacity of 2048 bytes?

2) How many 128 x 8 RAM chips are needed to provide a

memory capacity of 4096 x 16?

3) What is the bit storage capacity of a ROM with a 1024 x

8 organization?

4) Find the total number of cells in a 64k x 8 memory chip.

5) What is virtual memory?

6) Differentiate between ROM and EEPROM.

7) What are the key factors for memory efficiency?

8) What is memory access time?

9) What is clock cycle and CPU burst time?

10) Differentiate between sequential and random access?

11) What are SRAM and DRAM?

12) What is a memory chip? How the number of chips is

calculated for the required number of memory?

13) What is memory hierarchy?

14) Why DRAM is slower than SRAM?

15) What is cache memory?

16) Explain the memory hierarchy with a block diagram.

17) What are the classifications of memory depending on

access method, Explain?

145 | P a g e

Space for learners: 18) Explain the organization of a RAM chip.

19) What are the different types of ROM? Explain the

differences between them.

20) Explain some data structures which are using sequential

access and random access.

21) How direct memory is different from random access

memory?

22) Discuss static and dynamic RAM.

23) Explain the functions of the memory management unit

(MMU) of a computer system.

1.17 REFERENCES AND SUGGESTED READINGS

 William Stallings, Computer Organization and Architecture
Designing for Performance, Pearson Education India.

 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer
Organization, McGraw Hill Education.

 M. Morris Mano, Computer System Architecture, Pearson
Education India.

---×---

146 | P a g e

Space for learners: UNIT 2 : CACHE MEMORY

Unit Structure:

2.1 Introduction
2.2 Unit Objectives
2.3 Basic operations
2.4 Performance
2.5 Mapping process

2.5.1 Associative mapping
2.5.2 Direct mapping
2.5.3 Set associative mapping

2.6 Cache replacement policies
2.6.1 Least recently used (LRU) algorithm
2.6.2 Least frequently used (LFU) algorithm
2.6.3 First in first out (FIFO) algorithm
2.6.4 Segmented LRU (SLRU) algorithm
2.6.5 Optimal block replacement

 2.6.6 Random replacement (RR) algorithm
 2.6.7 Pseudo – least recently used (PLRU) algorithm
 2.6.8 Lowest latency first (LLF)

2.7 Cache optimization technique
2.8 Write Policies

2.8.1 Write through
2.8.2 Write back
2.8.3 Dirty bit
2.8.4 Write allocation
2.8.5 Write around

2.9 Cache coherence
2.9.1 sharing of variable data
2.9.2 process migration
2.9.3 I / O activity

2.10 Coherency mechanism
2.10.1 Directory-based
2.10.2 Snooping
2.10.3 Snarfing

2.11 Summing Up
2.12 Answers to Check Your Progress
2.13 Possible Questions
2.14 References and Suggested Readings

147 | P a g e

Space for learners: 2.1 INTRODUCTION

To compensate for the speed of primary memory access time and

CPU, a high speed memory is used called cache memory. Cache

memory increases the processing speed of the CPU by making the

required data available to it. Thus the cache memory has a great role

in increasing the throughput of a system. It is placed in between the

processor and main memory. The memory access time of cache

memory is very high in comparison to main memory and compatible

with the speed of the processor. The cache is used to store the

program segment currently executed by the CPU and the data used

by the CPU frequently. Since the memory space of the cache is

much smaller than the main memory, mapping is required to

identify the location in the main memory as specified by the CPU.

Using cache replacements algorithms the contents of the cache can

be changed by new program segments as required by the processor.

2.2 UNIT OBJECTIVES

The primary objectives of the chapter are

 to know about cache memory and its use
 to understand how to measure the performance of cache

memory
 to explore what are the operations of cache memory?
 to learn about the mapping process of cache memory.
 to find the different mapping processes
 to visualize cache replacement policies.
 to understand the cache optimization techniques.
 to know how to write into the cache.
 to discuss the different levels of cache memory.
 to learn about cache coherency

148 | P a g e

Space for learners: 2.3 BASIC OPERATIONS

When the processor needs a particular data during its execution, at

first it searches the data in cache memory. If it is found then the

content is extracted from the memory location of cache as specified

by the processor. If the word addressed by the CPU is not available

in the cache memory, the main memory is accessed to read the

word. The program segment or a block of the word containing the

desired one will be transferred from the main memory to the cache

memory. In multilevel cache, it can be categorized into two; internal

cache, typically located inside the CPU chip and external cache,

normally placed in the system board. Internal caches are known as

primary or L1 cache and the range may have within 1– 32 KB.

External caches are known as secondary or L2 cache and the range

may vary between the range 64 KB – 1 MB.

Figure 2.1 Cache
memory

149 | P a g e

Space for learners:

2.4 PERFORMANCE

The performance of cache memory can be determined by the ratio of

finding the required data by the processor. If the required data is

available in cache memory then it can be defined as a HIT, if it is

not available in the cache then it is called a MISS. Three different

types of cache miss may exist namely – compulsory miss, conflict

miss and capacity miss. Compulsory miss may occur when a

memory location is accessed for the first time. Conflict miss can

occur due to insufficient space when two blocks are mapped on the

same location. Capacity miss may take place due to smaller space in

cache memory. The time taken to check the presence of data in the

cache is called hit latency. For every hit, the CPU accesses the data

from the cache directly but for a miss, the CPU has to wait for

responding from the main memory. The block of data will be

transferred from the main memory to cache memory and then the

required word will transfer from the cache to the CPU. The ratio

between the hit and the total number of references by the CPU (the

summation of hit and miss) can be defined as the hit ratio. The hit

ratio “h” always lies between the range 0 and 1. Let us consider that

the

STOP TO CONSIDER

 In multilevel cache, it can be categorized into two; internal
cache, typically located inside the CPU chip and external
cache, normally placed in the system board.

 Internal caches are known as primary or L1 cache and the
range may have within 1kb – 32kb.

 External caches are known as secondary or L2 cache and
the range may vary between the range 64kb – 1mb.

150 | P a g e

Space for learners: h is the hit ratio, tm is the memory access time, tc is the

cache access time

 �̅is the average access time.

Then the average access time �̅ can be calculated by the relation:

 �̅= htc+ (1 – h) (tc +tm) …………………………….. (1)

The relation (1) is derived using the fact that for a cache hit, the

main memory will not be accessed by the processor. For a miss,

both the cache and main memory will be accessed by the CPU.

Consider that the ratio between cache and main memory access time

is
t
m

t
c

  then the efficiency () of a system using cache memory

can be derived as:

 

()()

()

()

()

()

c

c

c c m

c

m

c

c

t

t

t

ht h t t

t

t
t h h

t

h h

h h h

h







 


  


  
    

  


  


   


 

1

1 1

1

1 1

1

1 1

1

1 1

For the value of h = 1, the efficiency  = 1, i.e. efficiency will be

maximum for h = 1 or all the CPU references are confined to the

cache.

151 | P a g e

Space for learners:

Example 2.1: Calculate average access time (t), the ratio between

main memory access time and cache access time (),and efficiency

() of a memory system whose parameters are indicated as: ct =150

ns, mt =950 ns, and h=0.90.

Solution: Since the average access time c c mt=ht +(1-h)(t +t)

=0.90*150+(1-0.90)(150+950)
=135+0.1(1100)
=245ns

 And since the .m

c

t
t

   
950 6 33
150

And efficiency
()h

 
 

1
1 1

 .
. (.) . .

   
   

1 1 1 0 612
1 6 33 1 0 9 1 0 633 1 0 633

Example 2.2: The access time of cache memory is 50 ns. And the

access time for the main memory is 500 ns. It is estimated that 80%

of the main memory requests are for reading operation and the

remaining are for the write operation. The hit ratio for reading

operation is 0.09 and a write-through policy is used.

STOP TO CONSIDER

 An INTEL motherboard of 100MHz consume 180ns to
retrieve information from main memory, whereas 45ns
from the cache memory.

 Static RAM (SRAM) is typically used to build cache
memory.

 Systems with Multi-core CPUs are generally used a
separate L1 and L2 cache for each core and L3 is shared
by each core.

152 | P a g e

Space for learners: a. Compute the average access time for the memory read

cycles only?

b. Calculate the average access time for both read and write

requests?

c. What is the hit ratio regarding the write cycle?

Solution:

a. Since the average access time c c mt=ht +(1-h)(t +t)

 =0.90*50+(1-0.90)(50+500)
 =45+55
 =100ns

b. For both read and write cycle

Average access time = Pr * average access time for read + (1

- Pr) * tm

 = 0.8 * 100 + 0.2 * 500

 = 80 + 100

 = 180 ns.

c. Hit ratio when write cycle is also considered is

 h = Pr * hr+ (1 - Pr) * hw [hw is the hit

ratio for write cycle]

 = 0.8 * 0.9 + 0.2 * 0

 = 0.72

2.5 MAPPING PROCESS
There are three different types of mapping techniques in

cache organization such as

a. Associative mapping

b. Direct mapping

c. Set – associative mapping

153 | P a g e

Space for learners: 2.5.1 Associative mapping

In the case of the associative mapping procedure, each of the cache

memory contents is associated with an address. But during the

execution of a program statement, the data is not read or fetch by

referring to or specifying any memory address. Instead of it, the data

are searched by matching with the contents. In associative mapping,

the cache memory contains the data along with the main memory

address of the corresponding data as shown in Figure 2.2. The

address bit

sent by the

CPU for

searching the

required data

in the cache

memory is

matched with

the stored

addresses in

the cache. If

any address is

matched, the

corresponding

word

154 | P a g e

Space for learners: from that memory location will be fetched by the CPU. For a miss

or if no match is found for the required word, then it will be

searched in the main memory. Then the word from the main

memory along with the address will be transferred into the cache

memory. If the cache is full, using any replacement technique must

make room for the new word.

Associative mapping is a very fast access method. But the

manufacturing difficulties and cost are more in comparison to other

mapping methods.

2.5.2 Direct mapping

Consider a computer system with the main memory storage capacity

is 4K, i.e. 4 x 1024 = 2 12 bytes. Then the required number of bits to

address the main memory location will be 12. Consider a cache

memory of 1K

= 210 bytes, i.e.

10 bits are

required to

address a cache

memory

location. Thus

the main

memory

required a 12-

bit address line

whereas the

cache memory required only 10 bits of the address. In the direct

mapping method, the address sent by the CPU is divided into two

parts namely tag field and index field. The index field contains an

equal number of bits that are required to address a word in cache

Figure 2.3 Block diagram
showing direct mapping

155 | P a g e

Space for learners: memory. The remaining bits are used in the tag field. If a system

contains the main memory of capacity 2m and cache of capacity 2n,

then the bits in the index field will be n bits and in the tag field is an

(m-n) bit. In the example cited above, the index field and the tag

field are consist of 10 bits and 2 bits respectively.

In direct mapping, the cache memory stores the data as well as the

tag field as shown in Figure 2.3. In the cache, the words are stored

in a memory location as the index field defined. When an address is

requested by the CPU, the index part of the address is used to get the

location in the cache memory. If the tag of the cache is matched

with the tag of the requested address, the word will be fetched by

the CPU. Else there will be a miss and the data will be searched in

the main memory. For a miss, the block of data from the main

memory has to be transferred into the cache memory by dividing the

main memory address into index and tag fields. The main

disadvantage of direct mapping is that, if the index field is the same

for more than one word in cache memory with a different tag value,

the hit ratio may drop considerably.

2.5.3 Set Associative Mapping

In direct mapping, two words or data of a similar index field cannot

be stored at the same time. To overcome this drawback of direct

mapping, the third method of mapping is used which is known as

set-associative mapping. In this method, cache memories are

allowed to store more than one word with a similar index in the

same word location along with a different tag. The number of tags–

data pair in the one-word location of the cache is said to be as a set.

An example of set-associative mapping has been depicted in Figure

2.4. As shown in the figure, the word stored in the memory

addresses 001010011001 and 011010011001 of main memory is

stored in cache memory at index address 1010011001. Similarly, the

156 | P a g e

Space for learners: word stored at address 101010000111and 111010000111 of main

memory is stored in cache memory index address 1010000111.

2.6 CACHE REPLACEMENT POLICIES

When the cache memory of a system is full, then cache replacement

policies are used to make a decision about which page or data has to

be replaced from the cache to make room for new data. The main

problem in cache is that how to identify the page or data to be

removed from cache memory. Lots of algorithms for cache

replacement are being developed. The efficiency of those algorithms

depends on the factors such as time, number of misses and

balancing cost, etc. An efficient algorithm takes less time, lower

number of miss rate and balancing cost. Some of the cache

replacement algorithms are discussed as follows.

Figure 2.5 Block diagram of set associative
mapping

STOP TO CONSIDER

 If a system contains main memory of capacity 2m
and cache of capacity 2n, then the bits in index field
will be n bits and in tag field is an (m-n) bit.

 In direct mapping when an address is request by the
CPU, the index part of the address are used to get the
location in the cache memory.

157 | P a g e

Space for learners:

2.6.1 Least Recently Used (LRU) Algorithm

This algorithm discards the least recently used data from the cache

to make space for new data. A variable known as the aging bit is

used to keep the record of all data items such as which data is used

when or kept at what time in the cache. It is one of the most popular

algorithms among all others as it provides better performance. The

implementation policy of the LRU algorithm is also very simple and

time and space overhead are constant.

Example 2.3: Let us consider a set of data items 7 0 1 2 0 3 0 4 2 3

0 3 2, which have to load into the cache memory of size 4 word.

How many misses will occur if the LRU technique is being used as

a cache replacement policy?

Solution: Initially the cache was empty, so for the first four data

items namely 7, 0, 1, and 2, there will be 4 MISS as shown in figure

2.6.

For the 5th element 0, does already exist in the cache so 0 MISS.

For the 6th element 3, which does not exist in the cache, it will

replace the least recently used 7 from the cache – 1 MISS

For the 7th element 0, does already exist in the cache so 0 MISS.

Figure 2.6 Example of Cache least recently used replacements

158 | P a g e

Space for learners: For the 8th element 4, which does not exist in the cache, it will

replace the least recently used 1 from the cache – 1 MISS

For further referencing all the data exist in the cache, so no more

replacement is required for any one of them. The total number of

MISS is 6 and the number of hits is 7.

2.6.2 Least frequently used (LFU) algorithm

The LFU counts the number of uses of a particular data item or it

counts how frequently the data item has been used. The data which

is used very few will be identified and removed from the cache first.

If all the data items in the cache have the same count then randomly

any one of the items has been chosen and deleted. The min-heap

data structure is a suitable one to implement this algorithm.

2.6.3 First in first out (FIFO) algorithm

FIFO algorithm removes the data which has come first into the

cache and has not been used for a long time. It is the simplest

algorithm to implement. Here the system keeps track of all the

blocks or words in memory in a queue. The oldest page is in the

front of the queue. When a replacement is required, the data from

the front of the queue will be selected for removal.

Belady’s anomaly – proves that it is possible to have more MISS

for an increasing number of frames while using the FIFO

replacement algorithm. For example consider a set of data items

such as 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4, and 3 and 3 slots frame. The

number of a miss for 3 slots frame will be 9, whereas the MISS is 10

for 4 numbers of slots in a frame.

159 | P a g e

Space for learners: Example 2.4: Let us consider a block referencing strings 1, 3, 0, 3,

5, 6, 3 with 4 block frames. Find the number of misses.

Solution: Initially the frame is empty, so for the first three elements

1, 3, and 0, there will be three miss consecutively. Further

referencing has been shown in the following figure 2.7.

A third iteration when 3 comes, is already in the queue, so one hit

occurred. Again at the 7th iteration when 3 come, one hit occurred.

At steps 5th when 6 come, the data do not exist in the queue. The

element entered first into the queue i.e. 1 will be replaced by 6 as

shown in figure 2.7.

2.6.4 Segmented LRU (SLRU) algorithm

SLRU algorithm divided the cache memory into two parts as

protected and unprotected. The protected part is reserved for the

most used objects. Once the first request for an object is done by the

CPU; it will be transferred into the unprotected section. The least

recently used technique is used to manage both the portion.

2.6.5 Optimal block replacement

In this method that block will be replaced from the cache which

would not be used for a longer period in the future. Optimal page

Figure 2.7 Example of FIFO replacement algorithms

160 | P a g e

Space for learners: replacement is theoretically perfect, but the operating systems could

not know or guess the future request.

Example 2.5 Consider a set of cache block references as 7, 0, 1, 2,

0, 3, 0, 4, 2, 3, 0, 3, 2, 3 with 4 slots frame. Find the number of

MISS that occurred during cache access.

Solution: Initially there will be four miss for the first four data

items 7, 0, 1, and 2 as the slots were empty.

0 is already exit, 0 – MISS or HIT,

When 3 came, the algorithms identified 7 as the not-used item for

the longest period in the future and replace it by 3. – 1 MISS.

0 is already exit, 0 – MISS,

When 4 came, the algorithms identified 1 as the not-used item for

the longest period in the future and replace it by 4. – 1 MISS. Thus

there will be 6 misses.

2.6.6 Random replacement (RR) algorithm

The RR algorithm randomly selects any of the data items from the

cache memory and replaces it with the required one. It never keeps

track of the history of removable data items and does not follow any

data structure.

Figure 2.8 Example of Cache optimal block replacements

161 | P a g e

Space for learners: 2.6.7 Pseudo – least recently used (PLRU) algorithm

It is one of the most popular and common block replacement

policies for the current generation’s cache memory. It is widely used

by the industry and a common policy for AMD and INTEL

products. It uses the data structure binary tree for saving the status

of cache memory and hence it is also known as Tree – LRU. The

tree structure is used to identify the block position which is to be

replaced in case of a miss.

2.6.8 Lowest latency first (LLF)

LLF algorithm keeps the average and minimum latency by

removing the objects with the lowest latency. It shows the best

performance during the execution of database queries in the

relational database.

All the algorithms discussed above can be classified into several

classes such as –

a. Recency-based algorithms,

b. Frequency-based algorithms

c. Function-based algorithms

d. Randomized algorithm

2.7 CACHE OPTIMIZATION TECHNIQUE

Cache optimization can be achieved by reducing the miss penalty,

miss rate, and hit time and increasing the cache bandwidth. These

can be obtained using different optimization techniques.

To decrease the gap between CPU cycle and memory latency, a

multilevel cache can be used. Generally, the cache memory can be

162 | P a g e

Space for learners: categorized into three levels such as L1, L2, and L3 cache. L1 is

comparatively the smallest and fastest cache memory in comparison

to L2 and L3 levels. It is located within the CPU itself and hence it

is called on-chip memory. L2 is faster than L3 cache. L3 is larger

and slower in comparison to other levels of cache memory. In a

multiprocessor system, each processor has own L1 and L2 cache

memories and the L3 cache is shared by all processor. Miss rate of

L1 cache can be reduced by introducing L2 cache.

User-level cache-control (ULCC) is another technique through

which space allocation in the cache can be controlled by the user.

Less hit rate and minimal cache pollution can be produced using this

technique. The implementation is very complex.

Cache memory optimization can be achieved by optimizing the loop

in compiler-level implementation. A set of compiler algorithms are

being used to predict the data to be reuse in near future. This will

help to achieve a better hit ratio in cache access.

 The performance of the cache can be improved by producing the

next data to be used by the cache. To produce the next data a

process called data perfecting can be used in advance.

2.8 WRITING INTO THE CACHE

The cache is a technique to keep a copy of one or more blocks of

data from the main memory into the fastest memory storage such

that the processor can access it easily. Cache mostly works as a

buffer in between the processor and RAM and increases the speed of

the processor by making the data available. Whenever the CPU

wants to write data or a word, at first it checks the address where the

word to be written is available in cache or not. If the address is

available in cache memory then it is known as a write-hit. During

the write operation, if the main memory is not updated

163 | P a g e

Space for learners: simultaneously, it may lead to inconsistency of data. That is the

content in cache and main memory may be different for the same

reference address. If the system memory is shared with more than

one device then problems may arise due to this inconsistent data.

Hence the two methods write through and write back come into the

picture to perform the write operation in cache effectively and

efficiently. If the referred address is not available in the cache

during a written request a write-miss will occur. For a write-miss,

two other processes are being used to maintain the data consistency

in cache and main memory namely write allocation and write

around.

2.8.1 Write through

When the number of the write operations in cache is less, then this

process is used. It is comparatively simpler and reliable to perform

the write operation. In write-through, both the memory cache and

main memory are updated simultaneously. During a write operation,

a data or word has to write in both the memory locations and due to

this, the write-through process experienced delays in the write

operation. This process has solved the problem of inconsistent data

but raises a question about the use of cache memory during the write

operation. Because the access of main memory along with the cache

during write operation increases the cost of the write operation and

decreases the CPU performance.

2.8.2 Write back

In this process, the cache is updated during the write operation and

the main memory is updated later.

164 | P a g e

Space for learners:
2.8.3 Dirty bit

A status bit is used to indicate whether the data present in the cache

memory is modified or not during a write operation. It is known as

dirty bit. If the status bit is set to clean-bit, no need to update the

main memory later as the data is not modified in the cache. For a

dirty bit, the main memory has to be updated as it represents that the

cache has been updated during the write operation. But if power

fails due to any cause the modified data will be lost in the cache.

Lost data from the cache cannot be restored.

2.8.4 Write allocation

In this process, data has to be loaded from the main memory into

cache memory and then updated. It works with both write-through

and write-back processes.

2.8.5 Write around
Write around process allows for writing or updating the main

memory without interrupting the cache memory.

2.9 CACHE COHERENCE
During the write operation of cache memory, data inconsistency

may occur among adjacent or within the same level of the memory

hierarchy. It is possible to have many copies of one instruction

operand in a shared memory multiprocessor system. If any operand

value is changed in one memory, then it should reflect in the main

memory as well as all the levels of cache memories simultaneously.

Consider a system with three processors P1,P2, and P3. The P1

reads the data X with the value 25 from the main memory and stores

it into the cache. The P2 also reads the same data X = 25 from the

main memory and stores it into the cache. In the next instruction

165 | P a g e

Space for learners: cycle, P1 writes X as 55 locally into cache but not updated into the

RAM. If P3 reads the data from RAM, what value it will get against

X? For the main memory and P2, it will be 25, whereas for P1 it will

be 55. Thus in caches write operation can create multiple copies of

data in different levels of cache and main memory which may lead

to the cache coherence problem.

Cache coherence can be defined as a protocol or discipline which

ensures that the values of shared operands are propagated

throughout the system in a timely fashion.

Generally, cache coherence may occur from three different sources

of inconsistency problem –

i. Sharing of writable data

ii. Process migration

iii. Input / Output (I/O) activity.

2.9.1 Sharing of writable data

When two processors P1 and P2 read the same word X from shared

memory into their local cache and P1 writes to the word as X1 using

the write-through method, then the shared memory will be updated

from X to X1. Now when P2 will read the data from its local cache

it will be X which is become outdated as shown in Figure 2.9.

Figure 2.9Sharing of writable data

166 | P a g e

Space for learners:

2.9.2 Process migration

Consider that the process P1 has a data operand X and P2 does not

hold any data in its cache. The process P2 first writes on data

operand X as X1 and then migrated to P1. Now the process P1 starts

reading outdated

data X. So P1 writes

the data operand X

onto the main

memory and

migrated to P2 as

shown in figure

2.10. After

migration P2 will

start reading the data element and found X in the main memory

which is outdated for P2.

2.9.3 I/O activity

As shown in Figure 2.11, an input/output device is added to the bus

in a multi-processor system. As shown in the figure initially both the

processor P1 and P2 holds the data operand X. If the I/O peripheral

write the data operand as X1 into the main memory, then the

processes P1 and P2 will get outdated data in the successive read

operation. Then the process P1 will modify the operand as X into

the main memory as well in the local cache. Now if the I/O device

wants to transfer the data, it will get a copy of outdated data.

Figure 2.10Process migration

167 | P a g e

Space for learners:

2.10 COHERENCY MECHANISM

Coherency mechanisms are categorized into four categories –

2.10.1 Directory-based

In this method, the data which is to be shared is placed into a

common directory, which helps to maintain the cache coherency.

Before each read / write operation by the processor from the main

memory into the local cache, the common directory have to be

checked once. Once the directory is changed by any processor,

immediately invalidates or updates the other cache with that entry.

2.10.2 Snooping

It is a process where the individual cache monitors the address lines

for checking the memory location where the cache is mapped. When

a write operation is observed at that location in the main memory,

the cache controller invalidates its copy of the snooped memory

location. It is known as the write invalidate protocol.

Figure 2.11 I/O activity

168 | P a g e

Space for learners: 2.10.3 Snarfing

It is quite similar to snooping. This method is used to monitor both

the memory location that has been cached as well as the actual

information that is stored in the main memory. During a memory

write operation, the cache can be updated by new data.

CHECK YOUR PROGRESS

1. Choose the correct options from the following for each
question:

a. Assume that there are 3-page frames that are initially
empty. If the page reference string is 1, 2, 3, 4, 2, 1, 5, 3, 2,
4, 6, the number of page faults using the optimal
replacement policy is__________.
(A) 5
(B) 6
(C) 7
(D) 8

b. Consider the virtual page reference string 1, 2, 3, 2, 4, 1, 3,
2, 4, 1 on a demand paged virtual memory system running
on a computer that main memory size of 3 pages frames
which are initially empty. Let LRU, FIFO, and OPTIMAL
denote the number of page faults under the corresponding
page replacements policy. Then
(A) OPTIMAL < LRU < FIFO
(B) OPTIMAL < FIFO < LRU
(C) OPTIMAL = LRU
(D) OPTIMAL = FIFO

c. A virtual memory system uses First in First out (FIFO)
block replacement policy and allocates a fixed number of
frames to a process. Consider the following statements:

P: Increasing the number of page frames allocated to a
process sometimes increases the page fault rate.

 Q: Some programs do not exhibit locality of reference.

169 | P a g e

Space for learners: Which one of the following is TRUE?
(A) Both P and Q are true, and Q is the reason for P
(B) Both P and Q are true, but Q is not the reason for P.
(C) P is false, but Q is true
(D) Both P and Q are false

d. A process has been allocated 3-page frames. Assume that
none of the pages of the process are available in the
memory initially. The process makes the following
sequence of page references (reference string): 1, 2, 1, 3, 7,
4, 5, 6, 3, and 1
If an optimal page replacement policy is used, how many
page faults occur for the above reference string?
(A) 7
(B) 8
(C) 9
(D) 10

e. A system uses 3-page frames for storing process pages in
the main memory. It uses the Least Recently Used (LRU)
page replacement policy. Assume that all the page frames
are initially empty. What is the total number of page faults
that will occur while processing the page reference string
given below?
4, 7, 6, 1, 7, 6, 1, 2, 7, 2
(A) 4
(B) 5
(C) 6
(D) 7

f. The optimal page replacement algorithm will select the
page that
(A) Has not been used for the longest time in the past.
(B) Will not be used for the longest time in the future.
(C) Has been used least number of times.
(D) Has been used most number of times.

g. Consider a virtual memory system with a FIFO page
replacement policy. For an arbitrary page access pattern,
increasing the number of page frames in main memory will

170 | P a g e

Space for learners: (A) always decrease the number of page faults
(B) always increase the number of page faults
(C) sometimes increase the number of page faults
(D) never affect the number of page faults

h. A system uses a FIFO policy for page replacement. It has
4-page frames with no pages loaded, to begin with. The
system first accesses 100 distinct pages in some order and
then accesses the same 100 pages but now in the reverse
order. How many page faults will occur?

(A) 196
(B) 192
(C) 197
(D) 195

i. Which of the following is not a written policy to avoid cache
coherence?
(A) Write through
(B) Write within
(C) Write back
(D) Buffered write

j. The transfer between CPU and cache is
____________________.
(A) Block transfer
(B) Word transfer
(C) Set transfer
(D) Associative transfer

k. Which of the following is a common cache?

(A) DIMM
(B) SIMM
(C) TLB
(D) Cache

l. How many possibilities of mapping does a direct-mapped
cache have?
(A) 1
(B) 2
(C) 3
(D) 4

171 | P a g e

Space for learners: m. In which writing scheme does all the data writes go through
to the main memory and update the system and cache?
(A) Write-through
(B) Write-back
(C) Write-buffering
(D) No caching of writing cycle

n. In which writing scheme does the cache is updated but the
main memory is not updated?
(A) Write-through
(B) Write-back
(C) Write-buffering
(D) None of these

o. What is the main idea of the writing scheme in the cache
memory?
(A) Debugging
(B) Accessing data
(C) Bus snooping
(D) Write allocate

2. Answer the following questions and fill up the blanks:
(A) Which cache has a separate comparator for each entry?
(B) What is the disadvantage of a fully associative cache?
(C) Which mechanism splits the external memory storage

into memory pages?
(D) Which of the following cache mapping can prevent bus

thrashing?
(E) Which cache mapping has a sequential execution?
(F) Which address is used for a tag?
(G) What do you mean by locality of reference?
(H) The number of failed attempts to access memory, stated

in the form of a fraction is called as ______________.
(I) The extra time needed to bring the data into cache

memory in case of a miss is called as
__________________.

(J) The counter that keeps track of how many times a block
is most likely used is __________________.

172 | P a g e

Space for learners: 2.11 SUMMING UP

 Cache memory is smaller in size and one of the faster memory

used in a computer system.

 The cache is used to place in between CPU and RAM.

 The memory access time of cache memory is very high in

comparison to the main memory

 L1 cache and L2 cache may embed on the CPU chip, hence it is

known as an on-chip cache.

 The cache is a very high-speed memory and is used to increase

the processing speed by making the data available to the CPU at

a rapid rate.

 Cache works as a buffer between the CPU and the RAM.

 Performance of cache memory is measured in terms of hit-ratio.

 If the CPU finds the referred address in the cache then it can be

defined as a hit.

 If the CPU does not find the referred address in the cache then it

can be defined as a miss.

 The ratio between the hit and the total amount of address

referred by the CPU can be defined as hit-ratio.

 Through the mapping process, data can be transfer from main

memory to cache memory.

 There are three different types of mapping processes in cache

memory such as – associative mapping, direct mapping, and

set-associative mapping.

 In associative mapping, the cache memory contains the data

along with the address references of that data in the main

memory.

 Direct mapping divides the main memory reference done by the

CPU into two fields – index and tag field.

173 | P a g e

Space for learners:  If a system contains the main memory of capacity 2m and cache

of capacity 2n, then the bits in the index field will be n bits and

in the tag field is an (m-n) bit in the direct mapping.

 Cache replacement policies are used to make room for the new

data in cache memory if it is full.

 Some of the cache replacement policies are LRU, LFU, FIFO,

RR, etc.

 Belady’s anomaly – proves that it is possible to have more

MISS for an increasing number of frames while using the FIFO

replacement algorithm.

 User-level cache-control (ULCC) is one technique for block

replacement, through which space allocation in the cache can be

controlled by the user.

 Cache optimization can be achieved by reducing the miss

penalty, miss rate, and hit time and increasing the cache

bandwidth.

 Generally, the cache memory can be categorized into three

levels such as L1, L2, and L3 cache.

 When the CPU wants to write into cache and the CPU referred

address is available in cache memory then it is known as a

write-hit.

 When the CPU wants to write into cache and the CPU referred

address is not available in cache memory then it is known as a

write-miss.

 To write into cache two methods are used – write through and

write back.

 In the write-through process, both the memory cache and RAM

are writing simultaneously.

 In the write-back process, the cache is used to write first and the

main memory is updated later with the help of dirty-bit.

174 | P a g e

Space for learners:  Two other processes write-allocation and write around are used,

when a write miss has occurred.

2.12 ANSWERS TO CHECK YOUR PROGRESS

Answers to the question number 1:

a) C

b) C

c) B

d) A

e) C

f) B

g) C

h) A

i) B

j) B

k) C

l) A

m) A

n) B

o) C

Answers to the question number 2:

(A) Fully associative cache.

(B) Hardware

(C) Index mechanism

(D) N-way set associative

(E) Burst fill

(F) Logical address

(G) The surroundings of the recently accessed block are called

the locality of reference.

175 | P a g e

Space for learners: (H) MISS rate

(I) MISS penalty

(J) Reference counter

2.13 POSSIBLE QUESTIONS

1. Consider block reference strings 1, 3, 0, 3, 5, 6, and a block

frame size 3 is used. Count the cache block miss when the

FIFO replacement algorithm is used.

2. Consider the reference string: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1.

Count the number of miss using FIFO page replacement

algorithm.

3. Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,

with 4 block frame. Find number of miss using optimal block

replacement technique.

4. Consider the page reference string 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0,

3, 2 with 4 block frames. Find the number of misses using the

Least recently used method.

5. Consider page reference strings 1, 3, 0, 3, 5, 6 with the frame

size of 3. Find the number of misses using the FIFO

replacement technique.

6. What is cache memory? Explain the role of cache memory in

program statements execution.

7. Explain different cache mapping processes for example.

8. Why block replacement is necessary for cache memory? What

are the replacement policies; explain the pros and cons of each.

9. Why cache optimization is required? Discuss any two cache

optimization techniques.

10. What types of problems may arise during cache write and how

it can be solved? Explain.

11. What is Belady’s anomaly? Explain with an example.

176 | P a g e

Space for learners: 12. How the multilevel cache is implemented?

13. Discuss the factors on which the cache optimization techniques

are dependent.

14. How in compiler level cache memory can be optimized?

Explain.

15. Define the terms: cache access time, efficiency, average access

time, hit-ratio, miss, memory access time.

2.14 REFERENCES AND SUGGESTED READINGS

 William Stallings, Computer Organization and Architecture
Designing for Performance, Pearson Education India.

 Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer
Organization, McGraw Hill Education.

 M. Morris Mano, Computer System Architecture, Pearson
Education India.

177 | P a g e

Space for learners: UNIT 3: VIRTUAL MEMORY AND PAGING

Unit Structure:

3.1 Introduction

3.2 Unit Objectives

3.3 Paging

3.3.1 Paging Hardware Support

3.4 Segmentation

3.4.1 Segmentation Hardware

3.5 Virtual memory

3.5.1 Demand Paging

3.6 Summing Up

3.7 Answers to Check Your Progress

3.8 Possible Questions

3.9 References and Suggested Readings

3.1 INTRODUCTION

Even though the focus of the subject is computer hardware, there is

one area of software that needs to be addressed and that is the

operating system. An operating system is a software that acts as an

interface between a computer hardware and computer user. The

operating system manages computer hardware, software resources

and allocates resources and services, such as memory, processors

and devices. One of the most important function of operating system

is memory management that includes the hardware support in

processor for paging, virtual memory and segmentation. Virtual

memory allows a program with memory space larger than the size of

the main memory to be available in the system. This is possible by

allowing only that section of the code that is active at that point of

time without the need of having all instructions and data of the

process being present in main memory at the same time. The

178 | P a g e

Space for learners: concept of paging and segmentation eliminates the need of

allocating main memory to the process in contiguous manner.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Explain the mapping of logical address to physical

address using paging memory management scheme.

 Analyze and solve problems on paging.

 Explain the working of paging hardware.

 Explain the mapping of logical address to physical

address using segmentation.

 Explain the working of segmentation hardware.

 Explain Virtual memory management scheme.

3.3 PAGING

To understand the concept of paging we have to go through the

following concepts:

 Process: It is a program in execution or a program placed in

main memory for execution.

 Logical Address: It is the address that is generated by the CPU

for a program while it is running. As the address does not exist

physically it is also called virtual address. The hardware unit of

memory known as memory management unit (MMU) maps

logical address to physical address.

 Physical Address: A physical address is the actual address in the

main memory.

Paging is a memory management scheme that is used to map CPU

generated logical address of a process to physical address in main

179 | P a g e

Space for learners: memory. A process consists of fixed size blocks; Figure 3.1 shows

an example of a process with 4 blocks each of size 1 kilobyte. Size

of a block depends upon architecture of the computer and varies

between 512 bytes to 16 megabytes.

Figure 3.1: A Process with 4 blocks each of size 1 kilobyte.

Page 1 1KB Frame 1 1KB

Page 2 1KB Frame 2 1KB

Page 3 1KB Frame 3 1KB

Page 4 1KB Frame 4 1KB

Logical
Memory Physical

Memory

Figure 3.2: A Process with 1KB block size in logical and physical
memory.

The paging technique divides the logical memory to blocks of the

fixed size known as pages and divides physical memory into blocks

of fixed-size known as Frames. Figure 3.2 shows an example of

pages and frames in logical and physical memory respectively.

Paging scheme allows a process to be stored in the main memory in

noncontiguous manner. It also solves the problem of searching and

fitting blocks of different sizes in main memory by having all block

of same size. One more advantage of the paging scheme is that it

prevents from external fragmentation that is if the main memory

 Block 1

Block 2

Block 3

Block 4

1KB

1KB

1KB

180 | P a g e

Space for learners: blocks are of varying sizes and the size of the free blocks are smaller

than the size of the pages, then the operating will be required to

merge two or more blocks into a single block large enough to fit a

page. By keeping block of equal sizes for both pages and frames,

such problems are resolved. Figure 3.3shows paging model of

physical and logical memory. A page table is used for mapping

between logical addresses and physical addresses. A page table

resides in the main memory. Figure 3.3 shows noncontiguous

allocation of a process in main memory. The mapping of logical

address to physical address is achieved using the page table.

 Page Frame Frame

Number

 Page 0 0 5 0

 Page 1 1 4 1 Page 3

 Page 2 2 7 2

 Page 3 3 1 3

 Logical
memory Page Table 4 Page 1

 5 Page 0

 6

 7 Page 2

 8

 Main
Memory

Figure 3.3: Paging model of physical and logical memory.

The hardware support for paging is demonstrated using an

example in Figure 3.4. The logical address generated by the

CPU is divided into two parts namely page number and

displacement within the page. The page number is used as an

index in the page table to search for the corresponding frame

number. The displacement is combined with frame number to

get the physical address. In the Figure 3.4, the logical address

181 | P a g e

Space for learners: having page number 3 is searched for the corresponding frame

number in the page table which is frame number 15. The frame

number 15 is combined with the displacement 7 to form the

physical address.

Figure 3.4: Paging hardware support

If the size of the logical address space is 2
m

 and size of a page is 2
n

bytes/words, then “m-n” bits of a logical address designate the page

number, the “n” bits designate the displacement or offset. Therefore,

the logical address is:

Page Number Displacement

p d

m - n n

Paging Example -1:

Assume a page size of 1K and a 15-bit logical address space. How

many pages are in the system?

182 | P a g e

Space for learners: Solution:
Page size = 1K = 210i.e. displacement, n=10 bits
No. of bits in logical address = 15, i.e. m=15 bits.
Therefore, no. of bits used for page number is, m - n = 5 bits
Total no. of pages in the system is 25 =32.

Paging Example -2:
Assume that a CPU has a 15-bit logical address space with 8 logical
pages. How large are the pages?
Solution:
There are 8 logical pages, that means3 bits are required to address 8
logical pages (23 = 8).
Therefore, m - n=3 bits
Logical address is 15 bits, m=15 bits
Displacement = 15 -3 = 12 bits.
So, the pages are of size 212 = 4096 = 4K bytes

3.3.1 Paging Hardware Support

Operating system provides support for storing page table of a

process. Generally, a page table can be stored in following ways:

 Set of dedicated registers

 In main memory

 Translation lookaside buffer (TLB)

The feasibility of the first approach using a set of dedicated registers

is that the page table should be reasonably smaller in size like 256

entries. With the second approach page table can be very large like

millions of entries can be stored in the main memory with a pointer

to the starting address of the page table for referencing. However, in

this case the time required to access the page table is slower by a

factor of two as it involves first accessing memory for the page table

to locate the frame number which is combined with the

displacement to get the physical address and then a second memory

access to read the byte.

183 | P a g e

Space for learners: The solution to the disadvantages of the first two approaches is

resolved using a fast lookup hardware support called Translation

Lookaside Buffer (TLB). TLB is a small, expensive but very fast

associative memory.

It can store entries in the range of 64 to 1024. Associative memory

has two parts: a tag and a value. When a page/key needs to be

searched, the key is compared simultaneously with all the tags of the

associative memory.

There are possibly two cases for a page search in TLB. Figure 3.5

illustrates the paging hardware with TLB for these two cases:

 If the search key/page is found, it is called as a TLB hit and

corresponding value/frame is returned from the TLB.

Displacement is combined with frame number and the

physical address is accessed.

 If the search key/page is not found, it is called as a TLB miss

and the page is searched in the page table stored in main

memory. The frame number corresponding to the search

page is combined with the displacement to access the

address in the physical memory. Also the page number and

frame number is added to the TLB so that if the same page is

referred next time it is found quickly. In case the TLB is full,

operating system selects a page replacement algorithm to

replace an existing page with the new entry.

The percentage of times that a particular page number is found

in the TLB is called the hit ratio. If the hit ratio is 60% that

means 60 times out of 100 references, the page will be found in

TLB and remaining 40 times the page is found in the page table.

184 | P a g e

Space for learners:

Figure 3.5: Paging hardware with Translation Lookaside Buffer [1].

Paging Example -3:
If it takes 25 nanoseconds to search the TLB and 75 nanoseconds to
access memory. If the hit ratio is 70%, calculate effective memory
access time.

Solution:

If the page is in the TLB, time taken to access the physical address
 = Time taken to search the TLB + Time taken to access
memory

 = 25 +75 =100 nanoseconds

If the page is not in the TLB, time taken to access the physical
address
 = Time taken to search the TLB + Time taken to
access page table

+ Time taken to access memory
 = 25 +75 +75
 = 175 nanoseconds

Hit ratio is 70%, therefore

185 | P a g e

Space for learners: Effective access time = 0.70 X 100 + 0.30 X 175 =122.5
nanoseconds.

3.4 SEGMENTATION

Segmentation is a memory management scheme similar to paging

that allows a process to be stored in the main memory in

noncontiguous manner. Unlike paging where all the pages or frames

are of fixed size, segmentation allows blocks or segments of

variable size. Segmentation maps the user’s view of a program onto

the physical memory. Looking at the user’s view in Figure 3.6, a

program contains several variable size segments, such as the main

program, subroutine, symbol table, methods etc. It also includes data

structures like arrays, objects, variables, stacks etc. These segments

and data structures are referred by their name without concerning

about the address these segments are stored in memory. Users are

not concerned about the order in which the segments are stored in

the memory.

Figure 3.6: User’s view of a program

186 | P a g e

Space for learners: The logical address space is a group of segments. Each segment has
a name and a length. From the implementation point of view,
segments are numbered instead of using name and the logical
address is represented using the two tuple:

Segment-number Displacement

3.4.1 Segmentation Hardware

The mapping of the logical address <segment-number,
displacement>to the physical address is achieved with the help of
segment table and the segmentation hardware as shown in Figure
3.7. Each entry of the segment table has a segment limit and
segment base. The base represents the starting address of the
segment in the main memory and the limit specifies the length of the
segment. The segment table is indexed on the segment number.

Figure 3.7: Segmentation Hardware[1].

The working of segmentation hardware starts by first identifying the
segment number, s and the displacement, do f the logical address.
The segment number is used to search the segment table, which is
indexed on the segment number. The displacement, d of the logical
address should be between 0 and limit. If the condition is not
satisfied, it means that the logical address is going beyond the
segment limit and a trap interrupt is initiated which is handled by
the operating system.

187 | P a g e

Space for learners: A segmentation example is shown in Figure 3.8. There are 5

segments numbered from 0 through 4. The segments are stored in

physical memory in noncontiguous manner. Also, no specific

ordering is followed for storing the segments as can be observed in

the example. The segment table has an entry for each of the

segment, the starting address of the segment mentioned as base and

the length of the segment mentioned as limit. For example, segment

0 begins at address 5100 and length of the segment is limited to 500

bytes. Therefore, a reference to byte 17 of segment 0 is mapped to

5100 (base of segment 0) + 17 = 5117. Similarly, a reference to byte

88 of segment 4 is mapped to 7300 + 88 = 7388.A trap interrupt will

be called if byte 1700 of segment 4 is referenced as the limit is

1500.

Figure 3.8: Segmentation Example

3.5 VIRTUAL MEMORY

The memory management scheme discussed in previous section

requires the entire process to be in the main memory for execution.

Most of the times there can be a requirement of many processes to

be in the memory simultaneously for execution. This situation can

188 | P a g e

Space for learners: prevent simultaneous execution of multiple processes due to the size

of the main memory, which may not be large enough to hold all the

processes. So the concept of virtual memory was introduced.

A virtual memory management scheme allows execution of a

process even if it is not completely in memory. That is, it requires

only that section of the code of the process to be in the memory that

will be executed. Generally, a process contains several functions or

procedures and not all the functions are required to be in the

memory at the same time. So the function or the procedure that will

be executed needs to be in the main memory while the other

functions or procedures can be placed in the secondary memory and

wait for their turn of execution. So whenever a function is not

available in the main memory, it is brought from the secondary

memory to main memory for execution. The main advantage of this

scheme is that a program larger than main memory can still run on a

smaller physical memory. This is how a games like Need for speed

or Call of Duty which require respectively 30 GB and 90 GB of

memory can still run on a system having 6 GB RAM with sufficient

hard disk space. Also, as only a section of the process’s code needs

to be in memory so many process can be there in memory

simultaneously. Thereby increasing CPU utilization and throughput.

Figure 3.9: Example showing virtual memory larger than physical
memory[1].

189 | P a g e

Space for learners: Figure 3.9 shows an example of a larger virtual memory than

physical memory. The programmer thus need not have to worry

about the size of the main memory available, thus can concentrate

on the problem to be programmed. As can be seen in the Figure 3.9,

pages from the large virtual memory address space is stored in the

secondary memory and the pages are brought back to main memory

whenever a call to those pages are required. If the main memory

does not have any free slot for the pages, then some page

replacement algorithms are used to replace the pages in main

memory with the pages from secondary memory.

3.5.1 Demand Paging

Suppose a user wants to run a program, so the entire program is

loaded to main memory from the secondary memory. However, if

the program runs only one option/case out of the several cases based

on the user input, it is impractical to load the code for all the cases,

other cases may never be called for execution. So, a virtual memory

technique known as demand paging is used to load only those pages

of the process when they are required or whenever there is a demand

for the page occurs during the program execution.

In Figure 3.10 shows an example of demand paging where pages 4,

5, 6 and 7 of Program A is swapped out of memory and pages 17, 18

and 19 of Program B is moved in to the memory because of the

demand for the pages 17, 18 and 19. The method is implemented by

a pager program responsible for demand paging.

190 | P a g e

Space for learners:

Figure 3.10: Example showing Demand Paging [1].

CHECK YOUR PROGRESS

i. Fixed-sized blocks in physical memory is called

a) Block
b) Frame
c) Pages
d) Segment

ii. In paging CPU generated logical address has two parts

_____________and _____________.
a) Page offset & Frame bit
b) Page number & Page offset
c) Frame offset & Displacement
d) Frame number& page offset

iii. Fixed-sized blocks in logical memory is called ________

a) Block
b) Frame
c) Pages
d) Segment

iv. Paging does not suffer from ________.

a) Internal Fragmentation
b) External Fragmentation

191 | P a g e

Space for learners: c) Both a) and b)
d) None of the above

v. If it takes 10 milliseconds to search the TLB and 80

milliseconds to access the physical memory. If the TLB
hit ratio is 0.6, the effective memory access time (in
milliseconds) is _________.
a) 120
b) 122
c) 134
d) 124

vi. The displacement ‘d’ in a logical address must be

a) Greater than segment limit
b) Greater than the segment number
c) Between 0 and the segment number
d) Between 0 and segment limit

vii. In segmentation, each address is specified by

a) A key and value
b) A displacement and value
c) A segment number & displacement
d) A value and segment number

viii. A CPU generated memory larger than main memory is

called as
a) Logical Memory
b) Secondary Memory
c) Virtual Memory
d) All of the above

ix. The virtual memory manager loads only those

component of a program during execution as a when
required is known as _____.
a) Segmentation
b) Swapping
c) Virtual memory
d) Demand Paging

192 | P a g e

Space for learners: x. Virtual memory can be implemented with
a) Swapping
b) Paging
c) Segmentation
d) Both b) and c)

3.6 SUMMING UP

 Logical address is the address that is generated by the CPU

for a running program.

 A physical address is the actual address in the main memory.

 Paging is a memory management scheme that is used to map

CPU generated logical address of a process to physical

address in main memory.

 The logical address generated by the CPU is divided into

two parts namely page number and displacement with the

page.

 Translation Lookaside Buffer is a small, expensive but very

fast associative memory.

 In a TLB, if the search page is found it is called as a TLB hit

if the page is not found it called as TLB miss.

 The percentage of times that a particular page number is

found in the TLB is called the hit ratio.

 Segmentation is a memory management scheme similar to

paging that allows a process to be stored in the main memory

in noncontiguous manner.

 The mapping of the logical address <segment-number,

displacement> to the physical address is achieved with the

help of segment table and the segmentation hardware.

 A virtual memory management scheme allows execution of

a process even if it is not completely in memory.

193 | P a g e

Space for learners:  A virtual memory technique known as demand paging is

used to load only those pages of the process when they are

required or whenever there is a demand for the page occurs

during the program execution.

3.7 ANSWERS TO CHECK YOUR PROGRESS

i, b ii, b iii, c iv, b v, b

vi, d vii, c viii, c ix, d x, d

3.8 POSSIBLE QUESTIONS

1. Differentiate between physical and logical address space.
2. Explain paging memory management scheme.
3. Define a page table. Why it is needed in paging?
4. What is hit ratio? Why page should be replaced in the

memory?
5. Explain the working of a paging memory management

scheme.
6. Consider a logical address space of 16 pages of 512 words

each, mapped on to a physical memory of 64 frames. How
many bits are there in the logical address? How many bits
are there in the physical address?

7. If it takes 125 nanoseconds to search the TLB and 500
nanoseconds to access memory. If the hit ratio is 90%,
calculate effective memory access time.

8. Assume a page size of 4K and an 18-bit logical address
space. How many pages are in the system?

9. Assume that a CPU has a 16-bit logical address space with
4 logical pages. How large are the pages?

10. What is segmentation? Explain.
11. Define a virtual memory. With a neat diagram, explain the

working of a virtual memory. What are the benefits of a
virtual memory?

12. What is demand paging? Explain.

194 | P a g e

Space for learners: 13. What is the benefit of demand paging?
14. Consider logical address 1025 and the following page table

for some process P0. Assume a 15-bit address space with a
page size of 1K. What is the physical address to which
logical address 1025 will be mapped?

6
2
3

15. Consider the following segment table:

Segment Base Length
34 100 100
21 2500 200
0 1200 50
90 1700 300
7 500 500
2 600 50
99 650 200

What are the physical address for the following logical
address?

i. 0,25
ii. 2,89

iii. 90,345
iv. 34,50
v. 99,201

3.9 REFERENCES AND SUGGESTED READINGS

 Computer Organization and Architecture, 10th edition,

William Stallings, Pearson.

 Computer System Architecture Third Edition, M. Morris

Mano, Rajib Mall, Pearson

195 | P a g e

Space for learners:  Computer Organization, 5th Edition, Carl Hamacher,

McGraw Hill

 Operating System Principles 8th edition by Abraham

Silberschatz, Greg Gagne, and Peter Baer Galvin,

Willey

196 | P a g e

Space for learners: UNIT 4: BASIC I/O SYSTEM-I

Unit Structure:

4.1 Introduction

4.2 Unit Objectives

4.3 Bus Interconnection

4.3.1 Structure of Bus

4.3.2 Aspects of Bus Design

4.4 I/O Devices

4.5 I/O Interfacing using I/O Modules

4.5.1 Functions of an I/O Module

4.5.2 Structure of I/O Module

4.6 I/O Addressing

4.7 Interrupts

4.7.1 Types of Interrupts

4.7.2 Interrupt Latency

4.8 Direct Memory Access

4.9 Summing Up

4.10 Answers to Check Your Progress

4.11 Possible Questions

4.12 References and Suggested Readings

4.1 INTRODUCTION

Input and Output (I/O) devices are integral parts of computer

systems. I/O devices and I/O modules are the functional units of a

computer along with the Central Processing Unit (CPU) and the

memory units. There exists a wide variety of I/O devices having

different characteristics. Thus I/O devices are not directly connected

to the CPU; rather they are connected via I/O modules. I/O modules

take the responsibility of establishing the communication between

the CPU and I/O devices by bridging the gap between an I/O device

and the CPU. Each I/O module connects with the system bus or to

the central switch. An I/O module can control more than one device.

197 | P a g e

Space for learners: This unit will provide an understanding of basics of I/O interfacing.

We begin this chapter with an overview of bus interconnection and

bus arbitration, and then we illustrate the functioning of I/O

operations via I/O module. At the end of the unit we present the

basics of interrupts and direct memory access (DMA).

4.2 UNIT OBJECTIVES

On completion of this unit students will be able to:

 Explain the basics of bus structures, bus arbitration and

roles of different buses.

 Get familiarized with various input output devices.

 Comprehend various aspects of input output interfacing.

 Learn the functioning of input output modules

 Understand the significance of interrupts in communication

within put output.

 Learn the concept of data transfer using direct memory

access

4.3 BUS INTERCONNECTION

A bus is a pathway via which two or more devices can perform data

transfer. Buses are shared transmission media; multiple units can

use the same bus for the data transfer but at a time only one unit can

send data. A bus can be used to connect either the major

components of a computer or the internal components of a CPU or

two different computers.

Typically a bus is comprised of multiple lines. Each line can

transmit a single bit (0 or 1); thus it can transfer a group of bits in

parallel in a single transfer .The number of bits that can be

198 | P a g e

Space for learners: transferred in parallel is called as the bus width. For example, an 8-

bit wide bus can transmit 8 bits at a time.

Computer systems have different types of buses for different levels

of communications. The internal components of a CPU are

connected via internal CPU bus. The major components of a

computer system, i.e., the CPU, memory modules and I/O are

connected via a special type of bus called as system bus.

STOP TO CONSIDER

Buses are used by different modules of a computer to transfer data to
other modules. Via buses various forms of data are transferred.

4.3.1 Structure of Bus

As mentioned earlier, a system bus is a common bus shared by the

CPU, memory and the I/O. A typical system bus comprises of about

50 to hundreds of separate lines. The connected modules can send

different types of information such as data, address and control

signals over these lines. Thus lines are usually divided into three

groups: data, address and control lines. The schematic diagram of a

typical system bus structure is shown in Fig 4.1.

The data lines or data bus is used to transfer the data among the

components attached to it. The width of data bus of a contemporary

machine, can be 32, 64 or even more. This width determines the

amount of data that can be transferred at a time. The width of the

data bus is a key parameter to determine the performance of the

system. For example, if the length of an instruction is of 64 bit, then

the processor would need to access memory only once if the data

bus if 64-bit wide; on the other hand if the data bus is of 16-bit, then

199 | P a g e

Space for learners: the processor would need to access the memory 4-times to fetch the

64-bit instruction. Thus wider the bus faster will be the data transfer.

The address lines, also known as address bus identifies the

location of the source or the destination of the data available on the

data bus. For example, if the processor has to read the data from

memory location X, then it places the address X onto the address

bus. The width of the address bus determines the system’s memory

capacity. For an instance, a system with 16-bit address bus can

support a memory of 216 blocks. Moreover, the address bus is also

used to locate an I/O port. The higher order bits usually identify a

particular I/O module and the lower order bits identify the particular

port of the selected module.

The control lines or control bus are used to carry control signals

and timing information to the various computer components.

Control signals help in enabling a system to understand what has to

be done and timing information indicates the validity of the

information available in the data and the address bus. Typical

control signals are Memory Read, Memory Write, I/O Read, I/O

Write, Bus Request, Bus Grant, Interrupt etc.

Fig. 4.1 Interconnection of Computer Modules via System Bus

Data Bus

Address Bus

Control Bus

CPU Memory I/O Module I/O Module . . .

200 | P a g e

Space for learners:

STOP TO CONSIDER

A common bus structure is used to connect the major components of
a computer. Such a structure is called as system bus. System bus
allows a computer module to transmit data, address and control
signals to another module. Thus the bus lines are grouped into data,
address and control lines.

4.3.2 Aspects of Bus Design

There are a few aspects which are needed to be considered while
designing a bus structure. The key aspects are bus type, bus width,
method of arbitration, timing and data transfer type.

Bus Types:

Buses can be categorized into two broad types: dedicated and
multiplexed. Dedicated buses are used either for a specific function
(e.g., for data or address) or to connect specific physical modules.
The advantage of dedicated bus is higher throughput. However, it
increases the size as well as the cost of the system.

On the other hand, multiplexed buses are ones either for used

multiple functionalities or to be shared amongst multiple physical

modules. For example, a common bus can be used to share both data

and address information. The main advantage of having multiplexed

bus is that it uses of fewer lines which helps in making the system

compact as well as cost effective. A major disadvantage of it is that

it needed a more complex circuitry for each connecting module.

Bus Width:

We have already addressed the role of the bus width while

discussing different bus types. It determines the amount of data that

can be transferred at a time. Higher is the width of the data bus,

higher is the transfer rate. Thus the width of the data bus has an

201 | P a g e

Space for learners: impact on the performance of a system while width of the address

bus determines the system’s capacity to address memory blocks.

Bus Arbitration:

In case of a shared bus system more than one module may require to

have the control of the buses. Typically, the CPU has the main

control of the buses; however when a module wishes to perform the

data transfer without CPU’s intervention then the device which

controls the data transfer may need to have the control of the buses.

In such a scenario, the CPU has to transfer the control of the buses

to the device managing the data transfer. The process of transferring

the control of the buses from one device to another is called as bus

arbitration. There are basically two types of bus arbitration methods:

centralized and distributed. In case of centralized arbitration, a

special hardware called as bus arbiter performs the allocation of the

buses to the module requiring the buses. This device can be a part of

the CPU or can be a standalone module. In distributed method, the

modules mutually share the control of the buses without relying on

any centralized arbiter.

Timing:

Timing is a very important criterion of bus design. It defines a way

to coordinate the events occurred on the bus. It can be synchronous

or asynchronous.

202 | P a g e

Space for learners:

Fig. 4.2 Timing Diagram of Memory Read and Write Cycle

The occurrences of the events in synchronous timing are controlled

by the clock. A clock line is attached to the bus that transmits an

alternating sequence of 0s and 1s repetitively. One single transition

of 1-0 is termed as one clock cycle. A clock cycle defines a slot. All

the modules attached to the bus can access the clock line and

triggers all events at the beginning of a clock cycle. The Fig. 4.2

presents a sample timing diagram of both memory read and write

cycles. In this example, a memory address is placed onto the address

bus at the beginning of a clock cycle. Once the entire address is

Clock

Status
lines

Address
lines

Address
Enable

Data
lines

Read

Write

Data
lines

Read
cycle

Write
cycle

t1 t2 t3

203 | P a g e

Space for learners: placed onto the bus, the processor asserts the address enable signal.

During read cycle, the processor enables the read signal at the

beginning of the second clock cycle; the system identifies the

address and places the data from the designated memory address

(a) Memory Read Cycle

(b) Memory Write Cycle

Fig. 4.3 Timing Diagram of Asynchronous Bus Operations

Write

Status
lines

Address
lines

Data Valid Data
lines

Acknowledgement

Data Valid

Status
lines

Address
lines

Data
lines

Read

Acknowledgement

204 | P a g e

Space for learners: onto the data bus at the start of the third cycle. The processor reads

the data from the bus and disables the read signal on completion of

the read operation. During the write cycle, the processor places the

data onto the data bus followed by activating the write command.

The memory reads the data from the bus during the third cycle.

In asynchronous timing no clock is used to coordinate the

occurrence of the events, rather the occurrence of one event depends

on a previous event. To coordinate the events, the processor asserts

special status signals. During read cycle, the processor first places

the address onto the address bus and asserts the status signals. The

read command is issued once the address is stabilized to indicate the

validity of the address. The memory module recognizes the address

and copies the data from the corresponding memory address onto

the data bus. The memory module confirms the accomplishment of

the transfer of data to the bus by asserting the acknowledgement

signal. The read signal is disabled once the data is read by the

processor. The memory module then drops the acknowledgement

signal and the processor desserts the read signal. Fig. 4.3(a)

demonstrates the sequence of events of the read cycle with

asynchronous bus.

During write cycle, the processor places the address, status and data

onto the respective buses at the same time. The write signal is

asserted by the processor to indicate data valid. The address is

recognized by the memory module and fetches the data from the

data bus to copy it to the address given. Once write is accomplished,

the memory module sends the acknowledgement signal. The write

signal is then dropped by the processor or the bus master after

receiving the acknowledgement. The write cycle events with

asynchronous bus are shown in Fig. 4.3(b).

205 | P a g e

Space for learners: STOP TO CONSIDER

To design a bus structure, various criteria like bus type, bus width,
type of arbitration and timing are needed to be considered. Based on
different parameters chosen for different criteria, the bus has to be
designed.

4.4 I/O Devices

I/O devices are external devices which facilitate the exchange of

data between the processor and the external environment. Such

devices are also known as peripheral devices or simply peripherals.

An I/O device is connected with the processor via an I/O module

port. An I/O device can be used either for input or output or both.

Some of the input devices are keyboard, mouse, mic, scanner etc

while the output devices include monitor, speaker, printer etc.

I/O devices can be classified broadly into human readable, machine

readable and communication. Human readable devices used to

allow the users to interact with the computer. These enable the user

either to give input or to see the output. Keyboard, monitor and

printer are some examples of human readable I/O devices. The

machine readable I/O devices are used to establish the

communications between various devices or components of the

computer. The magnetic disks, tapes, sensors and actuators are some

examples of machine readable I/O devices. The communication

devices are used to transmit data to a remote device. Examples of

communication devices include modems, Infrared, Bluetooth and

network interface card (NIC). The remote devices can be a human

readable device like a terminal or can be a machine readable device

or can even be another computer. Fig. 4.4 demonstrates the generic

block diagram of I/O device. The control logic performs the

controlling of overall operations of the I/O device. It decodes the

task to be performed by the device based on the received control

206 | P a g e

Space for learners: signal. It is also responsible for error detection and status reporting

to the I/O module. The transducer’s job is to convert the data

received from the external environment to the format

understandable by the device during input operation and converts

the data from device understandable to the format which the

external environment understands. The data buffers store data

temporarily to be exchanged between the external environment and

the I/O module.

Fig. 4.4 Generic model of an I/O device

The most common I/O devices that almost every computer
possesses are keyboard, mouse, monitor and Disk drives. A brief
discussion on these four is presented below.

Keyboard

This is the universal input device for all computers. The keyboard
layout is identical to that of a standard QWERTY typewriter. It also
has several additional command and function keys. It has between
101 and 104 keys in total. Through this, a user can enter alphabets,
numbers and symbols called as characters. Each character is
associated with a unique 7 or 8 bit code. One of such code
representation is American Standard Code for Information
Interchange (ASCII). To enter data, you must press the precise
combination of keys. The transducer in the keyboard interprets the

Control
Logic

Data Buffers

I/O Module
Control
Lines

Data to/from
Environment

Data Lines

Transducer

207 | P a g e

Space for learners: electrical impulses generated by a keystroke and converts it into its
corresponding 7 or 8 bit binary code.

Mouse

Another input device which is used most commonly is the mouse. It
has two or three buttons on the top and rolls on a little ball. Different
buttons are used to perform different actions. The screen cursors of
the mouse move in the direction of mouse movement when you roll
it across a flat surface. With the mouse, the cursor moves quite
quickly, providing you more freedom to operate in any direction.
Moving using a mouse is easier and faster.

Monitor

It is the most common output device that is common in all the
computers. It is a unit that displays the characters entered through
the keyboard and to display any message. The message can be in the
form of text, image or video. So monitors are also called as video
display devices. In market various types of video display devices are
available. In earlier time Cathode Ray Tubes (CRT) were used to
design the monitors. Such monitors were either monochromatic or
colored. Although, CRT monitors are still present, however Liquid
Crystal Display (LCD) based monitors are more common in recent
time. These monitors have a flat panel display and consume less
power than the CRT monitors.

Disk Drive

It is a device used for data storage in the computer. It has
mechanisms to exchange data and control signals with an I/O
module. An I/O module can perform both read and write operations
on the disk drive. The transducer on a fixed-head disk can transform
magnetic patterns on the moving disk surface to bits in the device's
buffer. The disk arm of a moving-head disk must be able to move
radially in and out across the disk's surface.

STOP TO CONSIDER

I/O devices are external devices which enable exchange of data
between external environment and the computer. There exists a
variety of I/O devices for performing various tasks. Keyboard,
mouse, monitor and magnetic disks are the most common I/O
devices.

208 | P a g e

Space for learners: 4.5 I/O Interfacing using I/O Modules

A computer is connected with a diverse set of I/O devices. The
devices differ largely in terms of data rates, data representations,
data formats, word lengths and error conditions. The data rates of
the devices differ from the main memory and the processor. Often
peripheral devices are slower than the processor and the memory.
But there are some devices faster than the memory and the
processor. So there is a big gap between the processor and any I/O.
In such a scenario direct communication between an I/O device and
the processor is not easy. To solve this, I/O modules are used as a
mediator between an I/O device and the processor. I/O modules
interface to the memory and the processor through the system bus,
which interface one or more I/O devices by the ports.

4.5.1 Functions of an I/O Module

As mentioned earlier I/O devices are connected with the processor
via the I/O modules. For this, an I/O module needs to interact with
both the processor and the I/O devices. The processor initiates the
I/O operations and selects the I/O module that connects the target
peripheral. The I/O devices send or receive the data to the I/O
module to be sent to the processor. The major tasks performed by
the I/O module are as follows:

 Control and timing
 Communication between the device and the processor
 Data buffering
 Error Checking

Control and Timing

The processor may need to interact with multiple peripheral devices,
memory and buses as per the requirement of the program leading to
multiple data transfer among various units. So there must be a
proper coordination and sequencing of events in order to avoid any
conflict. The events generated by a peripheral device are monitored
and synchronized by the connected I/O module. The I/O module
controls the activities of the peripheral based on the signals received
from the processor.

209 | P a g e

Space for learners: Communication between the device and the processor

During an I/O transfer, the I/O module performs four major tasks,
namely command decoding, status reporting, data exchange and
address recognition.

Command decoding: The processor sends commands to the I/O
module in the form of control signal. The I/O module decodes the
command and instructs the I/O device to perform the necessary task.

Status reporting: As there is a speed mismatch between an I/O
device and the processor, it is necessary for the processor to know
the current status of the I/O device before and during any data
transfer. The processor requests the I/O module to check status of
the I/O device. Typical status signals include ready and busy. The
I/O module reports back the status of the I/O device to the
processor.

Data Exchange: When the I/O device is ready to send or receive the
data, the processor requests the I/O module to initiate the transfer. In
case of input operation, the I/O module gets the data from the I/O
device and forwards the same to the processor. And for output
operation, the I/O module gets the data from the processor and then
forwards them to the I/O device.

Address Recognition: To uniquely identify the I/O devices, each
device is assigned a unique address. During I/O transfer, the
processor refers the I/O devices using their unique address or
identifier. The I/O module recognizes the specific I/O device it
controlling based on the address received from the processor.

Data Buffering

The data buffering is an essential task that the I/O module has to
perform as the data rates of processor or memory is much higher
than most of the peripherals. The I/O devices cannot receive the data
at the speed of memory or processor. The I/O module buffers data
received from memory or processor till the I/O device gets ready to
receive the data. Similarly, if the data rates of I/O devices are faster
than the memory or the processor, the I/O module buffers data
received from I/O device to match the speed of processor and
memory.

210 | P a g e

Space for learners: Error Checking

Errors are inevitable while transferring data over any medium. The
error may be mechanical or electrical due to technical malfunctions
of the devices or may due to transmission. The transmission errors
alter the sequence of bit-pattern of the data. The I/O module
includes error detecting codes to detect any transmission error. The
module checks for error for each every data it receives.

4.5.2 Structure of I/O Module

The general structure of an I/O module is presented in Fig. 4.5. It
contains a register set for storing data, status and control
information. The data registers are used to store the buffered data.
The status registers stores the current status information. The control
information received from the processor is stored in the control
registers. The register set is connected with the processor via the
data bus. The processor uses the address lines and the control lines
to send the address information and command to the I/O modules
respectively. The control logic unit recognizes an I/O device based
on the address information received via the address lines. It decodes
the command received via the control lines. It also has logic to
interface with the I/O devices.

STOP TO CONSIDER

Direct exchange of data between the CPU and I/O devices are
difficult due to the difference in data transfer rates, data
representation and unit of transfer. I/O modules are thus used a third
party to establish the communication between CPU and I/O.

211 | P a g e

Space for learners:

Fig. 4.5 Block Diagram of an I/O Module

4.6 I/O ADDRESSING

The I/O devices are given unique identifiers using any of two
addressing modes: memory mapped I/O and isolated I/O. In memory
mapped I/O, the I/O devices and memory locations share the same
address space. For example, if a system has a 12-bit address bus
supporting 4096 unique addresses, then these addresses will be
shared among the memory locations and the I/O devices. That
means if there is a memory address X, then the address X cannot be
assigned to an I/O device. The processor treats I/O transfers exactly
same as the memory transfer. Thus, only a single pair of read write
lines is required for both memory read/write and I/O read/write. The
processor uses the same instructions to access both memory and I/O.
The advantage of memory mapped I/O is a large number of
instructions are available for I/O operations. However it limits the
address space for both memory and I/O.

Control
Lines

Address
Lines

Data Buffers

Status Registers

Control Register

I/Odevice
interface

logic

I/O device
interface

logic

I/O device
interface

logic

Control
logic

Data
Lines

Data
Status
Control

Data
Status
Control

Data
Status
Control

System Bus
Interface

Device
Interface

212 | P a g e

Space for learners: In isolated I/O, memory locations and I/O devices do not share the

same address space. If there is a memory address X, then there can

be an I/O device with address X as memory locations and I/O have

different address space. Thus, a full range of address space is

available for both I/O and memory locations. The processor uses

different instructions for memory transfer and I/O transfer. It uses

separate lines for memory read and I/O read and same holds true for

I/O write and memory write. When the memory read/write line is

high then the address in the address bus is treated as a memory

address and when the I/O read/write line is high then the address in

address bus is treated as an I/O address.

4.7 INTERRUPTS

In computer system, an interrupt is a signal generated by hardware

to request the processor to give immediate service suspending the

current executions. Hardware interrupts are generally used for

handing I/O transfers. As most of the I/O devices are slower than the

processor and the memory, the processor does not wait for the I/O to

transfer the data. When the I/O is preparing to send or receive data,

the processor remains busy with other execution. The I/O device

sends interrupt signal to the processor via the I/O module when it

gets ready to send or receive data.

For each interrupt, the processor has a routine called as interrupt

service routine (ISR). This is a special routine that has the code to

accomplish the task requested via the interrupt. The processor

executes the ISR as a response to the interrupt suspending the

current execution. After giving the service to the interrupt, the

processor resumes it suspended work.

213 | P a g e

Space for learners: Apart from hardware interrupts, there are interrupts raised by

softwares. These are basically exceptions occurred during the

execution of a program. Divide by zero, not a number (NaN), over

flow and underflow are some examples of software interrupts.

4.7.1 Types of Interrupts

A computer system supports a variety of hardware interrupts. These

can be broadly classified into two categories: maskable and non-

maskable. Maskable interrupts are the ones that can be ignored.

There is a facility to disable such interrupts. These interrupts can be

ignored only if they are disabled. The non-maskable interrupts are

the highest priority interrupts and cannot be ignored at any cost.

Thus, there no option is available to disable such interrupts. TRAP

is the example of a non-maskable interrupt.

4.7.2 Interrupt Latency

When the processor suspends the current execution in order to

provide the service to interrupt request, it saves the necessary data

including the program return address to resume the program

execution. The program return address is usually saved onto the

processor’s stack memory. After saving these data, the program

counter is updated by assigning the routine address. This causes a

time delay to start the execution of ISR from the time interrupt

request has been received. This delay is called as interrupt latency.

STOP TO CONSIDER

When a process or event requires immediate attention, hardware or
software emits an interrupt signal.

214 | P a g e

Space for learners: 4.8 DIRECT MEMORY ACCESS

DMA is a feature of computer systems that allows certain hardware

subsystems to access primary system memory (random-access

memory) without the intervention of the CPU.

When employing programmed I/O or interrupt driven I/O, without

DMA the CPU is often totally engaged for the duration of the read

or write operation, leaving it unavailable to execute other tasks. The

CPU initiates the transfer via DMA, then does other tasks while the

transfer is ongoing, and ultimately receives an interrupt from the

DMA controller when the operation is completed.

When the CPU can't keep up with the rate of data transfer, or when

the CPU needs to do work while waiting for a relatively slow I/O

data transfer, this capability comes in handy. DMA is used by many

hardware systems, including disk controllers, graphics cards,

network interface cards, and sound devices. In multi-core CPUs,

DMA is also employed for intra-chip data transfer. DMA channels

allow computers to transport data to and from devices with

significantly less CPU overhead than computers without them. A

processing element inside a multi-core processor can also transmit

data to and from its local memory without consuming processor

time, permitting processing and data transfer to happen in parallel.

STOP TO CONSIDER

DMA is technique used to perform data transfer without actively
involving the CPU. During the DMA transfer the CPU remains free
and can perform some other operations which do not require the
system bus.

215 | P a g e

Space for learners: CHECK YOUR PROGRESS

i. The key advantage of adopting a single bus structure is
that it ______

a. faster transfer
b. ease of access
c. cost effective
d. none of the above

ii. System bus is used to transmit
a. data
b. address
c. control signal
d. all of the above

iii. Width of ______ bus determines the performance of
the overall system.

a. data
b. address
c. control signal
d. all of the above

iv. Width of the address bus determines___________
a. the performance of the system
b. system’s memory capacity
c. both a and b
d. none of the above

v. Usual bus structure used to connect I/O devices follows
a. single bus structure
b. multiple bus structure
c. star bus structure
d. none of the above

vi. I/O modules are used to overcome difference in
________ between I/O and CPU.

a. speed of data transfer
b. data representation
c. units of data transfer
d. all of the above

vii. Memory mapped I/O has the following advantage over
Isolated I/O

a. fewer address lines
b. more instructions for I/O operations
c. bigger buffer space
d. all of the above

216 | P a g e

Space for learners: viii. Isolated I/O has the following advantage over Memory
mapped I/O

a. fewer address lines
b. more instructions for I/O operations
c. bigger buffer space
d. all of the above

ix. What is the mechanism for synchronizing the CPU
with the I/O device in which the device sends a signal
when it is ready?

a. DMA
b. interrupt
c. signal handling
d. exception

x. DMA transfer has the following advantage
a. faster data transfer
b. increased CPU throughput
c. both a and b
d. none of the above

4.9 SUMMING UP

 A bus is a pathway via which two or more devices can
perform data transfer. Buses are shared transmission media;
multiple units can use the same bus for the data transfer but
at a time only one unit can send data.

 The major components of a computer system, i.e., the CPU,
memory modules and I/O are connected via a special type of
bus called as system bus. The system bus has three groups of
lines for data, address and control.

 The key aspects of bus design are bus type, bus width,
method of arbitration, timing and data transfer type.

 I/O devices are external devices which facilitate exchange of
data between the processor and the external environment.
Such devices are also known as a peripheral device or
simply a peripheral. An I/O device is connected with the
processor via an I/O module port.

 I/O devices are not directly connected to the CPU; rather

they are connected via I/O modules. I/O modules take the

217 | P a g e

Space for learners: responsibility of establishing the communication between

the CPU and I/O devices by bridging the gap between an I/O

device and the CPU. Each I/O module connects with the

system bus or to the central switch. An I/O module can

control more than one device.

 The I/O devices are given unique identifiers using any of

two addressing modes: memory mapped I/O and isolated

I/O. In memory mapped I/O, the I/O devices and memory

locations share the same address space.

 In computer system, an interrupt is a signal generated by

hardware to request the processor to give immediate service

suspending the current executions.

 DMA is a feature of computer systems that allows certain

hardware subsystems to access primary system memory

(random-access memory) without the intervention of the

CPU.

4.10 ANSWERS TO CHECK YOUR PROGRESS

i. c ii. d iii. a iv. b v. a
vi. d vii. b viii. a ix. b x. c

4.11 POSSIBLE QUESTIONS

1. What is the role of a computer bus?

2. Differentiate between multiplexed and dedicated bus.

3. What are the various aspects of bus design?

4. Why is it not possible to connect an I/O device directly to a

computer?

5. Explain the tasks performed by an I/O module.

6. What are the signals shared by an I/O module?

218 | P a g e

Space for learners: 7. What do you mean by an interrupt in terms of a computer

system?

8. What do you mean by DMA? What are the advantages of using

DMA?

9. Discuss various types of I/O devices.

10. Differentiate between maskable and non-maskable interrupt.

4.12 REFERENCES AND SUGGESTED READINGS

 William Stallings, Computer Organization and Architecture

Designing for Performance, Pearson Education India.
 Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer

Organization, McGraw Hill Education.
 M. Morris Mano, Computer System Architecture, Pearson

Education India.

---×---

219 | P a g e

Space for learners UNIT 5: BASIC I/O SYSTEM-II

Unit Structure:

5.1 Introduction
5.2 Unit Objectives
5.3 Programmed I/O
5.4 Interrupt Driven I/O
5.5 Direct Memory Access
5.6 Summing Up
5.7 Answers To Check Your Progress
5.8 Possible Questions
5.9 References and Suggested Readings

5.1 INTRODUCTION

I/O operations are performed through a large variety of I/O devices.

These devices provide a way of interchanging data between the

external environment and the computer. Different I/O devices have

different data transfer rates, different data formats and different

word lengths. These variations make the direct interaction between

I/O devices and processor (or memory) very complex. Thus, the

processor or the memory does not interact with the I/O devices

rather I/O modules are used to establish the interactions between I/O

devices and the processor (or memory) as a mediator. For an

instance, if the processor wishes to send some data to an I/O device,

it sends it to the I/O module which forwards the same to the specific

I/O device. The I/O operations are performed using three

techniques: programmed I/O, interrupt driven I/O and direct

memory access.

This unit begins with a discussion on the three mentioned I/O

operation techniques. The unit also presents a discussion on various

way of handling multiple interrupts.

220 | P a g e

Space for learners 5.2 UNIT OBJECTIVES

On completion of this unit students will be able to:

 Explain the various aspects of I/O transfer based on
Programmed I/O, Interrupt Driven I/O and DMA
Transfer

 Compare Programmed I/O, Interrupt Driven I/O and
DMA Transfer

 Explain different ways of handling multiple interrupt
requests

5.3 PROGRAMMED I/O

In programmed I/O, the processor exchanges data with the I/O

module. The processor allows the I/O module to control the I/O

operations directly. The I/O module can read the device status, send,

read or write command and transfer data. The processor sends a

command to the I/O module and waits for the I/O module to

complete the operation.

When the processor sees an instruction associated with I/O, it issues

necessary commands to the concerned I/O module. The I/O module

then loads the status register with appropriate values. The processor

checks the status of the I/O module periodically until the module is

ready for the transfer. The data transfer takes place only when the

I/O module is ready. Most of the I/O devices have much slower data

rates than the processor and the memory. So, the processor may

need to wait for a longer amount of time for the I/O to get ready.

This is the major disadvantage of programmed I/O as it reduces the

throughput of the processor.

221 | P a g e

Space for learners The processor issues some commands to the I/O module along with

an address referring an I/O module and an I/O device. There are four

types of commands: control, test, read and write.

The control command is used to specify the operation to be

performed by the external device. For example, it may send

commands like READ SECTOR, WRITE SECTOR, SCAN record

ID to a magnetic disk. The commands are made according to the

operations an I/O device performs.

Test commands are used to test various status signals of both the

I/O module and the I/O devices. Before any I/O transfer, the

processor needs to test the current status of the I/O module or the

device to check whether the module or the device is powered on,

ready or busy. It may also need to know if the last data transfer is

successful or any error has occurred.

The read signals are sent to the I/O modules when the processor

needs data from any I/O. The I/O module gets the data from the

particular I/O device and buffers it in its internal storage (data

buffers/ data registers) temporarily before sending back to the

processor. The I/O module sends back the data to the processor by

placing them onto the data bus on receiving request from the

processor.

With write signal, the processor requests the I/O module to send the

data available on the data bus to a specific I/O device. The I/O

module obtains the data from the bus and buffers it until the

corresponding I/O device is ready to accept the data.

Fig. 5.1 demonstrates the process of transferring blocks of data from

memory to I/O using programmed I/O. The processor first fetches a

memory word and tests the status of I/O. If the I/O module is ready

it transfers the data immediately otherwise it waits. During the

222 | P a g e

Space for learners waiting period, the processor keeps on sensing the I/O status

periodically.

Fig. 5.1 Flowchart showing transfer of data from the processor to
I/O using programmed I/O

STOP TO CONSIDER

Programmed I/O is an I/O transfer technique wherein the processor
continuously senses the status of I/O until the later gets ready for
data transfer. This reduces the performance of the processor.

Error

Ready

Processor asserts write
command to I/O module

Processor checks status of
I/O module

Processor sends data to I/O
module

Status?

Done?

Processor reads data from
memory

Yes

Not ready

No

Fetch Next Instruction

223 | P a g e

Space for learners 5.4 INTERRUPT DRIVEN I/O

The main problem with programmed I/O is that the processor has to
wait for long time for the I/O module to be ready. During the
waiting time, the processor must check the status of the I/O
continuously. This adversely affects the performance of the overall
system. Consequently an alternative solution is required to enhance
the performance of the entire system. One best solution is the use of
interrupt signals. Instead the processor checking repetitively the
status of I/O, the I/O module can send interrupt to the processor
when it is ready. Such type of I/O transfer is called as interrupt
driven I/O.

Fig. 5.2 Flowchart showing transfer of data from the processor to

I/O using interrupt driven I/O

Processor
reads data

from

Processor
asserts write
command to
I/O module

Processor
checks status
of I/O module

Processor
sends data

to I/O

Status?

Done?

Error

Ready

Yes

No

Processor does something

I/O module interrupts

Fetch Next Instruction

224 | P a g e

Space for learners Fig. 5.2 presents the flowchart of transfer of memory words to I/O

using interrupt driven I/O. The processor first reads the data from

memory and asserts the write signal to the I/O module to which the

concerned I/O device is connected. It specifies the I/O device by

placing its address on the address bus. The processor does not wait

for the I/O to get ready and continues its execution. In interrupt

driven I/O, the processor issues a command to an I/O module and

then gets busy in doing other processing. The I/O module will send

an interrupt request to the processor when it is available to perform

the data transfer. Every interrupt has a specific program or routine

called as interrupt service routine (ISR) to process the interrupt

request. On receiving the interrupt request, the processor finishes its

current instruction and then goes on to give the service to the

interrupt request by executing the corresponding ISR. The processor

stops the current execution temporarily while executing an ISR. It

goes back to its previous program immediately after finishing the

ISR.

The I/O module identifies the I/O device based on the address

available on the address bus. It checks the status of the

corresponding I/O device if it is ready. The I/O device sets the status

as ready to inform the I/O module when it is ready to send any data.

On receiving this information, the I/O module interrupts the

processor. The processor then transfers the data and checks if any

data is remaining to transfer. If not, the processor continues with the

data transfer as shown in the diagram.

225 | P a g e

Space for learners

Fig. 5.3 Block Diagram of Interrupt Processing

Fig. 5.3 presents a block diagram of the sequence of events

occurred during the processing of a typical interrupt. The

following sequence of events occurs during an I/O transfer.

1. The I/O module sends an interrupt signal to the

processor.

2. The processor completes current instruction before

answering the interrupt.

3. The processor tests for the interrupt at the end of every

instruction cycle. When it sees any interrupt, it sends

acknowledgement to the I/O module. The I/O module

then disables the interrupt signal.

I/O module
interrupts CPU

CPU completes
current execution

CPU acknowledges
interrupt

CPU saves PSW and
PC onto stack

CPU loads interrupt
vector in PC

Save the processor
registers

Process interrupt

Restore processor
registers

Restore old PSW
and PC from stack

226 | P a g e

Space for learners 4. The processor prepares to start the execution of the

ISR. It saves the program return address (current value

of the program counter) and the ALU flags or program

status word (PSW) onto the stack.

5. The processor loads the routine address or the interrupt

vector onto the program counter (PC).

6. The processor then saves the current status of the

executing program, particularly the contents of the

ALU registers onto stack. This is very essential as the

ISR may need to use these registers.

7. The processor starts processing the interrupt by

executing the ISR. At this stage the processor begins

its next instruction cycle.

8. After completion of the execution of the ISR, the

processor restores ALU registers.

9. Finally it restores PSW and the old value of PC stored

from the stack.

STOP TO CONSIDER

Unlike in programmed I/O, in interrupt driven I/O the processor does not
continuously check the status of the I/O device. After initiating the I/O
transfer the processor gets involved in some important tasks without
waiting for the I/O. The I/O module sends an interrupt signal whenever
the I/O device is ready for the data transfers.

Design Issues

When it comes to interrupt driven I/O, there are two design

challenges to consider. First, how will the processor identify the

interrupting device if multiple devices are connected? Second,

which interrupt to process if multiple interrupts occur at some time?

To address the first issues, i.e. device identification, four techniques

are used in common:

227 | P a g e

Space for learners  Multiple interrupt lines

 Software Poll

 Hardware Poll (Daisy Chain)

 Bus Arbitration

The simple stand straightforward solution to handle multiple

interrupt is the use of multiple interrupt lines for multiple I/O

devices. However, it is not a practical solution to have too many

lines for interrupts. Typically, interrupt lines not assigned to the I/O

devices; instead they are assigned to the I/O modules. This method

helps the processor to identify easily the interrupted module. But an

I/O module can connect more than one device, so to identify the

specific device (the one which triggered the interrupt) from many,

one of the remaining three methods can be used.

Instead of using multiple interrupt lines Software polling can be

used alternatively to handle multiple interrupts. In this, a common

ISR is executed when the processor sees an interrupt. The job of this

ISR is to detect the interrupted module by polling each module. The

polling can be done by using a dedicated command line (TESTI/O).

The processor sets the TESTI/O and places the I/O address in the

address bus. An I/O module responds to this signal positively if the

interrupt is raised by it. Alternatively, each I/O module can possess

a status register which will be set when it raises the interrupt signal.

The processor will check the status register of each I/O module and

will determine the I/O module that caused the interrupt based status

information. After identification of the interrupted module, the

processor executes the ISR of the interrupted device. The advantage

of software polling is that a single interrupt line is sufficient for

implementing interrupt driven I/O. However it is very time

consuming.

228 | P a g e

Space for learners Hardware polling is a very efficient alternative to software polling

for handling multiple interrupts. A technique called Daisy Chain

can be used to implement this. In this approach, a common interrupt

request line is shared among all I/O modules. The I/O modules are

connected in a serial order. The interrupt acknowledgement line is

shared with the I/O modules through a daisy chain as shown in Fig.

5.4. The processor sets the interrupt acknowledgement signal when

it sees any interrupt request. This signal is received by the I/O

module which is directly connected with the interrupt

acknowledgement line. If the interrupt request is raised by that

particular I/O module then it will respond by placing a vector in the

data lines; otherwise the module will forward the acknowledgement

signal to the next module in the sequence. The next module will

react to the signal exactly in the similar manner. Thus the interrupt

acknowledgment signal will be propagated through the I/O modules

until any response is received from the interrupted module. The

vector is usually an address that refers an I/O module. The processor

calls the device specific ISR based on the value of the vector.

Another alternative is bus arbitration. In this approach, only one

module can send interrupt request. To do so, the I/O module has to

obtain the control of the bus first. The processor responds to the

interrupt by sending an interrupt acknowledgement signal. The I/O

module responds to this signal by placing its interrupt vector onto

the data bus.

To solve the second issue, different levels of priorities can be

assigned to different modules. When more than one module

interrupts, the modules are given services according to their priority

levels. The module with the highest priority is given the service

first. The above mentioned techniques can also be used to handle

this priority interrupt. When there are multiple interrupt lines, the

229 | P a g e

Space for learners processor simply chooses the one with the highest priority. In

software polling, the module polling order is designed according to

their priority. In case of hardware polling, the modules in the daisy

chain are arranged according to their priority with the highest

priority first. In case of bus arbitration, the bus arbiter determines

which module should get the control of the bus depending on their

priority.

Fig. 5.4 Hardware Polling using Daisy Chaining

5.5 DIRECT MEMORY ACCESS

Both programmed I/O and interrupt driven I/O require the active

intervention of the processor to perform the data transfer between

memory and I/O. When there is a need to transfer a large amount of

data, the processor is often tied up with the I/O transfer. Also, the

data transfer speed is affected by lot of testing and condition

checking. To avoid these issues, a more efficient technique called

Processor

INTR

INTACK

In Out In Out In Out Next Device

Device 1 Device 2 Device 3

Vector 1 Vector 2 Vector 3

230 | P a g e

Space for learners direct memory access (DMA)can be used while transferring a large

amount of data.

It is a data transfer technique in which transfer of data from memory

to I/O takes place without the active involvement of the processor.

To accomplish this, an additional module called a DMA controller is

required. A DMA controller shares the system bus along with

processor, memory and I/O. Its role is to control the entire data

transfer. For this, it has to acquire the control of the system bus. The

structure of a typical DMA controller is shown in Fig. 5.5.

When the processor needs to perform DMA transfer, it issues a

DMA request to the DMA controller and sends the following

information to the DMA controller:

 Depending on the operation type, the processor asserts read

or write signal to the DMA controller by raising the

corresponding control line between the processor and the

DMA controller.

 The address of the target I/O device.

 The address in the memory from/to where data transfer to

begin through the data lines. The DMA controller saves this

address in its address register.

 The number of words to be transferred. This value is then

stored in the data count register.

After initiating the transfer, the processor relinquishes the buses and

continues with other works while the DMA controller gains the

control of the buses and takes over the remaining transfer. The

DMA controller transfers the entire blocks of data one by one. Once

the DMA transfer is complete, the controller sends an interrupt to

the processor.

231 | P a g e

Space for learners There are basically two types of DMA transfers: burst mode and

cycle stealing. Burst mode transfers a whole block of data in a single

contiguous sequence. When the processor grants the DMA

controller the access to the system bus, it transfers entire bytes of

data in the data block before returning control of the system buses to

the processor; however this leaves the processor inactive for a long

time.

In systems where the processor should not be disabled for the length

of time required for burst transfer modes, the cycle stealing mode is

used. The DMA controller gains control the system bus in cycle

stealing mode in the same way as it does in burst mode, by using the

BR (Bus Request) and BG (Bus Grant) signals, which control the

interface between the processor and the DMA controller. In cycle

stealing mode, however the control of the system bus is delegated to

the processor via BG after one byte of data transfer. After a cycle,

the DMA controller again obtains the buses using BR and BG signal

for the next transfer. This switching of the buses between the

processor and the DMA controller continues until entire blocks of

data are transferred.

CHECK YOUR PROGRESS

i. _________ is a way of accessing I/O devices by

continuously checking the status flags.
a. Programmed I/O
b. Interrupt driven I/O
c. DMA
d. None of the above

ii. The address of an ISR is termed as
a. interrupt location
b. interrupt vector
c. interrupt address
d. none of the above

iii. ______ is used to store the return address of ISR.

232 | P a g e

Space for learners a. Registers
b. Cache
c. System heap
d. Stack

iv. In case of interrupt driven I/O, I/O module sends
_________ signal to the processor when an I/O device is
ready for data transfer.

a. interrupt request
b. interrupt acknowledgement
c. read/write
d. none of the above

v. After receiving an interrupt, the signal delivered from the
processor to the device is

a. interrupt request
b. interrupt acknowledgement
c. read/write
d. none of the above

vi. _________ is a technique to handle multiple interrupt.
a. Software polling
b. Daisy Chaining
c. Multiple interrupt line
d. all of the above

vii. DMA transfer is initiated by the
a. DMA controller
b. processor
c. I/O device
d. none of the above

viii. _______ is responsible for controlling the transfer of data
during DMA.

a. DMA controller
b. processor
c. I/O device
d. none of the above

ix. During DMA transfer, ______ becomes the master of the
system bus.

a. DMA controller
b. processor
c. I/O device
d. none of the above

x. The method by which the DMA controller steals the
processor's access cycles is known as

233 | P a g e

Space for learners a. bust mode
b. cycle stealing
c. memory stealing
d. bus stealing

5.6 SUMMING UP

 I/O devices provide a way of interchanging data between the

external environment and the computer. Different I/O devices

have different data transfer rates, different data formats and

different word lengths.

 Due to the differences present, the processor or the memory does

not interact with the I/O devices rather I/O modules are used to

establish the interactions between I/O devices and the processor

(or memory) acts as a mediator.

 The I/O operations are performed using three techniques:

programmed I/O, interrupt driven I/O and direct memory access.

Fig. 5.5 Structure of a DMA controller

Address lines

Data
Counter

Data
Register

Address
Register

Control
logic

Data lines

DMA
Request
Acknowledg
e Interrupt

234 | P a g e

Space for learners  In programmed I/O, the processor exchanges data with the I/O

module. The processor allows the I/O module to control the I/O

operations directly. The processor senses the status of I/O

continuously until the device is ready. It transfers the data only

when the I/O is ready.

 In interrupt driven I/O, instead the processor checking

repetitively the status of I/O, the I/O module sends interrupts to

the processor when it is ready. The processor continues with

meaningful tasks after initiating the I/O transfer without waiting

for the I/O to get ready.

 DMA is a data transfer technique in which transfer of data from

memory to I/O takes place without the active involvement of the

processor. To accomplish this, an additional module called a

DMA controller is required. A DMA controller shares the

system bus along with processor, memory and I/O.

5.7 ANSWERS TO CHECK YOUR PROGRESS

i. a ii. b iii. c iv. a v. b
vi. d vii. b viii. a ix. a x. b

5.8 POSSIBLE QUESTIONS

1. What is meant by interrupt?
2. What is the difference between Programmed I/O and Interrupt

driven I/O?
3. How does a computer handle multiple interrupt?
4. What is meant by interrupt priority? What are techniques

available to handle priority interrupt?
5. What is polling?
6. What is the difference between Software and Hardware

Polling?
7. What is the advantage of DMA transfer?
8. What are the different techniques used for DMA transfer?
9. Differentiate between Cycle Stealing and Burst Mode.

235 | P a g e

Space for learners 10. What are the major components of a DMA controller?

5.9 REFERENCES AND SUGGESTED READINGS

 William Stallings, Computer Organization and

Architecture Designing for Performance, Pearson
Education India.

 Carl Hamacher, ZvonkoVranesic, SafwatZaky,
Computer Organization, McGraw Hill Education.

 M. Morris Mano, Computer System Architecture,
Pearson Education India.

