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Space for learners: UNIT 1: INTRODUCTION TO GRAPH 

Unit Structure: 

1.1  Introduction 

1.2  Unit Objectives 

1.3  Brief history on development of graph theory 

1.4 Basic Concepts 
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 1.4.2  Basic terminologies 
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 1.4.4  Directed and undirected graphs 

 1.4.5  Different types of Digraphs 

 1.4.6  Incidence and Degree 

 1.4.7  Out-Degree and in-Degree in Directed Graph 

 1.4.8  Isolated Vertex, Pendant Vertex and Null Graph 

 1.4.9  Some Results 

1.5  Summing Up 
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1.7  Possible questions 

1.8 References and Suggested Readings 
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Space for learners: 1.1 INTRODUCTION 

In this unit, you will learn the fundamental aspects of graph theory. You 

will also learn about finite and infinite graph, directed and undirected 

graphs, incidence and degree, isolated and pendant vertices, null graph. 

You will also learn the history of graph theory in this unit. Graph theory 

is an area of mathematics which is realistic in its nature. The purpose of 

graph theory is to solve day to day problems of human beings. In this 

unit, you will also learn several properties related to finite and infinite 

graphs. This unit tries to simplify the ideas related to directed and 

undirected graphs. Incidence and degree of a vertex are two of the main 

building blocks of graph theory. You will learn some fundamental 

properties related to degree. Moreover, various examples will be 

discussed in this unit. These examples will help your knowledge to 

grow. Applications of graph theory can be found in various areas of 

mathematics, computer science, biology, theoretical chemistry, social 

networks, etc. since the scopes of applications are limited in this unit, 

thus we will skip applications and we will mainly focus on theoretical 

foundations only. 

1.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 know the history of development of graph theory in concise 

manner 

 understand the fundamental concepts and notions of graph 

theory 

 define graph and its different types viz. finite and infinite 

graphs, directed and undirected graphs. Incidence and degree, 

isolated and pendant vertices, null graphs etc. will be discussed. 

 solve problems related to above graphs. 
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Space for learners: 1.3 BRIEF HISTORY ON DEVELOPMENT OF GRAPH 

THEORY 

The subject “graph theory” was initiated from a real problem. The 

problem is known as “Konigsberg bridge problem”. It was one of the 

unsolved problems of 18th century. But, mathematician Leonhard Euler 

(1707-1782) solved this famous problem in 1736. The problem is 

discussed below. 

 

Fig. 1: Konigsberg bridge problem 

Two islands, A and C, of the Pregel River in Konigsberg were linked to 

each other and to the banks, B and D, of the Pregel River by seven 

bridges as shown in Fig 1. The problem was to start at any of the four 

land areas A, B, C or D, walk across each of the seven bridges exactly 

once, and return to the starting point. Euler proved that there is no 

solution of the Konigsberg bridge problem. To give proof, Euler 

simplified the problem. He represented each land area by a point and 

each bridge by a line joining the corresponding points. Thus, this 

simplified representation produces a graph. Euler’s representation of the 

Konigsberg bridge problem is shown in Fig2. 

 

Fig. 2: The graph of the Konigsberg bridge problem 
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Space for learners: Since the development of graph theory by Euler, it has been using in 

many areas. Physicist Gustav Kirchhoff used theory of tree in 1845 to 

solve the system of simultaneous linear equations representing the 

current in each branch and around each circuit of an electric network. 

Kirchhoff used simple representations of the electric networks of the 

circuits using only points and lines without indicating electrical 

elements of the circuits. Similarly, Caylay discovered trees and his ideas 

of trees were applied to enumerate the isomers of the saturated 

hydrocarbons CnH2n+2, where n represents the number of carbons atoms. 

Some of the saturated hydrocarbons are given below. 

 

 
Fig. 3: Some saturated hydrocarbons and their graphical 

representations. 
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Space for learners: These are some of the fields where graph theory has been applied. But, 

the reach of graph theory to any area of science and social science can 

be found easily. Computer networking, an area of computer science, has 

its foundation based on graph theory. 

 

CHECK YOUR PROGRESS-I 

1. Graph theory was initiated from a real problem entitled 

………………… 

2. ………………. Solved Konigsberg bridge problem in 

………………. 

3. There were ……………. Islands, ……………... banks and 

……………. Bridges in Konigsberg bridge problem. 

4. “Euler proved that Konigsberg bridge problem has no solution” ……. 

is the statement true? 

 

1.4 BASIC CONCEPTS 

In this section, we study the basic concepts of graph theory. It is 

important to note that graph theory does not require any other 

sophisticated area of mathematics other than basic set theory to 

introduce fundamental notions and definitions of graph theory. Thus, it 

is expected that our readers are familiar to basic set theory. 

1.4.1 Definition of A Graph 

A graph (or simply a linear graph) G = (V, E) consists of a set of points 

V= ���, ��, ��, …… . 	 and a set E= �
�, 
�, 
�, …… . 	  of unordered pairs 

of points of V. 

The points ��, ��, ��, ……. are called vertices and e1, e2, e3,…. are called 

edges. Several books use the words ‘nodes’ in lieu of vertices and 

‘lines’ in lieu of edges. 
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Space for learners: Each edges ek is represented by an unordered pair (vi, vj). It is also 

denoted as {vi, vj}. Thus, (vi, vj) and {vi, vj} are not different in 

graph theory. ek = (vi, vj) is said to join vertex vi and vertex vj. We 

write ek = vivj and say that ei and ej are adjacent points. It is sometimes 

denoted as eiadjej. The points vi and line ek are incident with each other. 

Similarly, vj and the line ek are incident with each other. Two lines ek 

and em are adjacent lines if they are incident with a common point. 

Example 1: If G = (V, E) be a graph, where V = {x, y, z, p, q} and 

E={(x, y), (y, z), (x, q), (x, p), (y, p)}, then the graph G = (V,E) can be 

represented as given below. 

 

Fig. 4: Graph of G=(V,E) 

If we represent e1=(x,y), e2=(y,z), e3=(x,q), e4=(x,p) and e5=(y,p), then 

the graph can be represented as given below 

 

Fig. 5: Graph of G = (V, E) 
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Space for learners: CHECK YOUR PROGRESS-II 

5. A graph G = (V, E) consist of ……… and …………… 

6. The elements of the set V of a graph G = (V, E) are called………. . 

7. The elements of the set E of a graph G = (V, E) are called ……….. . 

 

1.4.2 Basic Terminologies 

In this section, we study basic terminologies of graph theory. 

Definition1: A graph with p-vertices and q- edges is called a (p,q) 

graph.  

Example 2: A (3,3) graph is represented as given below 

 

Fig. 6: (3,3)-graph 

Definition 2: The (1,0)-graph is called trivial graph  

Example 3: The trivial graph is shown below 

Definition 3: In graph G=(V, E); an edge to be associated with a vertex 

pair (vivi) is permissible. Such an edge is called a loop (or self-loop). 

Example 4: Let G=(V, E) be a graph, where V={x,y,z} and E= {(x, x), 

(x, y), (x, z), (y, z), (z, z)}. 

 

Fig. 7: Graph of G=(V, E). 
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Space for learners: If we denote e1=(x1, x), e2=(x, y), e3=(x, z), e4=(y, z) and e5=(z, z), 

then figure 7 can be re-drawn as below. 

 

Fig. 8: Graph of G=(V, E) with distinct edges. 

Definition 4: In a multigraph, no loops are allowed but more than one 

edge can join two vertices. These edges are called multiple edges (or 

multiple lines). 

Example 5: If G = (V, E) be a graph, where V= {x, y, z, p} and E={(x, 

y), (x, z), (x, p), (y, z), (y, z)} then G=(V,E) is a multigraph. This graph 

is shown below. 

 

Fig. 9: Multigraph G=(V, E)  

Here, (y, z) is considered twice in the set e. If we represent G = (x, y), 

e2=(x, z), e3=(x, p), e4=(y, z) and e5=(y, z), then fig 9 can be represented 

as given below. 

 

Fig. 10: Multigraph G=(V, E) 
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Space for learners: Since e4 and e5 are distinct edges, thus it is not problematic for our 

readers to write (y, z) twice in the set E. Such edges are known as 

parallel edges. 

Definition 5: A multigraph having loop(s) is called a pseudo graph.   

Example 6: If G = (V, E) be a graph, where V = {x, y, z, p} and E = 

{(x, x), (x, y), (x, z), (x, p), (y, z), (y, z)}, then G = (V, E) is a pseudo 

graph. 

 

Fig. 11: Pseudo graph G=(V, E) 

Definition 6: A graph which has neither loops nor multiple edges is 

called a simple graph. 

Example7: Fig5, fig6 are example of simple graph. 

 

CHECK YOUR PROGRESS-III 

8. Euler’s graph representing Konigsberg bridge problem is a ……… 

graph. 

9. In a multigraph, ……….. are allowed. 

10. Is loop allowed in a multigraph? 

11. Is loop allowed in a simple graph? 

12. Are multi edges allowed in a simple graph? 

13. “Every pseudo graph is a simple graph”- true or false? 
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Space for learners: 1.4.3 Finite and Infinite Graphs 

In this section, we study finite and infinite graph. 

Definition7: A graph with a finite number of vertices as well as a finite 

number of edges is called a finite graph; otherwise, it is an infinite 

graph. 

The graphs, which we considered earlier, are all finite graphs. 

Example 8: 

 

Fig. 12: Portion of an infinite graph 

 

Fig. 13: a finite graph 

In reality, Fig 12 is the graphical representation of Graphene. Graphene 

is one of the very important atomic-scale hexagonal lattices made of 

carbon-atoms. The discoverers of Graphene were awarded Nobel prize 

in physics in 2010. 
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Space for learners: 1.4.4 Directed and Undirected Graphs 

In this section, we discuss directed and undirected graphs. These graphs 

are used in several real-life problems. 

Definition 8: A directed graph (or digraph) G=(V,E) consists of a set of 

vertices V={v1, v2, v3, …..}, a set of edges E={e1,e2,e3,….} and a 

mapping of that maps every edges onto some ordered pair of vertices 

(vi,, vj). A diagraph is also referred to as oriented graph. 

We often make a distinction between the terms “oriented graph” and 

“directed graph” by considering only these digraphs which have at most 

one directed edge between a pair of vertices (for digraphs). 

The elements of E are called directed edges (or directed lines or areas). 

In digraphs, a vertex is represented by a point and an edge by a line 

segment between vi and vj with an arrow directed from vertex vi to 

vertex vj. 

Example 9: 

 

Fig. 14: A digraph with four vertices and six edges. 

Suppose ek=(vi, vj) is a directed edge in a digraph G = (V, E); then vi is 

called the initial vertex of ek and vj is called the terminal vertex of ek. 

In this case, ek is said to be incident from vi and to be incident to vj. 

Also, vi is adjacent to vj; and vj is adjacent from vi. 

Definition 9: An undirected graph G=(V, E) consist of a set V={v1, v2, 

v3, …..} of vertices and a set E= {e1,e2, e3,……} of edges such that 

each edges  is associated with an unordered pair of vertices. 
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Space for learners: Example 10: 

 

Fig. 15: An undirected graph with five vertices and five edges. 

1.4.5 Different Types of Digraphs 

There are various types of digraphs available in literature. Here we 

discuss some of them. 

Definition 10: A digraph that has no parallel edges or self-loops is 

called a simple digraph. 

Example 11: 

 

Fig. 16: A simple digraph 

Definition 11: A digraph that has at most one directed edge between a 

pair of vertices, but is allowed to have loops, is called an asymmetric 

graph or anti symmetric digraph. 

Example 12: 

 

Fig. 17. An asymmetric digraph 
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Space for learners: Definition 12: A digraph that is both simple and symmetric is called a 

simple symmetric digraph. 

Definition 13: A digraph that is both simple and asymmetric is called 

simple asymmetric is called simple asymmetric digraph. 

Definition 14: A simple digraph in which there is exactly one edge 

directed from every vertex to other vertex is said to be a complete 

symmetric digraph. 

1.4.6 Incidence and Degree 

In this section, we discuss incidence and degree. 

Definition 15: A vertex vi and an edge ek are said to be incident with 

(on or to) each other, if vi is an end vertex of the edge ek. 

Example 13: 

 

Fig. 18: Vertex incident 

Here, Vertex v4 is incident with edge e4. The edges e5, e3, e4 and e6 

are incident with vertex v2. 

Definition 16: Two non-parallel edges are said to be adjacent if they are 

incident on a common vertex. 

Example 14: In example 13, the edges e3, e4, e5 and e6 are adjacent. 

Definition 17: Two vertices are said to be adjacent if there is an edge 

between them. 
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Space for learners: Example 15: 

 

Fig. 19: v1 and v2 are adjacent 

Here, vertices v1 and v2 are adjacent because there is an edge e1 

between them. 

Definition 18: Degree of a vertex vi is the number of edges incident on 

a vertex vi, with loops counted twice. It is denoted as d(vi) 

Example 16: In example 15, d(v1) =2, d(v2) =2, d(v3) =3 and d(v4) =3 

Definition 19: A regular graph is a graph in which all vertices are of 

equal degree. 

Example 17: 

 

Fig. 20: A regular graph G = (V, E) of degree two. 

Here, . Thus, G=(V, E) is a 

regular graph of degree two. 

1.4.7 Out-Degree and in-Degree in Directed Graph 

Definition 20: In a digraph, out-degree of a vertex vi is the number of 

edges incident out of a vertex vi. It is denoted by d+(vi). 
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Space for learners: Example 18: 

 

Fig. 21: Out-Degree of G = (V, E) 

Here, in the graph G = (V, E); d+(v1) =1, d+(v2) =1, d+(v3) =0 and 

d+(v4) =2. 

Definition 21: In a digraph, indegree of a vertex vi is the number of 

edges incident into vi. It is denoted by d-(vi). 

Example 19: In example 18, d+(v1) =1, d+(v2) =1, d+(v3) =2 and 

d+(v4) =0. 

1.4.8 Isolated Vertex, Pendant Vertex and Null Graph 

Definition 22: A vertex is said to be an isolated vertex if it has degree 

zero. 

Definition 23: A vertex having degree one is called a pendant vertex (or 

an end vertex) 

Example 20: 

 

Fig. 22: A graph G = (V, E) with six vertices and six edges. 

In the above graph, v5 is isolated vertex and v6 is the pendant vertex. 
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Space for learners: Definition 24: If two adjacent edges have their common vertex of 

degree two then the two edges are said to be in series. 

Example 21: In example 20, the edges e1 and e5 are in series. 

Definition 25: A graph is said to be a null graph if every vertex of it has 

degree zero. 

Example 22: 

 

Fig. 23: Null graph of five vertices 

Definition 26: An isolated vertex is a vertex in which the in-degree and 

the out-degree are both equal to zero. 

Definition 27: A vertex vi in a digraph is said to be pendant if d+(vi) 

+d-(vi) =1. 

1.4.9 Some Results 

In this section, we discuss some theorems, problems, etc. related to 

previous sections. 

Theorem1: If G = (V, E) be an undirected graph, then 

 

Or, 

The sum of the degrees of all vertices in an undirected graph G = (V, E) 

is twice the number of edges in G. 

Proof: Let, G = (V, E) be an undirected graph. In G, every edge is 

incident with exactly two vertices. Thus, each edge gets counted twice, 

once at each end. Moreover, degree of a vertex is the number of edges 

incident with that vertex. Thus, sum of the degrees of all vertices counts 
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Space for learners: the total number of times an edge is incident with a vertex. Thus, 

. 

Theorem 2: The number of vertices of odd degree in a graph is always 

even. 

Proof: Let G = (V, E) be a graph. We write V=V1UV2, where V1 and 

V2 are the sets of vertices with odd and even degrees respectively. 

 

Thus, the number of vertices of odd degree in G = (V, E) is even. 

Theorem 3: In a directed graph G = (V, E); 

 

Theorem 4: If G is a directed graph, then 

 

Proof: Let, G = (V, E) be a directed graph  
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Space for learners: 

 

Problem 1: Determine the number of edges in a graph with 5 vertices, 2 

vertices of degree 4, 2 vertices of degree 3 and 1 vertex of degree2. 

Solution: Let, G = (V, E) be a graph where |v| = 5. Let v1, v2, v3, v5 

and v5 are five vertices of G = (V, E). 

 

Thus, the number of edges of G = (V, E) is 8. 

Problem 2: How many vertices are required to draw a graph with 7 

edges in which each vertex is of degree2. 

Solution: Let there are ‘x’ number of vertices in the graph. 

 

So, 7 vertices are required. 

Problem 3: Show that the maximum number of edges in a simple graph 

with n vertices is . 

Solution: let G = (V, E) be a simple graph then . 

Given, |v| = n also, the maximum degree of each vertex in a simple 

graph can be (n-1) 
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Space for learners: 

 

Hence, the maximum number of edges in a simple graph with n vertices 

is . 

1.5 SUMMING UP 

 “Konigsberg bridge problem” has two islands, two banks and seven 

bridges. 

 Leonhard Euler initially represented “Konigsberg bridge problem” 

using a graph. 

 A linear graph G = (V, E) consists of a set of vertices and edges. A 

graph with p-vertices and q- edges is called (p, q) graph.  The (1,0)-

graph is called trivial graph. 

 In a multigraph, no loops are allowed but more than one edge can 

join two vertices. These edges are called multiple edges (or 

multiple lines). A multigraph having loop(s) is called a pseudo 

graph. A simple graph which has neither loops nor multiple edges. 

 A graph with a finite number of vertices as well as a finite number 

of edges is called a finite graph; otherwise, it is an infinite graph. 

 A simple digraph has no parallel edges or self-loops. 

 A simple digraph in which there is exactly one edge directed from 

every vertex to other vertex is said to be a complete symmetric 

digraph. A digraph that has at most one directed edge between a 

pair of vertices, but is allowed to have loops, is called an 

asymmetric graph. 

 In a digraph, indegree of a vertex vi is the number of edges incident 

into vi. In a digraph, out-degree of a vertex vi is the number of 

edges incident out of a vertex vi. 
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Space for learners:  An isolated vertex if it has degree zero. A pendant vertex has 

degree one. A graph is said to be a null graph if every vertex of it 

has degree zero. 

1.6 ANSWERS TO CHECK YOUR PROGRESS 

1. Konigsberg bridge problem 

2. Leonhard Euler, 1736 

3. Two, two, seven 

4. True 

5. Vertices, edges 

6. Vertices 

7. Edges 

8. Eulerian 

9. multiple edges 

10. No 

11. No 

12. No 

13. False 

1.7   POSSIBLE QUESTIONS 

1. Represent the following figures as of Euler’s representation 

process. 
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Space for learners: 

 

2. Represent graphically C4H10. 

3. Draw the graph G = (V, E), where V = {x, y, z, p} and E= {(x, 

y), (x, p), (x, z), (y, z)}. 

4. What is the size of an r-regular (m, n) graph? 

5. Prove that the degree of a vertex of a simple graph G on n 

vertices cannot exceed (n-1). 

6. Is it possible to draw a simple graph with 5vertices and 13 

edges? Justify your answer. 

7. Identify simple graphs, multigraph, pseudo graphs from the 

figures given below. 

 

8. The graphical representation of C2H6 is a ………… graph. 

9. Draw a portion of an infinite graph. 
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Space for learners: 10. Draw a finite graph. 

11. In a finite graph, number of vertices and number of edges are 

both ………. . 

12. In an infinite graph, number of vertices and number of edges are 

both…….. . 

13. Define digraph. 

14. Define undirected graph. 

15. Is every graph is a digraph? 

16. Choose directed graphs and undirected graphs from below. 

 

17. Define a simple digraph. 

18. Define an asymmetric digraph. 

19. Define a simple symmetric digraph. 

20. Define a simple asymmetric digraph. 

21. Define a complete symmetric digraph. 

22. Draw a simple digraph, asymmetric digraph, a simple symmetric 

digraph, a simple asymmetric digraph, a complete symmetric 

digraph. 

23. Define degree of a vertex. 
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Space for learners: 24. Find degree of vertex ((())))) of the following graph. 

 

25. Degree of the vertex in (1,0) graph is …………. . 

26. Identify the regular graph. 

 

27. Find out-degree and in-degree of each vertex of the following 

graph. 

 
28. Define isolated vertex. 

29. Define pendant vertex 

30. Find  of the following 

graph. 
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Space for learners: 31. Prove that in a diagraph, 

i) If vi is an isolated vertex, then 

 d+(vi) = 0 and d-(vi) = 0. 

ii) If vi is a pendant vertex, then 

 d+(vi) +d-(vi) =1 
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Space for learners: UNIT 2: PATHS AND CIRCUITS-I 

Unit Structure: 

2.1. Learning Objectives 

2.2. Introduction 

2.3. Isomorphism in Graphs 

2.4. Subgraphs 

2.5. Walks, Trails, Paths and Circuit 

2.6. Connected and Disconnected Graphs 

2.7. Summing Up 

2.8. Answers to Check Your Progress  

2.9. Possible Questions  

2.10. References and Suggested Readings 
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Space for learners: 2.1. INTRODUCTION 

Many tangible real-world issues may be successfully analyzed using 

graphs as mathematical models. Graph theory may be used to formulate 

issues in physics, chemistry, communication science, computer 

technology, genetics, psychology, sociology, and linguistics. Graph 

theory also has strong ties to several disciplines of mathematics, 

including group theory, matrix theory, probability, and topology. The 

development of different subjects in graph theory has been aided by 

several puzzles and issues of a practical character. The classic 

Konigsberg bridge issue served as a model for the creation of Eulerian 

graph theory. The Hamiltonian graph theory was derived from Sir 

William Hamilton's "Around the World" game. The study of "trees" was 

created to enumerate isomers of chemical compounds, and the idea of 

acyclic graphs was developed to solve difficulties with electrical 

networks. In this unit, we present some fundamental concepts of graph 

theory which include graph isomorphism, various types of subgraphs, 

walks, trails, paths and circuit.   

2.2. UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 Explain the definition, concept, and properties of graph 

isomorphism. 

 Explain and differentiate various types of subgraphs. 

 Define walks, trails, paths and circuits. 

 Differentiate between connected and disconnected graph. 

2.3. ISOMORPHISM IN GRAPHS 

In graph theory, a graph � can be called as equivalent to another graph 

�� if both the graphs are identical in terms of their vertices and edges. 

This concept is called as graph isomorphism. Two isomorphic graphs 

may use different labels for the vertices and may have drawn 

differently, but they have exactly the same number of vertices and same 
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Space for learners: sets of edges. The formal definition on graph isomorphism is presented 

below.    

Definition 2.3.1: Graph Isomorphism is a concept in graph theory 

which states that any two graphs, � and �’ are called as Isomorphic if 

there is a bijection between the vertex sets of � and �’. Formally, a 

graph �(�, �) is isomorphic to another graph �’(�’, �’) if there exists a 

bijective function 	: ���’ such that if any vertices, �, 
 ∈  � are there 

is an edge from � to 
 in � then there must be an edge from 	(�) to 

	(
) in �’. Mathematically two isomorphic graphs � and �’ are 

denoted as � ≃ �’. The map 	 is termed as an isomorphism from � to 

�’. 

Example 2.3.1: The graphs shown in figure 2.1 are examples of 

isomorphic graphs. Both the graphs have equal number of vertices and 

edges. The graph on left has the vertices,< ��, ��, … … … , �� > and the 

graph on right has the vertices <
�, 
�, … … … , 
� >. In this example, 

	(��) = 
�. The adjacency matrices of both the graphs are presented in 

Table 2.1. The adjacency matrices of both the graphs are identical as 

they are isomorphic. 

 

Fig. 2.1: Isomorphic Graphs 

Table 2.1: Adjacency matrices of the graphs shown in Fig. 2.1 

 u1 u2 u3 u4 u5   v1 v2 v3 v4 v5 

u1 0 1 0 1 0  v1 0 1 0 1 0 

u2 1 0 1 0 1  v2 1 0 1 0 1 

u3 0 1 0 1 1  v3 0 1 0 1 1 

u4 0 1 1 0 1  v4 0 1 1 0 1 

u5 0 1 1 1 0  v5 0 1 1 1 0 

 

u1 

u2  u3 

u4 

u5 

v1 

v2 

v5 

v3 

 v4 
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Space for learners: Theorem 2.3.1: Consider � be an isomorphism of the graph � =

 (�, �) to the graph �’ =  (�’, �’). Consider a vertex 
 ∈  �. Then 

������(
)  =  ������(�(
)). i.e., the degree of vertices is preserved 

by isomorphism. 

Proof: Consider two vertices �, 
 ∈  �. If u is adjacent to 
in graph �, 

then �(�) must be adjacent to �(
) in graph �’. So, the number 

adjacent vertices of 
in � is equal to the number of adjacent vertices of 

�(
) in �’. Hence, ������(
)  =  ������(�(
)). 

Properties: If a graph � is isomorphic to another graph �’ by a bijection 

�, then the following properties hold true. 

 Number of vertices in � is same as the number of vertices in �’. 

 Number of edges in � is same as the number of edges in �’. 

 Both in-degree and out-degree of a vertex 
is same as the in-

degree and out-degree of �(
). 

Definition 2.3.2: An automorphism of a graph is a type of symmetry in 

graph theory in which the graph is mapped onto itself while retaining 

the edge–vertex connection. In other words, a graph � is isomorphic 

onto itself.  

2.4. SUBGRAPHS 

A graph ��is a subgraph of another graph � if all the vertices and edges 

of �� belong to the �  and each edge in �� has the same source and 

destination in � as ��. A subgraph can be called as a subpart of another 

graph. The formal definition of subgraph is presented in Definition 

2.4.1.  

Definition 2.4.1: A graph ��(��, ��) is called as a subgraph of another 

graph � (�, �)if �� ⊆  �,�� ⊆ �  and ��  is the restriction of��  to��. 

The graph ��is a proper subgraph of � if �� ⊂  � or �′ ⊂  �. The 

graph � can be called as supergraph of �� if ��is a subgraph of �. A 

graph �� is called as an induced subgraph of � if a vertex 
 ∈ � is 

adjacent to another vertex � in � and �, 
 ∈ �� then 
 must be adjacent 

to 
 in ��as well. If ��is an induced subgraph of � and vertex set of ��, 

�� ⊆  � then �� is called as the subgraph of � induced by �� and is 
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Space for learners: denoted by �[��]. If ��(��, ��) is an induced subgraph of � (�, �)  and 

�� ⊆  � then �� is called as the subgraph of � induced by �� and is 

denoted by �[��]. A subgraph ��(��, ��)of � (�, �) is called as a 

spanning subgraph of � if �� = �.  

Example 2.4.1: Figure 2.2 (b)-(d) shows various types of subgraphs of 

the graph �. The graph � has the vertex set, � = {1,2,3,4,5,6,7}. The 

graph in (b) is a subgraph of � but not an induced subgraph because in 

� the vertex 1 is adjacent to 2 and vertex 4 is adjacent to 3 and 7; but 

the same is not true in this subgraph. Also, this is not a spanning 

subgraph as it does not include all the vertices of �. The graph shown in 

(c) is an induced subgraph of � as this subgraph doesn’t include any 

pair of vertices which are adjacent in � but not in this subgraph. The 

subgraph in (d) includes all the vertices of � but not all the edges. So, 

this is a spanning subgraph of �.  

Definition 2.4.2: A clique is a subgraph of a graph � whose vertex set 

is a subset of the vertex set of � and any two vertices of the clique are 

adjacent. Informally, a clique is a complete subgraph of another graph. 

That means, all the vertices of the clique are adjacent to each other. A 

clique is called as maximal clique if no adjacent vertex can be added to 

expand the clique. A maximum clique is a clique which contains 

maximum possible vertex.  

 
(a) Graph G                   (b) Subgraph of G 
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          (c) Induced Subgraph of G          (d) Spanning subgraph of G 

Fig. 2.2: Various types of subgraphs 

Example 2.4.2: Figure 2.3 presents some examples of cliques of the 

graph shown in the subfigure (a). The subgraph shown in subfigure (b) 

is a clique as there is an edge between any two vertices in the subgraph. 

Similarly, the subgraphs shown in subfigures (c) and (d) are also 

cliques. While the subgraph in subfigure (e) is not a clique as the vertex 

1 is adjacent to vertex 2 only. The cliques in (c) and (d) are maximal 

cliques as if we add any other vertex to them, then they will no longer 

be cliques. The clique in (b) is not maximal as there is a possibility of 

adding another vertex (vertex 7) to expand the clique. 

2.5. WALKS, TRAILS, PATHS AND CIRCUIT 

A walk is a finite alternating series of vertices and edges that starts and 

ends with vertices, with each edge connecting the vertices before and 

after it. A walk may have repeated vertices but not edges. A walk is 

called as a closed walk if the starting vertex and the ending vertex is the 

same, otherwise, it is called as open. An open walk with no repeated 

edges is called as a trail. The vertices may repeat in a trail. A trail with 

non-repeated vertices is called as a path. A non-empty trail in which the 

starting and ending vertices are the only vertices that are repeated is 

called as a circuit or a cycle. Definition 2.5.1 gives the formal definition 

of walk, trail, path and circuit. 



 

230 | P a g e  

 

Space for learners: 

 

Fig. 2.3: Various subgraphs of the graph shown in (a). The subgraphs 

(b)-(d) are cliques but the one in (e) is not a clique. The cliques (c) and 

(d) are maximal cliques but not the one in (b). 

Definition 2.5.1: Consider a graph � = (�, �) with the vertex set, � =

{
., 
�, 
�, … … … , 
�} and the set of edges,  � = {�., ��, ��, … … … , �/}. 

A walk, 0 of the graph � can be defined as an alternating sequence of 

vertices and edges,0 =< 
., ��, 
�, ��
�, … … … , �1, 
1 >such that �� is 

the edge from the vertex 
�2� to 
�. The vertex 
. is called as the origin 

and the 
1 is called as the terminal of 0. The walk, 0 joins the vertex 


. to 
1 and the walk is called as 
. − 
1 walk. The walk which 

terminates at origin, i.e., 
. = 
1 is termed as a closed walk otherwise 

termed as open. When the edges of a walk are distinct, the walk is 

called as a trail and when the vertices are distinct then it is called a 

path. A closed trail with distinct vertices is called as a circuit. The 

number of edges present in a walk can be referred as the length of the 

walk.     

Definition 2.5.2: A cycle which has 4 vertices and 4 ≥ 3has a length of 

4. A graph having a cycle of length 4 is denoted as 6�. A cycle with 

length 3 i.e., 67 is called as a triangle, 68 is termed as a square and 69 

as pentagon.  

Lemma 2.5.1: Every � − 
 walk of a graph � contains a � − 
 path. 

Proof: We prove this lemma by the method of induction on length of 

the walk � − 
. Let : be the length of the walk � − 
, 0.  

Base case: : = 0.The walk contains a single vertex � = 
 with no edge. 

Then there is obviously a � − 
 path of length 0.  

 2 

6 
7  2 3

1 

 4  1  2 

1 

6 
7 

 2 

 6 

 5 

  1 

 2 3

1 

 4 

6 
7 

      (a) Main Graph, �      (b) clique of �     (c) clique of �            (d) clique of �     (e) subgraph of 

�
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Space for learners: Induction step: : ≥ 1. Let us try to prove the lemma for walks of length 

less than :. If 0 is a � − 
 walk with length : contains no repeated 

vertex then the walk is already a path. If not, then suppose there exist 

some vertex < in 0which occur more than once in the walk then 

removing the all the occurrences of <(and the corresponding edges) 

leaving one then we will get a walk 0� of length less than :. By 

induction hypothesis there exists a � − 
 path in 0� and as 0� is 

contained in 0 hence there is a � − 
path in 0. 

Lemma 2.5.2: A closed walk of odd length contains a cycle. 

Proof: Let 0 be a closed walk with odd length :. Using the method of 

induction, we can prove that 0 contains a cycle.  

Base case: : = 1. If the length of the walk is 1 then there is a self- loop 

and 0 contains only a single vertex, hence there is a cycle. 

Induction step: : ≥ 3. Consider the walk, 0 consists of a vertex set 

� = < 
., 
�, 
�, … … , 
� > and 
. = 
�. If each vertex
�(0 ≤ < ≤ 4) is 

distinct, then the walk itself is a cycle. If not, then there exist two 

positive terms <, > such that < < >, 
� , 
? ∈ � − {
., 
�}and 
� = 
?. Now 

we can split this walk 0 into two closed walks 0� and 0� at 
� such 

that 0� includes the vertices 
� , 
�@�, 
�@�, … … , 
?  (
� = 
?) and 


., 
�, . . 
�, 
?@� … … , 
�. So, sum of the lengths of 0� and 0� will be 

equal to :. Since the length : is odd, one of these closed walks will be 

odd and by induction hypothesis, it has a cycle.  

Example 2.5.1: The graphs in figure 2.4 illustrates various subtypes of 

walk. The subfigure (b) presents an open walk (3�2�1�3�4�1) of 

the graph shown in subfigure (a). In this walk, 3 is the origin and 2 is 

the terminal. This is called as an open walk as the origin and the 

terminal is not the same.  

The walk shown in (c) (1�2�3�4�5�3�1) is a closed walk as the 

origin and the terminal vertices are the same which is 1. This cannot be 

called as a circuit or cycle as the vertex 3is repeated twice in the walk. 

The walk shown in (d) is (3�2�1�3�4�5�6) represents a trail of 

the graph in (a). Here, the vertex 3 repeated twice but all the edges are 

distinct which satisfies the properties of a trail. 
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Space for learners: The subfigure (e) presents a path of graph in (a). All the vertices and 

edges along the path 3�2�1�4�5�6�7 are distinct which satisfies 

the properties of a path.   

The example shown in (f) represent a circuit of the graph in (a). A 

circuit must have distinct edges and distinct vertices except for the 

starting and ending vertices. The walk 3�2�1�4�5�3 satisfies the 

properties of a circuit, so we can term this walk as a circuit.  

2.6. CONNECTED AND DISCONNECTED GRAPHS 

A graph is called as connected if each vertex of the graph is reachable 

from all other vertices. Otherwise, the graph is called as a disconnected 

graph. A disconnected graph contains more than one connected 

subgraph. Such subgraphs are called as components of a graph. Formal 

definition of connected graphs, disconnected graphs and components 

are given by Definition 2.6.1. 

Definition 2.6.1: Consider a graph, �(�, �). If there exist a � − 
 path 

in � such that �, 
 ∈ �, then � is said to connected to 
. The relation 

connected is an equivalence relation on the vertex set � of graph �. 

Suppose ��, ��, … , �B are equivalence classes of �. Then a subgraph 

with vertex set ��, 1 ≤ < ≤ C is a component of G. If C = 1, then the 

graph � is connected graph and the graph � will be called as 

disconnected graph if C ≥ 2. In simple words, a connected graph can 

have at most one component. In case of a connected graph,�there will 

be a path � − 
 for any pair of vertices �, 
 ∈ �. 
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Fig. 2.4: Example to illustrate walk, trail, path and circuit 

Definition 2.6.2: Let ��(��, ��) be a subgraph of a graph �(�, �). The 

subgraph �� will be a maximally connected component of � if �� is 

connected and for any vertex 
 such that 
 ∈ � and 
 ∉ �� there is no 

vertex � ∈ � which is adjacent to 
. Informally, if there exist no vertex 

in � which can be added to �� and �� still be connected.  

Example 2.6.1: The figures shown in figure 2.4 illustrates the graph 

connectedness. The graph shown in (a) represents a connected a graph. 

This graph has 7 vertices and each vertex is reachable from all 

remaining 6 vertices. The graph in (b) also has 7 vertices, but the 

vertices 1-4 are not reachable from the vertices 5-7. Thus, this graph is 

disconnected. The subfigure (c) shows the components of the graph in 

(b). The components are enclosed within the rectangular boxes. One 

component has the vertex set {1,2,3,4} and the other has the vertex set 

{5,6,7}. Both the components are connected graphs individually.   
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Fig. 2.5: Sample graphs illustrating connected graph, disconnected 

graph and components of a graph 

Theorem 2.6.1: A simple graph � with 4 vertices and minimum degree 

E ≥
�2�

�
 is connected. 

Proof: We shall prove this theorem by contradiction. Suppose � is not 

connected and has at least two components, say �� and ��. Let us 

consider 
 be any vertex of ��. The degree of 
, �(
) ≥
�2�

�
 as E ≥

�2�

�
. Hence, 
 has at least 

�2�

�
 adjacent vertices in ��and so, ��contains 

at least 
�2�

�
+ 1 =

�@�

�
vetrices. Similarly, �� also contains minimum  

�@�

�
 vertices. Hence, the graph, � has a minimum of 

�@�

�
+

�@�

�
= 4 + 1 

vertices, which is a contradiction. 

5 

1 

2 3 

4 

6 

 7 

5 

3 

1 

2 

4 

6 

 7 

5 

1 

2 3 

4 

6 

 7 

(a) A connected graph 

(b) A disconnected graph 

(c) Components of the graph shown in (b) 
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connected.  

Proof: Let �(�, �) has more than one component. Let �, 
 be any two 

vertices of � (and of �). If �, 
 belongs to two different components of 

� (� is not adjacent to 
 in �), then they are adjacent in �. So, � and 
 

are connected in �. If �, 
 belongs to the same component of � then let 

us select a vertex G from a different component. The edges �G and 
G 

do not belong to � but they belong to �. Then there exists a path �G
 

in �, which is nothing but a � − 
 path. Hence � is connected. 

Theorem 2.6.3: A graph with 4 vertices and C components can have at 

most
(�2B)(�2B@�)

�
 edges. 

Proof: Let ��, ��, … �Bbe the components of a graph � and let 4� be the 

number of vertices of the <HI component of � such that 1 ≤ < ≤ C and 

�(��) represents the number of edges present in ��.  

Any graph of 4 vertices can have at most  
�(�2�)

�
 vertices (this happens 

when the graph is a complete graph which mean each vertex is 

connected with each other).  

Thus, for any ��, 1 ≤ < ≤ C, �(��) ≤
�J(�J2�)

�
, and hence �(�) ≤

∑
�J(�J2�)

�

B
�L� . 

Since each component has at most one vertex, for any ��, 4� > 1 and 

 4� = 4 − (M�N OP Qℎ� 
��Q<S�M <4 T:: Qℎ� SONUO4�4QM OP � �VS�UQ ��) 

Hence, 4� ≤ 4 − C + 1, so ∑
�J(�J2�)

�

B
�L� ≤ ∑

(�2B@�)(�2B)

�
=B

�L�

(�2B@�)(�2B)

�
=

(�2B)(�2B@�)

�
,  

Hence proved, �(�) ≤
(�2B)(�2B@�)

�
. 

Theorem 2.6.3: A graph �(�, �) is connected if and only if for any 

partition of vertex set � into subsets �� and ��, there is an edge from 

any vertex of �� to any vertex of ��.  

Proof: Let a graph �(�, �) is connected and let � = �� ∪ ��. Let us 

consider two vertices �, 
 such that � ∈ �� and 
 ∈ ��. There exists a 
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 path in �, say< �, G., G�, … , GB >(GB = 
) as � is connected. 

Let < be the smallest positive integer such that G� ∈ ��, then G�2� ∈ ��. 

Since G�2� and G� are adjacent, thus there is an edge from G�2� ∈ ��to 

G� ∈ ��. Conversely, let � is not connected. Thus, � has at least two 

components. Let �� represents the set of one component and �� 

represents the other component. It is obvious that there is no edge from 

any vertex of �� to any vertex of ��. Hence it proves the theorem. 

 

CHECK YOUR PROGRESS 

1. Let two groups � and X are two isomorphic graphs. Which 

of the following is true in terms of � and X? 

a. Number of vertices in � is same as the number of 

vertices in X 

b. Number of edges in � is same as the number of edges in 

X. 

c. Both in-degree and out-degree of a vertex 
is same as 

the in-degree and out-degree of �(
). 

d. All of the above 

2. A subgraph containing all the vertices is called as 

a. Induced subgraph 

b. Spanning graph 

c. Clique 

d. None of the above 

3. The subgraph in which all the vertices are adjacent to each 

other is called as 

a. Induced subgraph 

b. Spanning graph 

c. Clique 

d. None of the above 

4. What will be the number of edges in a walk with 4 vertices? 

a. 4-1 

b. 4 

c. 4 + 1 

d. 24 

5. Which of the following is true in terms of a walk? 

a. All the vertices must be distinct. 
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c. Both (a) and (b) 

d. None of the above. 

6. A walk with same starting and ending vertex is called as a 

a. Open walk 

b. Closed walk 

c. Cycle 

d. Trail 

7. A walk with no repeated vertex is called as a 

a. Open walk 

b. Closed walk 

c. Path 

d. Trail 

8. A closed walk with distinct vertices is called as a 

a. Cycle  

b. Path 

c. Trail 

d. Clique 

9. The maximum number of edges a graph with 4 vertices 

and C edges is 

a. 
(�2B)(�2B@�)

�
 

b. 
(�2B)(�2B2�)

�
 

c. 
(�2B)�

�
 

d. 
(�2B2�)(�2B@�)

�
 

10. The maximum number of components that a connected 

graph with 4 vertice scan have is 

a. 0 

b. 4/2 

c. 4-1 

d. 4 
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 Graph Isomorphism is a concept in graph theory which states that 

any two graphs, � and �’ are called as Isomorphic if there is a 

bijection between the vertex sets of � and �’. Two isomorphic 

graphs have equal number of vertices and edges. The degree of a 

vertex 
 in � is same as the degree of its corresponding vertex in 

�’. 

 A subgraph can be called as a subpart of another graph. An 

induced subgraph of a graph is another graph generated from a 

subset of the graph's vertices and all of the edges joining pairs of 

vertices in that subset. A spanning subgraph is a subgraph of 

another graph if the vertex set remains the same in both the 

subgraph and the original graph. A clique is a complete subgraph. 

of another graph. 

 A walk is a finite alternating series of vertices and edges that starts 

and ends with vertices, with each edge connecting the vertices 

before and after it. A walk may have repeated vertices but not the 

edges of another graph. An open walk with no repeated edges is 

called as a trail. The vertices may repeat in a trail. A trail with non-

repeated vertices is called as a path. A non-empty trail in which the 

starting and ending vertices are the only vertices that are repeated is 

called as a circuit or a cycle. 

 A graph is called as connected if each vertex of the graph is 

reachable from all other vertices. Otherwise, the graph is called as a 

disconnected graph. A disconnected graph contains more than one 

connected subgraph. Such subgraphs are called as components of a 

graph. A trail is a walk in which the starting and ending vertices are 

the only vertices that are repeated is called as a circuit or a cycle. 

2.8. ANSWERS TO CHECK YOUR PROGRESS  

1. d 2. b 3. c 4. a 5. b 

6. b 7. c 8. a 9. a 10. a 
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Space for learners: 2.9. POSSIBLE QUESTIONS  

1. What are the properties of graph isomorphism? 

2. What is meant by subgraph? What are the different types of 

subgraphs available? 

3. What is meant by an induced subgraph? Explain with an example. 

4. What do mean by a walk of a graph? What is the difference 

between a trail and a path? 

5. What is the difference between a closed walk and a cycle? 

6. What is meant by components of a graph? How is it related to 

graph connectedness? 

7. Find a trail, a cycle and a path in the graph given below.   

 
8. Verify if the sequence given below can be considered as a trail. 

Justify your answer. 

2�3�1�4�6�2�1 

9. Verify if the sequence given below can be considered as a path. 

Justify your answer. 

2�1�5�3�4�1 

10. Verify if the sequence given below can be considered as a cycle. 

Justify your answer. 

2�3�1�4�6�2 

 

 

 

 

1 

 2 

 3    7 

6 4 

5  
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Unit Structure: 

3.1  Introduction 

3.2 Unit Objectives 

3.3  Euler Graphs 

 3.3.1  Definitions 

 3.3.2  Theorems on Euler Graph 

 3.3.3  Arbitrarily Traceable Graphs 

3.4  Hamiltonian Graphs 

 3.4.1  Definitions  

 3.4.2  Theorems on Hamiltonian Circuits  

3.5 Bipartite Graphs 

 3.5.1 Properties of Bipartite Graph  

 3.5.2 Matching in Bipartite Graph 

3.6  Summing Up 

3.7  Answers to Check Your Progress 

3.8 Possible Questions 

3.9 References and Suggested Readings  
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Space for learners: 3.1 INTRODUCTION 

This unit focuses on three very important concepts of graph theory- 

Euler graph, Hamiltonian graph, and Bipartite graph. Almost every 

real-world problem involving discrete groupings of items, where the 

focus is on the relationship between them rather than the intrinsic 

features of the items, may be translated into one of these graphs. 

Thus, these graphs find a wide range of applications such as in 

computer science, communication science, economics, computer 

graphics, electronic circuit design, mapping genomes, operation 

research, error correction code etc. The goal of this unit is to 

familiarize the students with the various terms and definitions 

related to these graphs and to introduce some important theorems. 

3.2 UNIT OBJECTIVES 

After going through the unit, you will be able to- 

• define the terms Euler graph, Hamiltonian graph, and 

Bipartite graph. 

• determine whether a graph is an Euler graph or not. 

• determine if a graph is a Hamiltonian graph. 

• list the properties of the Bipartite graph. 

• Determine whether there exists a perfect match in a graph or 

not. 

3.3 EULER GRAPHS 

In 1736, Swiss mathematician Leonhard Euler in his famous paper, 

where he solved the Königsberg bridge problem, raised an 

interesting problem. The problem was, given a graph G, is it 

possible to find a walk, with the same staring and the end vertices 

and includes each edge of G exactly once. In the same paper, he also 

presented the solution of the problem and introduced the concept of 

the Euler graph which now is extensively used in many fields- 

ranging from DNA sequence reconstruction to circuit designs. 
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• Euler line: in a given graph G, if there exists a closed walk 

(having the same starting and end vertex) such that it contains 

each edge of G exactly once, then the walk is called an Euler line. 

• Euler Graph: A graph that contains an Euler line is called an 

Euler Graph. 

• Unicursal Line: A walk that contains all the edges of the graph 

exactly once, with different starting and end vertices, is called a 

unicursal line. A unicursal line is an Euler line with the dropped 

constraint of the walk being closed. Hence, it is also referred to as 

the open Euler line.  

• Unicursal Graph: A graph that contains a unicursal line is called 

the Unicursal Graph. 

Example: The graphs in figure 3.1 are examples of Euler graphs. 

The graph in figure 3.1(a) consists of four vertices and eight edges. 

If we start from vertex A, the walk (A, B, C, D, B, A, C, D, A) 

contains all the edges of the graph. Similarly, the graph in figure 3.1 

(b) is also an Euler graph and one possible Euler line is-(A, B, C, D, 

A, H, D, G, C, F, B, E, A) starting and ending with vertex A.  

 
(a)    (b) 

Fig. 3.1: Examples of Euler Graph 

 
(a)     (b) 

Fig. 3.2: Examples of non-Euler Graph 
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Space for learners: However, the graphs in figure 3.2 are not Euler graphs. It is not 

possible to get any Euler line starting from any vertex of these 

graphs. 

 

The graphs in figure 3.3 are also not Euler graphs. But they are 

unicursal graphs. For the graph in figure 3.3 (a), one possible 

unicursal line is (A, B, C, A, D, C, E, D, C). Similarly, (B, F, A, B, 

C, A, D, C, E, D) is a possible unicursal line for the graph in figure 

3.3 (b). 

 

(a)    (b) 

Fig 3.3: Example of Unicursal Graph and Unicursal Line 

3.3.2 Theorems on Euler Graph 

Theorem 3.1: A connected graph G is an Euler graph if and only if 

each vertex in G is of even degree. 

Proof:  

Part A- Necessary:  

Assume that G is a Euler graph. By the definition of the Euler graph, 

there must exist a Euler line in G, which is a closed walk containing 

each edge of G exactly once. This implies that- every time a vertex v 

is encountered while tracing the Euler line, there must be  

1. A new edge incident on v which serves as the entry edge and  

2. Another new edge incident out of v which serves as the exit 

edge.  

This holds true for each intermediate vertex v indicating that the 

intermediate vertices must be of even degree. As an Euler line is a 

closed walk, there exists only one terminal vertex which is both the 

starting and the end vertex. Thus, the walk starts from the terminal 

vertex and came back to the same vertex at the end. This indicates 

that the terminal vertex must also be of even degree. 
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Space for learners: Thus, we may conclude that if a graph G is an Euler graph then each 

vertex must be of even degree. 

Part B- Sufficiency:  

Assume that each vertex of G is of even degree. Let’s start with any 

vertex v of Gand then arbitrarily trace a walk in such a way that an 

edge is traversed only once. As each vertex of G is of even degree, 

we can exit from any vertex u that we enter in this walk. The walk 

may come to end only when we eventually reach v. Let this closed 

walk be termed as h. If h contains all the edges of G then it's an 

Euler line, otherwise, we will remove h from G, which results in a 

subgraph G’. As the vertices in both h and G are of even degree, the 

vertices in G ’ must also be of even degree. As the graph G was 

connected, G’ must have at least one common vertex with G. Let this 

common vertex be w. Now, starting from w, again we trace another 

arbitrary walk h’ containing an edge of G’ only once. As h’ also has 

vertices only of even degree, this walk may also come to an end only 

on encountering w. Now we remove h’ from G’ and join with h, 

which results in a new walk that starts and ends with v but with a 

greater number of edges. We can apply this process recursively until 

we obtain a closed walk that contains all the edges of G. Thus, G is a 

Euler graph. 

Example: If we consider the graphs in figure 3.1(a), the graph has 

four vertices (A, B, C, D) and eight edges. All the vertices of the 

graph are of degree 4, which is even. Thus, the graph is an Euler 

graph. 

Similarly, the graph in figure 3.1(b) has eight vertices (A, B, C, D, 

E, F, G, H). The vertices A, B, C, and D are of degree 4; and the 

vertices E, E, G, and H are of degree 2. Thus, all the vertices in this 

graph are also of even degree. Thus, the graph is a Euler graph. 

Now, if we consider the graphs in figure 3.2, there exists at least one 

vertex in each graph which is of odd degree. For example, in the 

graph of figure 3.2 (a), the degree of vertices A and B is 3. 

Similarly, in graph 3.2 (b), the vertices C and D are of degree 3. 

Thus, the graphs are not Euler graphs.  

Königsberg bridge problem: The famous Königsberg bridge 

problem stated that whether it is possible to cross the seven bridges, 

connecting the two islands of the city Königsberg, exactly once in a 

single traversal. The additional requirement of the problem was that 

the traversal must end at the same point from where it started. The 
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equivalent representation of the same problem in terms of a graph is 

given in figure 3.4(b). 

As it can be seen from figure 3.4 (b) that the vertices of the graph 

are not of even degree. Hence, it is not an Euler graph and a walk 

that starts and ends at the same point, by crossing each edge of the 

graph exactly once, is not possible.  

Theorem 3.2: There exist exactly k edge-disjoint subgraphs, in a 

graph G with exactly 2k odd degree vertices, such that each 

subgraph is a unicursal graph and all the subgraphs together include 

all the edges of G. 

Proof: Let the odd degree vertices in G be (v1, v2, v3, ……., vk; u1, u2, 

u3, ….., uk). Now, let’s add k edges (e1, e2, e3, …..ek) in between a 

pair of vertices (v1, u1), (v2, u2), (v3, u3)….. and (vk, uk). This results 

in a new graph G’ where each vertex is of even degree. Thus, G’ is a 

Euler graph. 

Let, � be a Euler line in G’. If we now deleting e1 from � will result 

in a unicursal line �. Deleting e2 from that from �will split it into 

two unicursal lines �1 and �’; removal of e3 from whichever 

unicursal line that it belongs to, will split that line again into two 

more unicursal lines resulting in a total 3 unicursal lines. Continuing 

this process, until we delete all other remaining extra k-3 edges, i.e., 

e4, e5,…..ek will finally result in k  unicursal lines. As we removed 

only the extra edges that we had added to G, all the unicursal lines 

together will still contain all the original edges of G.  

Fig. 3.4: Graphical representation of Königsberg bridge problem 
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Theorem 3.3: For a connected graph to be an Euler Graph, if and 

only if it contains edge-disjoint circuits.  

Proof:  

If Part: 

Let’s G is a connected graph containing circuits. All the circuits in G 

are edge-disjoint and thus G can be decomposed into circuits. As in 

a circuit, all the vertices are of degree 2, it can be concluded that all 

the vertices in G have even degree. Hence, G is a Euler graph. 

Only if path: 

Let G is a Euler graph. Now let’s randomly take any vertex v1 from 

G, it must be involved with at least two edges as it is of even degree. 

Let one of these edges be (v1, v2) incident on the vertex v2. Due to 

the same reason, v2 must also be part of at least two edges. Let (v2, 

v3) be an edge connecting the vertices v2 and v3. If we continue the 

process, it will end only when we reach the starting vertex v1 

resulting in a circuit C. Now, removing C from G will result in a 

subgraph G’ where all the vertices are of even degree.   Thus, we 

can repeat the same process in G’ and remove another circuit from 

it. This we can continue until we get a Null graph. 

 

3.3.3 Arbitrarily Traceable Graphs 

In a Euler graph, starting from any vertex v, if we start tracing the 

edges in such a way that no edge is repeated, it may not always 

result in a Euler line. For example, consider the graph in figure 3.5. 

If we now start from vertex A and start tracing the edges in the 

sequence (A, C, B, A); we will get back to the vertex A, after which 

we don’t have any option to visit a new edge. However, the 

sequence (A, B, C, A) is a circuit, not a Euler line as it does not 

cover all the edges of the graph. On the contrary, if we choose the 

starting vertex as C, and take a walk by visiting a new edge every 

time, we are guaranteed to get a Euler line, does not matter in what 

sequence we visit the edges. One such sequence is (C, E, D, C, B, A, 

C). From this example, it is clear that in a Euler graph, starting from 

any random vertex v, if we take an arbitrary walk by simply visiting 

a new edge every time, we may not get a Euler line.  
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from that vertex and then take an arbitrary walk by randomly 

selecting a new edge every time, and get back to u by traversing all 

the edges in G, then G is said to be arbitrarily traceable with respect 

to u.  

Theorem 3.4: A Euler graph G is arbitrarily traceable with respect 

to a vertex v, if and only if v is a part of every circuit in G. 

 

 

Fig. 3.5: Arbitrarily Traceable Graph with respect to Vertex ‘C’ 

Proof: Let the Eulerian graph G can be traced arbitrarily from a 

vertex v. Assume that circuit C does not pass through v. Let H be a 

subgraph of G that does not contain the edges of C. As G is Euler 

graph all its vertices are of even degree and C being a circuit all its 

vertices are also of degree 2. Therefore, all the vertices in H also 

have an even degree meaning that it's an Euler graph. So, in H if we 

start from v, then it is possible to traverse all the edges of H exactly 

once and then come back to v. Now, according to our initial 

assumption, as C does not contain v, this walk cannot be extended to 

contain the edges of C.  

Example: The graph in figure 3.5 contains two circuits C1 (A, B, C, 

A) and C2 (C, D, E, C). As we can see that C is the only vertex that 

is common in both the circuits, the graph is arbitrarily traceable with 

respect to C only. For the other vertices namely- A, B, D, and E we 

may not always get a Euler line by randomly walking through a new 

edge every time. 
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3.4 HAMILTONIAN GRAPHS 

 

Sir William Hamilton, an Irish mathematician (1805-1865), created 

the Icosian game, where a dodecahedron was used with each of the 

20 vertices labelled with the name of a different capital city across 

the world. The objective of the game was to create a closed walk 

across all the cities using the edges of the dodecahedron that visited 

each city precisely once, beginning and finishing in the same city. 

The term- “Hamiltonian Graph” originated from this problem and 

became one of the most important and interesting concepts in Graph 

Theory. 

3.4.1 Definitions 

• Hamiltonian Circuits: In a graph G, if there exists a circuit that 

passes through all the vertices of G exactly once, then the circuit 

is called a Hamiltonian Circuit. If G contains n vertices, then a 

Hamiltonian circuit of G will always contain exactly n edges. 

• Hamiltonian Graph: A graph that possesses a Hamiltonian 

circuit is called a Hamiltonian graph. 

CHECK YOUR PROGRESS-I 

1. Fill in the blanks: 

a. A connected graph is a Euler graph if and only if all its 

vertices are of ______ degree. 

b. In a graph G, with 6 odd degree vertices, there exist at least 

_____ subgraphs such that each subgraph is a unicursal 

graph and all the subgraphs together include all the edges of 

G. 

2. State true or false: 

a. A Euler graph is arbitrarily traceable with respect to any 

vertex in the graph. 

b. In a graph G, the sum of the degrees of vertices is18.  G is an 

Euler graph. 

c. A graph where G all the vertices are of degree 6. The graph 

is a Euler graph. 
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it starts with a vertex v and ends with vertex u; containing all the 

vertices of G exactly once, then that path is called Hamiltonian 

path. Dropping an edge from a Hamiltonian circuit result in a 

Hamiltonian path. In a Hamiltonian graph G, each Hamiltonian 

path contains exactly n-1 edges. 

Example: Consider the graph in figure 3.6(a). It contains five 

vertices and 8 edges. The graph is Hamiltonian and a possible 

Hamiltonian circuit is shown in figure 3.6 (b). The figure in 3.6(c) 

presents a possible Hamiltonian path for the graph. 

We may observe that the Hamiltonian Circuit contains all the 5 

vertices of the original graph and has exactly 5 edges. The 

Hamiltonian path on the other hand contains exactly 4 edges and 5 

vertices. 

3.4.2 Theorems on Hamiltonian Circuits 

Theorem 3.5 (Dirac’s Theorem): In a simple graph G, with n 

vertices (n≥3), if the degree of each vertex is greater than or equal to 

n/2, then G is a Hamiltonian graph. 

Example: The graph in figure 3.7(a) has 6 vertices. Each vertex in 

the graph has degree 3≥ (6/2). Thus, the graph is Hamiltonian. 

Figure 3.7(b) presents a Hamiltonian circuit for the same. Now, if 

we consider the graph in figure 3.7 (c) it has 5 vertices. The degree 

of the vertex E is 2 which is less than 5/2. Thus, this graph is not 

Hamiltonian.  

 

 

 

  

(a) (b) (c) 

Fig. 3.6:  Examples of Hamiltonian graph, Hamiltonian circuit and 

Hamiltonian path 
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Theorem 3.6 (Oreo’s theorem): If in a simple Graph G with n 

vertices, where n ≥2, for each pair of non-adjacent vertices u and v, 

degree(u)+degree(v)≥n, then the graph G is a Hamiltonian graph. 

Example:  Consider the graph in figure 3.6 (a). The pairs of non-

adjacent vertices in this graph are- (A, C), (A, F), (B, F), (B, D), (C, 

E), and (D, E). All the pair of vertices has a sum of degrees equal to 

6≥6. Thus, the graph is Hamiltonian. 

For the graph in figure 3.7(c), (E, D) is a non-adjacent pair of 

vertices. The sump of degrees of the vertices E and D is 4 which is 

less than 5. Thus, we can claim that the graph is not a Hamiltonian 

graph. 

3.5 BIPARTITE GRAPHS 

In graph theory, a graph G = (V, E) is said to be a bipartite graph if, 

the set of vertices V can be divided into two disjoint sets V1 and V2 

such that each edge e belonging to E, connects a pair of vertices (u, 

  
 

                    (a)              (b)                  (c) 

Fig. 3.7:  Example of Hamiltonian graph and non-Hamiltonian Graph 

CHECK YOUR PROGRESS-II 

3. Fill in the blanks: 

a. A Hamiltonian path traverse each vertex of the graph 

exactly______. 

b. A Hamiltonian path for a Hamiltonian graph with 6 vertices 

has exactly _____ edges. 

4. State true or false: 

a. A graph G has 6 vertices with degrees 2, 2, 4, 1, 3, 3 and 3. 

The graph is a Hamiltonian graph. 

b. A Hamiltonian circuit contains all the edges of the graph. 
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Space for learners: v) such that u∈V1 and v∈V2. In other words, there does not exist 

any edge in G that connects vertices of the same set. 

Fig 3.8: Examples of (a) Bipartite graph, (b) Balanced Bipartite 

graph and (c) Complete Bipartite Graph 
Example: The graphs in figure 3.8 are bipartite. In all the graphs the 

set of vertices can be divided into two disjoint sets and none of the 

edges connects vertices from the same set. In graph 3.8(a), the 

bipartition of the vertex set is V1 = {A, B, C, D} and V2 = {P, Q, 

R}. As we may see that there no edge connecting two vertices from 

V1 or V2. For the graph in figure 3.8(b), the two disjoint sets of 

vertices are V1 = {A, B, C, D} and V2 = {P, Q, R, S}. In the last 

graph in figure 3.8(c) the bipartition of the vertices is V1 = {A, B, 

C} and V2 = {P, Q, R}. 

Following are some terms related to bipartite graph- 

• Balanced Bipartite Graph: If the two sets V1 and V2 have the 

same number of vertices then, the graph G is called a balanced 

bipartite graph.  

• Complete Bipartite Graph: A bipartite graph, G is referred to as 

a complete bipartite graph if each vertex in one set is connected 

to every vertex in the other set. In other words, for each vertex 

belong to V1, there exists an edge to each v belonging to V2 and 

vice versa. A complete bipartite graph is denoted by Km, n where 

m and n are the cardinalities (number of vertices) of set V1 and 

V2 respectively.  

Example: The graph in figure 3.8(b) is a balanced bipartite graph as 

the bipartition of the graph V1 and V2 contains an equal number of 

vertices. The graph in figure 3.8(c) is an example of a complete 

  

                   (a)              (b)               (c) 
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Space for learners: bipartite graph as each vertex in V1 is connected to all the vertices in 

V2. 

3.5.1 Properties of Bipartite Graph  

Lemma 3.1: In a bipartite graph G with the vertex petitions sets V1 

and V2, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�) 

Proof: Let’s G’ be a subgraph of G that contains only the vertices of 

G and doesn’t contain contains any edge. Hence, initially for this 

subgraph, the degree of each vertex is zero. As G is a bipartite 

graph, each edge connects a vertex in V1 and to a vertex in V2.  

Thus, if we now add an edge of G to G’, say between the vertex u∈ 

V1 and v∈ V2, this will increase the sums of degrees of the vertices 

in both sets to 1. Thus, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�) = 1 after adding 

a single edge. Adding the second edge will connect another vertex 

from V1 to a vertex in V2. This will further increase the sums of the 

degrees of the vertices by 1. Thus, after adding the second 

edge, ∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�) = 2. Since, every edge contributes 

exactly one to the sum of the degrees of vertices in each side, 

continuing the process until we add all the edges of G will still 

maintain the equality. 

Example: For the graph in figure 3.8(a), the bipartition of the 

vertices are, V1 = {A, B, C, D} and V2 = {P, Q, R}. The sum of 

degrees of vertices in  

V1=deg(A)+deg(B)+deg(C)+deg(D)=1+1+2+1=5 

The sum of degrees of vertices in V2 = deg(P)+deg(Q)+deg(R) 

=2+1+2 =5. Thus, we may see that the sum of degrees of vertices in 

both the sets is the same. We can establish the same for the other 

two graphs in figure 3.8. 

Theorem 3.7: If G is a k-regular (k>0) bipartite graph with 

bipartition V1 and V2, then |V1|=|V2|, i.e., number of vertices in V1 

must be equal to number of vertices in V2. 

Proof: A graph is k-regular if all the vertices in the graph are of 

degree k. As, G is a k-regular bipartite graph, all the vertices in G are 

of equal degree, i.e., k. Thus,  
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�∈�1

�	
(�) = �|�1| and ∑
�∈�2

�	
(�) = �|�2|.  

Form the Lemma 3.1- 

∑
�∈�1

�	
(�) = ∑
�∈�2

�	
(�).  

This implies that, 

�|�1| = �|�2|⇒ |V1|=|V2| 

Example: The bipartite graph in figure 3.8(c) is a 3-regular graph, 

as all the vertices in that graph are of degree 3. The bipartition of the 

graph is V1 = {A, B, C} and V2 = {P, Q, R}. As we may see that 

both the partitions have an equal number of vertices, i.e., 3. 

Theorem 3.8: All the circuits in a bipartite graph are of even length. 

Proof: Let G be a bipartitely graph with set of vertices partitioned 

into V1 and V2. Let, C = (u, v1, v2…. v2k, u) be a circuit in G with an 

odd length 2k+1. Let the vertex u∈ V1. As G is bipartite, u must be 

connected to a vertex in V2.  

Now, starting from u, following the sequence in C, the first edge 

connects u to v1. Thusv1 must belong to V2. The second edge 

connects vertex v1 with v2. Using the same argument, we can say 

that v2∈ V1. If we continue following the sequence, the 2kth edge in 

C connects the vertex v2k-1∈ V2 and v2k∈ V1. The final edge 2k+1 

connects v2k∈ V1 to u∈ V2, which contradicts our initial 

assumption that u∈ V1. Thus, we can conclude that all the circuits 

in a bipartite graph must be of even length. 

Theorem 3.9: Every subgraph of a bipartite graph is a bipartite 

graph, 

Proof: Let G be a bipartite graph with the set of vertices partitioned 

into V1 and V2. Let G’ be a valid subgraph of G. Then let V1’=V1 

∩ G’ and V2’=V2 ∩ G’. If (V1’, V2’) is an invalid bipartition of G’ 

then there must exist an edge that connects the vertices u and v such 

that u, v∈ V1’ or u,v∈ V2’. However, as G’ is a valid subgraph of 

G it must not contain any edge that is not in G. Thus, the edge (u, v) 

is not a valid edge which implies that V1’ and V2’ is a valid 

bipartition. So, G’ is also a bipartite graph. 
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colourable.  

Proof: Let G be a bipartite graph with a set of vertices partitioned 

into V1 and V2. None of the vertices in V1 are adjacent to each 

other. Thus, they can be coloured with 1-colour, say colour-1. The 

same is true for the vertices in set V2 and all the vertices in set V2 

are coloured with the same colour, colour-2.  

Now, we will have to prove that colour-1 and colour -2 cannot be 

the same. As there exist a positive number of edges in the graph, 

there is at least one edge in the bipartite graph that connects a vertex 

u in set V1 to a vertex v in V2. This implies that u and v are adjacent 

to each other and thus they cannot be coloured with the same colour. 

Thus colour -1 and colour-2 must be different.  

 

Fig. 3.9: Example of Colouring a bipartite graph 

Example: Consider the graph in figure 3.8(a). It can be coloured 

using 2-colours as shown in figure 3.9. In this case, we have used 

red and green colours. As we may observe that none of the adjacent 

vertices are coloured with the same colour. The red colour has been 

used for the vertices A, B, C, and D, which are not adjacent to each 

other. The green colour has been used for the vertices P, Q, and R; 

none of which are adjacent to each other. Thus, with two colours, we 

can properly colour the graph. The same can be shown for the other 

two graphs in figure 3.8. 
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3.5.2 Matching in Bipartite Graph 

In a graph G, a matching M is a subgraph, with a set of edges such 

that no two edges have a common vertex. Thus, in a matching each 

vertex has degree exactly 1.  

 

(a)                              (b) 

Fig. 3.10: Example of Matching 

A matching M is said to be maximal if it contains the largest 

possible number of edges from G. A perfect matching is a maximal 

matching that contains all the vertices of G.  

The graph in figure 3.10(a) is a matching for graph 3.8(a). It is also 

the maximal matching for the graph. However, it is not a perfect 

matching as it does not include the vertex D. On the other hand, the 

graph in figure 3.10(b) is an example of matching for the graph in 

figure 3.8(c). It is a perfect matching as it includes all the vertices of 

the graph. 

Lemma 3.2: In bipartite graph G, with bipartition V1 and V2, there 

does not exist a perfect match if |V1|≠|V2| 

CHECK YOUR PROGRESS-III 

5. Fill in the blanks: 

a. A bipartite graph can be coloured using ___ colours. 

b. In a bipartite graph, the sum of degrees of vertices in one set is 

8. The same of the other set is____.  

6. State true or false: 

a. A 6- regular bipartite graph contains equal number of vertices 

in both the set of bipartitions. 

b. The circuits of a bipartite graph can be of odd as well as of 

even length. 
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Space for learners: Proof: Suppose, there exists a perfect matching M for G. Now, let's 

construct a subgraph G’ which contains all the vertices of G and the 

edges of M. According to theorem 3.9, G’ is also a bipartite graph. 

Since G’ contains the edges of M, all the vertices in G’ are of degree 

1. Thus, G’ is a 1-regular bipartite graph, and applying the theorem 

3.7, we can conclude that |V1|=|V2|. 

Example: It is not possible to have a perfect match for the graph in 

figure 3.8(a), as the bipartition does not contain an equal number of 

vertices. On the contrary, if we examine the graph in figure 3.8(c), it 

contains an equal number of vertices in both sets. Thus, a perfect 

match is possible in this graph. The graph in figure 3.10(b) is an 

example of a perfect match for this graph. 

3.6 SUMMING UP 

• In this module we have discussed - Euler graph, Hamiltonian 

graph, and Bipartite graph.  

• A Euler line is a closed walk that contains all the edges of the 

graph exactly once. A graph containing a Euler line is an Euler 

graph. 

• A graph is a Euler graph if and only if all the vertices are of 

even degree. 

• A unicursal line is an open Euler line. 

• A connected graph is a Euler graph if and only f it contains 

edge-disjoint circuits. 

• A Euler graph is arbitrarily traceable with respect to a vertex v, 

if v is a part of every circuit in the graph. 

• A Hamiltonian circuit contains all the vertices of a graph 

exactly once. A graph containing a Hamiltonian circuit is called 

a Hamiltonian graph. 

• Using Dirac’s theorem and Oreo’s theorem we can check if a 

graph is Hamiltonian or not. 

• A bipartite graph, G, is a graph, where the vertices can be 

partitioned into two disjoint sets such that no edge of G 

connects two vertices from the same set. 

• The subgraph of a bipartite graph is also a bipartite graph. 
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• In a bipartite graph, a perfect match exists if both set of vertices 

have equal cardinality. 

3.7 ANSWERS TO CHECK YOUR PROGRESS 

1.  

a. Even 

b. 3 

2.  

a. False 

b. False. 

c. True.  

3.  

a. once 

b. 5 

4.  

a. False. 

b. False. 

5.  

a. 2  

b. 8 

6.  

a. True 

b. False 

3.8 POSSIBLE QUESTIONS 

1. Short Answer Type Questions: 

a. Define Hamiltonian graph. List some of its applications. 

b. Define Euler graph and list some its applications. 

c. For a graph to be arbitrarily traceable with respect to a vertex 

v, what constraint v must satisfy?   

d. Define unicursal line. Why is it also called an open Euler 

line? 

e. What is a complete bipartite graph. Give an example. 
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a. State the Königsberg bridge problem and illustrate Euler’s 

solution to this problem. 

b. What is a matching? Explain with an example the concept of 

perfect matching. Prove that perfect matching is not possible 

in a bipartite graph having different number of vertices in the 

bipartition. 

c. Discuss the Dirac’s theorem and Oreo’s theorem for 

Hamiltonian gram with the help of examples. 

d. State some applications of Bipartite graph. Prove that a 

bipartite graph is 2-colourable.

e. Prove that a subgraph of a bipartite graph is also a bipartite 

graph. 
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Unit Structure: 

4.1 Introduction 

4.2  Unit Objectives 

4.3  Properties of Trees 

4.4  Distance and Center of Trees 

4.5  Rooted and Binary Trees 

4.6  Counting Binary Trees 

4.7  Fundamental Circuit 

4.8 Spanning Trees in Weighted Graphs 

4.9  Cut Sets 

4.10  Summing Up 

4.11  Answers to Check Your Progress 

4.12 Possible Questions 

4.13 References and Suggested Readings  
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Space for learners: 4.1   INTRODUCTION 

A tree is a nonlinear discrete data structure. This unit gives an 

overview of the tree and its properties. The types of trees such as 

rooted and binary trees are also discussed in this unit. A binary 

tree has a maximum of two leaf nodes. The counting tree with its 

properties is also reported in the unit. The concept of a circuit 

along with the minimum spanning tree is also discussed in the 

unit. A minimum spanning tree contains the minimum weight of 

the graph. The graph cut set and the weighted graph are also 

discussed in this unit. 

4.2 UNIT OBJECTIVES 

After going through this unit, you will be able to know 

 About trees and their properties. 

 About the rooted tree, counting tree, and binary trees. 

 About the circuit and weighted graph. 

 About the spanning tree. 

4.3 TREES AND THEIR PROPERTIES 

The tree is a discrete nonlinear structure that represents 

hierarchical relationships between nodes. It is a connected and 

acyclic undirected graph. There is a path between the nodes of a 

tree. A tree with n nodes contains (n-1) numbers of edges. Every 

node has a degree. The node which has o degree, known as the 

root of the tree. The node with degrees 1 and 2 is known as the 

leaf and internal node of the tree. 

 
Fig. 4.1: Example of a tree 
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 The properties of a tree are explained below: 

i) A tree is a nonlinear data structure. 

ii) Every tree has a root node with degree 2. 

iii) The degree of a leaf node is 1. 

iv) The degree of an internal node is at most 2. 

v) Every tree has n-1 numbers of edges. 

4.4 DISTANCE AND CENTER OF TREES 

The vertex with the minimal eccentricity of a tree is known as the 

center of the tree. The eccentricity of a vertex is the maximum 

distance from that respective vertex to other vertexes in the tree 

and it is the diameter of the tree. Some trees may contain only one 

center and this type of tree is known as a central tree. Some trees 

may contain more than one tree and this type of tree is known as a 

bi-central tree.  

To understand the Center of a tree, let’s consider the following 

tree. 

 

In the above tree, five nodes are present. Initially, a node with 

degree 1 and its adjacent edges should remove from the tree to 

find the center of the tree. So, you remove node a and e as both 

nodes have degree 0. After removing a and e along with its 

adjacent edges, the resultant graph will be as follows. 

 

Then apply the same procedure on the graph and remove b and d 

from the graph, Final the graph contains only one vertex and that 

is C. So, it is a central tree. 
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4.5   ROOTED AND BINARY TREE 

A rooted tree is a connected and acyclic graph. The tree has a 

special node known as the root of the tree and each node is 

directly or indirectly connected to the root of the tree where 

children of the internal nodes are ordered. The internal node of the 

rooted tree may have fewer or exactly m children. The rooted tree 

in which m =2, is known as the binary tree. 

 

 
Fig. 4.2: Rooted tree  

 

The Binary tree is that rooted that has a maximum of two children. 

It means that each node can have either 0, 1, or 2 children. 

CHECK YOUR PROGRESS - I 

1. What is degree of a tree? 

2. What is the degree of the root node? 

3. How many edges are there in a tree of n nodes? 

4. The following tree is central (True or False). 
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Fig. 4.3: Rooted tree  

In Fig. 4.3, the root node is A and it has a maximum of 2 children, 

i.e., B and C. Node B has only one child and node C have two 

children. The leaf nodes D, E, and F have no children. So, it is a 

binary tree.  

The properties of the binary tree are presented below. 

i) The maximum number of nodes in a level “i” is 2i. 

ii) The height of the tree is the longest path from the root node 

to the leaf node. 

iii) The minimum number of nodes at height h is h+1. 

iv) The maximum of nodes in a binary tree of height h is 2(h+1)-1 

v) The height and number of nodes of the binary tree are 

inversely related.  

The height of a binary tree with n nodes can be calculated as 

follows. 

As you know that n = 2h+1 -1 

 n+1 = 2h+1 

 Now Taking log on both the sides 

 log2(n+1) = log2(2h+1) 

 log2(n+1) = h+1 

 h = log2(n+1) –1 

Depending on the number of children of a node, the binary tree is 

further divided into the following categories. 
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Space for learners: i) Full or Strict Binary Tree: 

 The full or strict binary tree is one that each node must have 

either 0 or 2 children. The full binary tree can also be defined 

as the tree in which each node must contain 2 children except 

the leaf nodes. 

ii) Complete Binary Tree: 

 The complete binary tree is one where all the nodes In a 

complete binary tree, the nodes should be added from the left. 

iii) Perfect Binary Tree: 

 A perfect binary tree is one where all the internal nodes have 

2 children, and all the leaf nodes are at the same level. 

iv) Degenerate Binary Tree: 

 In this binary tree, the internal nodes have only one child. 

v) Balanced Binary Tree: 

 The balanced binary tree is one where the left and right 

subtree differ by at most 1. For example, AVL and Red-Black 

trees. 

4.6   COUNTING BINARY TREE 

Let’s have a binary tree. How do you count the number of nodes 

and the nodes have two children (two children) without or without 

using recursion. 

i) Let’s you have a binary tree, and you can count all the nodes in 

the binary tree using the following approach 

a. Do post-order traversal of the tree. 

b. If the root is null, then perform return 0.  

c. If the root is not null then you can make a recursive call to 

the left child and right child. The result of these with 1 will 

be return 
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Fig. 4.4: Binary tree  

In Fig. 4.4, the number of nodes is 3. 

The number of nodes that have both children or null can be count 

using the following approach. 

1) Create an empty Queue and push the root node to Queue. 

2) Do following while Queue is not empty. 

a. Pop an item from Queue and process it. 

i) If it is a full node then increment the counter. 

b. Push left child of the popped item to Queue, if available. 

c. Push the right child of the popped item to Queue, if 

available. 

4.7 FUNDAMENTAL CIRCUITS 

The fundamental circuit is related to the spanning tree. Let you 

have a connected graph G and T be a spanning tree. Then a circuit 

formed by adding a chord T in the spanning tree T is known as a 

fundamental circuit. 

To understand it, lets you have a graph G. Now, form a spanning 

tree T from the graph. A spanning tree is a that tree which contains 

all vertices of the graph without any cycle.  

 

Fig. 4.5: Example of Graph 
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Now, the spanning of the graph is  

 

 

Fig. 4.6: Example of Spanning Tree 

Now, you have to find the branch and chord set from the spanning 

tree. The branch set is that set that contains the edges of the 

spanning tree. The chord set is that one which does not present in 

the spanning tree. 

So, the branch set = {AB, BC, BD, DE} 

The chord set = {AC, CE} 

Now, if you add AC in the spanning tree, then it will form a circuit 

(AB, BC, AC). So, it is known as a fundamental circuit. Again, if 

we add CE, then it will create another fundamental circuit (BC, 

CE, ED, DB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHECK YOUR PROGRESS- II 

5. What is rooted tree? 

6. What is the maximum number of nodes associated with a 

height h? 

7. What is the height of a binary tree with n number of 

nodes? 

8. Is perfect and full binary being the same? 

9. Can you form a fundamental circuit from a spanning tree? 

10. What is chord and branch set? 
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Space for learners: 4.8 SPANNING-TREE IN WEIGHTED GRAPHS 

A spanning tree contains all vertices of a graph without having any 

cycles. A spanning tree cannot be disconnected. 

So, you can say that every connected and undirected graph has at 

least one spanning tree. Let’s you have the following graph. 

 

 

Fig. 4.7: Example of Graph 

In the graph, four vertices (A, B, C, and D) are present. From the 

graph, you can draw the following four spanning trees. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8: Different Spanning Tree of Fig. 4.7 

The above is graph is not complete. So in this graph, you can 

apply the Kirchhoff theorem to count the number of spanning 

trees. But if you have a complete undirected graph, you can count 

the number of spanning-tree using the formula nn-2. Let’s consider 

the following graph. 

 

 

 

 

 

Fig. 4.9: Example of Graph 
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Space for learners: The above graph is completely undirected. So, you can draw nn-2 = 

33-2 = 3. The spanning trees are as follows. 

 

      

Fig. 4.10 Different Spanning Tree of Fig. 4.9 

The properties of a Spanning tree are presented below. 

i) A connected graph can have more than one spanning tree. 

ii) All possible spanning trees must have many edges and 

vertices. 

iii) A spanning tree does not have a closed circuit. 

iv) A spanning will be disconnected after removing one edge. 

v) The addition of an extra edge in the spanning tree creates the 

fundamental circuit. 

A minimum spanning tree contains the minimum cost of the 

graph. A minimum spanning tree can be found in a weighted 

graph. A weighted graph must have one weight associated with 

each edge. When you create spanning trees from this type of 

graph, one spanning must have minimum weight, which is known 

as a minimum spanning tree (MST). 

You can find the minimum spanning tree from a graph using the 

Kruskal Algorithm. 

Let's you have the following graph. 

 

 

 

 

 

 

 

Fig. 4.11: Example of Graph 
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Space for learners: In the above graph, three edges are there which have edge weights 

1, 2, and 3, accordingly. So, this is a weighted graph. From the 

above-weighted graph, you can draw the following spanning trees. 

         

 

 

Fig. 4.12: Different Spanning Tree with the weight of Fig. 4.11 

In the above three spanning,  the first spanning tree has the total 

weight = 1 + 2 = 3. The second spanning tree has the total weight 

= 2 + 3 = 5. The last spanning tree has the total weight = 1 + 3 =4. 

So, now, you have three spanning three with three different 

weights. Among all, the first spanning tree has the minimum 

weight. So it is known as MST. 

As mentioned above, you can find the MST using Kruskal's 

algorithm as follows.   

i) Sort all the edge weight in ascending order. 

ii) Consider and add one by one edge from the sorted list. 

iii) Do not add an edge it creates a cycle. 

 

If you apply the above steps in the above graph, then the execution 

will be as follows. 

i) After sorting the edge, you will get 1, 2, 3. 

ii) Now consider the first edge weight 1 and add it to the tree, 

as it will not create any cycle. 

iii) Then you can add edge 2, as it will also not create any 

cycle. 

iv) Finally, consider edge weight 3. But you can not add it as it 

will create a  cycle. 
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Space for learners: So, your spanning tree will contain only the edge weight 1 and 

2. So, the MST is 3. 

4.9   CUT SETS 

Before discussing the cutsets, you first know about the cut edge 

and cut vertice. A cut vertice is that upon removing of which the 

graph will be a disconnect. Like vertice, upon removing of which 

edge, two or more graphs will be a disconnect, is known as the cut 

edge. 

Let’s have a graph G (V, E).  A subset EE of E is called a cut set 

of G, if deletion of all the edges of EE from G, the G will 

disconnect. If deleting edges from a graph makes it disconnected, 

is known as cut sets.  

 
Fig. 4.13: Example of Graph 

In the above graph, the graph contains 4 edges i.e., {E1, E2, E3, 

E4}. Let the cut set = { E1, E4}. Upon removing E1, and E4 from 

the graph will look like two graphs (below). So, it is the cut set. 

 

 
Fig. 4.14: Example of Cut set 

Depending on the size of the cut, a cut set may be minimum, and 

maximum. If the size of the cut set is minimum as compared to the 

other cut set, then it is minimum otherwise the cut set may equal 

or maximum. 
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4.10 SUMMING UP 

 The tree is a discrete nonlinear structure that represents 

hierarchical relationships between nodes. 

 A tree with n nodes contains (n-1) numbers of edges. Every 

node has a degree. 

 Every tree has a root node with degree 2. 

 The degree of an internal node is at most 2. 

 The vertex with the minimal eccentricity of a tree is known as 

the center of the tree. 

 Some trees may contain only one center and this type of tree is 

known as a central tree. Some trees may contain more than one 

tree and this type of tree is known as a bi-central tree.  

 A rooted tree is a connected and acyclic graph. The tree has a 

special node known as the root of the tree and each node is 

directly or indirectly connected to the root of the tree. 

 The Binary tree is that rooted that has a maximum of two 

children. It means that each node can have either 0, 1, or 2 

children. 

 The minimum number of nodes at height h is h+1. 

 The maximum of nodes in a binary tree of height h is 2^(h+1)-1 

 The full or strict binary tree is one that each node must have 

either 0 or 2 children. 

 A perfect binary tree is one where all the internal nodes have 2 

children, and all the leaf nodes are at the same level. 

CHECK YOUR PROGRESS-III 

11. What is MST? 

12. Which algorithm is used to count the number of spanning tree 

of a graph? 

13. A Spanning has a cycle (True or False). 

14. What is cut vertex and cut edge? 
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Space for learners:  The fundamental circuit is related to the spanning tree. Let you 

have a connected graph G and T be a spanning tree. Then a 

circuit formed by adding a chord T in the spanning tree T is 

known as a fundamental circuit. 

 A spanning tree contains all vertices of a graph without having 

any cycles. 

 A minimum spanning tree contains the minimum cost of the 

graph. A minimum spanning tree can be found in a weighted 

graph. 

 A cut vertice is that upon removing of which the graph will be 

a disconnect. Like vertice, upon removing of which edge, two 

or more graphs will be a disconnect, is known as the cut edge. 

4.11 ANSWERS TO CHECK YOUR PROGRESS 

1) The number of edges associated with a vertex is known as the 

degree of a vertex. 

2) 2 

3) n-1 

4) False 

5) A rooted tree is a connected and acyclic graph. The tree has a 

special node known as the root of the tree and each node is 

directly or indirectly connected to the root of the treewhere 

children of the internal nodes are ordered. 

6) 2(h+1)-1 

7) h = log2(n+1) – 1 

8) No 

9) Yes 

10) The branch set is that set that contains the edges of the 

spanning tree. The chord set is that one which does not 

present in the spanning tree. 

11) A minimum spanning tree contains the minimum cost of the 

graph. A minimum spanning tree can be found in a weighted 

graph. 

12) Kirchhoff theorem. 
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14) A cut vertice is that upon removing of which the graph will be 

a disconnect. Like vertice, upon removing of which edge, two 

or more graphs will be a disconnect, is known as the cut edge. 

4.12 POSSIBLE QUESTIONS 

Short answer type questions: 

i) What is a tree? What are the properties of a tree? 

ii) What is the center of the tree? 

iii) What is the difference between centric and bicentric trees? 

iv) What is a binary tree? 

v) What are the properties of a binary tree? 

vi) Show that the height of a binary tree of node n is h = 

log2(n+1) – 1 

vii) What is the difference between a full and perfect binary 

tree? 

viii) How do you count the number of nodes in a binary tree? 

ix) What isa fundamental circuit? How do you form a 

fundamental circuit from a spanning tree? 

x) What is MST? 

xi) How many spanning trees will be formed from a connected 

graph with n vertices? 

xii) What are the properties of a spanning tree? 

xiii) What is cur set? 

 

Long answer type questions: 

i) Explain the MST with an example. 

ii) Find the MST for the following tree 
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iii) Explain binary trees with their types with examples. 

    4.13 REFERENCES AND SUGGESTED 

READINGS 

 Data Structures Using C by Reema Theraja Publisher: Oxford 

Publication 
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UNIT 5: GRAPH REPRESENTATION  

Unit Structure: 

5.1 Introduction 

5.2 Unit Objectives 

5.3 Matrix Representation of Graphs 

5.4 Adjacency Matrix 

5.5 Adjacency List 

5.6 Incidence Matrix 

5.7 Basic Concept of Graph Coloring, Covering and Partitioning 

5.8 Summing Up  

5.9 Answers to Check Your Progress  

5.10 Possible Questions 

5.11 References and Suggested Readings 
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Space for learners: 5.1 INTRODUCTION 

Graph theory has evolved into a powerful tool that can be used to a 

wide range of areas. Engineering mathematics, computer 

programming, networking and marketing are only a few of them. 

Paths generated by travelling along the edges of a graph can be used 

to simulate a variety of issues. Models that incorporate pathways in 

graphs can be used to address problems such as efficiently designing 

routes for parcel delivery, waste collection, and finding shortest path. 

Graphs may grow exceedingly complicated when faced with these 

types of problems, necessitating a more efficient means of expressing 

them in practice. The adjacency matrix and adjacency list are used to 

solve this problem. 

5.2 UNIT OBJECTIVES 

After going through this unit, you will be able to: 

 To understand and apply the fundamental concepts in graph 

representations 

 To explain the basic concepts on graph colouring and solving 

practical problems. 

 To explain the basic concepts on graph covering and solving 

problems. 

5.3 MATRIX REPRESENTATION OF GRAPHS 

In a computer, there are several methods to represent a graph. Graphs 

are typically depicted diagrammatically, although this is only viable 

when the number of vertices and edges is minimal. As a result, the 

notion of graph matrix representation is established. The computation 

of paths and cycles in graphs problems such as communication 

networks, power distribution, and transportation, among others, is one 

of the primary advantages of this representation. However, this format 

has the drawback of reducing the visual appeal of graphs. 
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Space for learners: 5.4 ADJACENCY MATRIX 

The most convenient way of representing any graph is the matrix 

representation. It is a square matrix of order (n xn) where n is the 

number of vertices in the graph. Generally represented by M[aij] 

where aij is the ith row, jth column element. The general form of 

adjacency matrix is given below. 

 

Where, aij = 

1; if an edge in the graph between the vertex vi and vj 

0; otherwise 

 

 

The matrix is termed as adjacency matrix, because each entry in the 

matrix stores the information between the vertices as adjacent or not. 

The entry can be either 0 or 1. 

 

Fig. 5.1: A Simple Graph 

Consider the graph, G given in Figure 5.1, the adjacency matrix with 

respect to the vertices a, b, c, d, e is shown below. As there is an edge 
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Space for learners: between vertex ‘a’ and vertex ‘b’, the corresponding position in the 

adjacency matrix is having the entry 1. As there is no edge between 

vertex ‘a’ and vertex ‘c’, the corresponding position in the adjacency 

matrix is having the entry 0. 

   a b c d e  

 a 

 

0 1 0 1 0  

 b 1 0 1 0 0 

I = c 0 1 0 1 1 

 d 1 0 1 0 1 

 e 0 0 1 1 0 

 

Fig. 5.2: A Weighted Graph 

Consider the graph, G given in Figure 5.2, the adjacency matrix with 

respect to the vertices a, b, c, d, e is shown below. As there is a 

directed edge from vertex ‘a’ to vertex ‘d’ having weight ‘5’ the 

corresponding position in the adjacency matrix is having the entry 5. 

As there is no directed edge from vertex ‘a’ to vertex ‘c’, the 

corresponding position in the adjacency matrix is having the entry 0. 
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STOP TO CONSIDER 

In an adjacency matrix, if the diagonal elements are zero, then the 

graph is called simple graph. 

In a multi graph i.e. a graph having parallel edges, adjacency matrix 

can be found using 

              n; number of edges between a pair of vertex vi and vj 

aij =   

 0; otherwise 

 

In a weighted graph, adjacency matrix can be found using 

           w; w is the weight of edge between the vertex between vi and vj 

aij =   

 0; otherwise 

5.5 ADJACENCY LIST 

An adjacency list is a group of unordered lists that is used to describe 

a finite graph. Each unordered list in an adjacency list describes a 

vertex's collection of neighbors in the graph. This is one of the graph 

representations frequently used in computer systems. 
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Space for learners: In Adjacency List, an array of a list “Adjlist[i]”is used to represent the 

graph. The list size is equal to the number of vertex(n). 

If we assume that graph has n vertex, then  

Adjlist[0] will have all the vertices that are connected to vertex 0. 

Adjlist[1] will have all the vertices that are connected to vertex 1 and 

so on. 

Consider the undirected graph G in Figure 5.3. 

 

Fig. 5.3: An undirected Graph 

The adjacency list for the undirected graph is shown below, here the 

adjacency list for vertex ‘a’ are the vertices adjacent to ‘a’ that is there 

is an edge connecting ‘a’ with vertices ‘b’, ‘c’ and ‘d’. Similarly, 

adjacency list for vertex ‘c’ is ‘a’ and ‘d’, adjacency list for vertex ‘d’ 

is ‘a’ and ‘c’. Finally, adjacency list for vertex ‘b’ is ‘a’. 

 

Consider the directed graph G in Fig.5.4 



 

282 | P a g e  

 

Space for learners: 

 
Fig. 5.4: A directed Graph 

The adjacency list for directed graph is shown below, here the 

adjacency list for vertex ‘a’ are the vertices adjacent to ‘a’ that is there 

is an outgoing edge from ‘a’ to vertex ‘b’ and ‘d’. Similarly, 

adjacency list for vertex ‘c’ is the outgoing edge from ‘c’ to ‘a’ and 

adjacency list for vertex ‘d’ is the outgoing edge from ‘d’ to ‘b’. 

Finally, adjacency list for vertex ‘b’ is nil, as there is no outgoing edge 

from vertex ‘b’. 

 

5.6 INCIDENCE MATRIX 

Consider a graph G with n vertices and e edges, then the incidence 

matrix I[aij] is a matrix of order (n x e) where the element aij, where 

rows correspond to its vertices and columns correspond to its edges is 

defined as 

             1; if vertex i belongs to edge j 

aij =   

 0; otherwise 
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Space for learners: Consider the graph G in Figure 5.5 

 

 
Fig. 5.5: A Graph  

The incidence matrix with respect to the vertices a, b, c, d, e and edges 

e1, e2, e3, e4, e5, e6, e7 is shown below. As there is an edge incident 

on vertex ‘a’ and vertex ‘b’ the corresponding position in the 

incidence matrix is having the entry 1. As there is no edge e4, e5, e6 

and e7 incident on vertex ‘a’, the corresponding position in the 

incidence matrix is having the entry 0. 

   e1 e2 e3 e4 e5 e6 e7  

 a 

 

1 1 1 0 0 0 0  

 b 1 0 0 1 1 0 0 

I = c 0 1 0 0 0 1 0 

 d 0 0 1 1 0 1 1 

 e 0 0 0 0 1 0 1 

Similarly, the incidence matrix I[aij] of a digraph G is defined as  

             1; if edge jis incident out of vertex i 

aij =   -1; if edge jis incident into vertex i 

   0; otherwise 

Consider the graph G in Figure 5.6. 
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Fig. 5.6: A Graph  

The incidence matrix with respect to the vertices a, b, c, d and edges 

e1, e2, e3, e4, e5 is shown below. As there is an edge ‘e1’ and ‘e4’ 

incident out of vertex ‘a’ the corresponding position in the incidence 

matrix is having the entry 1. Whereas there is an edge ‘e2’ incident 

into vertex ‘a’, the corresponding position in the incidence matrix is 

having the entry -1. Finally, as neither the edge ‘e3’ and ‘e4’ is 

incident into or out of vertex ‘a’, the corresponding entry in the 

incidence matrix is marked as 0. 

   e1 e2 e3 e4 e5  

 a 

 

1 -1 0 1 0  

 b -1 0 0 0 -1 

I = c 0 1 1 0 0 

 d 0 0 -1 -1 1 

 

 

5.7 BASIC CONCEPT OF GRAPH COLORING, 

COVERING AND PARTITIONING 

 

Graph Coloring: Consider a graph G having n vertices. If we want to 

paint all the vertices such that no two adjacent vertices are of same 

colour then a question can be asked as to what should be the minimum 

number of colours required in such case? This type of problem 

constitutes graph colouring problem. Similarly, colouring problem in a 



 

285 | P a g e  

 

Space for learners: graph can be applied also to the edges. One application of graph 

colouring is Map Coloring where geographical map of states where no 

two adjacent states can be assigned same color. 

As an example, in Figure 5.7 (a), assigning all the vertices with 

colours such that no two adjacent vertices are assigned same colour is 

called proper colouring. In some cases, proper colouring with 

minimum number of colours may be required. In Figure 5.7 (b), 4 

different colours are used compared to six in Figure 5.7 (a).  

The minimum number of colours required to colour a graph G is 

called its chromatic number. If a graph requires k different colours for 

its proper colouring then it is known as k-chromatic or k-colourable. 

 

 
(a) 

 

 
(b) 

Fig. 5.7: Proper Colouring of a Graph  
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Space for learners: STOP TO CONSIDER 

A complete graph where each vertex is connected to every other 

vertex having n vertices, has chromatic number k = n. 

 

A cycle graph having n vertices, has chromatic number k = 3 if n is 

odd or k =2 if n is even. 

Graph Covering: A covering graph C is a subgraph which contains 

either all the vertices or all the edges corresponding to some other 

graph G.  

 
Fig. 5.8: A simple Graph 

A subset is called a line covering of a graph G if every vertex of G is 

incident with at least one edge. For example, in the graph given in 

Figure 5.8, subset S1, S2, S3, S4 are line covering as all the vertices are 

covered using the edges in each of the subset. However, subset S5 is 

not line covering due to the fact that vertex ‘c’ is not covered. 

S1 = {(a, b), (c, d)} 

S2 = {(a, c), (b, d)} 

S3 = {(a, b), (b, d), (c, d)} 

S4 = {(a, b), (b, c), (b, d)} 

S5 = {(a, b), (b, d)} 

A subset K of V is called a vertex covering of a graph G (V, E), if 

every edge of ‘G’ is incident with or covered by a vertex in ‘K’. For 

example, in the graph given in Figure 5.8, subset K1 contains vertex 

‘b’ and ‘c’ which covers the edges that is ‘ba’, ‘bc’, ‘bd’ and ‘ca’, 

‘cb’, ‘cd’ respectively. Thus, all the edges are covered by vertex {b, c} 

and so is K1 vertex covering. Similarly, subset K2 contains vertex ‘a’ 

‘b’ and ‘c’ which covers all the edges in the graph G. Also, subset K3 
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Space for learners: contains vertex ‘a’ ‘d’ and ‘c’ which covers all the edges in the graph 

G. So, both K2 and K3 are vertex covering. However, subset 

K4contains vertex ‘a’ and ‘c’ which do not cover the edge ‘bd’, 

therefore K4 is not vertex covering. 

K1 = {b,c} 

K2 = {a, b,c} 

K3 = {a,d, c} 

K4= {a, c} 

Graph Partitioning: A graph partition is the process of reducing a 

large graph to a smaller one by grouping its nodes into mutually 

exclusive groups. 

Graph chromatic partitioning: A proper colouring of a graph induces 

partitioning of vertices into different subsets such as the graph shown 

in Figure 5.7 (b) can be portioned into {v1, v6}, {v2, v5}, {v3} and 

{v4}. As it can be observed that no two vertices in the four subsets are 

adjacent.  Such a subset of vertices is called an independent set. 

A maximal independent set is an independent set to which no other 

vertex can be added without compromising its independence property. 

There can be many maximal independent sets of different sizes, 

however the one with largest number of vertices is of particular 

importance. 

 

CHECK YOUR PROGRESS 

1 In a graph G, number of vertices is 5. What is the total 

number of elements in the adjacency matrix? 

a) 5 

b) 25 

c) 10 

d) 125 

 

2 Which of these adjacency matrices represents a simple 

graph? 

a) [ [0, 0, 1], [1, 0, 1], [1, 0, 0] ] 

b) [ [1, 0, 0], [0, 1, 0], [0, 1, 1] ] 

c) [ [1, 1, 1], [1, 1, 1], [1, 1, 1] ] 

d) [ [0, 0, 1], [0, 0, 0], [0, 0, 1] ] 
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3 In a simple graph, sum of the column in an incidence matrix 

is __________ 

a) number of edges 

b) greater than 2 

c) number of edges + 1 

d) equal to 2 

 

4 The dimensions of an incidence matrix for graph having v 

as the number of vertices and e as the number of edges is 

given by ___________. 

a) e x e 

b) v x e 

c) v x v 

d) ex (v + e) 

 

5 Incidence matrix and Adjacency matrix of a graph G will 

always have ________? 

a) Same dimension 

b) Different dimension 

c) Some cases may have different dimension 

d) None of the above 

 

6 Vertex coloring of a graph is_______________. 

a) Adjacent vertices do not have same color 

b) Adjacent vertices always have same color 

c) All vertices should have a different color 

d) All vertices should have same color 

 

7 Minimum number of unique colors required so that adjacent 

vertices do not have the same colour is given 

by_____________. 

a) chromatic key 

b) chromatic index 

c) chromatic number 

d) color number 

 

8 In an empty graph having n vertices_________ number of 

unique colours will be needed for vertex colouring. 

a) n + 1 

b) 1 

c) 2 

d) n 
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9 In an empty graph having n vertices_________ number of 

unique colours will be needed for vertex colouring. 

a) n-1 

b) 1 

c) n+1 

d) n 

 

10 How many unique colors will be required for vertex coloring 

of the following graph? 

 
a) 2 

b) 3 

c) 4 

d) 5 

5.8 SUMMING UP 

 Adjacency matrix is represented by M[aij] where aij is the ith row, 

jth column element. The general form is given by: 

 

 
1; if an edge in the graph between the vertex vi 

and vj 

aij =  

 0; otherwise 

 Incidence matrix I[aij] is a matrix of order (n x e) where the 

element aij, where rows correspond to its vertices and columns 

correspond to its edges is defined as 

 
aij = 

 
1; if vertex i belongs to edge j 
 

0; otherwise 
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 An adjacency list is a group of unordered lists that is used to 

describe a finite graph. Each unordered list in an adjacency list 

describes a vertex's collection of neighbours in the graph.  

 Graph Coloring problem is to paint all the vertices such that no 

two adjacent vertices are of same colour. 

 Graph Covering: A covering graph C is a subgraph which contains 

either all the vertices or all the edges corresponding to some other 

graph G. 

 A graph partition is the process of reducing a large graph to a 

smaller one by grouping its nodes into mutually exclusive groups. 

5.9 ANSWERS TO CHECK YOUR PROGRESS  

1. b 2.a 3.d 4.b 5.b 

6.a 7. c 8. b 9. d 10. b 

5.10 POSSIBLE QUESTIONS  

1. Draw the graph having the following matrix as its adjacency 

matrix. 

 

0 1 2 3 4 
 

1 1 2 2 3 

4 1 3 1 2 

4 3 2 1 0 

 

2. Draw the adjacency matrix and adjacency list of the following 

graphs 
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(a)     (b) 

 

3. Write the adjacency matrix of the graph given below. 

 
 

4. Draw the graph for the incidence matrix given below: 

   e1 e2 e3 e4 e5 e6 e7  

 a 

 

1 0 0 0 1 0 0  

 b 0 1 0 1 0 0 1 

I = c 0 1 0 0 0 1 1 

 d 1 1 1 0 1 1 0 

 e 1 0 0 1 0 0 0 

 

5. Draw the incidence matrix for the graph given below. 
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6. What is graph colouring? Explain using an example. 

7. What is graph covering? 

8. Differentiate between vertex covering and edge covering. 

9. Find chromatic number of the following graphs 

 
(a)     (b) 

 

10. Find chromatic number of the following graph. 
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