
(1)

GAUHATI UNIVERSITY
Centre for Distance and Online Education

Fourth Semester
(Under CBCS)

M.Sc.- IT

Paper: INF 4046

ARTIFICIAL INTELLIGENCE

CONTENTS:

Block- I : Basic Foundation of Artificial Intelligence

Block- II : Knowledge Representation and Predicate Calculus

Block- III : Different Domains of Artificial Intelligence

INF-4046

(2)

SLM Development Team:
HoD, Department of Computer Science, Gauhati University
Programme Coordinator, M.Sc.-IT, GUCDOE
Prof. Shikhar Kr. Sarma, Department of IT, Gauhati University
Dr. Khurshid Alam Borbora, Assistant Professor, GUCDOE
Dr. Swapnanil Gogoi, Assistant Professor, GUCDOE
Mrs. Pallavi Saikia, Assistant Professor, GUCDOE
Dr. Rita Chakraborty, Assistant Professor, GUCDOE
Mr. Hemanta Kalita, Assistant Professor, GUCDOE
Course Coordination:
Dr. Debahari Talukdar Director, GUCDOE
Prof. Anjana Kakoti Mahanta Programme Coordinator, GUCDOE

Dept. of Computer Science, G.U.
Dr. Khurshid Alam Borbora Assistant Professor, GUCDOE
Dr. Swapnanil Giogoi Assistant Professor, GUCDOE
Mrs. Pallavi Saikia Assistant Professor, GUCDOE
Dr. Rita Chakraborty Assistant Professor, GUCDOE
Mr. Hemanta Kalita Assistant Professor, GUCDOE
Mr. Dipankar Saikia Editor SLM, GUCDOE

Contributors:
Dr. Khurshid Alam Borbora (Block I : Unit- 1)
Assistant Professor, GUCDOE
Dr. Ganapati Das (Block I : Units- 2 & 3)
Teaching Associate
Dept. of Computer Science, G.U.
Dr. Rita Chakraborty (Block II : Units- 1, 2 & 3)
Assistant Professor, GUCDOE
Mrs. Pallavi Saikia (Block II : Units- 4 & 5)
Assistant Professor, GUCDOE (Block III : Unit- 1)
Dr. Pranamika Kakati (Block III : Unit- 2)
Assistant Professor
Dept. of Computer Science, G.U.
Mr. Hemanta Kalita (Block III : Unit- 3)
Assistant Professor, GUCDOE
Dr. Ridip Dev Choudhury (Block III : Unit- 4)
Associate Professor, KKHSOU

Content Editor:
Dr. Dwipen Laskar Assistant Professor

Dept. of Computer Science, G.U.

Cover Page Designing:
Bhaskar Jyoti Goswami GUCDOE
Nishanta Das GUCDOE

ISBN: 978-81-986642-8-0
June, 2025

© Copyright by GUCDOE. All rights reserved. No part of this work may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise.
Published on behalf of Gauhati University Centre for Distance and Online Education by
the Director, and printed at Gauhati University Press, Guwahati-781014.

(3)

CONTENTS:

BLOCK- I : BASIC FOUNDATION OF ARTIFICIAL
INTELLIGENCE

Unit 1: Introduction to AI 4-22

Unit 2: Problem and Problem Spaces 23-52

Unit 3: Heuristic Search Techniques 53-82

BLOCK- II : KNOWLEDGE REPRESENTATION AND
PREDICATE CALCULUS

Unit 1: Knowledge Representation and Mapping 83-105

Unit 2: The Predicate Calculus-I 106-119

Unit 3: The Predicate Calculus-II 120-142

Unit 4: Knowledge Representation using Rules-I 143-159

Unit 5: Knowledge Representation using Rules-II 160-174

BLOCK- III : DIFFERENT DOMAINS OF ARTIFICIAL
INTELLIGENCE

Unit 1: Introduction to Statistical Reasoning 175-190

Unit 2: Fuzzy Logic Concept 191-200

Unit 3: Fundamental of Natural Language Processing 201-220

Unit 4: Concept of Expert Systems 221-248

4

BLOCK- I
BASIC FOUNDATION OF ARTIFICIAL

INTELLIGENCE

UNIT 1: INTRODUCTION TO AI

UNIT 2: PROBLEM AND PROBLEM SPACES

UNIT 3: HEURISTIC SEARCH TECHNIQUES

5

UNIT-1: INTRODUCTION TO AI

Unit Structure:
1.1 Introduction

1.2 Unit Objectives

1.3 What is AI?

1.4 History and Current Trends of AI

1.5 Applications of AI

1.6 AI Problems

1.6.1 Problem Characteristics in AI

1.6.2 AI Problems

1.7 Underlying Assumption in AI

1.8 AI Techniques

1.9 Summing up

1.10 Answers to Check Your Progress

1.11 Possible Questions

1.12 References and Suggested Readings

1.1 INTRODUCTION

In this unit, we will explore the definition, significance, historical

background, and various application areas of Artificial Intelligence

(AI). We will also gain an overview of some common challenges

faced in AI and the techniques used to address them.

Artificial Intelligence (AI) refers to the branch of computer science

dedicated to designing systems capable of performing tasks that

typically require human intelligence. In simple terms, AI is focused

on creating intelligent behavior in machines. These systems are

designed to learn new concepts, draw logical conclusions from facts,

understand and process natural language, and perform activities that

would otherwise require human cognitive skills.

6

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Define Artificial Intelligence and understand its meaning.

 Explain the significance and role of Artificial Intelligence in

today’s world.

 Describe the historical foundations and early developments in

the field of Artificial Intelligence.

 Identify and explain the key problems and tasks addressed by

Artificial Intelligence.

1.3 WHAT IS AI?

Artificial Intelligence (AI) is a branch of computer science that

focuses on creating machines or systems capable of performing tasks

that normally require human intelligence. These tasks include

learning from experience, reasoning, problem-solving, understanding

natural language, perceiving the environment, and making decisions.

In simple terms, AI is the process of designing and building intelligent

systems that can think, learn, and act like humans to some extent. It

involves simulating human cognitive abilities through algorithms,

data, and computational power.

Let’s explore some of the key aspects of Artificial Intelligence:

AI systems are capable of collecting information from multiple

sources, storing that information, and utilizing it effectively to

address problems or make informed decisions. Similar to how

humans learn and apply knowledge, AI uses data and knowledge

bases to perform tasks intelligently.

Reasoning plays a crucial role in AI. It involves drawing logical

conclusions from available information. AI systems are equipped

with the ability to evaluate situations, consider possible outcomes,

and make decisions based on logic and analysis.

7

Learning from experience is another significant feature of AI. With

the help of machine learning techniques, AI systems can continuously

adapt and enhance their performance by analysing past actions or

examples — without needing to be manually reprogrammed each

time.

Perception and understanding are also essential components. AI

systems are designed to interpret data from various inputs such as

text, speech, images, and sensory data. This ability enables them to

comprehend natural human language and respond appropriately to

different stimuli.

Finally, AI focuses on automating intelligent behaviours typically

performed by humans. This includes solving complex problems,

planning, diagnosing, and even strategizing in games or business

scenarios. These tasks are automated to enhance efficiency and

accuracy, reducing the need for constant human supervision.

1.4 HISTORY AND CURRENT TRENDS OF AI

The journey of Artificial Intelligence (AI) began with the ambitious

idea of building machines capable of simulating human intelligence.

This vision was first conceptualized by Alan Turing, a pioneer in

computing, who introduced the concept of thinking machines and

proposed the famous Turing Test as a measure of machine

intelligence.

In 1956, the field of AI was formally born at the Dartmouth

Conference, where the term "Artificial Intelligence" was officially

coined. This marked the beginning of focused research in AI as an

academic discipline.

In the early years, researchers achieved promising results. Early AI

programs demonstrated the ability to solve algebraic problems, prove

mathematical theorems, and even play games like checkers. These

efforts led to the development of symbolic AI systems, which relied

8

on logic and predefined rules to simulate human reasoning and

problem-solving.

However, as expectations grew, progress could not keep pace.

Limitations in computing power, combined with overly optimistic

predictions, led to a slowdown. This period of reduced interest and

funding became known as the AI Winter.

AI research saw resurgence in the 1980s with the emergence of expert

systems. These systems used large rule-based knowledge bases to

make intelligent decisions, with systems like MYCIN (used for

medical diagnosis) demonstrating the potential of machines to

replicate human expertise in specialized areas.

Despite this success, expert systems eventually faced scalability

issues and became difficult and costly to maintain. This led to another

decline in enthusiasm and funding for AI research.

The field then shifted focus to machine learning in the 1990s, where

systems began learning patterns directly from data rather than relying

on pre-programmed rules. Key advancements in statistical methods,

neural networks, and support vector machines propelled AI forward

and laid the groundwork for modern applications.

The 2010s marked a major turning point with breakthroughs in deep

learning, fueled by big data and the availability of powerful GPUs.

AI applications rapidly expanded into areas like image recognition,

natural language processing, and autonomous vehicles. Today, AI

plays a crucial role in various industries such as healthcare, business,

finance, entertainment, and is embedded in personal assistants like

Siri, Alexa, and Google Assistant.

Currently, AI research is focused on tackling advanced challenges,

including explainable AI, ethical AI, artificial general intelligence,

and combining AI with cutting-edge fields like quantum computing

and robotics, setting the stage for even greater advancements in the

future.

9

1.5 APPLICATION AREAS OF AI

Artificial Intelligence has become an integral part of modern life, with

its presence felt across numerous fields. It enables machines to

perform complex tasks, make decisions, and assist humans in solving

problems more efficiently. Let’s explore the key areas where AI has

made a significant impact:

Healthcare
AI is transforming the healthcare sector with advanced tools and

intelligent systems that assist medical professionals.

 AI models help detect diseases through medical imaging analysis

(X-rays, MRIs, CT scans).

 AI algorithms suggest customized treatments based on patient

data.

 AI accelerates drug discovery and testing by predicting the

effectiveness of chemical compounds.

 AI chatbots and virtual nurses offer round-the-clock health advice

and reminders.

Education
AI is contributing to personalized and adaptive learning solutions.

 AI guides students through additional learning support.

 AI grades exams, quizzes, and essays automatically.

 AI-based platforms adapt to individual student learning styles.

Agriculture
AI helps improve agricultural productivity and sustainability.

 AI optimizes planting, irrigation, and harvesting times.

 AI systems identify crop diseases and recommend remedies.

 AI models predict crop output based on environmental conditions.

Finance and Business
AI streamlines operations and improves decision-making in business

and financial services.

10

 AI systems identify suspicious activities in transactions.

 AI executes trades at high speed and precision by analysing

market data.

 AI-powered chatbots handle customer inquiries efficiently.

 AI tools predict market trends and consumer behaviours.

Entertainment and Media
The entertainment industry uses AI for content curation and

production.

 Platforms like Netflix and YouTube suggest content based on user

preferences.

 AI is used for generating music, art, and video content.

 AI enhances gaming experiences through smart character

behaviours and adaptive gameplay.

Transportation
AI technologies have revolutionized the transportation industry by

making it more efficient and safe.

 Self-driving cars and trucks navigate and make decisions using

AI.

 AI optimizes traffic signals and reduces congestion.

 AI enhances route planning and package tracking.

Security and Surveillance
AI enhances security measures and real-time monitoring.

 Widely used in security for identification and access control.

 AI detects potential cyber threats and unusual activity in

networks.

 AI analyzes crime patterns and helps law enforcement in

prevention.

Smart Homes
AI makes daily life easier through smart automation.

 Devices like Siri, Google Assistant, and Alexa control smart

home devices and answer queries.

11

 AI-enabled devices learn user habits to adjust settings

automatically.

 AI optimizes energy consumption to reduce costs.

Robotics
AI powers various types of robots for industrial and personal use.

 Used for manufacturing, quality control, and packaging.

 Robots assist in hospitals, restaurants, and homes.

 Deployed in space exploration and underwater research.

Military and Defense
AI contributes to modern defence systems and strategic planning.

 AI assists in surveillance and reconnaissance missions using

Drones.

 AI tools help military commanders plan operations.

 AI-based systems create realistic scenarios for military training.

1.6 AI PROBLEMS

In Artificial Intelligence (AI), problems refer to tasks or situations

where a machine or computer system is required to make decisions,

reason, plan, or learn in order to achieve a particular goal. These

problems usually involve complexity, uncertainty, incomplete

information, or require intelligent behavior that mimics human

cognitive abilities.

AI problems arise when the solution cannot be obtained through

simple programming or fixed instructions. Instead, these problems

require methods that allow machines to think, adapt, and find

solutions based on reasoning, learning, and decision-making.

1.6.1 Problem Characteristics in AI

Artificial Intelligence problems are not simple or linear. They involve

multiple factors that make them challenging for machines to handle

12

without advanced techniques. Below are some key characteristics of

AI problems:

 AI problems require dealing with many variables and factors at

the same time. Real-world situations are complicated and involve

multiple elements that must be considered together. For instance,

an autonomous car needs to pay attention to traffic lights, nearby

vehicles, pedestrians, road conditions, and weather — all at once.

Another example is a game like chess, where the system must

think through millions of possible moves and counter-moves

before making a decision.

 In many cases, AI systems must work with incomplete or unclear

information. This uncertainty may arise from sensor errors,

missing data, unpredictable human actions, or sudden changes in

the environment. For example, a medical diagnosis system may

not have complete information about a patient’s condition but still

needs to make informed suggestions about possible diseases and

treatments.

 AI systems often operate in situations that change over time.

Unlike static problems, these systems must respond to real-time

changes and adjust their actions accordingly. Predicting stock

market trends is one such dynamic problem, as prices and

conditions change rapidly. Similarly, a robot moving through a

crowded space has to continually adapt its path based on how

people around it are moving.

 AI systems must not only store data but also reason logically and

improve over time. It’s important for these systems to learn from

past experiences and refine their actions without needing constant

reprogramming. Technologies like machine learning and deep

learning help AI systems analyze data, make decisions, and

enhance their performance. For instance, recommendation

13

systems used by platforms like Netflix and Amazon learn from

user preferences and feedback to provide smarter suggestions.

AI problems are distinguished by complexity, uncertainty, constantly

changing conditions, and the need for logical reasoning combined

with learning capabilities. Understanding these characteristics is

essential for developing robust, adaptive, and intelligent AI systems

that can perform in real-world scenarios.

1.6.2 AI Problems
Artificial Intelligence problems can be broadly categorized based on

the nature of tasks they perform, the complexity involved, and the

methods used to solve them. Below are some of the most common

types of AI problems:

Search Problems
Search problems involve finding a solution by exploring different

possible options.

 AI systems use search techniques to navigate large problem

spaces and find the best solution.

 Examples include path finding in maps, solving puzzles, and

playing games like chess or tic-tac-toe.

 Algorithms used: Breadth-first search, Depth-first search, A*

algorithm, etc.

Knowledge-Based Problems
These problems require reasoning with large amounts of stored

information (knowledge).

 The system needs to use facts and rules to come to logical

conclusions.

 Examples:

o Expert systems (such as MYCIN for medical diagnosis)

o Question-answering systems that retrieve relevant

answers from databases

14

 These systems rely on knowledge representation techniques like

semantic networks, frames, or ontologies.

Planning Problems
Planning problems involve creating a sequence of actions to achieve

a specific goal.

 AI systems must decide what actions to take and in what order to

meet the goal efficiently.

 Examples include robot navigation, military mission planning,

and scheduling airline flights.

 Planning algorithms help the system figure out future steps while

handling constraints and priorities.

Reasoning Problems
Reasoning problems require drawing conclusions from known

information.

 The AI system applies logic and inference rules to solve complex

problems.

 Examples: legal decision-making systems, theorem provers, and

diagnostic systems.

 Types of reasoning:

o Deductive reasoning (from general rules to specific facts)

o Inductive reasoning (from specific examples to general

rules)

Learning Problems
Learning problems involve improving system performance through

experience.

 These problems focus on enabling the system to learn patterns,

predict outcomes, and adapt to new data.

 Examples:

o Spam detection in emails

o Recommender systems in Netflix or Amazon

o Image and speech recognition

15

 Key techniques include machine learning, neural networks, and

deep learning.

Perception Problems
These problems involve interpreting sensory data such as images,

sounds, or text.

 AI systems are designed to see, hear, read, and understand human

input.

 Examples such as Facial recognition systems, Voice assistants

like Siri and Alexa, Optical character recognition (OCR) for

reading printed text.

Natural Language Processing (NLP) Problems
These problems focus on understanding, interpreting, and generating

human language.

 Examples include chatbots, translation tools, and sentiment

analysis systems.

 NLP problems involve parsing sentences, extracting meaning,

and generating responses that sound natural.

Robotics and Motion Problems
These problems involve AI systems controlling robots or machines

that interact with the physical world.

 The robot needs to sense its environment, make decisions, and

move accordingly.

 Examples such as Autonomous vehicles, Robotic arms in

manufacturing and Drones for surveillance or delivery.

1.7 UNDERLYING ASSUMPTIONS IN AI
When designing and developing Artificial Intelligence systems,

certain key assumptions are made to simplify complex real-world

problems and make them manageable for machines. These underlying

assumptions guide how AI systems operate, reason, and learn.

Underlying assumptions in AI help simplify the design and

16

development of intelligent systems. These assumptions — such as

rationality, the availability of models and data, finite problem space,

and predictable environments — allow AI systems to reason, learn,

and make decisions. However, understanding these assumptions is

crucial because deviations from these ideal conditions require

additional handling mechanisms like error correction, uncertainty

modeling, and adaptive learning. Let’s discuss these assumptions in

detail:

AI assumes that the real world, despite its complexity, can be

represented through models. These models use symbols, logic, rules,

or data structures to represent knowledge about the world. For

example, an AI system playing chess uses a model of the chessboard,

possible moves, and outcomes. Even complex domains like medical

diagnosis are modelled using symptoms, diseases, and treatments.

AI systems are built on the assumption that agents (the AI systems)

will behave rationally. Rationality means the AI will choose actions

that maximize its chances of success or achieving its goal. In

uncertain conditions, rational agents use probabilities and reasoning

to make the best possible decisions.

AI systems often assume that enough data is available for learning or

decision-making. Machine learning and deep learning models, for

instance, rely on large datasets to identify patterns. In reality, data

may be incomplete or noisy, but AI systems are designed with the

assumption that they can learn sufficiently from what they have.

It is assumed that any problem the AI system is trying to solve has a

well-defined boundary and a finite set of possible solutions. This

allows the AI to search for solutions without being overwhelmed by

infinite possibilities. For instance, in a game of chess, the board and

the pieces create a defined problem space.

AI algorithms assume that sufficient computational resources

(processing power, memory, and time) are available to perform

17

complex calculations and learning tasks. The development of modern

GPUs and cloud computing has helped meet this assumption in

practice.

AI systems are often designed assuming they will receive accurate

input from sensors or users. For example, an autonomous vehicle

assumes its sensors are working perfectly to detect obstacles, though

error handling is included as a backup.

AI systems operate under the assumption that the environment in

which they function can be understood and that future outcomes can

be predicted based on current knowledge. While real-world scenarios

may be unpredictable, AI models try to handle uncertainty using

probabilistic reasoning or learning from past patterns.

1.8 AI TECHNIQUES
AI techniques are methods and strategies used to design intelligent

systems that can solve problems, make decisions, and learn from data.

These techniques help AI systems think and act like humans in

different situations. Let’s discuss the major AI techniques in brief:

Search Techniques
Search is a basic technique used in AI to explore all possible solutions

and find the best one. AI systems use search algorithms to solve

puzzles, plan routes, play games, and make decisions. There are two

types of search - Uninformed Search (No prior knowledge is used)

and Informed Search (uses heuristics or knowledge to guide the

search and reach solutions faster).

Knowledge Representation
AI systems need to store and organize knowledge in a form that

machines can understand and use. The techniques include:

 Semantic Networks: Represent relationships between concepts.

 Frames: Use structures to represent stereotypical situations.

18

 Rules and Logic: Represent knowledge through if-then rules and

logical statements.

Reasoning Techniques
Reasoning helps AI systems draw conclusions and make decisions

based on available data. There are mainly three types of reasoning

and they are:

 Deductive Reasoning: Drawing conclusions from known facts.

 Inductive Reasoning: Making generalizations from examples.

 Probabilistic Reasoning: Handling uncertainty using probabilities

(e.g., Bayesian networks).

Machine Learning
AI systems learn from data and improve their performance over time

without being explicitly programmed each time. Following are the

types of machine learning:

 Supervised Learning: Learning from labeled examples.

 Unsupervised Learning: Finding patterns in unlabeled data.

 Reinforcement Learning: Learning through trial and error by

receiving rewards or penalties.

Natural Language Processing (NLP)
This technique allows machines to understand, interpret, and respond

to human language. Applications: chatbots, voice assistants, machine

translation, sentiment analysis.

Expert Systems
These are AI systems designed to simulate the decision-making

ability of human experts. They use large knowledge bases and

inference rules to solve specific problems (e.g., medical diagnosis,

legal advice).

Neural Networks and Deep Learning
Inspired by the human brain, neural networks are used for pattern

recognition, speech processing, and image classification. Deep

Learning uses multi-layered neural networks, powers applications

19

like facial recognition, autonomous vehicles, and advanced language

models.

Fuzzy Logic
Fuzzy logic deals with reasoning that is approximate rather than fixed

or exact. It is useful in situations where information is vague or

incomplete, such as in control systems (like washing machines or air

conditioners).

Genetic Algorithms
These algorithms are inspired by natural evolution and are used to

solve optimization problems by evolving solutions over generations.

Applications include scheduling, game strategies, and engineering

design.

Check Your Progress-I

1. State True or False:

a) the primary goal of Artificial Intelligence (AI) is to create
intelligent systems that can perform human-like tasks.

b) John McCarthy is considered the pioneer of AI and introduced the
concept of the Turing Test.

c) Supervised Learning focuses on learning from labelled examples.

d) Lack of computational power and overestimated expectations
caused the AI Winter in the past.

2. Fill in the Blanks:

a) The ________________ was held in 1956, where the term
"Artificial Intelligence" was officially coined.

b) AI systems use ________________ reasoning to make logical
decisions based on available data.

c) ________________ is a technique in AI that helps machines
understand and process human language.

d) AI models in healthcare help in ________________ through
medical imaging analysis.

e) ________________ is an AI technique that uses evolutionary

principles to find optimal solutions.

20

1.9 SUMMING UP

 AI focuses on creating machines that mimic human intelligence.

 Key capabilities of AI are - learning from experience, reasoning,

problem-solving, understanding natural language, perceiving the

environment, and decision-making.

 The application area of AI are:

Healthcare: Medical imaging analysis, personalized treatments, drug

discovery, virtual health assistants.

Education: Personalized learning, automated grading, adaptive

platforms.

Agriculture: Optimized planting, disease detection, crop yield

prediction.

Finance and Business: Fraud detection, automated trading, customer

service chatbots, market prediction.

Entertainment and Media: Content recommendations, content

creation (music, art), intelligent gaming.

Transportation: Autonomous vehicles, traffic optimization, route

planning.

Security and Surveillance: Identity verification, cyber threat

detection, crime pattern analysis.

Smart Homes: Smart assistants (Alexa, Siri), habit-based

automation, energy optimization.

Robotics: Industrial manufacturing, service robots, space and

underwater exploration.

Military and Defence: Surveillance drones, strategic operation

planning, realistic training simulations.

 The different AI Techniques are as follows:

Search Techniques: Uninformed and informed searches for finding

solutions.

21

Knowledge Representation: Semantic networks, frames, rules, and

logic.

Reasoning Techniques: Deductive, inductive, and probabilistic

reasoning.

Machine Learning: Supervised, unsupervised, and reinforcement

learning.

Natural Language Processing (NLP): Language understanding and

response.

Expert Systems: Simulating decision-making of human experts.

Neural Networks and Deep Learning: Pattern recognition,

speech/image processing.

Fuzzy Logic: Approximate reasoning for vague situations.

Genetic Algorithms: Optimization using evolutionary principles.

1.10 ANSWERS TO CHECK YOUR PROGRESS
1. a) True b) False c) True d) True

2. a) Dartmouth Conference b) Probabilistic c) NLP

 d) Disease detection e) Genetic Algorithms

1.11 POSSIBLE QUESTIONS
Short Answer Type Questions:
1. What is Artificial Intelligence (AI)?

2. Name two key AI techniques used in problem-solving.

3. What is the purpose of the Turing Test?

4. How does AI help in transportation?

5. Why is reasoning important in AI?

Long Answer Type Questions:
6. Explain the history and evolution of AI.

22

7. Discuss the key application areas of AI.

8. Explain the different types of AI problems.

9. What are the underlying assumptions in AI?

10. Discuss the impact of AI on automation and industry.

1.12 REFERENCES AND SUGGESTED READINGS
1. Russell, Stuart J., and Peter Norvig. Artificial intelligence: a

modern approach. pearson, 2016.

23

UNIT-2: PROBLEM, PROBLEM SPACES

Unit Structure:
2.1 Introduction

2.2 Unit Objective

2.3 Defining the Problem as a State Space Search

2.4 Production System

2.4.1 Control Strategies

2.4.2 Breadth-First Search

2.4.3. Depth-First Search

2.5 Heuristic Search

2.6 Problem Characteristics

2.6.1 Is the Problem Decomposable?

2.6.2 Can Solution Steps Be Ignored or Undone?

2.6.3 Is the Problem’s Universe Predictable?

2.6.4 Is a Good Solution Absolute or Relative?

2.6.5 Is the Solution a State or a Path?

2.6.6 What Role Does Knowledge Play in the Problem?

2.6.7 Does the Task Require Interaction with a person?

2.7 Production System Characteristics

2.7.1 Monotonic Production Systems

2.7.2 Non-Monotonic Production Systems

2.7.3 Partially Commutative Production Systems

2.7.4 Commutative Production Systems

2.8 Design Issues of Search Programs

2.9 Summing up

2.10 Model Questions

2.11 References and Suggested Readings

24

2.1 INTRODUCTION

In the last unit, we looked at the challenges that AI usually faces,

which can be complex, engaging, and varied. In this unit, we will

define these challenges in greater detail, analyze them to determine

the several states that a problem might be in, and investigate different

approaches to ultimately select the most effective problem-solving

strategies that can be used to address the particular situation. The idea

of state space search is one of the most well-known methods to arise

in the field of artificial intelligence, which has been dealing with the

problem of creating efficient problem-solving techniques. This unit

will offer a thorough investigation of state space search, exploring its

basic concepts along with its various AI applications.

2.2 UNIT OBJECTIVE

After learning this unit, student will be able to-

● Gain a basic understanding of search algorithms and state-

space representation.

● Learn to define issues in terms of goals, states, actions, and

transitions.

● Gain expertise in using search strategies including Minimax,

A*, DFS, and BFS.

● Evaluate the efficiency and effectiveness of different search

strategies.

2.3 DEFINING THE PROBLEM AS A STATE
SPACE SEARCH

A primary approach in artificial intelligence is state space search,

which conceptualizes a problem as a search for a solution inside a

specified search space. The aim of the search space, which is

25

represented as a collection of states, is to find a series of steps that

change the starting state into the intended target state. This method

has been especially helpful in various fields, including robotics,

natural language processing, and puzzle solving.

A problem can be formally represented as a state space search by

using the following elements:

1. State space (S): Set of all possible states.

2. Initial State(s0): The starting state.

3. Goal States (G): The set of acceptable goal state 𝐺 ⊆ 𝑆.
4. Actions(A(s)): The set of available actions from states.

5. Transition Models (T(s, a)): The function that returns a new

state when an action ‘a’ is applied to state ‘s’.

6. Path Cost (C(s, a): The cost of transition from a state ‘s’

when an action ‘a’ is applied.

Let us understand it with a “Play Chess” problem.

1. State space: State space for a chess board consists of all

possible configurations of the board. This is an approximate 10ଵଶ board configurations which drops to 10ସ when all

illegal moves are eliminated.

2. Initial State: Initial state is the standard starting position

(Figure 2.1)

Fig 2.1 Initial State

26

3. Goal States: The set of acceptable chess board configurations

that leads to either a win of one player or a draw.

4. Actions: Actions refer to any of the valid moves a player can

make from a given state. Once a move is made, the board

configuration changes according to the rules of chess.

5. Transition Models: Input to the transition model is the

current board configuration and the move (Action), which

results in a new board configuration.

6. Path Cost: Each move in a standard chess game is equally

weighted, and thus there is no explicit path cost.

As we have seen in the case of chess games, representing

approximately 10ଵଶstates is practically difficult and time-

consuming. To overcome this problem, more general rules are used.

Another way of representing the rule is as follows:

Figure 2.2: Another way to describe chess rule

Stop to Consider

State space search is a fundamental technique in artificial intelligence

that frames problem-solving as navigating through a defined search

space to reach a solution. It involves identifying steps that transform

an initial state into a desired goal state. This approach is applicable

across various disciplines, such as robotics, natural language

27

processing, and puzzle solving. A problem within this framework is

formally depicted through several components: the state space, which

encompasses all possible states; the initial state; a set of goal states;

the available actions at each state; transition models, which describe

the outcome of applying an action to a state; and path cost, which

quantifies the cost associated with making a transition.

To understand the state space representation, let us explore another

classical problem.

The Water Jug Problem: You are given two jugs with capacities A
liters (say A = 4) and B liters (say B = 3). The objective is to measure

exactly C liters (say C=2) of water in the jug with a capacity of A liter

using the two jugs. You can perform the following actions:

1. Fill a jug completely.

2. Empty a jug.

3. Pour water from one jug into the other until one is empty or

the other is full.

State space representation of the problem is as follows:

● States: State can be represented as a pair(𝑥, 𝑦), where 𝑥 is the

amount of water in jug A and 𝑦 is the amount of water in jug

B. In our example, 0 ≤ 𝑥 ≤ 4 and 0 ≤ 𝑦 ≤ 3.

● Initial State: (0 ,0) where both jugs are empty.

● Goal State: (𝑐, 𝑦), where jug B can have any amount of water

while jug A will have c amount of water. In our case, C is 2

liters i.e. (2, 𝑦).

● Actions: Various valid operations are presented in Table 2.1.

These operations are represented as a rule where the current

state will be matched with the left side of the rule, and the

corresponding changes are made to the state to match the right

28

side. The process will be repeated in a cycle until the goal state

is reached.

1. (𝑥, 𝑦)

if 𝑥 < 4

(4, 𝑦) Fill Jug A

2. (𝑥, 𝑦)

if 𝑦 < 3

(𝑥, 3)

Fill Jug B

3. (𝑥, 𝑦)

if 𝑥 > 0

(𝑥 − 𝑑, 𝑦) Pour water from A to B.

4. (𝑥, 𝑦)

if 𝑦 > 0

(𝑥, 𝑦 − 𝑑) Pour water from B to A

5. (𝑥, 𝑦)

if 𝑥 > 0

(0, 𝑦) Empty jug A

6. (𝑥, 𝑦)

if 𝑦 > 0

(𝑥, 0) Empty jug B

7. (𝑥, 𝑦)

if 𝑥 + 𝑦 ≥ 4, 𝑦 > 0

(4, 𝑦 − (4− 𝑥))

Pour from jug B in jug A

till it is just full.

8. (𝑥, 𝑦)

if 𝑥 + 𝑦 ≥ 3, 𝑥 > 0

(𝑥 − (3− 𝑦), 3)

Pour from jug A in jug B

till it is just full.

9. (𝑥, 𝑦)

if 𝑥 + 𝑦 ≤ 4, 𝑦 > 0

(𝑥 + 𝑦, 0) Pour all water from Jug B

into Jug A

10. (𝑥, 𝑦)

if 𝑥 + 𝑦 ≤ 3, 𝑥 > 0

(0, 𝑥 + 𝑦) Pour all water from Jug A

into Jug B.

The approach to solving this problem is to identify the initial state and

make that the current state. This current state is compared with the

left-hand side. Once a match is found, necessary action is taken to

make changes in the state that corresponds to the right-hand side. The

process continues in the cycle and every time the resulting state is

checked if it is one of the goal states. The efficiency of finding the

29

right solution depends on the mechanism used. One possible solution

using a depth-first search (DFS) is presented below:

1. Initial state: (0,0).

2. Fill A: (4,0).

3. Pour from A to B: (1,3).

4. Empty B: (1,0).

5. Pour from A to B: (0,1).

6. Fill A: (4,1).

7. Pour from A to B: (2,3).

In step 7, we have reached the goal state. Although the solution to the

above problem could be easily found, it may take a long search time

if the search space is large and lacks an efficient control strategy. We

will discuss some of the available mechanisms in the future. It has

been found that in the above examples, we solve the problem by

searching in the state space. Search is a general mechanism that can

be used when no other direct method is known.

Check Your Progress

1. How will you define a problem as a state space problem?

2.4 PRODUCTION SYSTEM

The production system provides a structure that enables AI programs

to describe a problem and perform search operations. The

components of a Production system are as follows:

● A Set of Production Rules: The rules consist of a left side

and a right side.

○ Left side: Specifies when the rule can be applied

based on the current state.

30

○ Right side: Specifies the new state when the rule is

applied.

● Global Database: Also known as the working memory,

contains the required information for a particular task. Some

parts of the memory may be permanent while others are

updated continuously as the rule is applied.

● A Control Strategy: Control strategy determines the order of

application of the rules. It also manages to resolve any conflict

that may arise when more than one rule is applicable in a given

state.

● A rule applier.

2.4.1 Control Strategies

In a production system, a control strategy oversees the selection,

application, and execution of rules to successfully address an issue. It

has already been discovered that solutions to the problem are

dependent on the efficiency of the control strategy. The control

strategy determines whether a solution can be reached and, if such

solutions are possible, whether this solution is efficient enough. To

guarantee that the production system functions effectively and

achieves the intended goal state, an optimal control strategy must

meet several characteristics.

1. A Control strategy must cause motion: "Motion" in the

context of a production system is the application of production

rules to move through the state space. This motion should

transform the current state to a new state which is closer to the

goal state. The motion should avoid getting trapped in loops.

For example, if the rules of the water jug problem are applied

in sequence, then it will never lead to a solution as the process

31

will be trapped in an infinite loop of filling and emptying the

4-litre jug.

2. A Control strategy must be systematic: One approach to

overcome the water jug problem is randomly applying a rule.

This approach may prevent the infinite looping issue but it

does not ensure the efficiency of the solution as the same rule

may get selected several times. Instead of applying rules

randomly, a systematic control approach makes sure that the

system moves through the state space in a logical and

structured way. This helps ensure that the system reaches the

desired goal efficiently, avoids redundancy, and doesn't get

stuck in loops or irrelevant paths. Some systematic strategies

are Breath-First Search (BFS) and Depth-First Search (DFS).

These strategies are discussed in detail in later sections.

3. A control strategy must be efficient, flexible, and scalable:

Besides the above-mentioned requirement, a control strategy

must minimize computational overhead and avoid applying

redundant and irrelevant rules. The control plan should adapt

to dynamic changes in the problem or rules and scale

effectively as the number of states and rules rises.

2.4.2 Breadth-First Search

Breadth-First Search (BFS) is an algorithm used to search for a state

space or graph. It systematically explores all possible states level by

level, starting from the initial state and gradually expanding outward.

In BFS, it begins by creating a tree with the initial state as the root of

the tree. Taking the root node as level 0, it will generate all its

offspring at each level 1 by applying all applicable rules. In the case

of the water jug problem, the root node is the initial state, (0,0), and

generates the nodes of level 1 by applying the rules (Fig. 2.2). At

32

this state, only two rules are applicable, i.e. Rule 1(where we can fill

Jug A) and Rule 2(where we can fill Jug B). The process continues

to generate the next level (Fig. 2.3). To generate the next level, let us

consider the left side, where the state is (4,0); three rules apply to this

state, i.e., Rule 2 (fill Jug B), Rule 5 (empty Jug A) and Rule 3 (pour

water from Jug A to Jug B). You may continue to create a complete

tree.

Fig. 2.2 First Level BFS Tree

Fig. 2.3 BFS tree up to Second level

Steps in BFS:
1. Initialize the NODE-LIST (queue) with the starting state.

2. Initialize a visited list to keep track of states that have already

been explored.

3. While the NODE-LIST is not empty:

◆ Remove the first state from the queue (the state to

explore).

◆ If the state is the goal state, return the solution.

◆ Otherwise, generate the possible successor states

(states reachable from the current state), add them to

the queue, and mark them as visited.

4. If the goal is reached, return the sequence of moves (the

solution).

33

5. If the frontier is empty and no solution is found, the search

fails.

Characteristics of BFS are:

1. Level-by-Level Exploration: Before going on to the next

level, BFS investigates each state at a single "depth" or level.

2. Optimality: BFS will identify the shortest path to the goal

(fewest steps) if the cost of shifting between states is constant.

3. Complete: If the state space is finite, BFS ensures that it will

find a solution if one exists.

Advantages of BFS:

1. BFS will never get trapped in a blind alley. As we can see,

BFS won't become stuck investigating an unproductive path

endlessly; instead, it will only explore the next level after all

the states in the current level have been examined. Later on,

when we investigate depth-first search, we will fully

understand it.

2. If a solution exists, BFS is guaranteed to find it.

3. BFS ensures that the shortest solution will always be found.

Disadvantages of BFS:

1. In large state spaces, BFS can consume a lot of memory.

2. BFS can also be inefficient when the state space is very large,

as it explores every possible state.

Stop to Consider

BFS operates through level-by-level exploration, examining each

state at a specific depth before progressing. This algorithm guarantees

the identification of the shortest path to the goal when transition costs

are uniform. Furthermore, in finite state spaces, BFS ensures solution

discovery when one is available.

34

Check Your Progress

What is breadth-first search? Write down the steps for BFS.

2.4.3. Depth-First Search

Like BFS, another systematic control strategy that can be used to

traverse the tree is Depth-first search. Unlike Breadth-First Search

(BFS), which explores all states level by level, DFS traverses deeply

into one branch of the state space before backtracking and exploring

alternative branches. DFS uses a stack to keep track of states to be

explored. It continues exploring the deepest level of the current

branch until it either finds the goal state or reaches a dead end, at this

point, it backtracks to explore other branches. One of the solution

paths for the water jug problem could be as shown in Fig 2.4.

Steps of DFS

1. Initialize the stack with the initial state.

2. If the initial state is the goal state, return the solution.

3. While the stack is not empty:

◆ Pop the top state from the stack.

◆ If the state is the goal state, return the solution.

◆ Otherwise, generate successor states and push them

onto the stack.

4. If the stack becomes empty without finding the goal, the

search fails.

35

Fig. 2.4 One possible solution using DFS

Characteristics of DFS

1. Explores Deeply: Before exploring any alternative path, DFS

thoroughly investigates one path as deeply as possible.

2. Memory Efficient: Since DFS just needs to store the current

path and the next unexplored state, it uses less memory than

BFS.

3. Not Always Optimal: DFS may discover a solution deep

within one branch even if a shorter solution is available in

another, hence it cannot guarantee the shortest path to the

solution.

4. Not Always Complete: DFS may occasionally become

trapped in endless loops.

Advantages of DFS

1. Since DFS does not have to keep every state at a given level,

it uses less memory than BFS.

2. Thankfully, DFS will be able to locate a solution quickly if it

decides to follow a path where one exists. When the answer is

deep in the state space, DFS works well.

36

Disadvantages of DFS
1. There is no guarantee that the best solution will be found. If

DFS investigates a deep branch before a shorter branch, it

might discover a longer path to the answer.

2. If the state space contains cycles or if repeated states are not

managed appropriately, DFS may become trapped in endless

loops.

Stop to Consider

Depth-first search (DFS) is a strategy that explores one path

extensively before considering alternatives. It is more memory-

efficient than breadth-first search (BFS), as it only needs to retain the

current path and the next unexplored state. However, DFS does not

always guarantee the shortest path to a solution, as it may find a

solution in a deeper branch while a shorter alternative exists

elsewhere. Additionally, there are instances where DFS may get

caught in infinite loops, making it not entirely complete.

Check Your Progress

1. What is depth-first search? Write down the steps for DFS.

2. How is breadth-first search different from depth-first search?

3. What are the advantages of BFS?

4. What are the advantages of DFS?

5. What are the disadvantages of BFS?

6. What are the disadvantages of DFS?

Using the above-mentioned strategies, we could solve the water jug

problem. But, it may not be the case for other problems. Let us

consider the problem of “The Travelling Salesman Problem”.

The Travelling Salesman Problem (TSP): A salesman is required

to visit a group of cities precisely once before returning to the

37

beginning location while reducing the overall cost of travel. Every

pair of cities on the list has a direct path between them.

Theoretically, both Depth-First Search (DFS) and Breadth-First

Search (BFS) can solve TSP, but they have major practical issues.

The number of potential routes increases factorially with the number

of cities in the Travelling Salesman Problem (TSP). Let us understand

this with an example of five cities, (viz. A, B, C, D, and E) as shown

in Fig 2.5. There are four cities left to pick from for the following trip

if the starting city is A. There are still three cities to pick from after

seeing one of those four, and so on. As a result, the cities' total number

of permutations is: 5! = 5 × 4 × 3 × 2 × 1 = 120 10! = 3628800 is a big number if 10 (ten) cities are involved. A

salesperson might travel to many more cities. The time needed to do

this search is N! if N cities are involved. This phenomenon is called

combinatorial explosion.

If BFS is used, it requires storing all nodes or states of the current

level in the memory, this becomes infeasible due to memory

limitation even for a moderate value of N. Similarly, DFS dives deep

into one branch before exploring others. If the first branch explored

is suboptimal, it will not find the optimal solution until all branches

are explored.

Fig 2.5 Cities to be covered by a salesman

38

To overcome this issue, several different approaches can be

employed, including Branch and Bound, Heuristics (such as Nearest

Neighbor), Dynamic Programming (Held-Karp Algorithm), Meta-

heuristics, A* Search, etc. This unit will cover the first two options,

and the following unit will cover A* Search.

Branch and Bound in TSP: In this simple strategy, we explore all

the paths and keep track of the shortest path found so far. If the length

of the incomplete path exceeds the path discovered thus far, stop

investigating the path (pruning). Time is saved by avoiding the

exploration of suboptimal routes. Although the method has several

drawbacks, it is far more efficient than the previously stated

strategies. Many nodes in the search tree are still explored, and in the

worst scenario, it might still evaluate every state that could exist. For

issues with a large number of cities, the algorithm might possibly run

out of memory. In the example (Fig.2.5), the optimal route is found

to be 𝐴 → 𝐵 → 𝐷 → 𝐸 → 𝐶 → 𝐴 with the cost of 85.

Check Your Progress

1. Explain the Bound and Branch algorithm with an example.

2.5 HEURISTIC SEARCH

Heuristic search is an artificial intelligence (AI) technique that uses

domain-specific knowledge to effectively tackle complex search and

optimization issues. In many difficult issues, the systematicity and

motion of the control strategy must be compromised, resulting in a

good search result that may not be the best one. Even if it means

sacrificing completeness, the goal of employing a heuristic is to

improve search efficiency. Heuristic search uses a heuristic function

to direct the search toward a goal state, in contrast to uninformed

search techniques (such as Breadth-First Search or Depth-First

39

Search), which aimlessly traverse the search space. A heuristic is a

problem-specific function or rule of thumb that estimates the cost or

distance from a given state to the goal state. It helps prioritize which

states to explore, reducing the computational effort required to find

an optimal or near-optimal solution. Heuristics are frequently used to

effectively identify approximations of solutions to the Traveling

Salesman Problem (TSP). Among the most widely used heuristics is

the Nearest Neighbor (NN) algorithm.

Nearest Neighbor Heuristics in TSP: This is a general purpose

heuristics which and be used in travelling salesmen problem (TSP) to

deal with the combinatorial explosion problem. In the TSP we can

formulate the following procedure:

1. Start at any city at random.

2. Go to the nearest unexplored city (smallest edge cost) at each

stage.

3. Continue until every city has been seen, then return to the

beginning city.

For example, if city A is selected at first, it will take the path 𝐴 → 𝐵

(B being nearest to A with a distance of 10). From B, which has

options C, D, and E, it will select D with a distance of 25, and the

final selected path will be 𝐴 → 𝐵 → 𝐷 → 𝐸 → 𝐶 → 𝐴 with the

cost of 85. In the above solution, it happens to find the optimal

solution, but it may not be the case always.

The advantage of using heuristics is that it is computationally efficient

and easy to implement. It also offers a speedy solution although, in

many situations, it may produce a suboptimal solution. The efficiency

is achieved by drastically reducing the search space and therefore it

can handle complex problems. A well-designed heuristics can

efficiently provide the right direction to the search leading to a

solution. Some limitations of heuristic search are inaccurate solutions

40

if poor heuristics are applied, and the need for domain knowledge,

while some heuristics may even prioritize speed over optimality.

Stop to Consider

Heuristics offer significant advantages in computational efficiency

and ease of implementation, making them suitable for complex

problems by reducing the search space and providing quick solutions.

However, they may yield suboptimal outcomes, especially if poorly

designed, and often require domain knowledge. Additionally, some

heuristics may favor speed over optimality, leading to inaccurate

solutions.

Check Your Progress

1. Explain the nearest-neighbor heuristics for the traveling

salesman problem.

2.6 PROBLEM CHARACTERISTICS

Applications of the appropriate heuristics methods and algorithms

require us to understand the characteristics of the problem to which it

will be applied. This categorization of the problems can help match

problem-solving strategies to the underlying characteristics of the

problem. Problems can be classified according to the following

dimensions:

1. Is the Problem Decomposable?

2. Can Solution Steps Be Ignored or Undone?

3. Is the Problem’s Universe Predictable?

4. Is a Good Solution Absolute or Relative?

5. Is the Solution a State or a Path?

6. What Role Does Knowledge Play in the Problem?

7. Does the Task Require Interaction with a person?

41

2.6.1 Is the Problem Decomposable?

Is it possible to divide the problem into more manageable,

independent sub-problems that can be resolved independently and

then merged to create a solution? Smaller problems can be solved

easily as compared to larger complex problems. In the case of a larger

problem, it can be broken down into smaller manageable problems.

In the beginning, it checks if the problem is solvable. If the problem

is solvable, it returns the solution. In case, the problem is not solvable,

can the problem be decomposed into smaller problems and check if

the resulting problem is solvable. The process is continued

recursively until all solutions are found. This is followed by the

integration of these solutions.

One example of a decomposable problem is to sort the list

[38,27,43,3,9,82,10]. To solve this problem, it can be decomposed

into two halves [38,27,43],[3,9,82,10]. Each halves can be recursively

sorted as [27,38,43] and [3,9,10,82]. Finally merge the sorted halves

to produce the result [2,9,10,27,38,43,82].

Not all problems are decomposable. One example of a non-

decomposable problem is the block world problem (Fig. 2.6). Fig.

2.6 (a) shows the initial or start position, while Fig. 2.6(b) shows our

Goal. Operation that can performed is to move only one block at a

time. The nature of the problem is non-decomposable, as to move

block C on A, C must be already in the correct position (i.e. C has no

other block on top of it.) To do so, we must first move block D on the

table. The moving of block C is dependent on the operation of block

B. Because of these interdependencies, a problem cannot be solved

by separating and solving its component elements separately.

42

Fig. 2.6:The Block world problem

A precise series of steps must be followed to complete the solution,

with each step establishing the prerequisites for the one after it. As an

example:

● Step 1: Move D to the table.

● Step 2: Move A to the table.

● Step 3: Move C on top of A.

Skipping or solving steps in isolation leads to failure.

Since actions are closely related, a non-decomposable problem

requires a holistic approach as every action causes the world's state to

change dynamically. As we can see sub-problems, unlike sorting or

factorial computation, cannot be resolved separately and then

combined.

2.6.2 Can Solution Steps Be Ignored or Undone?

Let's say we're attempting to demonstrate a mathematical theorem.

We start by proving a lemma that we believe would be helpful. We

eventually concluded that the lemma is completely useless. Since the

theory is still valid and in memory, if it ever existed, we have nothing

to lose in this case. It is still possible to apply any rules that were

initially applicable. We can simply move forward like we ought to

have done initially. The only thing we've lost is the effort required to

43

investigate the blind alley. In this situation, we can simply ignore the

steps taken to prove the lemma.

A well-known example of a problem where solution steps cannot be

ignored is the 8-puzzle problem, which occasionally requires undoing

to examine alternate options. A 3x3 grid with eight numbered tiles

(1–8) and one blank area makes up the 8-puzzle (Fig. 2.7). From an

initial configuration, the tiles must be moved by sliding into the

vacant space to reach a predetermined goal configuration.

Fig. 2.7 8-Puzzle Problem

If a move is made and the move does not lead to the solution, we may

have to backtrack to the initial state. The wrong steps taken have

changed the initial configuration, thus we can not ignore the step as

in the case of theorem proving. But we can undo the step to recover.

Let's use the example of a game of chess. We cannot reverse the

action or deny that the step was never taken if we make a foolish move

and later realize it. In this instance, the harm done cannot be undone.

Thus it is irrecoverable.

So, we can say that in the theorem-proving problem, the solution steps

can be ignored. In the case of 8-puzzle, solution steps can be undone.

However, in the case of chess game, solution steps can not be ignored

or undone.

44

2.6.3 Is the Problem’s Universe Predictable?

The predictability of a problem’s universe refers to whether the

outcomes of actions or decisions in the problem-solving process can

be determined with certainty. It is an essential characteristic that

influences the choice of problem-solving strategies in artificial

intelligence. Let's look at the previously described 8-puzzle problem.

In this instance, we are aware of the outcome of every step taken. We

can prepare ahead of time and take the required action to get to the

desired state. There may be several moves that we need to undo to

reach the desired goal. Thus the problem-solving strategy applied

must have the capability of backtracking.

Similarly, in the game of chess, each move a player makes has a clear

and predictable impact on the board. There are specific rules and no

room for uncertainty about the movement of the pieces.

The problem has an unpredictable universe, when actions have

probabilistic or numerous possible outcomes, the environment is

subject to dynamic changes caused by external factors beyond the

control of the problem solver, and we lack comprehensive

information about the problem and its surroundings. One example of

this type of problem is weather prediction, where forecasts are

unreliable due to complex relationships between atmospheric

variables.

Computational modeling is simpler for predictable problems. They

frequently make it possible to solve problems using precise

algorithms. Systematic investigation of the solution space is feasible

due to the universe's predictability.

In an unpredictable universe, we must deal with uncertainty and

incomplete knowledge. Decision-making under uncertainty or

probabilistic reasoning is required.

45

2.6.4 Is a Good Solution Absolute or Relative?

A good solution's absolute or relative quality depends on the

problem's characteristics and the criteria by which it is evaluated.

A solution is absolute if it is definitively correct and optimal. It is

independent of external factors. For example, a mathematical

problem has a definite answer; algorithms like Dijkstra's find the

shortest path, which is the absolute optimal solution; sorting a list of

numbers in ascending order has a single correct result.

A solution is relative if it is good enough or acceptable based on

specific criteria, circumstances, or trade-offs and the solution is

dependent on the context. There may be multiple acceptable solutions

to a given problem and the "goodness" of a solution is judged in

relation to other options or criteria. As seen in the traveling salesman

problem, Nearest Neighbor heuristics may provide a relatively good

solution within a reasonable time. When buying a car, price may be

more important to you than comfort or fuel economy. Your criteria

will determine the best answer.

Absolute solutions work best in domains that are well-defined and

predictable. Relative solutions, however, are more useful for real-

world issues where ambiguity, trade-offs, and limits are common.

2.6.5 Is the Solution a State or a Path?

Depending on the problem's nature and the definition of success, the

answer may be a path or a state.

A solution is a state when the primary objective is to reach a specific

goal configuration or state. The sequence of steps (path) or actions

taken to reach the goal is not important. The end result (final state)

fully satisfies the problem requirements. For example, in the 8-puzzle

problem, the goal state is important where the tiles are arranged in the

46

correct order. The sequence of moves made to reach the goal is

secondary. Similarly, in a chess game, a checkmate configuration is

the solution, irrespective of how the position was achieved.

A solution is a path when a problem calls for determining not only

the desired state but also the order in which decisions or activities

must be performed to get there. The path or journey is just as

significant as the final destination, if not more so. Every activity or

step makes a significant contribution to the solution. The path (a

series of cities) that minimizes the overall cost or distance of travel is

the answer to the Traveling Salesman Problem (TSP).

2.6.6 What Role Does Knowledge Play in the Problem?

When it comes to problem-solving, knowledge is essential because it

affects how efficiently and effectively a solution may be found.

Consider a scenario in which you are unaware of the intended goal

and the permitted moves (such as sliding tiles) in the 8-puzzle

problem. Can you come up with a solution to the problem? Obviously

not. Knowledge of the valid moves and the goal state is important for

solving the 8-puzzle problem. In the Traveling Salesman Problem

(TSP), knowledge of heuristics like the Nearest Neighbor helps

estimate good solutions quickly. By removing impractical or

unnecessary states and actions, knowledge aids in reducing the search

space.

The foundation of successful problem-solving is knowledge. It

clarifies the issue, directs the quest for answers, simplifies the

process, and permits well-informed decision-making. A problem can

be solved more quickly and effectively if there is more knowledge

available and it is used effectively. Knowledge frequently makes the

difference between success and failure when it comes to solving

problems in both real-world and artificial intelligence scenarios.

47

2.6.7 Does the Task Require Interaction with a person?

The nature of the task and the extent to which it incorporates human

judgment, preferences, or behaviors determine whether or not human

contact is necessary. Consider the following task:

1. Arranging a list of numbers in ascending order.

2. Architects, designers, or software developers need to meet the

design expectations of the stakeholders.

In the first task, the solution can be achieved autonomously through

algorithms. No individualized or subjective input is required. The task

can be repeated and yields reliable results. However, in the second

task, decisions rely on human preferences or opinions of the

stakeholders to refine requirements and ensure the design meets

expectations.

The complexity of the activity, the level of interaction needed, and

the importance of human judgment all influence whether human

contact is necessary. Some jobs are intrinsically dependent on human

involvement to ensure their successful completion, while others can

be totally automated.

Check Your Progress
1. Explain the nearest-neighbor heuristics for the traveling salesman

problem.
2. Discuss the seven problem characteristics to which a problem can

be classified.
3. What are decomposable problems?
4. Give two examples, where solution steps can be ignored or

undone.
5. Elaborate with an example where the solution is a path and not a

state.
6. Differentiate between absolute and relative solutions.
7. What role does knowledge play in problem-solving?
8. Cite an example where human interaction is required to find a

solution.

48

2.7 PRODUCTION SYSTEM CHARACTERISTICS

Just like the problems production system can also be classified based

on the task and how the rules are applied. Production system can be

classified into four main types:

2.7.1 Monotonic Production Systems

Monotonic production system is a production system in which

application of a rule never prevents the later application of another

rule that could have been applied at the time the first rule was

selected.

It works well for issues where alterations to the current situation are

merely additive and don't require going back and changing previous

decisions. For example, each step in the mathematical theorem-

proving process builds upon the one before it without making it

invalid.

2.7.2 Non-Monotonic Production Systems

Non-Monotonic production system is a production system in which

previously applied rules might need to be undone. As new

information becomes available, the system permits facts to be

retracted or modified. Ideal for situations that call for backtracking or

a dynamic environment. For instance, in medical diagnosis systems,

a diagnosis may be changed in response to the observation of new

symptoms.

2.7.3 Partially Commutative Production Systems

A partially commutative production system is one that has the

characteristic that, if a specific set of rules is applied, and state x

becomes state y, then each possible permutation of those rules also

49

causes state x to become state y. The ultimate result is unaffected by

the sequence in which the rules are applied. The same solution can be

obtained by applying the rules in different sequences. It is employed

when the final objective is clear and independent of intermediate

steps. For example, consider robot path planning in an open grid,

where multiple routes could go to the same location.

2.7.4 Commutative Production Systems

Production systems that are partially commutative and monotonic are

known as commutative production systems. Each set of rule

applications that results in a goal is legal and equally good. The

system prioritizes reaching the objective over the route. Useful in

systems where the cost and quality of every solution are the same.

It should be mentioned that any type of production system can address

any problem. Some will be more efficient or more natural than others.

It is worth mentioning that a commutative production system could

be so time-consuming that it is essentially worthless. We have already

explored the type of problem that can be solved by different types of

production systems. Fig. 2.8 depicts four different types of production

systems and the problems that can be solved by them.

Fig. 2.8 Categories of a production system

The upper left corner represents the commutative systems. Theorem

proving is partially commutative and monotonic as the sequence of

50

applicable rules does not affect the end goal and the application of

one rule does not prevent the application of another rule. While

navigating a robot, it does not matter if the route taken is Go_North-

>Go_East->Go_North or Go_North->Go_North->Go_East. But if

the robot takes the wrong route, it must be able to backtrack. The

order in which reactants are added may have a significant impact on

the output for chemical synthesis.

2.8 DESIGN ISSUES OF SEARCH PROGRAMS

So far, we have seen that every problem can be seen as a traversal of

the tree structure. Therefore, it is important how the tree is

represented and structured. Selecting a suitable, effective, and

expressive representation for states, activities, and goals is essential

for an efficient search program. Inadequate representation may result

in irrelevant branches or an excessively wide search area. It is also

important to know whether this tree is constructed entirely from the

production rules or it implicitly generate only those nodes it is going

explore next. Creation of the entire tree and storing them in the

memory is impractical for most cases. As search programs are

responsible for the creation of these trees, it is important to keep in

mind while designing these search programs.

We have seen in the examples above that the search program should

find the path or paths from an initial state to the goal state in the search

tree. However, we have not explored the direction in which a search

is conducted, i.e., from the initial state to the final state (forward

reasoning) or from the goal state to the initial state (backward

reasoning).

Another issue while designing a search program is to create an

efficient procedure to select the applicable rule (matching) as the

51

production systems typically spend a majority of their time looking

for the applicable rule.

For simple problems, nodes can be represented as simple arrays, but

for complex problems, the efficient representation (Knowledge

representation issue) is critical for the search programs’ performance.

At this stage, we should also think about the difference between

search trees and search graphs. This may happen that the same nodes

are frequently generated as part of many paths during the search

process, meaning they are processed more than once. This occurs

because the search space might not be a tree but rather a directed

graph. Although it may be more efficient to treat the search process

as a graph rather than a tree, doing so necessitates additional work

each time a node is generated to determine whether it has already been

generated.

Having a thorough understanding of these problems aids in choosing

or creating the best search approach for a particular issue,

guaranteeing that the solution is workable and efficient.

2.9 SUMMING UP

In this unit, we have learned

● How to represent a problem as a state space search problem.

● About the production system and its components.

● About uninformed search strategies like BFS and DFS.

● How to classify a problem based on its characteristics.

● About classification of production systems.

● About the issues encountered while designing the search

program.

52

2.10 MODEL QUESTIONS

1. What is breadth-first search? Write down the steps for BFS.

Answer: Breadth-First Search (BFS) is an algorithm used to search

for a state space or graph. It systematically explores all possible states

level by level, starting from the initial state and gradually expanding

outward. Steps in BFS are as follows:

1. Initialize the NODE-LIST (queue) with the starting state.

2. Initialize a visited list to keep track of states that have already

been explored.

3. While the NODE-LIST is not empty:

a. Remove the first state from the queue (the state to

explore).

b. If the state is the goal state, return the solution.

c. Otherwise, generate the possible successor states

(states reachable from the current state), add them to

the queue, and mark them as visited.

4. If the goal is reached, return the sequence of moves (the

solution).

5. If the frontier is empty and no solution is found, the search

fails.

2.11 REFERENCES AND SUGGESTED READINGS

1. Elaine Rich, Kevin Knight, & Shivashankar B Nair, Artificial

Intelligence, McGraw Hill, 3rd ed., 2009

2. Stuart J. Russell and Peter Norvig, Artificial Intelligence: A

Modern Approach, Third Edition, Pearson, 2016

53

UNIT-3: HEURISTIC SEARCH TECHNIQUES

Unit Structure:
3.1 Introduction

3.2 Objectives

3.3 Informed Verses Uninformed Search

3.4 Generate and Test

3.5 Hill Climbing

 3.5.1 Simple Hill Climbing

 3.5.2 Steepest-Ascent Hill Climbing

 3.5.2.1 Local Maximum, Plateau, and Ridge

 3.5.2.2 Dealing with Local Maximum, Plateau, and Ridge

 3.5.2 Simulated Annealing

3.6 Best-First Search

3.7 A* Algorithm

3.8 Problem Reduction

 3.8.1 OR Graph versus AND-OR Graph

3.9 Summing up

3.10 Model Question

3.11 References and Suggested Readings

3.1 INTRODUCTION

In the previous unit, we covered a few general-purpose search

algorithms, such as bread-first and depth-first search. Although

these straightforward approaches provided a basis for understanding

search strategies, they were insufficient to address intricate issues

within the realm of artificial intelligence. In this unit, we shall cover

the other informed search techniques.

54

3.2 OBJECTIVES

This unit is an attempt to understand heuristic search techniques.

After going through this unit, you will be able to -

● explain the concept of heuristics in search and problem-

solving.

● Learn the working principle of heuristic search algorithms.

● Understand and analyze heuristic functions regarding

admissibility, consistency, and efficiency.

● Apply Heuristic Techniques to real-world problems.

3.3 INFORMED VERSES UNINFORMED SEARCH

It was also seen in the “Traveling salesman problem” that adopting

simple heuristics like nearest-neighbor heuristics can help guide the

search towards the goal. Heuristic search is an artificial intelligence

technique that uses domain-specific knowledge to solve complex

search issues effectively. By prioritizing which states to investigate,

it lessens the amount of computation required to find the optimal or

nearly optimal answer. Whether or not search techniques

incorporate problem-specific knowledge (heuristics) to direct the

search classifies them as informed or uninformed search strategies.

Uninformed or blind search methods use the problem specification

to explore the state space; they lack additional knowledge about the

goal state. Only the target condition and the search space structure

are used. Informed (or heuristic) search techniques employ

heuristics or domain-specific information to direct the search

process toward its goal more effectively. Some of these techniques

are shown in Fig. 3.1.

55

Fig. 3.1 Search Techniques

Among uninformed search techniques, we have already discussed

breadth-first search and depth-first search in the previous unit. We

will discuss the generate-and-test and other informed search

techniques in this unit.

Self-Assessment Questions

Differentiate between Informed and Uninformed Search.

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

………………………………………………………………………

3.4 GENERATE AND TEST

The generate-and-test algorithm is a simple problem-solving method

in which possible solutions are generated either randomly or

systematically and then tested to see if they satisfy the intended

target condition. Many AI systems are built using this approach,

among the most basic search techniques.

56

Algorithm: Generate-and-test

1. Generate a new possible solution. The type of problem

determines the solution generation process, which might

involve methodically investigating every option.

2. Check if the generated solution meets the desired outcome

(Goal). Return the solution and end the process if it satisfies

the requirements.

3. If the solution is not the goal state, return to step 1 to

generate another solution. Continue until a solution is found

or all options are exhausted.

Fig. 3.2 Flow chart of Generate-and-test

Let us understand the generate-and-test algorithm with the help of

the 8-puzzle problem discussed earlier. We are given the initial state

57

in Fig. 3.3(a), and the goal state is in 3.3(b). Operations that can

performed is to move the tiles. Each movement of the tile creates a

new state. For convenience, instead of moving all the tiles, let us

consider only the blank tile. A blank tile can move in four directions

if it is at the center, in three directions if it is on any of the sides, and

in two directions if it is on any of the corners.

We can proceed to solve the problem by performing the following

steps.

1. Generate a new state by arranging the tiles.

2. Check if the present configuration corresponds to the goal

state. If it does, return the arrangement as the solution.

3. If not, generate another state using a different arrangement

and test again.

The generate-and-test algorithm is similar to a depth-first search

with backtracking because a complete solution must be generated

before it can be tested. It is merely a thorough search of a problem

space in its most systematic form. If states are created at random, a

solution may never be found.

This method has the benefit of being simple to comprehend and

apply. It doesn't require any heuristics or prior information. Any

problem with a well-defined goal can use this strategy. It offers a

standard by which more complex search strategies can be measured.

The drawback of this technique is that it is computationally

expensive because of its exhaustive nature; it frequently involves

blindly examining a vast number of states. As no guidance or

heuristic is available to lessen the search effort, it does not prioritize

a more promising solution over a less promising one. Because of the

search space size, this method is not feasible for large or complex

issues.

58

Stop to Consider

The generate-and-test algorithm is a fundamental problem-solving

method. Potential solutions are created randomly or systematically

and evaluated to check if they meet the criteria of goal state. This

approach is frequently utilized in artificial intelligence systems and

represents one of the most basic search techniques.

3.5 HILL CLIMBING

In the generate-and-test algorithm, once a new state is generated

using any available operations, it checks if the generated state is the

goal state. If it is not the goal state, the algorithm cannot check if the

generated state is closer to the goal state. In hill climbing, we are

provided with feedback from the test procedure, which determines

the direction in which we should move. Here, the test function is

augmented with a heuristic function that estimates whether the

generated state is closer to the goal state. If the generated state is not

the goal state but it may be better than the current state, it makes the

new state the current state and proceeds. Popularity of Hill Climbing

algorithm, resulted to create multiple variants each designed to

overcome the shortcomings of the original method and enhance its

functionality in different problem scenarios. The predominant

versions of the Hill Climbing algorithm are presented below.

3.5.1 Simple Hill Climbing

This is the most fundamental type of hill climbing. Simple to

implement. It requires less computation since it stops testing

neighbors once the better state is discovered. The algorithm can be

presented as follows:

59

Algorithm: Simple Hill Climbing

1. Evaluate the initial state. If it is also the goal state, then

return it and quit. Otherwise, continue with the initial state as

the current state.

2. Loop until a solution is found or until there are no new

operators left to be applied in the current state:

a. Select an operator that has not yet been applied to the

current state and apply to produce a new state.

b. Evaluate the new state.

i. If it is the goal state, then return it and quit.

ii. If it is not a goal state but better than the

current state, then make it the current state.

iii. If it is not better than the current state, then

continue in the loop.

Fig. 3.3 The 8-puzzle problem

Let us solve the 8-puzzle problem discussed above using simple hill

climbing. We will use a simple heuristic here; say we give a value

of 1 for every incorrectly placed tile and a value of 0 for the

correctly placed tile. We add these values to give a heuristic value to

the state. Since all the tiles in the goal state are correctly placed, the

heuristic value will be 0. In the case of the initial state, four tiles

viz., 2, 8, 1, and 6 are incorrectly placed. Therefore, the heuristic

value of the initial state is 4.

60

Fig. 3.4 Simple Hill Climbing on 8-puzzle

In simple hill climbing, the initial state is evaluated to see if it is a

goal state. In our case, it is not the goal state. Therefore, it produces

the next state by moving the blank tile (say, to the top). The new

state produced is evaluated. Since the new state is not the goal state,

it computes the heuristic value of the new state, which is 3 (At this

state, three tiles are incorrectly placed, 2,8 and 1). Since the

heuristic value of the new state is closer to the goal state than the

initial state, it makes the new state the current state. At this point, it

produces the next state by moving the blank tile. It has four different

operators at this moment. Suppose it takes the move left option, and

then the heuristic value does not improve. Since the new state is not

better than the current operation, it returns to the loop and applies

the next operator. You will find that none of the new states is better

than the current state. The algorithm stops at this stage. This could

be because of the heuristic function we use.

We can use another simple heuristic called “Manhattan Distance” to

address this problem. Here, we determine the total horizontal and

vertical distances between each tile's current location and its desired

location. The total Manhattan Distance for every tile provides the

heuristic value. The Heuristic value for the initial state (Fig. 3.5 (a))

will be 5 (Manhattan distance for Tile 2 = 1; Tile 8 = 2; Tile 1 = 1;

Tile 6 = 1; Total = 5). Suppose it applies the same operation as

above; then the heuristic value of the new state (Fig.3.5(b)) will be

4, which is better than the current state, and it makes the new state

the current state. The following state produced by moving the blank

61

tile up again produces a better new state with a heuristic value of 3

(Fig.3.5(c)). Heuristic value improves in the next two steps (Fig. 3.5

(d) &(e)). At this time, Fig.3.5 (e), as the current state, produces a

new state that evaluates to be the goal state, and the algorithm

terminates.

Fig. 3.5 Simple Hill Climbing on 8-puzzle using Manhattan distance

heuristics.

Finally, we have used simple hill climbing to solve the 8-puzzle

problem. We have also discovered that the algorithms cannot

function without a suitable heuristic function.

Stop to Consider

Simple Hill Climbing is a local search algorithm that iteratively

moves to a neighboring state with a better heuristic value, stopping

when no improvement is possible. It evaluates only one neighbor at

a time, making it straightforward but prone to issues like getting

stuck in local maxima, plateaus, or ridges.

62

3.5.2 Steepest-Ascent Hill Climbing

The Steepest-Ascent Hill climbing is a variant of the Simple Hill

Climbing algorithm. Steepest-Ascent applies all available operators

from the current state and assesses them to choose the one with the

greatest improvement in the heuristic value (i.e., the steepest

ascent). It contrasts Simple Hill Climbing, which chooses the first

better state. The algorithm can be presented as follows:

Algorithm: Steepest-Ascent Hill Climbing

3. Evaluate the initial state. If it is also the goal state, then

return it and quit. Otherwise, continue with the initial state as

the current state.

4. Loop until a solution is found or until a complete iteration

produces no change to the current state:

a. Let SUCC be a state such that any possible successor

of the current state will be better than the SUCC.

b. For each operator that applies to the current state, do:

i. Apply the operator and generate a new state.

ii. Evaluate the new state. If it is the goal state,

then return it and quit. If not, compare it to

SUCC.

If it is better, then set SUCC to this state. If it

is not better, leave SUCC alone.

c. If the SUCC is better than the current state, then set

the current state to SUCC.

If we revisit the previous example of the 8-puzzle problem,

Steepest-Accent Hill climbing will apply all operators to the current

state. At this point, the blank tile can be moved three ways (Left, up,

and Right). The heuristic values of the new states are shown in

63

Fig.3.6. The second option of moving the blank tile up produces a

state with the heuristic value closest to the goal state, which will be

selected as the current state.

Fig. 3.6 Steepest Hill Climbing on 8-puzzle problem

As it chooses the state with the best heuristic value, it always moves

towards the steepest improvement and arrives at an optimal solution

(global maximum/minimum). It is computationally expensive as it

evaluates all new states in each step. Although the search is

thorough compared to simple hill climbing, it is slower.

Stop to Consider

Steepest-Ascent Hill Climbing is an advanced version of the Simple

Hill Climbing algorithm. Unlike Simple Hill Climbing, which opts

for the first available state that shows improvement, Steepest-Ascent

evaluates all possible moves from the current state and selects the

one that offers the maximum increase in heuristic value, effectively

identifying the steepest ascent.

64

With basic heuristics, Simple and Steepest-Ascent Hill Climbing are

easy to implement and efficient for smaller problems. However,

they might not be able to solve a problem. When the program

reaches a state where no better states can be produced, either

algorithm could terminate without discovering a goal state. This will

occur when the program reaches a local maximum, plateau, or ridge.

We will try to understand these terms in the next section.

Check Your Progress

1) State True of False

a. Any problem with a well-defined goal can use Generate and Test

strategy.

b. Hill climbing technique is very hard to implement and takes a lot

of computation time.

c. Heuristic search is an artificial intelligence technique that uses

domain-specific knowledge to solve complex search issues

effectively.

3.5.2.1 Local Maximum, Plateau, and Ridge

Local Maximum: In the search space, a local maximum is a

position where the present solution is better than all its nearby

neighbors, but it is not the best option (the global maximum). This is

a typical issue with search algorithms, particularly with Hill

Climbing and related methods. We faced a similar problem while

using Hill Climbing with simple heuristics. Fig.3.7 illustrates the

local maximum vs global maximum. When a local maximum

occurs, the search process stops before finding the best answer. The

solution that was discovered might not be the most optimal one.

65

Fig. 3.7 Local Maximum vs Global Maximum [3]

Plateau: A plateau is a flat area in the search space where the

heuristic function has the same value for a set of surrounding states.

When an algorithm reaches a plateau, all steps seem equally

excellent (or equally terrible), making it impossible to tell which

path will improve. When a plateau emerges, the algorithm is unable

to decide how to proceed; it may wander aimlessly on the plateau or

come to a complete halt, failing to locate its goal.

Ridge: Ridge represents a special kind of local maxima. It is a

section of the search space that has a slope and is higher than the

surrounding areas. However, it is not possible to cross a ridge with a

single move due to the high region's orientation in regards to the set

of moves that are available and the direction in which they move.

The algorithm could waste time looking in other parts of the search

space.

66

3.5.2.2 Dealing with Local Maximum, Plateau, and
Ridge

In this section, we will discuss some strategies for dealing with

these problems. However, in most situations, these strategies do not

ensure success.

● Backtrack: Backtracking is a systematic process that

involves moving back to the previous state and iteratively

trying other alternative paths in the search space that may be

equally promising. Backtracking can be helpful since it

enables the search to reverse actions and investigate several

routes that could ultimately lead to the global maximum.

Backtracking works best with local maximum, preventing it

from getting trapped in a dead end.

● Jumping: An effective strategy to deal with the problem of

plateau is to take a big jump to a new section of the search

space. Apply the available rules repeatedly in the same

direction if they only describe single steps.

● Applying more rules: To address the ridge problem, we can

apply two or more rules before testing. As movement takes

place in more than one direction at once, this prevents the

algorithm from wandering down a less promising path.

Check Your Progress

2) Fill in the blanks

a) __________works best with local maximum, preventing it from

getting trapped in a dead end.

b) _____________represents a special kind of local maxima.

c) A plateau is a flat area in the search space where the_______ has

the same value for a set of surrounding states

67

3.5.2 Simulated Annealing

Simulated Annealing is a variation of hill climbing. It is a

probabilistic search technique inspired by the annealing process in

metallurgy, which involves heating and then cooling materials

gradually to develop a crystalline structure with the least amount of

energy. To get around obstacles like local maxima or plateaus,

simulated annealing is used to explore the solution space and obtain

an approximate global optimum in search problems.

Throughout this section, we make two notational adjustments to

conform to the standard usage in discussions of simulated annealing.

The phrase "heuristic function" is substituted with "objective

function." Additionally, we minimize the objective function's value

rather than maximize it. Therefore, instead of a hill-climbing

process, we describe a valley-descending process. Before further

exploring the algorithm, a few key terms need to be introduced.

They are temperature, energy, cooling schedule, and acceptable

probability.

This simulated annealing process mimics the physical process of

annealing, where the temperature regulates the likelihood of

accepting worse solutions to break out of local maximum.

Energy indicates a solution's quality, often derived from an

objective function (minimization problems benefit from reduced

energy).

Following a cooling schedule, the temperature begins high and

progressively drops. The speed at which the algorithm moves from

state to state depends on the cooling schedule.

Simulated annealing allows movement to worse solutions with a

probability 𝑃 based on the temperature and the difference in energy: 𝑃 = 𝑒ି∆ா்

68

Where, ∆𝐸 is the change in energy (𝐸௪ − 𝐸௨௧) and 𝑇 is the

current temperature.

Exploration is encouraged by higher temperatures since they make it

more likely to accept worse options.

Algorithm: Simulated Annealing

1. Evaluate the initial state. If it is also the goal state, then

return it and quit. Otherwise, continue with the initial state as

the current state.

2. Initialize BEST-SO-FAR to the current state.

3. Initialize T according to the annealing schedule.

4. Loop until a solution is found or until there are no new

operators left to be applied in the current state.

a. Select an operator that has not yet been applied to the

current state and apply it to produce a new state.

b. Evaluate the new state. Compute ∆𝐸 = (𝐸𝑛𝑒𝑤 − 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

● If the new state is a goal state, then return it

and quit.

● If it is not a goal state but is better than the

current state, then make it the current state.

Also, set BEST-SO-FAR to the new state.

● If it is not better than the current state, then

make it the current state with probability 𝑃 =𝑒ష∆ಶ .
c. Revise T as necessary according to the annealing

schedule.

5. Return BEST-SO-FAR as the answer.

69

For the algorithm to be successfully implemented, the initial

temperature, cooling schedule, and termination condition must be

selected.

Stop to Consider

By simulating the annealing process and striking a balance between

exploration and exploitation, simulated annealing can uncover near-

optimal solutions when local optima causes traditional methods to

fail.

3.6 BEST-FIRST SEARCH

In the previous unit, we explored uninformed search techniques

such as breadth-first search and depth-first search. We also realized

that a breadth-first search has the advantage of never getting trapped

in a blind alley. In contrast, a depth-first search is more memory

efficient as it can find an optimal solution without exploring all

paths. In the Best-first search, we combine the advantages of both

these search techniques.

Best-first search is an informed search technique using a heuristic

function to determine the most promising state generated so far. It

explores the promising path while remembering the other

unexplored states generated earlier. It then generates its successors

to see if it is the goal state. If it is not the goal state, the generated

states are added to the list of unexplored states. The most promising

state is selected among the unexplored states. This results in

exploring the promising path using depth-first search, and if the path

looks less promising in the later state, it has the option of selecting a

less promising path that was ignored earlier. This contrasts with the

steepest hill climbing algorithm discussed in the previous section,

70

where it explores the most promising path and ignores the other less

promising one.

We can understand the Best-first search with the following example.

Let A be the initial state. In the beginning, A is in the list of

unexplored states. It checks if A is the goal state. Since A is not the

goal state, it generates its successors B, C, and D. The Heuristic

function used in the example is the estimated cost from the node to

the goal state. The lower value of the heuristic function gives the

most promising state. The goal state has a heuristic value of 0

(Zero). As D has the lowest heuristic value, i.e., the lowest

estimated cost to reach the goal state, it is selected and expanded. At

this stage, another path from B looks more promising. Therefore, the

B is expanded to generate G and H. After step 4, E looks promising

and expanded to produce I and J. J is the goal state, so the algorithm

terminates and returns the path A -> D -> E -> J.

Fig. 3.8 Best-first search

In the above example, we have seen the working of the best-first

search algorithm for a search tree. However, the same can be used to

71

search a directed graph when some nodes appear in multiple paths.

To implement a graph search, we need to maintain two lists:

● OPEN list: This list contains all the nodes that have been

generated, and the heuristic function is applied but not

explored yet. OPEN list is a priority queue where more

priority is assigned to the node, which is more promising

than the other.

● CLOSED list. This list contains all the nodes that have

already been examined. It prevents previously examined

nodes from being revisited or expanded, which aids in

effectively managing the search.

Algorithm: Best-First Search

1. Start with the initial state and add it to the OPEN list.

2. Continue until the goal is found or no nodes are left in the

OPEN.

a. Remove the node with the lowest heuristic value

from OPEN.

b. If it is the goal, terminate the search and return the

path.

c. If it is not the goal, generate all successor nodes of

the current node and add them to the OPEN list after

evaluating its heuristic values.

In the following example, we are given a simplified Romania road

map (Fig.3.9). Our goal is to reach the city of Bucharest, provided

that we are in the town of Arad. The available route and the actual

distances between the cities are also shown on the map. We refer to

this distance as 𝑔(𝑛). It is the exact distance from the starting town

to the current one.

72

Fig. 3.9 Simplified road map of Romania [2]

Our heuristic function for the route-finding problem is the straight-

line distance from the city to the goal state (Bucharest). We refer to

it as ℎ′(𝑛). This can be easily calculated using the coordinates of the

cities. To keep it simple, we avoid any mathematical calculation and

use the heuristic values given in Fig. 3.10. The function 𝑓′(𝑛) used

in the Best-first algorithm uses only the heuristic function 𝑓′(𝑛) = ℎ′(𝑛).

The algorithm starts by expanding Arad (Fig 3.11(a)). Sibiu was

selected for expansion as being the most promising of the three

(Fig.3.11(b)). The next promising node is Fagaras, which, on

expanding, reaches Bucharest, the goal state.

Fig. 3.10 Straight-line distance to Bucharest [2].

73

Fig 3.11 Steps of Best-First Search on Route-finding Problem.

In the example, it is working like a depth-first search. Therefore,

like the depth-first search, it is incomplete. It might get caught in a

dead end. Performance is highly dependent on the quality of the

heuristic function. Because of the greedy nature, it does not produce

an optimal path either, as we will explore in a later example, that a

shorter path does exist.

74

Stop to Consider

Some characteristics of the Best-First Search are:

1. Its performance is heavily influenced by the heuristic function

used.

2. It is incomplete.

3. It is not optimal.

3.7 A* ALGORITHM

A* search, pronounced "A-star search," is the most popular type of

best-first search. It assesses nodes by adding the costs of getting to

the node (𝑔(𝑛)) and the heuristic function (ℎ′(𝑛)). As discussed

earlier, 𝑔(𝑛) this is the exact (actual) cost from the starting node to

the node 𝑛 and ℎ′(𝑛): the estimated cost from the node 𝑛 to the goal

state. Therefore, the combined function 𝑓′(𝑛) = 𝑔(𝑛) + ℎ′(𝑛).

A* always provides an optimal solution, and it is complete. The

algorithm is presented below:

Algorithm: A* Search

1. Start with the initial state and add it to the OPEN list

 𝑓′(𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑛𝑜𝑑𝑒) = 𝑔(𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑛𝑜𝑑𝑒) + ℎ′(𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑛𝑜𝑑𝑒). The CLOSED list is empty.

2. Continue until the goal is found or no nodes are left in the

OPEN.

a. Select the node with the lowest 𝑓′(𝑛) from the OPEN

list.

b. If the selected node is the goal, return the path and

terminate.

c. If it is not the goal, generate all successor nodes of

the current node

d. For each successor,

75

i. Evaluate the 𝑓′(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟) = 𝑔(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟) + ℎ′(𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟).

ii. If the successor is not in the OPEN or

CLOSED list, add it to the OPEN list.

iii. If the successor is already in the OPEN list

with a higher 𝑓′-value, update its cost and

parent.

3. Remove the expanded node from the OPEN list and place it

in the CLOSED list.

We will demonstrate the use of A* search on our route-finding

problem (Fig.3.9). We will calculate 𝑔(𝑛) from the exact distance

given in the figure. The steps of the algorithm are presented in Fig.

3.12. We begin with the initial state, i.e., Arad 𝑓′(𝑛) = 0 + 366 =366 . After evaluating Arad, it is expanded and is moved to the

CLOSED list. Expanding Arad, Sibiu has been selected as it is the

most promising one and evaluated. Since it is not the goal state, its

successors are generated. All successor nodes are added to the

OPEN list.

76

Fig. 3.12 Steps of A* search algorithm on the route-finding

problem.

77

Rimnicu Vilcea, which is the most promising node in the OPEN list,

has been selected for evaluation and expanded. However, Fagaras is

the most promising node on the OPEN list and has been selected for

evaluation. It should be noted that Bucharest, the goal node, has

already been generated but has not been selected for evaluation, as

Pitesti looks more promising. After expanding Pitesti, Bucharest is

the most promising node and is selected for evaluation. On

evaluation, it is discovered that it is the goal node, and the algorithm

returns the path and terminates.

Combining the benefits of informed and uninformed searches, A* is

one of the most influential and popular search techniques. It is a

preferred option for resolving various issues due to its completeness

and optimality.

Stop to Consider

A* search is the most common kind of best-first search. It evaluates

nodes by adding the heuristic function (h'(n)) and the costs of

traveling to the node (g(n)) , thus f'(n) = g(n) + h'(n).

3.8 PROBLEM REDUCTION

Search problems we have handled so far are represented using OR

graphs. In an OR graph, we must find a single path from the initial

to the goal state. However, for problems of decomposable nature,

where a significant complex problem is decomposed into many

more minor problems, we must solve each of these smaller problems

simultaneously. These kinds of problems are represented using an

AND-OR graph.

78

3.8.1 OR Graph versus AND-OR Graph

Artificial intelligence search problems can be represented by OR

graphs or AND-OR graphs, depending on whether a solution

addresses several subproblems simultaneously (AND) or only one

subproblem (OR). An OR graph shows problems for which any one

of the graph's branches can be satisfied to provide a solution.

Finding a single path from the start node to a destination node is

necessary to solve the graph. This was the case in our route-finding

problem discussed earlier. There are several routes from Arad to

Bucharest. If the optimality of the route is not a concern, then any of

these routes will solve the problem.

When complex problems are decomposed or reduced to simpler

ones, it is necessary to solve each of these problems simultaneously.

Since these problems must be solved simultaneously, arcs are

generated called AND arcs. Specific nodes need AND conditions to

be met, which means that every branch that emerges from the node

must result in a solution. Only one branch (OR condition) may need

to be solved for other nodes. Therefore, such graphs are called

AND-OR graphs. An example in Fig. 3.13 represents an AND-OR

graph.

Fig.3.13 An example of an AND-OR graph

Solving an AND-OR graph problem can be solved using algorithms

like best-first search that can handle the AND arcs. Martelli and

Montanari described an algorithm called the AO* algorithm to deal

79

with AND arcs. A simplified version of this algorithm is presented

below:

Algorithm: Problem Reduction

1. Start with the initial node and set its heuristic value 𝑓′(𝑠𝑡𝑎𝑟𝑡).

2. Loop until the starting node is labeled SOLVED or until its

cost goes above FUTILITY.

a. Traverse the graph, starting with the initial state, and

choose the most promising unexpanded node not

labeled SOLVED.

b. Expand the chosen node. If there is no successor,

assign FUTILITY as the value of this node.

Otherwise, add the successors to the graph and

compute 𝑓′ for each node. Label the node as solved if

the 𝑓′ = 0.
c. Update the parent nodes' costs recursively to reflect

the new information provided by the successors. If

any node contains a successor arc whose descendants

are all SOLVED, label the node itself as SOLVED.

Also update the current best path.

The process is illustrated in Fig. 3.14. Note that an assumption is

made that every operation has a uniform cost, so each arc with a

single successor has a cost of 1, and each AND arc with multiple

successors has a cost of 1 for each of its components. In step 1, A is

the only node. When node A is expanded, it yields B, C, and D.

Node B is labeled as the most promising with a cost of 5 (4+1)

compared to the combined cost of C and D, which is 7 (2+3+1+1).

Two new nodes, E and F, are generated on expanding B. Since the

new costs of E and F are higher, the algorithm needs to update 𝑓′
for the latest updated value. Since going through E is cheaper than

80

F, therefore the updated cost of B is 7. Similarly, the cost of A

through B is updated to 8. At this time, the path through C and D

looks more promising. New nodes G, H, and I (AND arc between H

& I) are generated on expanding C. No cost updation takes place

here. Importantly, nodes H and I are the terminal nodes or the goal

nodes therefore, they are marked as SOLVED. Moreover, its parent

node B is also marked as SOLVED. After expanding D, node J is

generated. The new costs of nodes D and A are updated. Node J,

also a terminal node, is marked SOLVED along with its parent D.

Since C and D are both marked as SOLVED, the parent A can now

be marked as SOLVED. As the initial node is marked as SOLVED,

the algorithm terminates.

Fig 3.13 Steps of Problem Reduction.

It is ideal for issues that must be solved as subproblems

simultaneously, as it effectively directs the search toward the

optimal answers. Problem-reduction algorithms are heuristic-

dependent and the space and time complexity of managing and

storing AND-OR is expensive.

81

An AND-OR graph problem can be solved using a problem

reduction algorithm that can handle the AND arcs.

3.9 SUMMING UP

In this unit, we have,

● We saw the difference between informed and uninformed

search techniques.

● Uninformed search technique like Generate-and-test is

discussed in detailed.

● The generate-and-test algorithm is similar to a depth-first

search with backtracking because a complete solution must

be generated before it can be tested.

● We also explored different variations of the Hill Climbing

algorithms such as Simple hill climbing. Steepest-ascent hill

climbing and simulated annealing move toward the direction

of the goal based on a heuristic.

● Best-first search is an informed search technique using a

heuristic function to determine the most promising state

generated while remembering the other unexplored states

generated earlier

● A∗ search is the most common kind of best-first search. It

evaluates nodes by adding the heuristic function (h'(n)) and

the costs of traveling to the node (g(n)), thus f'(n) = g(n) +

h'(n).

● An AND-OR graph problem can be solved using a problem

reduction algorithm that can handle the AND arcs.

82

3.10 ANSWERS TO CHECK YOUR PROGRESS

1. a) True b) False c) True

2. a) Backtracking b) Ridge c) Heuristic function

3.11 POSSIBLE QUESTIONS

1. Write down the algorithm for Simple Hill Climbing.

2. Write down the algorithm for Steepest Ascent Hill Climbing.
3. Compare Basic with Steepest Ascent Hill Climbing.

4. How will you mitigate the problem of Local Maximum, plateau,

or Ridge in a Hill climbing algorithm?

5. What is simulated annealing?

6.Explain the Best First Search with an example.

7. Explain A* algorithm with an example.

8. What do you mean by Problem Reduction?

3.12 REFERENCES AND SUGGESTED READINGS

1. Elaine Rich, Kevin Knight, & Shivashankar B Nair,

Artificial Intelligence, McGraw Hill, 3rd ed., 2009

2. Stuart J. Russell and Peter Norvig, Artificial Intelligence: A

Modern Approach, Third Edition, Pearson, 2016

3. Zachary Kaplan, CC BY-SA 4.0

<https://creativecommons.org/licenses/by-sa/4.0>, via

Wikimedia Commons

83

BLOCK- II
KNOWLEDGE REPRESENTATION

AND
PREDICATE CALCULUS

UNIT 1: KNOWLEDGE REPRESENTATION AND
MAPPING

UNIT 2: THE PREDICATE CALCULUS-I

UNIT 3: THE PREDICATE CALCULUS-II

UNIT 4: KNOWLEDGE REPRESENTATION
USING RULES-I

UNIT 5: KNOWLEDGE REPRESENTATION
USING RULES-II

84

UNIT 1: CONCEPTS IN KNOWLEDGE
REPRESENTATION

Unit Structure:
1.1 Introduction

1.2 Unit Objective

1.3 Definition and Importance of Knowledge

1.4 Issues in Knowledge Representation

1.5 Knowledge Based Systems

1.6 Knowledge Representation and Mappings

1.7 Knowledge Manipulation

1.8 Approaches to Knowledge Representation

 1.8.1 Simple Relational Knowledge

 1.8.2 Inheritable Knowledge

 1.8.3 Inferential Knowledge

 1.8.4 Procedural Knowledge

1.9 Summing Up

1.10 Answers to Check Your Progress

1.11 Possible Questions

1.12 References and Suggested Readings

1.1 INTRODUCTION

Role of knowledge is very important in all AI systems. Up until now,

in the previous chapters, we have paid little focus on knowledge

representation issues and various techniques to manipulate that

knowledge. In this chapter, we shall examine some specific

knowledge representation techniques that can be implemented for

retrieving and manipulating knowledge. These methods or techniques

must be sufficiently general enough to be used in any kind of problem

domain without any reference to how the knowledge the problem

85

needs is to be acquired. We shall also look at some ways of

representing knowledge which facilitate more problem-solving

capabilities. In this chapter, we shall examine various techniques that

can be used for manipulating knowledge within programs.

1.2 UNIT OBJECTIVE

After going through this unit, you will be able to:

 know the definition and importance of knowledge.

 understand various issues related to knowledge

representation.

 have an idea of knowledge based systems and their properties.

 have knowledge about facts and representations and their

mappings.

 have ideas on knowledge manipulation systems.

 have an idea about simple relational model.

 know how property inheritance technique is implemented and

manipulated.

 have an idea about inferential knowledge.

 know about procedural knowledge.

1.3 DEFINITION AND IMPORTANCE OF
KNOWLEDGE

Human beings are embodied with the act of knowing which is formed

by facts and principles. But sometimes, this is not the adequate

definition of Knowledge. Knowledge is much more than this. Any

fact or concept is worthless without the ability of acquiring

knowledge. It is closely associated with intelligence. In order to

perform any task that requires intelligence also needs access to

knowledge. Thus, it can be concluded that “Intelligence requires

86

knowledge”. In computers, knowledge is stored as symbolic

structures, in the form of magnetic spots and voltage levels.

Knowledge can be defined as the act, fact and skill of knowing. It

refers to the information and facts that an AI system uses to interpret,

understand, and make decisions about the world. It is the foundation

upon which AI models are built with reasoning, learning, and

problem-solving capabilities. Knowledge can be concluded as the

information, facts, rules, concepts and relationships that an AI system

uses to perform tasks, make decisions, or solve problems.

A common way to represent knowledge is in the form of written

language, like English. For e.g., the facts and relations cited as below-

Emma is beautiful.

James loves his mother.

The first one is a simple fact which expresses an attribute possessed

by a girl named Emma that she is beautiful. The second fact

represents a binary relation between a boy names James and his

mother. Knowledge may be considered as either declarative or

procedural. A declarative knowledge is the passive knowledge

expressed as facts. In this kind of knowledge representation system,

the knowledge is specified. But to use that knowledge, we must

append it with a program that specifies what is to be done and how.

For e.g., the employee’s data stored in a database. Such kinds of data

are the independent pieces of knowledge. In order to do something

with this data, we need to write codes which access and manipulate

them finally to give something which we desire for. Declarative

knowledge also includes knowledge about the world that can be

inferred through facts or relationships. On the other hand, in

procedural knowledge, the control structure needed to use the

knowledge is embedded into the program itself. Such kind of

knowledge is the compiled knowledge. For e.g., the steps to be

87

followed in order to solve an algebraic equation can be expressed as

procedural knowledge. Another might be the diagnosis of disease

based on the symptoms.

Knowledge and data are two completely different concepts. For

instance, we can take an example of a physician who treats the

patients with both data and knowledge. The data is the record of the

patient which may include the patient’s history, drugs prescribed and

the responses to drugs etc, whereas the knowledge is what the

physician has learnt during his studies in the medical college and in

his internship period, specialization or practice. In the game of tic-

tac-toe, we have knowledge about the game and the valid move on a

particular position. The current position forms data input to the game.

Using the knowledge of the game, we can make valid move on each

position in order to attain the winning state. Therefore, knowledge

requires utilization of both data and information. Knowledge in

broader sense can be defined as the belief which has its own

justification. It is the foundation of learning, thinking, understanding,

manipulating and reasoning. The AI systems respond, interpret and

understand inputs in an intelligent way.

Knowledge has got its own meaning and importance in the field of

AI. Knowledge is important from the fact that, it is possible to

incorporate it into the software that can reason and draw conclusions.

AI systems use this knowledge to solve problems, recognize patterns,

make predictions, and even engage in complex reasoning activities.

We can imagine of some kind of software which can give advice in

specialized areas, such as manufacturing techniques, defence

mechanism, marketing sectors, financial strategies, medical diagnosis

etc.

To build such systems which show intelligence requires vast amount

of knowledge to be stored. Artificial Intelligence (AI) focuses on

creating systems that can perform tasks that typically require human

88

intelligence. It is divided into several subfields, including machine

learning (ML), deep learning (DL), machine translation, natural

language processing (NLP), computer vision, robotics, and expert

systems.

Check Your Progress-1
1. Do you think that the data stored in a database is a declarative one?

2. Knowledge can be defined as the true _____________ belief.

1.4 ISSUES IN KNOWLEDGE REPRESENTATION

Knowledge representation (KR) in artificial intelligence (AI) plays a

crucial role in designing methods to represent and manipulate

information about the world. Such representations are processed by

machines. However, building AI systems involve several associated

challenges and issues. These issues exist in almost all knowledge

representation formalisms. Some are discussed below-

 In any problem domain, facts play a very important role. Each

problem can be subdivided into some basic level modules. The

more basic level we break the problem, solution becomes easier.

Each such module can be represented in terms of objects. These

objects are associated with attributes. We might have some

situation when some attributes fit in almost every problem

domain. If yes, they must be handled appropriately in each of the

techniques we propose. There are actually two such kinds of

important attributes which have general significance- instance

and isa. These attributes are important from the perspective that

they facilitate property inheritance. Instance and isa represent

class membership and class inclusion respectively. In logic-

based systems, these relationships may be represented by a set of

predicates.

89

 Another important issue associated with representation of

knowledge is relationships among objects. These attributes are

used to describe the objects and they possess four major

properties irrespective of the specific knowledge they encode.

They are-

 Property of Inverses

 A hierarchical structure exhibiting an isa attribute

 Techniques for inferring knowledge according to values

 Attributes that may contain single value.

 A very important aspect of knowledge representation is to break

knowledge into basic primitive level. We always split a complex

problem into simple operations. The major advantage of this

approach is that such simple primitives represent rules that derive

inferences. In order to illustrate this problem, let us consider a

simple fact:

 John had a glass of water.

This could be represented as –

had (agent (John), object (water))

Such type of representation is sufficient to answer the questions such

as “Who had a glass of water?” The answer is obviously John. But if

the question is asked like “Did John drink a glass of water?”, then

also the answer is “yes”. But we must have an inference rule which

says that both having a glass of water and drinking are indifferent.

Therefore, in this case, the inference rule would be

 had (x, y) -> drank (x, y)

This rule states that if x had y; means x drank y.

Such type of inference will of course give the appropriate answer.

A serious drawback of this approach might be the additional storage

space required to store such rules. A simple fact may require more

90

storage when it is splitted into its constituent primitive assertions. As

well as, substantial amount of work has to be done on reducing those

high level propositions into low level primitives.

There are several reasons behind the importance of representing sets

of objects. One reason for doing this is that there are some properties

which are possessed by the whole set of objects but not exhibited by

the individual elements of the set. For instance, consider the assertion

“Eskimos live in the South Pole”. The only way to represent the fact

described in this sentence is to attach assertions being made about the

set of Eskimos; that they live in the South Pole. This may not be true

for individual member of the set; for e.g., No Eskimos live in the

South Pole. The other reason for the importance of representing sets

of objects is that if a property is true for individual members of the

set, then it is more efficient to attach it with the set itself rather than

to associate with individual members of the set. There are various

ways in which sets must be represented. This may include logical

formalisms and slot-and-filler structure.

Suppose, a database containing a large amount of knowledge is

provided. Now, it is important to understand that to fulfil our task, we

do not require everything stored in the database. Rather, we might

need only some part of the same. Now, how can we access those

relevant parts? To elaborate this, let us consider the following

shopping script which describes the sequence of events that might

take place in a typical shop.

Tom went to the market for shopping yesterday. He searched

for a suit for his brother. He found a black one. He really liked

it. So, he paid the bill and took it home. And the answer is

“yes” to the question “Did Tom buy a black suit yesterday?”

91

However, the point to be noted here is that there is nowhere

mentioned explicitly that Tom had bought anything, though it is

mentioned that Tom went for shopping. But going to the market,

searching for something which is really required, paying the bill and

taking it home means the person had really shopped something.

Therefore, we need to know the shopping script to be able to answer

such kind of direct questions. But in order to be able to reason a

variety of questions, number of scripts need to be used. These scripts

must be so basic that it must be able to give variety of information

about an event. The appropriate script which provides the best

responses be utilized according to the question being asked. Such

approach enhances the knowledge base of a system.

Check Your Progress-2
3. The two common attributes which can occur in almost all domains are

_________ and _________.

4. Instance means _______

5. Isa means __________

6. Who are the agent and object of the following fact?
“He drinks a cup of coffee”.

1.5 KNOWLEDGE BASED SYSTEMS

In the early days of AI research, it was realized that the general

purpose problem solving systems were weak to solve more complex

problems. This is because; they used a limited number of rules or

axioms, which were not very much effective in inferring more

information. Eventually this has led to the design and development

knowledge based systems that can perform complex tasks on a rich

knowledge based systems. Much of the works have been done on

92

knowledge-based systems, including works in learning, vision or

natural language processing. More emphasis has been provided on

research related to knowledge representation techniques, memory

organization and knowledge manipulation. Knowledge based systems

get their power from the knowledge representation formalisms coded

into facts, rules and procedures etc. It is a system that uses knowledge

and reasoning to solve complex problems typically requiring human

expertise. It relies on a knowledge base (KB) and inference

mechanisms to derive conclusions or provide solutions by using the

rules which define how facts relate with each other in order to derive

more new knowledge or new decisions. In addition, it also makes

possible to append new knowledge or refine existing knowledge

without recompiling the inferencing programs. The core of a good

knowledge representation system is the repository of facts that

represent knowledge about a domain. This in turn greatly simplifies

the construction and maintenance of the knowledge-based systems.

A good knowledge representation system in a particular domain

should possess the following four properties:

a) It should possess the ability to represent all kinds of knowledge

that are needed in a particular domain. In other words the domain

should contain adequate information to define the system. The more

information the system incorporates, the system would have more

inference capability as well as more decision making ability to draw

new conclusions.

b) A good knowledge based system should be able manipulate the

knowledge base. The manipulation should occur in such a way that

new structures corresponding to new knowledge can be derived from

old. It is also regarded as the inference procedure which contains the

adequate information to derive knowledge.

93

c) The knowledge about a domain is very important in creating an

intelligent system. We already have discussed that if the core of the

system is rich; definitely the system is going to perform better.

Integration of more facts into the knowledge structure is referred to

as additional information and they can be used to direct the focus of

the inference technique towards the most fruitful direction. In other

words, this property makes the inference mechanism more efficient.

d) The system should represent the ability to acquire new information

easily. As the inference engine derives new knowledge, they may be

appended into the core of the system. The simplest case may be the

direct insertion of records into a relational database. This enriches the

knowledge base of the system; which eventually leads to more

efficient inference mechanism.

However, there are some challenges that a knowledge based system

always faces. It is not that easy to incorporate human expertise into a

knowledge based system. In order to behave intelligently, the system

must be able to encode knowledge into a system. It is really a tedious

job to perform. When the core of the system grows or the system

scales to hold more knowledge, it becomes complex to manage the

system as well as the efficiency of the system degrades. Eventually,

this leads to the issue of maintainability. Keeping the system well

maintained with the incorporation of new knowledge as well as with

the conflicts that arise during knowledge acquisition is really a matter

of concern.

1.6 KNOWLEDGE REPRESENTATION AND
MAPPINGS

Knowledge is important from the fact that it is essential for showing

intelligent behaviour. It can be represented in various forms, such as

spoken or written words, as graphics or pictures, as string of

94

characters or collection of words stored in computers etc. These may

be defined as facts, rules or concepts. The representations we are

concerned here is on the study of written languages only.

Knowledge Representation (KR) is a field of computer science that

deals with how knowledge can be represented in a formal system.

Such representation is important from the perspective that the

computer system must be able to understand and reason the

knowledge and make decisions based on the information stored.

In order to solve many AI problems, one should possess a large

amount of knowledge and some inference mechanisms for

manipulating that knowledge. There are a variety of ways for

representing and manipulating knowledge so that machines can

understand them. But before we discuss about them, we must have

some idea about the following entities-

 Facts – Facts are the things that are needed to be represented.

Facts represent the true knowledge about the world. The

concepts of real-world domain can be defined by the facts. For

e.g., the sentence “Man is mortal” can be considered as a fact.

 Representations of facts in some specific formal way. We will

only be able to manipulate the facts only after their

representations in the corresponding chosen way. We already

have mentioned that knowledge about any domain must be

represented in the most basic level. This enables the inference

engine to have the capability to derive more new knowledge.

There are some formalisms in which such knowledge must be

represented: logical propositions like the propositional and

predicate logic, semantic networks, frames and rule-based

representation.

95

1. Logical Representation:

 Propositional Logic: Represents facts in the form of

sentences or propositions. It is the simplest way of

representing facts. Let us assume a simple fact “John is a

student”. The logical proposition for the same would be

STUDENTJOHN. Similarly, the corresponding propositional

logic representation of the fact “Joe is a student” would be

STUDENTJOE. These are simple and very basic means of

representing knowledge and cannot be extensively used to

represent all kinds of knowledge.

 Predicate Logic: A more expressive form of logic is the

predicate logic. It tries to overcome the limitations of

propositional logic. It allows for more detailed relationships

and structures, including variables, functions, and quantifiers.

It’s used to express statements like "Man is mortal" (∀x:

Man(x) → Mortal(x)).

2. Semantic Networks:

 A semantic network is an interconnection of different

network nodes. Each node of the network is connected by

edges. Nodes represent the concepts or attributes of the

objects. Edges represent the relationships among the

attributes. For example, "Bird" might be connected to "Has

wings" or "Can fly." This approach helps in understanding

and visually mapping knowledge.

3. Frames:

 Frames are data structures that represent an object or a

concept of the real world. These are similar to object-oriented

programming, where each frame represents the object or

concept, and it includes both attributes and actions. For

96

example, a "Car" frame might have attributes like color,

engine type, engine number, chassis number and model.

4. Rule-Based Representation:

 Knowledge can also be represented as a set of rules (if-then

statements). It is mainly used in expert systems and decision-

making systems. For instance, "If it rains, I shall not go out."

Rule-based systems are often used in expert systems and

decision-making systems.

There are two levels in which facts and their corresponding

representations must be described-

 At knowledge level, only the facts about a domain must be

declared. Insertion of more facts at this level corresponds to

enriching the knowledge base.

 At symbol level, the objects gathered from the knowledge

level can be manipulated by programs. At this level, objects

are defined in terms of symbols. The program manipulates

them in order to produce the target representation.

The mapping between facts and their representations in a particular

language is shown in Figure 1:

Fig 1: Mapping between facts and representations

Source: Artificial Intelligence by Elaine Rich and Kevin Knight

Facts

Intermediate Representation

Target Representation

97

There is a two way communication between facts and their

representations- from facts to their representations known as the

forward representation mapping and from representations to facts

which we call the backward representation mapping. We call these

communication links the representation mappings.

But, there is no direct correspondence between facts and their target

representation. Rather, there is an intermediate step which lies

between the two. In forward representation mapping, facts are

converted into an intermediate representation before the target code

is attained. Similarly, in the reverse process, the target representation

is again converted into some intermediate form before facts can be

attained.

One common representation of facts that needs to be mentioned here

specially is the natural language sentences. Here we need to be

concerned not only with the representation of facts but also getting

information out of those facts. This requires a mapping function from

the given facts into their corresponding representations and from the

representations back to the facts.

Let us consider an example of simple English sentence-

Bob is a man.

The fact can be represented by means of logic as-

man(Bob)

Suppose, we have the following logical representation of the fact that

“All men are mortal”- ∀x : man(x) -> mortal(x)

The two above representations may be used to infer the new

knowledge as follows-

mortal(Bob)

98

Using the backward representation mapping, we will be able to

generate the following fact for the above proposition-

Bob is mortal.

It is important to keep in mind that some mapping functions are not

always one-to-one. There may exist more than one representation for

some facts in a particular domain. For e.g., the sentence “Her friends

called her a doctor” may represent either the fact that- her friends used

to call her ‘a doctor’ or the fact that- “her friends called a doctor for

her”. While trying to convert the English sentences into some other

formalism such as logical propositions, it should be kept in mind the

facts the sentences are going to represent and then convert them into

the new structure. An AI program is provided with the internal

representations of facts that it manipulates.

A knowledge base can be described as a mapping between the objects

and relations in a problem domain. The computational objects, their

relations and the inference rules are mediated by the knowledge

representation languages. This may include languages like PROLOG,

LISP or languages like C++, JAVA etc.

Check Your Progress3
7. Convert the following facts into logical propositions and try to infer

if a new knowledge could be generated from them.

a) John is a man.

b) All men are persons

1.7 KNOWLEDGE MANIPULATION

Manipulations are the computational aspects of reasoning. Decisions

and actions in knowledge based systems are specified by the way

knowledge is manipulated. The search for a goal is initiated by some

99

forms of input. The process of decision making may set up other sub

goals or may require further inputs until a final solution is found. A

form of inference or deduction integrating the knowledge and

inferring rules is a necessary component of knowledge manipulation.

The two operations, searching and matching are integral to all forms

of reasoning. These two operations are known to consume the greatest

amount of computational time in most AI systems. That is why; we

must have techniques to limit the amount of search and matching

necessary for efficient completion of a knowledge production task.

1.8 APPROACHES TO KNOWLEDGE
REPRESENTATION

In section 1.5, we had a discussion on various properties that a good

knowledge representation system must possess. Unfortunately, no

such single system has yet been developed which could incorporate

all these capabilities. This results in developing multiple techniques

for the representation and manipulation of knowledge. In this section,

we shall discuss some important techniques for the representation of

knowledge.

1.8.1 Simple Relational Knowledge

One of the simplest way to represent knowledge is as a set of

relations, same as the one used in database systems. Figure 2 shows

an example of such a relational system.

Player Name Age Weight Height Bats

Nicholas 28 75 5-9 Left handed

Williams 26 70 5-8 Right handed

Robinson 29 68 5-6 Right handed

Fig 2: Example of a Relational System

100

This is a simple representation and it can provide very weak

knowledge inference capability. If the weight of Nicholas is asked

for, then definitely the reply can be provided, given the facts of the

above figure. However, it is not possible to get the direct answer to a

very simple question, “Who is the oldest player?” However, it should

be mentioned here that such kind of knowledge can provide the inputs

to many powerful inference engines. If a procedure is written to find

the oldest player, the given facts will definitely enable the procedure

to work and derive the record of the oldest player.

Database systems are designed to provide support for relational

knowledge. However, there are some consequences that may arise

from linking a database system in order to provide some other

capabilities which need to be discussed in the next section.

1.8.2 Inheritable knowledge:

The relational knowledge discussed in the last section consists of a

set of attributes and their associated values. This as a whole describes

the objects of the knowledge base and they are simple. We can make

the system more effective if we augment this basic representation

with inference mechanisms that operate on the structure. The

structure must be designed to correspond to inference mechanisms

and one of such useful forms of inference is the property inheritance

technique, in which elements of specific classes can inherit properties

from more general classes.

In this kind of knowledge representation system, objects must be

organized into classes and classes must be organized into a hierarchy.

Figure 3 shows the structure of a baseball player augmented with

some additional knowledge. Lines represent attributes. Boxed nodes

represent objects and values of attributes of objects. The arrows use

to point from an object to its value along the corresponding attribute

101

line. Such structure is called the slot-and-filler structure. It may also

be called as semantic network or the collection of frames.

Fig 3: Structure of a baseball player augmented with some

additional knowledge.

Each frame represents the collection of attributes and the values

associated with a particular node. Frame system is the term which is

more structured and inference mechanisms can be applied on them.

Now let us see how such type of structures support inference using

the knowledge they contain. The objects and the attributes shown in

this structure correspond to the baseball domain. The two attributes

instance and isa are being used correspond to class membership and

class inclusion respectively. They provide the basis for property

inheritance which provides the support for retrieval both of facts that

have been explicitly stored and of facts that can be derived from them.

A node can be viewed as a frame as follows:

Male

Cricketer

Bowler Fielder

 Donald

Fleming

30.8

ABC

28.7

XYZ

5-10

6-0 32.6

height
isa

isa

height Batting-average

isa isa

Batting-average Batting-
average

instance instance

team team

Man

102

Cricketer

isa : Male

height : 6-0

batting-average : 32.6

Algorithm: Property Inheritance

To retrieve a value V for the attribute A of an instance object O:

1. Find O in the knowledge base.

2. If there is a value for the attribute A, report it.

3. Otherwise, see if there is a value for the attribute instance. If

not, then fail.

4. Otherwise, move to the node corresponding to that value, look

for the value for the attribute A and report it if found.

5. Otherwise, loop until there is no value for the isa attribute or

until an answer is found:

a. Get the value of the isa attribute and move to that node.

b. See if there is a value for the attribute A. If there is, report

it.

1.8.3 Inferential Knowledge

Though property inheritance is a powerful form of inferencing

knowledge, it is not always the useful form. Sometimes, the power of

logic needs to be incorporated into the knowledge structure so that

additional information could be generated. Inferential knowledge

requires an inference procedure to exploit knowledge. The inference

procedure implements the standard logical rules of inference. The

forward inferential process reasons forward, from facts to

103

conclusions. The backward inferential process reasons from the

desired conclusion to facts. There is one more commonly used

procedure known as resolution, which follows proof by contradiction

strategy. Logic provides a powerful structure which describes the

relationships among values. In general, it can be said that inferential

knowledge can be regarded as the basic building block for a complete

knowledge representation system.

1.8.4 Procedural Knowledge:

One important kind of knowledge that specifies what to do when is

known as procedural knowledge. Procedural knowledge can be

represented in programs in many ways. The most common way is to

write simply as a set of codes for doing something. The machine uses

the knowledge when it executes the code to perform a task. The most

common way to represent procedural knowledge is the use of

production rules.

1.9 SUMMING UP

 Knowledge about a particular domain in which the problem

occurs is important from the fact that without possessing

knowledge no one can solve the problem.

 Techniques to analyze, represent and manipulate knowledge

must be general enough for representing all kinds of knowledge

irrespective of the domain to which it belongs.

 There are two common attributes found in almost all knowledge

representation systems instance and isa.

 Instance represents class membership and isa represents class

inclusion.

104

 A knowledge based system is the one that should be able to map

from facts to its corresponding representations.

 A knowledge based system may be built based on relational

database systems, inheritable knowledge, procedural

knowledge or inferential knowledge etc.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1. Yes, the data stored in a database can be considered as

declarative knowledge. This is because; we need an extra

procedure to manipulate the knowledge or to find out the

required information stored in it.

2. justified.

3. instance , isa.

4. class membership.

5. class inclusion.

6. Agent : - He , Object : - Coffee

7. a) man (John)

 b) ∀x : man(x) -> person(x)

 These two facts imply that

 person(John)

1.11 POSSIBLE QUESTIONS

Short answer type questions:
1. Give the definition of knowledge.

2. What is the importance of knowledge in any domain?

3. What do you mean by fact?

4. What are the two major entities that effect in representations

of facts?

5. What do you mean by manipulation of knowledge?

6. What do you mean by procedural knowledge?

105

7. What is simple relation based knowledge?

Long answer type questions:

1. Why and how does knowledge play significant role in any

problem domain? Explain.

2. Explain the various issues related to knowledge

representation.

3. What is knowledge based system? Explain its basic

properties?

4. Discuss why knowledge is essential for showing intelligent

behaviour.

5. Explain the mapping between facts and their corresponding

representations.

6. Consider the following sentences and try to find out the

ambiguous word and its meanings-

1. Let’s play in the diamond.

2. Book lives in Australia.

3. Your diamond earrings are shimmering.

4. They found churches.

7. Explain the various approaches of representation of

knowledge with suitable examples.

8. What is inheritable knowledge? Explain with example.

1.12 REFERENCES AND SUGGESTED READINGS

1. E. Rich & K. Knight, Artificial Intelligence, (3rd Edition,

2017, Tata McGraw Hill

2. George Luger, Artificial Intelligence: Structures and

Strategies for Complex Problem solving, (6th Edition), 2008,

Pearson Education.

3. Nils J Nisson: Narosa, Principles of Artificial Intelligence, 1st

Edition, Springer

106

UNIT 2: PREDICATE CALCULUS - I

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Representing Facts in Logic

 2.3.1 Propositional Logic

 2.3.2 Predicate Logic

 2.3.2.1 Syntax of FOPL

2.4 Inference Rules to Produce Predicate Calculus

 Expressions

2.5 Representation of instance and isa Relationships

2.6 Summing Up

2.7 Answers to Check Your Progress

2.8 Possible Questions

2.9 References and Suggested Readings

2.1 INTRODUCTION

An important way of representing facts about the world is the

language of logic. The language of logic is a powerful and practical

means of representing and manipulating knowledge. It provides a way

of deriving new knowledge from old. In this formalism, it can be

concluded that a new statement is true because it follows from some

statements which already are known to be true. The language of logic

can be divided into two major areas- the propositional logic and the

predicate logic. However, the predicate logic or predicate calculus or

the First Order Predicate Logic (FOPL) is considered to be playing an

important role in AI for representation of knowledge. It is widely

accepted in AI which offers a formal approach for reasoning. In

FOPL, the statements of a natural language like English can be

107

translated into symbolic representations which closely approximate

the meaning of these statements. Another important concept behind

the application of logic is that it provides a way of generating answers

to questions and solutions to problems.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic concept of propositional and predicate

logic.

 represent facts both in propositional and predicate logic.

 learn the syntaxes in First-Order Predicate calculus.

 know how inference rules can be used to produce predicate

logic expressions using quantified variables.

 represent predicate logic expressions using instance and isa

relationships.

2.3 REPRESENTING FACTS IN LOGIC

2.3.1 Propositional Logic:

As we already have discussed that propositional logic provides a way

of representing and manipulating knowledge. Propositional logic is

appealing as it is simple and a decision procedure exists for it. Facts

in the world can be represented by logical propositions and they are

written as well-formed formulas (wff s). Suppose, we want to

represent a simple sentence in English

 Richards is a student.

This could be written as:

 RICHARDS STUDENT

108

But if we want to represent another fact like

 Ricardo is a student.

We would have to write it like

 RICARDO STUDENT

Which is a totally different assertion and we will not be able to draw

any conclusion from these two assertions. The better representation

of these two facts would be:

 STUDENT (RICHARDS)

 STUDENT (RICARDO)

Now the structures of the representations reflect the structure of the

knowledge itself. Propositions are the simple, primitive and atomic

sentences. Whereas, compound propositions also exist and they are

formed using the logical connectives like NOT, AND, OR, if.......then

and if and only if etc. The following are the symbols representing the

logical connectives:

 “ ~ “ for NOT or negation.

 “ ∧ “ for AND conjunction.

 “ ∨ “ for OR conjunction

 “ → “ for if then or implication

 “↔ “ for if and only if or double implication

Now, to represent the compound statement “It is raining and I won’t

go out”, we could write it as (R ∧ W) where R and W stand for “It is

raining” and “I won’t go out” respectively. Similarly, the statement

(R ∨ W) means “It is raining or I won’t go out”.

Again if we consider the following simple facts:

1. All students are good.

2. All men are mortal.

109

Which would be represented as:

1. GOOD STUDENT

2. MORTAL MEN

The point to be noted here is that such types of representations are

unable to capture any relationship between 1. any student and the

same student having the quality of being good and 2. An individual

being a man and that individual being mortal. We need variables and

quantifiers to write such statement of assertions.

As a result, another logical formalism known as FOPL or predicate

calculus has come into existence because it permits representation of

things which cannot be represented in propositional logic. Predicate

logic allows real-world facts to be represented using wffs. Such kind

of logical statements provide a good way of reasoning with

statements. Unfortunately, it does not possess any decision procedure.

Still FOPL serves as a useful medium of representing knowledge. We

shall discuss predicate calculus in more details in the next sections.

2.3.2 Predicate Logic:

All knowledge representation schemes possess the requirement of

expressiveness, that all concepts must be accurately stated.

Propositional logic has the limitation of not being able to generalize

the statements. For e.g., consider the following statements-

All students of Computer Science must opt Artificial Intelligence.

Tom is a student of Computer Science.

From the above statements, it should be concluded that Tom must opt

Artificial Intelligence. But using propositional logic, it is not possible

to make such conclusion. There should be a valid inference rule which

would draw the desired conclusion.

110

FOPL was developed to extend the expressiveness of propositional

logic. It is a generalization of propositional logic which permits

reasoning about objects. The syntax for FOPL is determined by

symbols and rules of symbols.

Predicate logic also has the capability to reason, provided we have

sufficient amount of facts to reason. Consider the following sentences

expressed in natural language-

1. Richard is a student.

2. All students are good.

They must be expressed as simple facts in predicate logic-

1. student (Richard)

2. ∀x : student(x) -> good(x)

These two facts can reason a new fact:

 Richard is good.

Thus, the predicate logic can infer new knowledge from the factual

information which is already provided.

2.3.2.1 Syntax of FOPL:

The symbols and rules of combination permitted in FOPL are as

follows-

Connectives: FOPL supports five connective symbols: ¬ (not or

negation), ∧ (and or conjunction), ∨ (or or disjunction), →

(implication), ↔ (equivalence or if and only if).

Quantifiers: FOPL statements have the feature of being quantified.

There are two quantification symbols that an FOPL statement

supports- ∃ (existential quantification) and ∀ (universal

quantification). If we have the quantification symbols (∃x), then it

means for some x or there exists an x and (∀x), which means for all

111

x. Furthermore, if we have a quantification statement which

quantifies more than one variable with the same quantifier, for e.g.,

(∀x)(∀y)(∀z), then we can drop the parenthesis to get ∀xyz.

Constants: Constants are the terms that can take fixed value and are

denoted by numbers, words and small letters such as a, b, 1.6, -18 and

Bob etc.

Variables: Variables are the terms that can take different values

overtime. They are denoted by words and small letters such as

vehicle_type, x, y etc.

Functions: A domain D can have function symbols that denote

relations in the domain. They map n-elements to a single element of

the domain. An n-ary function declared as g(t1, t2, t3,......,tn) where

each ti denotes the terms defined over some domain. A 0-ary function

is assumed to be a constant.

Predicates: The relations and functional mappings from the elements

of a domain to their corresponding truth values are defined by

predicate symbols. Capital letters and capitalized words like P, Q,

FATHER are used to denote the predicate symbols. Like the

functions, predicates may also take n-arguments. A 0-ary predicate is

considered to be a proposition.

Constants, variables and functions are designated as terms, predicates

are designated as atoms. We often use the word literal, whenever we

refer to an atom or its negation. It is often fruitful to use computable

functions or computable predicates to the statements so that we might

be able to evaluate their truth values. If we assume the statement such

as

 gt(5+2, 3)

112

Then, the computable function gt requires adding 5 and 2 prior to

comparing the added value with 3 to test to see whether the value is

greater than 3 or not. If it is, it returns true; otherwise false.

Now, if we consider the facts described as follows-

F1: All men are mortal

F2: Some students are sick today.

Both may be represented in terms of wffs in predicate logic as -

 ∀x : man(x) -> mortal(x)

 ∃y : student(y) -> sick(y)

Check Your Progress-1
1. Decision procedure exists for propositional logic. (True/False)

2. Logical propositions are written using _______________________.

3. Expressiveness refers to accurately stated concepts or knowledge.

(True/False)
4. FOPL can extend the ____________ of propositional logic.

5. FOPL can represent both ________ and ________.

6. FOPL statements can have the quality of being _______________.

7. There are two quantification symbols in an FOPL-

_________________ and ____________________.

2.4 INFERENCE RULES TO PRODUCE
PREDICATE CALCULUS EXPRESSIONS

In this section we are going to have a brief discussion on the

representations of inference rules which must correspond to the way

the facts are described in terms of sentences. Suppose, we have the

following set of sentences-

1. Robin was a man.

2. Robin was an Assamese.

3. All Assamese are Indians.

113

4. The age of Robin is 30.

5. Robin married Shally.

6. Sue either does not like Tom or hates him.

7. Sue eats everything Tom eats.

8. Every pet is loyal to his master.

9. Everyone who passes this exam is either intelligent or lucky.

10. All employees who are male must visit a particular place.

11. One who loves someone means he does not hate him.

The above described facts are represented accordingly in terms of

wffs in predicate logic as below-

1. Robin was a man.

man(Robin)

This assertion captures the knowledge of Robin being a man.

However, it fails to produce some of the important

information regarding tense.

2. Robin was an Assamese.

Assamese(Robin)

3. All Assamese are Indians. ∀ x : Assamese(x) -> Indian(x)

This assertion produces information about every Assamese

being an Indian in a more generalized way. The use of the

quantification statement ∀ tries to capture the general

information that the assertion is true for all Assamese people.

4. The age of Robin is 30.

age (Robin, 30)

This wff takes two arguments, the name of the person and his

age. Therefore, it is a binary assertion which shows the

relationship between a person and his age.

5. Robin married Shally.

114

married (Robin, Shally)

This statement also follows the same explanation because it

follows from the binary relationship between two persons,

that they are married to each other.

6. Sue either does not like Tom or hates him.

¬like (Sue, Tom) ∨ hate (Sue, Tom)

7. Sue eats everything Tom eats. ∀x : eats (Tom, x) -> eats (Sue, x)

This assertion is somewhat different from (3) since the terms

here are following binary relationship. The assertion is a

generalized one since it tries to exploit the fact that if Tom

eats something, then it is eaten by Sue also.

8. Every pet is loyal to his master. ∀x : ∃y : pet(x) -> loyalto (x, y)

This wff contains two quantified variables x and y, where x

represents every or all pets and y represents x’s master.

Therefore, x is universally quantified and y is existentially

quantified. This statement expresses the fact of x being loyal

to y.

9. Everyone who passes this exam is either intelligent or lucky. ∀x : ∃y : exam (y) ∧ pass (x, y) -> intelligent(x) ∨ lucky(x)

This wff has two variables x and y being quantified

universally and existentially representing human beings and

exams respectively. The predicates are associated with each

other by connectives. The statement says that one should pass

an exam, and then only he will be regarded as an intelligent or

a lucky person.

10. All employees who are male must visit this place.

115

∀x : ∃y : employee (x) ∧ male(x) ∧ place (y)-> visit (x, y)

This statement contains the information about all x being an

employee and that particular employee being a male and there

must exist a particular place y, then only x is allowed to visit

place y.

11. One who loves someone means he does not hate him. ∀x : ∃y : love (x, y) -> ¬ hate (x, y)

Here, the “¬” symbol signifies a not operation. It defines the

relationship between x and y representing the fact that loving

someone does not mean hating someone.

2.5 REPRESENTATION OF INSTANCE AND ISA
RELATIONSHIPS

In the previous unit, we had a discussion on the instance and isa

attributes, which play very important roles. They are the useful forms

of reasoning as far as the property inheritance is concerned. Now, if

we consider the assertions 1, 2 and 3 declared in the previous section,

they do not seem to have used these two attributes at all. Instead, they

represent the knowledge about Robin. We have not used predicates

with these names. It should be mentioned here that, although we have

not used the predicates instance and isa explicitly, we have been able

to capture the relationships they express, namely class membership

and class inclusion.

The first three sentences described in the last section can be

represented in three different ways. The first one contains the

representations we already have discussed. Class membership is

represented using unary predicates (such as Assamese). The assertion

P (x) is true, which asserts that x is an instance or element of P. The

second one contains the representations using instance predicate

116

explicitly. Instance is a binary predicate, whose first argument is an

object and second one is a class to which the object belongs. If an

object is an instance of a subclass, then the implication rule in

sentence 3 states that the object is also an instance of its super class.

These representations do not use the isa predicate. The third part

contains representations that use both instance and isa relationships

explicitly. The isa predicate simplifies the representation of assertion

3, but requires providing one general, additional axiom. The axiom

describes that the instance and isa relation can be combined to derive

a new instance relation. Let us see how these three parts can be

represented according to the ways we have just discussed.

1. man(Robin)

2. Assamese(Robin)

3. ∀ x : Assamese(x) -> Indian(x)

1. instance (Robin, man)

2. instance (Robin, Assamese)

3. ∀ x : instance (x, Assamese) -> instance (x, Indian)

1. instance (Robin, man)

2. instance (Robin, Assamese)

3. isa (Assamese, Indian)

4. ∀ x : ∀ y : ∀ z : instance (x, y) ∧ isa (y, z) -> instance (x, z)

It is not necessary to represent the membership between class and its

superclass using the predicates instance and isa. Though this is an

important relationship and needs to be represented; instead in a

logical framework, unary predicates are sufficient to represent such

relationship.

117

Check Your Progress-2

8. Logic is one form in which real world _______ can be
represented.

9. Logical propositions represent the elementary ___________
assertions.

10. Do you think that propositional logic is sufficient enough to
represent all kinds of knowledge?

11. The predicates instance and isa are useful in _________
___________________ technique.

12. The predicates instance and isa represent ____________

____________ and _________________________ respectively.

2.6 SUMMING UP

 Logical representations of real-world facts are important from

the point that it is one of the common ways of presenting

knowledge.

 Basically two major kinds of logical formalisms are available-

1) The propositional logic and 2) The predicate logic.

 The propositional logic is simple and has a decision procedure

as the facts can be expressed using logical assertions.

 The propositional logic differs from predicate calculus from

the fact that the former captures only the facts which are

specialized ones. Whereas, the later tries to capture more

generalized knowledge structures.

 In predicate logic, the factual information about a particular

domain is represented by First Order Predicate Logic (FOPL).

 The logical assertions in FOPL must be written using logical

connectives.

118

2.7ANSWERS TO CHECK YOUR PROGRESS

1. True

2. well-formed formulas

3. True

4. expressiveness.

5. facts, rules.

6. Quantified

7. ∃ (existential quantification), ∀ (universal quantification)

8. facts.

9. atomic.

10. No, propositional logic is not sufficient enough to represent all

kinds of knowledge. Therefore, predicate calculus has been

introduced which can exploit more knowledge than the

propositional logic.

11. property inheritance

12. class membership, class inclusion.

2.8 POSSIBLE QUESTIONS

Short answer type questions:
1. Explain in brief the language of logic.

2. What are ways of representing facts in logic? Mention.

3. What are the different connectives used in propositional

calculus?

4. Mention the different quantifiers used in predicate calculus?

5. What do you mean by computable functions?

6. What do you mean by inference rule?

7. What is resolution?

8. Write down some features of PROLOG.

9. What is declarative knowledge?

10. What is procedural knowledge?

11. What is predicate calculus?

119

Long answer type questions:

1. How facts can be represented using language of logic?

2. What is propositional logic? How does it differ from predicate

logic?

3. What are the syntaxes used in First Order predicate Logic?

4. How FOPL expressions can be converted into instance and isa

relationships?

5. What is logic programming? Explain.

6. Consider the following set of facts and convert them into their

corresponding predicate calculus expressions:

a) All dogs bark at night.

b) Birds fly.

c) Piper does not fly.

d) All judges are not crook.

e) The sky is blue.

f) John is unmarried.

g) Both Ann and Sue are students.

h) If Joe is a politician, then he is crook.

i) Anyone who passes exam is either happy or excited.

j) To be a parent, one must be a father or mother of someone.

2.9 REFERENCES AND SUGGESTED READINGS

1. Luger G. F. 2002. Artificial Intelligence Structures and

Strategies for Complex Problem Solving. Pearson Education,

Ltd. and Dorling Kindersley Publishing.

2. Patterson, D. W. 1990. Introduction to Artificial Intelligence

and Expert Systems. New Jersey: Pearson Education.

3. Rich, A., and Knight K. 1991. Artificial Intelligence. New

York: Tata McGraw-Hill.

120

UNIT-3: THE PREDICATE CALCULUS-II

Unit Structure:
3.1 Introduction

3.2 Unit Objectives

3.3 Computable Functions and Predicate Logic

3.4 Resolution and its Basic Principle

 3.4.1 Conversion to Clausal Form

 3.4.2 The Basis of Resolution

 3.4.3 The Unification Process

 3.4.4 The Resolution Process in a Question-answering

 System

3.5 Natural Deduction

3.6 Logic Programming

3.7 Declarative Vs. Procedural Knowledge

 3.7.1 Basics of Matching

 3.7.1.1 Indexing

3.8 Summing Up

3.9 Answers to Check Your Progress

3.10 Possible Questions

3.11 References and Suggested Readings

3.1 INTRODUCTION

Language of logic is a powerful method of representing facts about

the world. It is also a means of manipulating knowledge as well as

deriving new knowledge from old. Here, the known statements or

facts are already assumed to be true. Therefore, the new knowledge

derived from them is also considered as true. In the previous unit, we

had studied the two major areas of language of logic - the

121

propositional logic and the predicate logic. We also had learnt that the

propositional logic has a major drawback of not being able to

represent all kinds of knowledge; except the simplest one. Then,

predicate logic or predicate calculus or the First Order Predicate

Logic (FOPL) has come for the rescue and is widely accepted as a

formal approach of reasoning with logic. We got to know various

aspects of representations of knowledge using FOPL. In this unit, we

shall try to learn some major and advanced topics reasoning with

FOPL. We shall see how computable functions play an important role

in logical language. We shall also see how the logical statements are

converted into some standard format.

3.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 know the relationship between computable functions and

predicate logic expressions.

 define resolution principle.

 know the conversion of predicate logic expressions to clausal

forms.

 understand the basis of resolution.

 have an idea about the unification process and the use of

resolution technique in a Question-Answering system.

 understand what logic programming is and its use in

PROLOG platform.

 define procedural and declarative knowledge.

 explain the logic behind matching.

122

3.3 COMPUTABLE FUNCTIONS AND
PREDICATE LOGIC

So far, we have discussed the fact that sentences written in natural

language can be converted into predicate calculus; such as

man(Robin) ; corresponding to the sentence that “Robin was a man”.

If the facts or the knowledge that a sentence can express is not very

large, then such type of representation is good. But, some facts may

need to compare values and evaluate to either true or false, then the

situation would be different. Suppose we have some facts which

incorporates greater-than or less-than relationships, like-

 gt(1, 0)

 lt (0, 1)

Then it is useful to augment the representations with computable

predicates. The benefit of such kind of procedure is that we can

simply invoke them just by making a call. Suppose, we want to

evaluate the truth value of the computable predicate:

 gt(4+2, 3)

This requires the value of the addition operation to be computed first

and then send the arguments 6 and 3 to gt(). Then the final outcome

will be evaluated in terms of either true or false depending on the

arguments. The next few examples show how the computable

functions and predicates are useful for representing facts. It also

makes use of equality and allows substitution for equal objects

whenever useful.

Now let us consider some set of facts which involves use of

computable predicates.

1. If someone is dead at some time, he is considered to be dead

at later times. ∀ x : ∀ t1 : ∀t2 : died (x, t1) ∧ gt (t2, t1) → dead (x, t2)

123

This statement tries to say that someone (x, in this case) had

died at time t1 and if we assume a time t2 which is greater than

t1, then it is obvious that the person is not alive at time t2.

2. It is now 2013.

now= 2013

Here, the idea of equal quantities has been exploited and

substituted.

3. No man remains alive for longer than 130 years. ∀ x : ∀ t1 : ∀t2 : man (x) ∧ born (x, t1) ∧ gt (t2 - t1, 130) →

¬alive (x, t2)

This is not the only way to represent this sentence. For e.g.,

we could have introduced a predicate age and assert that the

value is never greater than 130. Our representation tries to

deduce that if any person x, who was born during time t1 and

the difference between an assumed time t2 and t1 is greater

than 130 years, then x is not considered to be alive. The

symbol ‘¬’ designates the negation of a statement.

The use of computable predicates allows us to derive answers to

questions. They can be used to generate answers to most direct

questions whose responses involve truth values.

3.4 RESOLUTION AND ITS BASIC
PRINCIPLE

Sometimes it is required to carry out a variety of statements within a

single operation and reasoning with the assertions in predicate logic.

Resolution is such a kind of technique and it is efficient from the fact

that it operates on statements that are converted into convenient

clausal forms. Resolution attempts to prove by confutation; that is,

the negation of a statement tries to disprove the known true statements

or makes the statements unsatisfiable. This approach contrasts with

124

the backward chaining approach which generates proofs from the

theorem to be proved to its axioms. As we already have said that the

process of resolution involves axioms which are already in clausal

form. There are some sequences of steps which need to be involved

in order to convert the predicate logic statements into clausal form.

3.4.1 Algorithm: Convert to Clausal Form:

The input to the algorithm is the set of wffs (well formed formulas)

in predicate calculus for which the conversion will take place. Now,

the steps are mentioned below-

1. Eliminate ->, of the fact a -> b, by making it is equivalent to

¬a ∨ b. Consider the following wffs which needs the

conversion: a. ∀ x: ∀ y: [P(x) ∧ Q(x)] -> R(x, y) b. ∀ x: ∀ y: ∃z: (R (y, z)) -> F(x, y)

After transformation the statements become: a. ∀ x : ∀ y: ¬[P(x) ∧ Q(x)] ∨ R(x, y) b. ∀ x : ∀ y: ¬(∃z : R (y, z)) ∨ F(x, y)

2. Apply deMorgan’s laws [which says that ¬ (a ∧ b) = ¬a ∨ ¬b

and ¬(a ∨ b) = ¬a ∧ ¬b] and if necessary do the

transformations between quantifiers [¬∀x: P(x) = ∃x: ¬P(x)

and ¬∃x: P(x) = ¬∀x: P(x)] and reduce each ¬ to a single term

[using ¬(¬P) = P]. After performing these transformations of

the wff generated in step 1, the statements become: a. ∀ x : ∀ y: [¬P(x) ∨ ¬Q(x)] ∨ R(x, y) b. ∀ x : ∀ y: (¬∃z : R (y, z) ∨ F(x, y))]

3. Each quantifier is bound to a single variable. Since change in

variable names do not affect the truth value of the wff, we can

just replace one name with another. For e.g., the formula ∀ x : F(x) ∨ ∀ x : G(x)

125

Can be converted to ∀ x : F(x) ∨ ∀ y : G(y)

4. Move all the quantifiers to the left of the formula. While

moving them, it should be kept in mind that the order in which

the quantifiers appear in the wff is maintained. Performing

this operation on the formula gained in step 2, we get a. ∀ x : ∀ y : [¬P(x) ∨ ¬Q(x)] ∨ R(x, y) b. ∀ x : ∀ y : ∀z : (¬R (y, z)) ∨ F(x, y)

5. Eliminate all existential quantifiers. A formula that contains

an existentially quantified variable means that the variable can

contain a particular value which makes the formula true. We

can substitute the variable with a function which produces the

value. Therefore, the formula ∀ y : ∃z : grandfather (z, y)

Can be transformed into ∀ y : grandfather (S(y), y)

6. If prefixes exist, then drop all of them. The prefixes now

contain some variables which are universially quantified and

they can be dropped, assuming the fact that all variables that

appear in the formula are quantified universally. The formula

generated in step 4 now would be

a. [¬P(x) ∨ ¬Q(x)] ∨ R(x, y)

b. (¬R (y, z)) ∨ F(x, y)

7. Convert the formula into a conjunction of disjuncts. Since our

formula contains no conjunctive (or and), therefore, we can

remove the parenthesis to get the clause

a. ¬P(x) ∨ ¬Q(x) ∨ R(x, y)

b. ¬R (y, z) ∨ F(x, y)

8. Create a separate clause for each conjunct. A wff is assumed

to be true, if all the clauses it contains are true.

126

3.4.2 The Basis of Resolution:

Resolution is a simple process which tries to resolve a problem by

comparing two clauses at each step. The clauses are known as the

parent clauses. The comparison process yields a new clause inferred

from the parent clauses. Suppose, we have the following two clauses

 love ∨ hate

 ¬love ∨ affection

As we already have discussed in section 5.7 that both the clauses must

be true. Though the clauses look separate and independent, they are

related or conjoined.

Now, it should be observed that love and ¬love cannot be true at the

same time. At one point, if love is true, then affection must be true in

the second clause. And if ¬love is true in one clause, then hate must

be true to guarantee the truth of both the clauses. Therefore, these two

parent clauses deduce

 hate ∨ affection

The resolution procedure follows such type of deduction. Resolution

operates on two clauses that each clause must contain at most one

same literal. One must occur in positive form and the other is in

negative form. The resolvent is obtained by combining the literals of

the parent clauses.

So far whatever we have discussed is the resolution in propositional

logic. In predicate logic, the resolution procedure is slightly more

complicated. Resolution in predicate logic attempts to find the answer

to questions by substituting the values of the variables. The

substitution process requires matching the arguments of the

predicates. For e.g., Roman(Joe) and ¬Roman(Tom) is not a

contradiction. We need a matching process to compare two literals

and substitute one with another to make them identical. The

127

procedure which does this is known as the unification process which

we shall discuss in the following section.

3.4.3 The Unification Process:

The objective of unification process is to unify two literals which

have their predicate symbols same. If so, we will proceed by checking

their arguments in pair. Otherwise, we would not be able to unify

them. For e.g., the two literals

Roman(Joe)

Greek(Joe)

cannot be unified. But, if the first pair matches, we can continue by

checking the second pair and so on. We can call the unification

procedure to match the arguments by applying the matching rules. A

variable can be matched with another variable, with a constant or with

a predicate expression. Here, we will see how unification can be

applied on variable or constant. The substitution process must be

consistent for each literal. For e.g., suppose we have the following

two axioms to be unified:

 know(Tom, Joe)

 know(Ben, Sue)

The predicate know matches in both the axioms. Next, we will

compare the first pair of arguments which are Tom and Ben and look

for a substitution Ben/Tom (which means replace Tom with Ben).

Now if we continue with the next pair of arguments and apply the

substitution Sue/Joe (which replaces Joe with Sue). The composition

of substitutions for entire unification process would be:

 (Sue/Joe) (Ben/Tom)

But, if the same variable is replaced by more than one substitution,

then the entire unification process will go wrong. Therefore, the

128

unification process is considered successful if we can have a single,

consistent substitution for each variable.

3.4.4 The Resolution Process in a Question-answering
System:

Resolution attempts to give response to questions by considering the

set of axioms which are converted to a clausal form. We have already

discussed the conversion process of predicate logic statements in

section 5.3.1. Now after the transformation, the statement which is to

be proved must be negated as well as converted into clausal form.

Apply unification as and when required and repeat until we get either

a contradiction situation or no progress can be made. At each step,

two clauses will be chosen and resolved. If the resolvent is an empty

clause, we will get a contradiction. Let us now consider the following

set of axioms:

1. Julioclaudian (Agrippina)

2. Lugdunumish(Claudius)

3. ∀ x : Lugdunumish (x) -> Gaulish(x)

4. emperor(Claudius)

5. ∀ x : Gaulish (x) -> admired(x, Claudius) ∨ tyrant(x,

Claudius)

6. ∀ x : ∃y : admired(x, y)

7. ∀ x : ∀y : Julioclaudian (x) ∧ emperor(y) ∧ triedtoexecute (x,

y) -> ¬admired(x, y)

8. ∀ x : ∀y : tyrant(x, y) -> triedtoexecute(x, y)

9. triedtoexecute (Agrippina, Claudius)

This knowledge base must be converted into the following clausal

form:

1. Julioclaudian (Agrippina)

2. Lugdunumish(Claudius)

129

3. ¬ Lugdunumish (x1) ∨ Gaulish(x1)

4. emperor (Claudius)

5. ¬Gaulish (x2) ∨ admired (x2, Claudius) ∨ tyrant (x2, Claudius)

6. admired (x3, f(x3))

7. ¬ Julioclaudian (x4) ∨ ¬ emperor (y1) ∨ ¬ triedtoexecute (x4,

y1) ∨ ¬ admired (x4, y1)

8. ¬ tyrant(x5, y2) ∨ triedtoexecute(x5, y2)

9. triedtoexecute (Agrippina, Claudius)

Now, suppose, we want to answer the question “Did Agrippina tried

to execute Claudius?” For this, the resolution theorem prover must

start to prove the statement by negating the assertion:

¬ triedtoexecute (Agrippina, Claudius)

The proof procedure tries to prove this statement in the following

manner:

 ¬triedtoexecute (Agrippina, Claudius) 8

 Agrippina /x5, Claudius/ y2

 5 ¬ tyrant (Agrippina, Claudius)

Agrippina /x2

¬Gaulish (Agrippina) ∨ admired (Agrippina, Claudius) 7

Agrippina /x4, Claudius/ y1

¬Gaulish (Agrippina) ∨ ¬ Julioclaudian (Agrippina)

130

∨ ¬ emperor (Claudius) ∨ ¬ triedtoexecute (Agrippina, Claudius) 4

 3 ¬Gaulish (Agrippina) ∨ ¬ Julioclaudian (Agrippina) ∨ ¬ triedtoexecute (Agrippina, Claudius)

 Agrippina /x1

¬ Lugdunumish (Agrippina) ∨ ¬ Julioclaudian (Agrippina) ∨ ¬ triedtoexecute (Agrippina, Claudius) 2

 1 ¬ Julioclaudian (Agrippina) ∨ ¬ triedtoexecute (Agrippina, Claudius)

 ¬ triedtoexecute (Agrippina, Claudius) 9

 Nil

Thus, we can conclude that the resolution theorem prover for the
assumed statement has produced a contradiction with the statements
provided. It should be noted that our assumption of negating the
assertion has proven to be wrong. Therefore, we can
deduce that “Agrippina tried to execute Claudius”. The response to
our query would be “Yes”.

Check Your Progress-I
1. The return type of computable function is always ___________.

2. State whether true or false:

 a) Resolution attempts to prove a statement by converting it into

clausal form.

 b) Resolution attempts to prove a statement by negating it.

 c) Resolution tries to prove that the negation of a statement is

unsatisfiable.

131

3.5 NATURAL DEDUCTION

We have got to know that resolution is a technique in which a proof

procedure exists for a problem statement. The procedure is simple and

unifies two clauses at each step. The clauses are required to have

uniform representation of the statements. This technique raises a

serious issue regarding selection of clauses. If the knowledge base is

a larger one and since the statements are uniform, it is difficult to

select those statements which are most likely to lead to solution of the

problem. In addition to this, this process involves an overhead of

converting the statements in clausal form. This has the serious

drawback of losing valuable information contained in the original

representation. For example, considering the following

representation:

 ∀x : student(x) → good(x)

This assertion depicts the fact that all students are good. The

equivalent clausal form of this statement would be:

 ¬student(x) ∨ good(x)

This implies the deduction of the fact that someone is not a student

by showing that he is not good. But, it is obviously not the best way

to show that someone is not a student.

We already have mentioned that resolution proves a statement by

refutation. It is not easy for a person to think and interact according

to resolution theorem prover. People find it impractical to think in

terms of resolution and accordingly attempt to solve a problem.

Therefore, it is important to find a way that facilitates such interaction

as well as the proof procedure seems to be very natural. In other

words, it corresponds more closely to the way a human theorem

prover attempts to find solution to a problem. This is natural

deduction which consists of a combination of techniques; rather than

a single one. While solving a problem, all these techniques work

132

together. Natural deduction does not consider predicates. Instead, it

considers only the objects involved in these predicates. Rules are

written in a manner that not only describe the condition-action pair or

implications; but provides suggestion about the manner in which

these rules are applied in proofs.

3.6 LOGIC PROGRAMMING

Logic programming is a programming paradigm which provides the

facility of being able to write logical assertions as programs. There

are several logic programming systems available today like

PROLOG, LISP etc. A PROLOG program may consist of a series of

several logical statements known as Horn Clauses. A Horn Clause

contains at most one positive literal, like p, ¬p ∨ q and p ->q. A logical

assertion can be converted into Horn Clause. Below, we shall see

some logical assertions and the same assertions transformed into

Horn Clauses. ∀ x : cube(x) ∧ small(x) -> dice(x) ∀ x : cat(x) ∨ dog(x) -> pet(x) ∀ x : leopard(x) -> carnivorous(x) ∧ has_spot(x)

bischon_frise(piper)

Representations in Logic

dice(X) : - cube(X) , small(X).

pet(X) : - cat(X).

pet(X) : - dog(X).

carnivorous(X) : - leopard(X).

has_spot(X) : - leopard(X).

bischon_frise(piper).

133

Representations in PROLOG

Since the PROLOG programs consist of Horn Clauses only, because

of the uniformity, a simple and efficient interpreter can be designed

to take all the charges. The goal to be attained is fed as the input into

a PROLOG program. The PROLOG interpreter tries to attain the goal

state just by chaining backward; from the goal to the initial

configuration. The program is read in sequence from the top, left-to-

right and the depth first search with backtracking is performed. The

PROLOG program may contain two types of statements- facts, which

contains only constants not variables and rules, which contains only

variables. It needs to be mentioned here that there are some rule-based

differences that exist between PROLOG statements and logical

assertions.

1. As seen above, logical propositions contain variables that are

explicitly quantified. In PROLOG, variables are declared

implicitly. The variables in PROLOG statements are written

in uppercase whereas the constants are in lowercase or

numbers.

2. In logic, there exists symbols designating and (∧) and or (∨).

But in PROLOG, and is designated by (,) and none for or.

3. In logic, implication statement such as “p implies q“ is written

as “ p -> q “ symbol; whereas the PROLOG implication

statement is written backward like “q : - p”.

A PROLOG interpreter has a fixed control strategy; so, the assertions

follow a particular search strategy to find the answers to questions.

Whereas, the logical assertions do not say anything about how to

choose the most appropriate answer when more than one are

available. The control strategy of PROLOG always starts with the

problem definition; that is, with the goal to be proved. Then it

searches for the set of assertions that can satisfy the goal. For this, it

134

looks for the fact that can prove the goal directly or the rule whose

head matches with the goal. The decision of whether the rule or fact

can be applied is left to the unification procedure. Then it reasons

backward from the goal until a path is found which terminates with

the initial assertions of the program. The search path may also follow

the backtracking strategy.

Now let us consider the following PROLOG program and see how

the PROLOG interpreter works to find the responses to queries.

 grandchild (X, Y) : - child(X, Z), child(Z, Y).

 child (X, Z) : - son (X, Z).

 child (X, Z) : - daughter (X, Z).

 child (Z, Y) : - son (Z, Y).

 child (Z, Y) : - daughter (Z, Y).

 son(bob, ann).

 daughter(ann, john).

Now, suppose, we have the following query :

 ?- grandchild (bob, john).

This assertion is fed as the input to the program. The interpreter tries

to look for the fact with the predicate grandchild or a rule whose head

matches with that predicate. A PROLOG program is written with the

facts coming prior to the rules so that the fact with a particular

predicate can be used first. And if there is no such appropriate fact

found, then the rule containing that predicate is chosen. In this

program, we can see that there is no such fact present which matches

its head with the predicate “grandchild”. However a rule containing

grandchild as its head can be used. The rule can be applied

successfully if its right hand side can also be satisfied. Next the

interpreter will try to prove each of them. The first predicate that

needs to be proved child (X, Z). Now, the interpreter will search for

the appropriate fact or rule whose head matches the predicate child

135

because there is no such fact containing the predicate child exists in

the program. There are four such rules available, but based on the

arguments we must apply only the first two to get the most

appropriate direction towards the solution. Applying the first rule

requires to prove son(X, Z). This in turn applies the fact with the

predicate son (bob, ann). Now, the values for X and Z corresponding

to this fact will be X=bob and Z=ann. Now, the second child predicate

of the first rule needs to be proved. Based on the arguments, the

PROLOG interpreter again tries to use the third rule containing son

(Z, Y) predicate. But, this will no longer help because already the son

predicate has been attained. Now, applying the fourth rule with head

child (Z, Y), the fact with daughter predicate is used and the values

for Z and Y will be Z=ann and Y=john. The child predicate is now

satisfied and the interpreter attains the values for X, Z and Y are

X=bob, Z=ann and Y=john. Now, we have attained a situation where

the predicate grandparent has been proved and satisfied. Therefore,

the result of the query would be- yes.

3.7 DECLARATIVE VS. PROCEDURAL
KNOWLEDGE

A declarative knowledge is a kind of knowledge represented in a

specific format that is analyzed, decomposed or manipulated by the

reasoners. This kind of representation specifies the knowledge; but

does not say anything about how to achieve a particular goal using

that representation. We need to augment a declarative representation

within a program which specifies what is to be solved or achieved and

how.

Procedural knowledge is also known as imperative knowledge. The

procedural knowledge is the one which encodes how to achieve a

particular goal. The control structure that is needed to achieve the goal

136

must be incorporated into the knowledge base itself. An interpreter

must be augmented to manipulate and reason all kinds of knowledge

defined in the knowledge base. The interpreter searches the assertions

in sequence from top to bottom and proceed in depth-first fashion to

establish a new sub goal. If the new sub goal is not satisfiable, then

an alternative and effective route is considered and followed. To see

how the declarative and procedural representations work on a set of

knowledge base, let us consider the following knowledge base:

1. Julioclaudian (Agrippina)

2. Julioclaudian (Claudius)

3. ∀ x : Julioclaudian (x) -> Roman(x)

4. Julioclaudian (Nero)

Now, based on the above knowledge base, let us try to answer the

question: ∃y : Roman(y)

If we consider the declarative representation, the assertions do not say

anything about how they will be examined. Since, there are more than

one value that satisfies the query predicate, the answer we get are:

 Y = Agrippina

 Y = Claudius

 Y = Nero

But, if we follow the procedural representation, only one value we

will generate; because the responses are based on the sequence in

which the assertions are being examined. Thus the above knowledge

base will generate the answer:

 Y = Agrippina

This is because the statement which actually achieves the goal to find

the Roman is ∀ x : Julioclaudian (x) -> Roman(x)

137

This in turn again sets up a sub goal to find a Julioclaudian. The fact

which satisfies this sub goal is :

Julioclaudian (Agrippina)

Therefore, the answer that is returned is Agrippina.

3.7.1 Fundamentals of Matching:

So far, we have discussed that search helps in achieving solutions to

problems. Upon the application of the most appropriate rule to the

individual problem state, the search process can generate a new state

and so forth until a solution is found. An efficient search process can

choose the best one, which most likely can lead to success, when more

than one applicable rules are available. To do so, what we need is to

collect the entire sequence of rules that can be applied at a given point.

And this is done by the matching process which matches the current

state with the heads of the rules. Matching involves some techniques

to extract the applicable rules. One of them is discussed below:

3.7.1.1 Indexing:

It is a technique which does a simple search over the set of rules and

selects the appropriate ones. It does so by comparing each rule’s

preconditions with the current state and extracting the ones that

match. But, this may lead to two important consequences. First, to

solve s problem, sometimes it is necessary to use a huge set of rules.

Extracting the important ones is really a big deal and may make the

system inefficient. Second, it is not necessary that a rule’s

preconditions will always match the current state. To deal with such

kind of situation, a new approach that has been taken is to use the

current state as an index into the set of rules and select the ones that

138

match. The index can be generated by a perfect hashing function.

Thus the matching process has become easy with this method.

Check Your Progress3

3. a -> b = ?

4. Can know(Tom, Joe) and student (Tom, Joe) be unified?

5. Unification process can unify two__________in propositional

logic.

6. In resolution procedure, one predicate must be the negation of the

other one. True or false?

7. In PROLOG, the logical assertions are converted into

____________ clauses.

8. PROLOG interpreter uses depth-first search with ____________.

9. The PROLOG interpreter tries to attain the goal state by

_____________ backward.

10. p -> q in logic implies _____________ in PROLOG.

11. Procedural knowledge is also known as ____________

knowledge.

12. Do we need an extra program to reason with declarative

knowledge?

13. An ___________ is sufficient to manipulate procedural

knowledge.

3.8 SUMMING UP

 Logical representations of real-world facts are important from

the point that it is one of the common ways of presenting

knowledge.

 Basically two major kinds of logical formalisms are available-

1) The propositional logic and 2) The predicate logic.

 The propositional logic is simple and has a decision procedure

as the facts can be expressed using logical assertions.

139

 The propositional logic differs from predicate calculus from

the fact that the former captures only the facts which are

specialized ones. Whereas, the later tries to capture more

generalized knowledge structures.

 In predicate logic, the factual information about a particular

domain is represented by First Order Predicate Logic (FOPL).

 The logical assertions in FOPL must be written using logical

connectives.

 The logical assertions can also be written using computable

functions like gt(), lt(), which may evaluate to either true or

false.

 For deriving new knowledge or for reasoning about the

statements in logic or for generating answers to questions,

resolution procedure may be applied.

 Resolution attempts to prove a statement by starting with the

negation of that statement.

 If the statement evaluates to a contradiction, then it must be

concluded that our assumption of negating the statement was

wrong.

 It should be noted that here that during the resolution proof

procedure, the unification procedure may be applied.

 Resolution embodied with unification tries to prove the

statements or attempts to derive answers to questions.

 Two very important things that should to be kept in mind

during the resolution proof procedure are that 1) At every step

literals involved must have one in common and one should be

the negation of the other and 2) The logical assertions must be

converted into a convenient clausal form so that an efficient

and smooth resolution process could be executed.

 The PROLOG interpreter tries to find responses to questions

by starting with the goal, and then chains backward using the

140

matching procedure to get into the position where the results

can be generated.

 Knowledge may be in one of two basic forms- declarative and

procedural.

 In declarative knowledge representation formalism, only the

knowledge is provided; but it does not provide any

information regarding how to get responses to queries.

 On the contrary, the procedural knowledge follows a specific

control mechanism to get the solution and therefore, a

decision procedure exists for such kind of knowledge.

3.9 ANSWERS TO CHECK YOUR PROGRESS

1. boolean.

2. a) True

 b) True

 c) True.

3. a -> b = a ∨ b

4. No, know (Tom, Joe) and student (Tom, Joe) cannot be unified.

This is because, their literals are not same.

5. literals.

6. In resolution procedure, one predicate must be the negation of the

other one. This statement is true.

7. Horn.

8. backtracking.

9. chaining.

10. q : - p.

11. imperative.

12. Yes, we need an extra program to reason with declarative

knowledge.

13. interpreter.

141

3.10 POSSIBLE QUESTIONS

Short answer type questions:
1. Explain in brief the language of logic.
2. What are ways of representing facts in logic? Mention.
3. What are the different connectives used in propositional

calculus?
4. Mention the different quantifiers used in predicate calculus?
5. What do you mean by computable functions?
6. What do you mean by inference rule?
7. What is resolution?
8. Write down some features of PROLOG.
9. What is declarative knowledge?
10. What is procedural knowledge?
11. What is predicate calculus?

Long answer type questions:
1. How facts can be represented using language of logic?
2. What is propositional logic? How does it differ from predicate

logic?
3. What are the syntaxes used in First Order predicate Logic?
4. How FOPL expressions can be converted into instance and isa

relationships?
5. How and in what situations can computable functions be used

in predicate logic expressions?
6. Define resolution. What is the basis of resolution?
7. With the help of an example, show the process of converting

a predicate logic expression into clausal form.
8. Describe the unification process.
9. What is logic programming? Explain.
10. Consider a set of statements in logic and convert it into the

corresponding PROLOG statements. Also write down the
differences between representations in logic and that of
PROLOG.

142

11. How does a PROLOG interpreter derive responses to queries?

Explain with an example.

12. Differentiate between declarative and procedural knowledge.

Explain the differences with the help of an example.

13. Consider the following set of facts and convert them into their

corresponding predicate calculus expressions:

a) All dogs bark at night.

b) Birds fly.

c) Piper does not fly.

d) All judges are not crook.

e) The sky is blue.

f) John is unmarried.

g) Both Ann and Sue are students.

h) If Joe is a politician, then he is crook.

i) Anyone who passes exam is either happy or excited.

j) To be a parent, one must be a father or mother of someone.

k) What is natural deduction? Explain.

3.11 REFERENCES AND SUGGESTED READINGS

1. Bratko I. 2001. PROLOG programming for Artificial

Intelligence. Pearson Education, Ltd.

2. Luger G. F. 2002. Artificial Intelligence Structures and

Strategies for Complex Problem Solving. Pearson Education,

Ltd. and Dorling Kindersley Publishing.
3. Patterson, D. W. 1990. Introduction to Artificial Intelligence

and Expert Systems. New Jersey: Pearson Education.

4. Rich, A., and Knight K. 1991. Artificial Intelligence. New

York: Tata McGraw-Hill.

143

UNIT 4: KNOWLEDGE REPRESENTATION
USING RULES I

Unit Structure:
4.1 Introduction

4.2 Objectives

4.3 Procedural Versus Declarative Knowledge

4.4 Logic Programming

4.5 Forward Versus Backward Reasoning

 4.5.1 Backward-Chaining Rule Systems

 4.5.2 Forward-Chaining Rule Systems

 4.5.3 Combining Forward and Backward Reasoning

4.6 Summing Up

4.7Answers to Check Your Progress

4.8 Possible Questions

4.9 References and Suggested Readings

4.1 INTRODUCTION

In this unit we are going to discuss the use of rules to encode

knowledge. We have already discussed about rules as the basis for a

search program. Here we will consider a set of rules to represent both

knowledge about relationships in the world as well as knowledge

about how to solve problems using the content of rules.

4.2 OBJECTIVES

After going through this unit, you will be able to-

 Understand Procedural and Declarative Knowledge

144

 Understand the difference between Procedural and

Declarative Knowledge.

 Understand logic programming

 Understand Forward and Backward Reasoning

4.3 PROCEDURAL VERSUS DECLARATIVE
KNOWLEDGE

A procedural knowledge is a representation in which the information

required to use the knowledge is embedded in the knowledge itself.

Thus only an interpreter is necessary that will follow the instructions

given in the knowledge. For example computer programs, directions,

recipes which indicate specific use and implementation. Let’s

understand procedural knowledge elaborately with the help of an

example.

Example: man (Marcus)

 man (Caesar)

 person (Cleopatra) ∀𝑥: 𝑚𝑎𝑛(𝑥) 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥)

Now let us try to answer the question

 ∃𝑦: 𝑝𝑒𝑟𝑠𝑜𝑛(𝑦)

The knowledge base justifies any of the following answer:

y = Marcus

y = Caesar

y = Cleopatra

We get more than one value that satisfies the predicate.

 If only one value needed, then the answer to the question will depend

on the order in which the assertions examined during the search for a

response.

145

 If the assertions are declarative then they do not themselves say

anything about how they will be examined. In case of procedural

representation, they say how they will examine.

Examples of Procedural Knowledge :

a) Knowledge involved in writing a sorting algorithm that requires

understanding the specific steps such as bubble sort or quick sort, to

sort a number of elements.

b) Knowledge involved in training a neural network that requires

understanding of the architecture, activation functions, back

propagation and optimization techniques.

 On the other handa declarative knowledge is a representation in

which the knowledge is specified but the application of this

knowledge as where to utilise it is not specified. Universal truths,

laws are some of the facts that can stand alone and does not depend

on other knowledge. For using this knowledge, it needs to be

augmented with a program that will specify what and how this

knowledge is to be used. For example, a set of logical assertions can

combine with a resolution theorem prover to give a complete program

for solving problems but in some cases, the logical assertions can

view as a program rather than data to a program. Thus define the

legitimate reasoning paths are defined by the implication statements

and automatic assertions provide the starting points of those paths.

These reasoning paths define the execution path similar to “if-then-

else” execution.

The real difference between declarative and procedural views of

knowledge lies in where the control information resides.

Let us consider the same example discussed above but in a different

order:

146

 man (Marcus)

 man (Caesar) ∀𝑥 ∶ 𝑚𝑎𝑛(𝑥) → 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥)

 person (Cleopatra)

In this case, if declarative knowledge is considered then all the

answers are supported by the system and none of them is explicitly

selected. But if procedural knowledge is considered and as the

knowledge base is bit different from the earlier one, here we will get

the answer as Marcus but not Cleopatra. This happens as the first

statement that satisfies the person goal is the inference rule ∀𝑥: 𝑚𝑎𝑛(𝑥) → 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥). The sub goal of this rule is to find a man.

As the statements are once again examined from the initial statement,

Marcus first satisfies both the sub goal as well as the goal. So we get

the answer as Marcus.

Examples of Declarative Knowledge:

a) Knowledge involved in medical diagnosis which requires

understanding the symptoms, diseases and their relationships

enabling the system for accurate diagnosis.

b) Knowledge involved in recommender systems which requires

understanding of user preferences, item attributes and historical data

to provide personalized recommendations.

Difference between Procedural and Declarative Knowledge

Representation

Procedural Knowledge Declarative Knowledge

1. High efficiency 1. Higher level of abstraction

2. Low modifiability 2. Suitable for independent facts

3. Low cognitive adequacy 3. Good cognitive matching

147

4. Procedural knowledge means

to incorporate on AI systems

through procedures like LISP

and PROLOG languages

4. Declarative knowledge

means to incorporate on AI

systems through Declarative

mechanisms like Semantic

Nets, CD diagrams, frames and

scripts

5. Object facts 5. Rule procedure

STOP TO CONSIDER

 Procedural is also referred to as Imperative knowledge.

 Declarative knowledge is referred to as Functional knowledge

4.4 LOGIC PROGRAMMING

Logic programming is an effort made by computer scientist to make

machines able to decide or to reason so that it becomes useful for

knowledge representation. Two main components of logic

programming are logic and inference. Logic is used to represent

knowledge and inference is used to manipulate it. Logic programming

is a paradigm which helps in building logical assertions as programs.

Although there are various logic programming languages, PROLOG

is the most popular one.

A PROLOG program is a collection of facts and rules. It is a series of

logical assertions each of which is a Horn clause. A Horn Clause is a

clause with at most one positive literal, it is thus either:

1. A single positive literal, which is regarded as a fact,

2. One or more negative literals, with no positive literal, or

3. A positive literal and one or more negative literals which is

a rule.

148

 Thus p, ¬𝑝 V q and p → 𝑞 are all horn clauses.

In the example below we simply show the difference between Logic

representation and PROLOG representation. ∀𝑥: 𝑝𝑒𝑡(𝑥) ∧ 𝑠𝑚𝑎𝑙𝑙(𝑥) → 𝑎𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑝𝑒𝑡(𝑥) ∀𝑥 ∶ 𝑟𝑎𝑏𝑏𝑖𝑡(𝑥) ∨ 𝑑𝑜𝑔(𝑥) → 𝑝𝑒𝑡 (𝑥)

 ∀𝑥: 𝑝𝑦𝑔𝑚𝑦(𝑥) → 𝑟𝑎𝑏𝑏𝑖𝑡(𝑥)𝑠𝑚𝑎𝑙𝑙(𝑥)

 pygmy(tomy)

 Logic Representation

 apartmentpet (X):- pet (X), small (X)

 pet (X):- rabbit (X)

 pet (X):- dog(X)

 rabbit (X):- pygmy (X)

 small (X) :- pygmy (X)

 pygmy (tomy)

PROLOG Representation

PROLOG programs are composed of only Horn Clauses and hence

has a uniform representation. So designing the interpreter becomes

simple and efficient. Another important fact is that the logic of the

Horn clause is decidable. The input to a PROLOG program is the goal

to be proved. The PROLOG interpreter tries to attain the goal by

applying backward reasoning, provided the assertions are given in the

program. The program is read top to bottom, left to right and search

is performed depth-search with backtracking. There are two types of

statements in PROLOG program: facts and rules. Facts contain only

constants and represents statements about specific objects. On the

other hand rules contain variables and represents statements about

classes of objects.

149

Let’s now see the rule-based differences between logic and the

PROLOG representations:

1. Variables in logic representations are explicitly quantified whereas

in PROLOG variables are declared implicitly. All variables in

PROLOG begin with upper case letters and all constants begin with

lower case letters or numbers.

2. Symbols that exists in logic are and (∧) and or (∨). In PROLOG

symbol used for and is (,) whereas there is no symbol representing

or.

3. In logic implication statement of the form “p implies q” are written

as p →q. On the other hand the same implication in PROLOG is

written as q: - p as the interpreter always work backwards from a goal.

Logic and PROLOG mainly differs in the way they are represented.

The interpreter in PROLOG has a fixed control strategy and hence

the assertions in PROLOG program define a particular search path to

an answer to any question. On the other hand logic representations

only justifies the answers they define but says nothing about how to

choose the answer when there are more than one.

Let’s now discuss in details about the control strategy in PROLOG.

It always starts with the problem statement. The problem statement is

nothing but the goal to be proved. Next is to look for the assertions

that could prove the goal. The facts that prove the goal directly as well

as the rule whose head matches the goal are considered. The decision

to apply a fact or a rule is accomplished by the unification procedure.

Now it is reasoned backward from the goal to find out whether there

is a path that terminates with assertions in the program. The procedure

of searching the path continues until it suffices the condition. The

paths are considered using a depth first search and backtracking.

Conventions used for generating proof/ search tree of a PROLOG

query

150

a) Start generating tree with root as goal G to be satisfied

b) Downward arrow indicates the reduction of goal.

c) Clause number on the left side of an arrow.\

d) Possible bindings enclosed within curly brackets (if necessary) on

right of an arrow.

e) Leaf of the tree is labelled either succeeds or fails.

The following example will illustrate the execution of a PROLOG

query

The example consists of one rule for defining grandfather and five

facts about father relations. A rule is defined as: X is a grandfather of

Y if X is father of Z and Z is father of Y.

grandfather(X, Y):- father(X,Z), parent(Z,Y)

 (1)

parent(X, Y) :- father(X, Y)

 (2)

parent(X, Y) :- mother(X, Y)

 (3)

father (james, robert)

 (4)

father (mike,william)

 (5)

father (william, james)

 (6)

father (robert, hency)

 (7)

father (robert, cris)

 (8)

Suppose we have the query

?-grandfather(james,hency)

151

Here the interpreter tries to look for the fact

grandfatType equation here.her or a rule which head matches with the

predicate. A PROLOG program is written with the facts coming prior

to the rules so that the fact with a particular predicate can be used

first. And if no such appropriate fact is found, then the rule containing

the predicate is chosen.

Answer: Yes

Let’s consider another query:

?-grandfather(james, william)

Answer: No

Check Your Progress

1. Knowledge involved in training a neural network requires
__________knowledge.

2. A_______ program is a collection of facts and rules.
3. A Horn Clause is a clause with at most ______ positive literal
4. PROLOG programs are composed of only _________ and hence

has a uniform representation.

5. Variables in logic representations are __________ quantified

152

4.5 FORWARD VERSUS BACKWARD REASONING

A search procedure must always discover a path through a problem

space from an initial configuration to a goal state. There are actually

two directions in which a search procedure can proceed. They are:

 Forward search which starts from the start state

 Backward search which starts from the goal state

The production system provides an easy way of viewing forward and

backward reasoning as symmetric processes. Let us consider a game

of playing 8 puzzles. Assuming that the areas of the tray are numbered

shown in Fig 1, the rules defined for the puzzle are depicted in Fig 2

1 2 3

4 5 6

7 8 9

Fig 1: The areas of the tray are numbered

Square 1 empty and Square 2 contains tile n →

 Square 2 empty and Square 1 contains tile n

Square 1 empty and Square 4 contains tile n→

 Square 4 empty and Square 1 contains tile n

Square 2 empty and Square 1 contains tile n→

 Square 1 empty and Square 2 contains tile n

Fig 2: A sample of the rules for solving the 8-puzzle

153

There are two ways in which the puzzle can be solved:

1. Reasoning forward from the initial state:

Step 1: Start building a tree of move sequences that might be the

solution with the initial configuration at the root of the tree.

Step 2: Generate the next level of the tree by finding all the rules

whose left sides match the root node. The right side is used to create

the new configurations.

Step 3: The next level is generated by taking each node generated at

the previous level and the rules whose left side matches are applied

to it. This is continued until a configuration that matches the goal state

is generated.

2. Reasoning backward from the goal state:

Step 1. Begin building a tree of move sequences by starting with the

goal node configuration at the root of the tree.

Step 2. Generate the next level of the tree by finding all rules whose

right-hand side matches against the root node. The left-hand side used

to create new configurations.

Step 3. Generate the next level by considering the nodes in the

previous level and applying it to all rules whose right-hand side

match. So, the same rules can use in both cases.

Also, in forwarding reasoning, the left-hand sides of the rules are

matched against the current state and right sides used to generate the

new state. Moreover, in backward reasoning, the right-hand sides of

the rules matched against the current state and left sides are used to

generate the new state. This process is continued until one of these

goal states is matched by an initial state. Sometimes searching in one

direction is significantly better than the other direction. The searching

depends on the topology of the problem space.

154

The four factors that influence the question of reasoning forward or

backward are:

 First we need to observe that whether the number of possible

states is more or the goal states. Then we would prefer to

move from smaller set of states to the larger set of states.

 Next is to observe the direction of the branching factor. We

would like to proceed in the direction with the lower

branching factor.

 To check whether the program will be asked to justify it’s

reasoning process to a user. If yes, then it is important to

proceed in the direction that corresponds more closely with

the way the user will think.

 Lastly to find the kind of event that is going to trigger a

problem-solving episode. If it is the arrival of a new fact,

forward reasoning makes sense. If it is a query to which a

response is desired, backward reasoning is more natural.

Let us consider some examples for understanding the concept of

Forward versus Backward reasoning.

Example 1: It is always easier to drive to home from an unfamiliar

place rather than to drive to an unfamiliar place from home. Now if

we consider home as the starting place and unfamiliar place as goal

state then we have to backtrack from unfamiliar place to home.

Example 2:Let us consider the problem of symbolic integration

where the problem space is the set of formulas. Some of this formula

might contain integral expressions. Here START is one of these

formula containing integrals and the GOAL state is equivalent to the

expression of the formula without any integral. Here we start from the

formula with some integrals and proceed to an integral free

expression rather than starting from an integral free expression.

155

Example 3: The third factor is nothing but deciding whether the

reasoning process can justify its reasoning. If it justifies then it can

apply. For example, doctors are usually unwilling to accept any

advice from diagnostics process because it cannot explain its

reasoning.

Although the underlying principle or the set of rules that can be used

for both forward and backward reasoning are same, two classes of

rules are proved to be useful, each of which encodes a particular kind

of knowledge.

 Forward rules, to respond to certain input configurations

 Backward rules, to achieve particular goals

4.5.1 Backward-Chaining Rule Systems

PROLOG is a good example of backward chaining rule system.

PROLOG rules are restricted to Horn clauses. This allows for rapid

indexing because all of the rules for deducing a given fact share the

same rule head. Rules matched with unification procedure.

Unification tries to find a set of bindings for variables to equate a sub-

goal with the head of some rule. Rules in the PROLOG program

matched in the order in which they appear.

4.5.2 Forward-Chaining Rule Systems

In forward-chaining systems, left sides of rules are matched against

the state description. The rules that match dump their right-hand side

assertions into the state and the process repeats. The matching process

in forward chaining system is more complex than backward ones. For

example, let’s consider a rule that checks for some condition in the

state description and adds an assertion. The rule fires and could fire

again immediately as it’s condition are still valid. To prevent repeated

156

firings, we need some mechanism to prevent especially when the state

remains unchanged. Most forward-chaining systems implement

highly efficient matchers and supply several mechanisms for

preferring one rule over another.

4.5.3 Combining Forward and Backward Reasoning

A combination of both forward and backward reasoning methods are

frequently employed on AI systems to tackle complex problems and

make intelligent decisions. This hybrid approach takes advantage of

the strengths of each reasoning method and allows AI systems to

complement one another, resulting in more efficient and effective

problem-solving processes. Let us go through some examples where

a combination of both the approaches is used.

 Medical Diagnosis: Backward reasoning can be used to to

identify the necessary symptoms and tests required to

diagnose a specific condition while forward reasoning can

suggest the most likely diagnosis based on available data.

 Route Planning: Backward reasoning can be used for

establishing the destination as the goal and identifying the

intermediate waypoints in route planning. On the other hand

forward reasoning can be used to calculate the most efficient

route based on current traffic and road conditions.

 Theorem Proving: In mathematical theorem proving,

backward reasoning starts with the desired theorem to be

proven and works backward to identify the axioms and logical

steps required. Forward reasoning is then used to perform the

actual proof.

157

4.6 SUMMING UP

1. A procedural knowledge is a representation in which the

information required to use the knowledge is embedded in the

knowledge itself.

2. A declarative knowledge is a representation in which the

knowledge is specified but the application of this knowledge as where

to utilise it is not specified.

3. Procedural knowledge means to incorporate on AI systems through

procedures like LISP and PROLOG languages.

4. Declarative knowledge means to incorporate on AI systems

through Declarative mechanisms like Semantic Nets, CD diagrams,

frames and scripts.

5. Logic programming is an effort made by computer scientist to

make machines able to decide or to reason so that it becomes useful

for knowledge representation.

6. PROLOG is the most popular logic programming language.

7. A PROLOG program is a collection of facts and rules. It is a series

of logical assertions each of which is a Horn clause.

8. Logic and PROLOG mainly differs in the way they are represented.

9. A search procedure must always discover a path through a problem

space from an initial configuration to a goal state.

10.There are actually two directions in which a search procedure can

proceed. They are:

 Forward search which starts from the start state

 Backward search which starts from the goal state

11. A combination of both forward and backward reasoning methods

are also frequently employed on AI systems to tackle complex

problems and make intelligent decisions

158

4.7ANSWERS TO CHECK YOUR PROGRESS

1. Procedural

2. PROLOG

3. One

4. Horn clauses

5. Explicitly

4.8 POSSIBLE QUESTIONS

1. Consider the following knowledge base:

 ∀𝑥: ∀𝑦: 𝑐𝑎𝑡(𝑥) ∧ 𝑓𝑖𝑠ℎ(𝑦) → 𝑙𝑖𝑘𝑒𝑠 − 𝑡𝑜 − 𝑒𝑎𝑡(𝑥, 𝑦) ∀𝑥: 𝑐𝑎𝑙𝑖𝑐𝑜(𝑥) → 𝑐𝑎𝑡(𝑥) ∀𝑥: 𝑡𝑢𝑛𝑎(𝑥) → 𝑓𝑖𝑠ℎ(𝑥)

 tuna (Charlie)

 tuna (Herb)

 calico (Puss)

Write a PROLOG query corresponding to the question,” What does

Puss like to eat?” and show how it will be answered by your program?

2. A problem solving search can proceed either forward or

backward. What factors determine the choice of direction for a

particular problem?

3. Mention the differences between Procedural and Declarative

knowledge.

4. How does logic representation differ from PROLOG

representation?

5. Explain Forward and Backward reasoning with the help of

examples.

6. State some examples where a combined approach for Forward

and Backward reasoning is used.

159

4.9 REFERENCES AND SUGGESTED READINGS

[1]. https://rsisinternational.org/journals/ijrias/DigitalLibrary/Vol.4

&Issue12/78-81.pdf

[2]. https://www.youtube.com/watch?v=dNTfeHOqS5A

[3]. https://home.agh.edu.pl/~wojnicki/phd/node24.html

[4]. Rich, E., Knight, K., & Nair, S. B. (2010). Artificial intelligence.

[5]. Kaushik, S. (2007). Logic and prolog programming. New Age

International.

[6]. https://www.almabetter.com/bytes/tutorials/artificial-

intelligence/forward-and-backward-reasoning-in-ai

160

UNIT 5: KNOWLEDGE REPRESENTATION
USING RULES II

Unit Structure:
5.1 Introduction

5.2 Objectives

5.3 Matching

 5.3.1 Indexing

 5.3.2 Matching with Variables

5.4 Nonmonotonic reasoning and logic

5.5 Depth first and breath first search

 5.5.1 Depth First Search

 5.5.2 Breadth-First Search

5.6 Summing Up

5.7 Answers to Check Your Progress

5.8 Possible Questions

5.9 References and Suggested Readings

5.1 INTRODUCTION

In this unit we will continue to learn another set of knowledge rules

like matching, indexing, nonmonotonic reasoning and logic, depth

first and breath first search. Here we will find out how to select the

rule applicable for a particular problem from the set of rules available.

5.2 OBJECTIVES

After going through this unit, you will be able to:

 Understand the concept of matching and indexing

 Understand nonmonotonic reasoning

 Understand depth first and breadth first search

161

5.3 MATCHING

So far we have only used the process of searching to find out solutions

to solve problem, so that solving it may generate it to a new state and

then again applying rules until a solution is found. A clever search

would be to choose among the rules that applied at a particular point

leads to a solution. To choose a rule to be applied at a particular point

of time for solving a problem from the entire collection of rules

requires some kind of matching between the current state and the

preconditions of rules. Now the question is how the rules are being

extracted that are applied? There are different matching techniques to

extract the applicable rules. One of these is discussed below:

5.3.1 Indexing

Indexing is a technique that does a simple search over the set of rules

and selects the appropriate ones. It accomplishes this task by

comparing each rule’s preconditions with the current state and

extracting the ones that match. But this may lead to two important

consequence. First, it will be necessary sometimes to go through the

whole set of rules to find out solutions to problems. This process will

be inefficient as scanning through all of them will simply waste time.

Secondly, it is not always obvious that a rule’s precondition will

always match the current state. To overcome such type of problems

the current state can be used as an index into the set of rules and select

the matching ones immediately. This index can be generated by any

reasonable hashing function. Let us understand with the help of an

example. Consider the legal move generation for a chess game. To

access the rules appropriate for the legal moves can be done by simply

assigning an index to each board position. This is accomplished by

simply treating the board description as a large number. After this a

suitable hash function is applied to that number as an index into the

162

rules. Thus all the rules that describe the given board position will be

stored under the same key and so will be found together.

5.3.2 Matching with Variables

To discover whether there is a match between a particular situation

and the preconditions of a given rule involve a significant search

process. In many rule-based system, we need to compute the whole

set of rules that match the current state description. So it is efficient

to consider the many-many match problem, in which many rules are

matched against many elements in the state description

simultaneously. One such many many match algorithm is RETE.

RETE is a very efficient algorithm as it gains efficiency from three

major sources:

 The temporal nature of data. The state description is usually

not altered by rules rather it adds one or two new elements or

it deletes one or two of it. So the state description remains

unaltered. But RETE maintains a network of rule conditions

and uses the temporal nature of data i.e the state description

to determine which new rules might be applied. The

candidates which are more likely to be affected by incoming

or outgoing data, full matching can be followed for them.

 Structural similarity in rules. A large number of

preconditions may be shared by different rules. So when we

try to match two rules independently and they have some

common preconditions it may so happen that a lot of work

has to be done unnecessarily as it does not have any way to

store such rules and share it. RETE tackles this issue easily

as it stores rules so that they can share structures in memory.

Hence the set of preconditions that appear in several rules are

matched once per cycle.

163

 Persistence of variable binding consistency. A rule might not

get fired due to some variable binding conflicts. But this can

be avoided as RETE can remember it’s previous calculations

and is able to merge new binding information efficiently.

5.4 NONMONOTONIC REASONING AND LOGIC

Nonmonotonic reasoning is a technique where we can solve problems

with incomplete and uncertain models. In nonmonotonic reasoning

the axioms or rules of inference are extended to make it possible to

reason with incomplete information. These systems are based on the

property that at any given moment a statement is believed either to be

true, believed to be false or not believed to be either. Some

conclusions in nonmonotonic reasoning can be invalidated if some

more information is added to the knowledge base. Let us suppose we

are given this knowledge base which contains the following

knowledge:

 Birds can fly

 Penguins cannot fly

 Pitty is a bird

So from the above sentences, we can conclude that Pitty can fly.

However, if we add one another sentence into knowledge base "Pitty

is a penguin", which concludes "Pitty cannot fly", so it invalidates

the above conclusion.Non-monotonic reasoning is used for real world

systems such as Robot navigation.

The conventional reasoning system has the three main properties:

 It is complete with respect to the domain of interest as all the

facts that are necessary in solving a problem is present in the

system or can be derived from the conventional rules of first

order logic.

164

 It is consistent.

 In order to make a change in this kind of system is to add new

facts as they become available.

The main setback of this kind of system is that if any of these

properties is not satisfied, the reasoning system becomes inadequate.

But nonmonotonic reasoning can solve problems even if the above

said properties are missing. In order to do this, several key issues must

be considered given below:

1. How can the knowledge base be extended to allow inferences to be

made on the basis of lack of knowledge as well as the presence of it?

For example if we have no reason to suspect whether a person

committed a crime then we need to assume that he didn’t or if we

have no reason to believe that someone is not getting along with her

relatives then we have to assume that her relative will try to protect

her.So there should be a clear distinction between:

 It is known that ¬𝑃

 It is not known whether P

In the first case, reasoning is allowed by first order predicate logic.

But we also need an extended system that allows reasoning for the

second case also.

2. How can the knowledge base be updated properly when a new fact

is added to the system?

In nonmonotonic systems addition of new facts may invalid earlier
discovered proofs. Now how to find out those proofs and the
conclusions that depended on them. One usual solution is to keep
track of all the proofs which are termed as justifications. This makes
suitable to find all the justifications that depended on the absence of

165

the new fact and mark those proofs as invalid. Thus such mechanisms
supports conventional and monotonic reasoning as well.

3. How can knowledge be used to help resolve conflicts when there
are several in consistent nonmonotonic inferences that could be
drawn?

Sometimes when inferences are based on lack of knowledge as well
as it’s presence, contradictions are likely to occur. In nonmonotonic
systems we can observe that there are certain parts of knowledge base
which are consistent and some parts which are mutually inconsistent.
To overcome this problems additional methods are required for
resolving conflicts in ways that are appropriate for the particular
problem being solved. Suppose Sam, John and Harry are suspected
for committing a crime but at the end after going through all the facts
we conclude that they didn’t commit the crime but still we know that
one of them have committed it, then there is a contradiction. In such
case we resolve the conflict by finding the person with the weakest
alibi and conclude that he committed the crime

Now let us dive into the concept of nonmonotonic logic.
Nonmonotonic logic provides a basis for default reasoning. Here the
language of first order predicate logic is augmented with a modal
operator M, which can be read as “is consistent”. For example, the
formula: ∀𝑥, 𝑦: 𝑅𝑒𝑙𝑎𝑡𝑒𝑑 (𝑥, 𝑦) ∧ 𝑀 𝐺𝑒𝑡𝐴𝑙𝑜𝑛𝑔(𝑥, 𝑦) → ¬𝑊𝑖𝑙𝑙𝐷𝑒𝑓𝑒𝑛𝑑(𝑥, 𝑦)

which is read as “For all x and y, if x and y are related and if the fact
that x gets along with y is consistent with everything else that is
believed, then conclude that x will defend y”. The first issue here is
that we have to define what consistency means as consistency in this
system as in first order predicate logic is undecidable and hence we
require some approximation. It’s necessary to define consistency on
some heuristic basis, such as failure to prove inconsistency within
some fixed level of effort.

166

The second problem is that if multiple nonmonotonic statements are

taken aloneand it suggests ways of augmenting our knowledge which

if taken together would be inconsistent. Let us consider the following

set of assertions: ∀𝑥: 𝑅𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛 (𝑥) ∧ 𝑀 ¬ 𝑃𝑎𝑐𝑖𝑓𝑖𝑠𝑡 → ¬𝑃𝑎𝑐𝑖𝑓𝑖𝑠𝑡(𝑥)

 ∀𝑥: 𝑄𝑢𝑎𝑘𝑒𝑟 (𝑥) ∧ 𝑀 𝑃𝑎𝑐𝑖𝑓𝑖𝑠𝑡(𝑥) → 𝑃𝑎𝑐𝑖𝑓𝑖𝑠𝑡(𝑥)

 Republican (Dick)

 Quakev(Dick)

So there are two different ways of augmenting this knowledge base.

Now if we apply the first assertion it allows us to conclude ¬𝑃𝑎𝑐𝑖𝑓𝑖𝑠𝑡(𝐷𝑖𝑐𝑘). After applying the first assertion, we cannot apply

the second assertion as it concludes Pacifist (Dick).So it’s difficult to

conclude about the theory it supports. In order to deal with these type

of problems there are two types of nonmonotonic reasoning

techniques:

 Abduction: Abduction is a form of nonmonotonic reasoning

where assumptions are made to explain observations. Suppose

we have an axiom like:

 ∀𝑥: 𝑃𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑎(𝑥) → 𝐿𝑢𝑛𝑔 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛(𝑥)

The axiom says that having pneumonia implies lung infection.

But suppose if we noticed lung infection first then we might

like to conclude as pneumonia. This conclusion might be

wrong but it may be the right guess based on whatever is going

on. This type of conclusions is another form of default

reasoning and is termed as abductive reasoning.

 Inheritance: Nonmonotonic reasoning also forms the basis for

inheriting attribute values from a prototype description of a

class to the individual entities that belong to the class. This is

nothing but the concept of inheritance. Let’s consider the

following knowledge: dogs have lungs because they are

167

mammals and mammals have lungs. However, there may be

exceptions. For example, mammals, by and large, do not fly;

Since bats are mammals, in the absence of any information to

the contrary, we are justified in inferring that bats do not fly.

But if we learn that bats are exceptional mammals in that they

do fly, the conclusion that they do not fly is retracted, and the

conclusion that they fly is drawn instead. There are more

complicated scenarios. For example, baby bats are

exceptional bats in that they do not fly. Our example gives rise

to potentially conflicting inferences. When we infer that

Stellaluna, being a baby bat, does not fly, we are resolving all

these potential conflicts based on the Specificity Principle.

Non-monotonic inheritance networks were developed for the

purpose of capturing taxonomic examples such as the one

above. Such networks are collections of nodes and directed

(‘is-a’) links that represent taxonomic information.

Fig 1: Inheritance

Flies

Mammal

Bat

Baby Bat

Stelaluna

168

In figure 1 we can see that Stelaluna is a baby bat which belongs to

the class Bat. Now if we move straight we conclude that Stelaluna

can fly. But on the other hand if we go through the left branch as

Stelaluna is a baby bat, it cannot fly. Thus if we consider both the

branches we arrive in different conclusions and arises conflicts. But

as we know that bats are mammals and mammals can fly but there

may be some exceptions like baby bats does not fly.

5.5 DEPTH FIRST AND BREATH FIRST SEARCH

Non-monotonic reasoning is not enough for problem solving as it has

some weakness and fails to deal with four important problems that

arise in real systems.

Let’s go through the four main problems:

1. First is how to derive exactly those nonmonotonic conclusions that

are necessary to solve the problem at hand rather than going through

those that are not necessary and useful although they may licensed by

logic.

2. Secondly there must be a way to update our knowledge

incrementally as problem solving progresses.

3. Thirdly it often happens in nonmonotonic reasoning system that

more than one interpretation of the known facts is licensed by the

available inference rules.

4. Lastly the theories used in nonmonotonic reasoning is neither

effective nor efficient as most of these are not decidable and only

some are semi-decidable.

The solutions to these problems regarding the reasoning process can

be divided into two parts:

1. A problem solver that uses whatever mechanism it happens to have,

to draw conclusions as necessary.

169

2. A truth maintenance system whose job is to maintain consistency

in knowledge representation of a knowledge base.

So now we are going to discuss two techniques which helps in

tracking the nonmonotonic inferences so that the changes made in

knowledge base is handled properly.

5.5.1 Depth First Search

Depth-first search are most likely to follow a single path until some

new piece of information forces us to give up this path and find a new

path. Now if we take depth first search approach for nonmonotonic

reasoning, the following scenario might likely occur. Suppose we

have derived a fact F after taking assumption A. Later on we derived

some other facts like G and H from F. After that some more facts like

M and N are derived but these facts are completely independent of A

and F. It may happen that after sometime a new fact might come and

invalidate A. Then we have to override the proofs of F as well as G

and H as all these facts are dependent on F. But what to do with M

and N as they are logically independent of A. By following the

conventional backtracking we have to back up past M and N thus

undoing them in order to get back F,G,H and A. These problems are

solved with dependency directed backtracking which is based on

logical dependencies with slightly different notion of backtracking.

Dependency directed backtracking is not only used in handling

nonmonotonic reasoning but also is used in many conventional search

programs. Let us take an example where we need to find a solution to

a simple problem. The problem is that we need to fix a time for three

busy people to attend a meeting. To solve this problem, first we need

to make an assumption that the meeting is held on a particular day,

say Thursday. Now an assertion is added to this effect and then we

proceed to find a time, checking for any inconsistencies in the

170

people’s schedule. If any conflict arises, then we have to discard the

assumption made and replace it by another which must not be

contradictory. We must also discard any statements that has been

generated along the way and was dependent on the now discarded

assumption. By withdrawing statements, based on the order in which

they were generated by the search process rather than on the basis of

responsibility for inconsistency, a great deal of effort is wasted.

If we use dependency-directed backtracking, then we need to do the

following things while solving any problem:

1. Each node is associated with one or more justifications. Each

justification corresponds to a derivation process that led to a node and

each justification must contain a list of all nodes on which it’s

derivation depended.

2. A mechanism should be provided so the given contradiction node

and it’s justification computes the ”no good” set of assumptions that

underlie the justification. The no-good set is the minimal set of

assumptions where removal of any element from the set will make

the justification invalid and the inconsistent node will no longer be

believed.

3. A mechanism should be provided for considering a no-good set and

choosing an assumption to retract. Also a mechanism should be

provided to propagate the results of retracting an assumption. This

mechanism will cause all of the justifications dependent on the

retracted assumption invalid.

5.5.2 Breadth-First Search

The assumption-based truth maintenance system (ATMS) is an

alternative way of implementing nonmonotonic reasoning. In an

ATMS, backtracking is avoided and alternative paths are maintained

171

in parallel. As we proceed in ATMS based system reasoning, the

universe of consistent contexts are pruned as soon as contradictions

are discovered. The context that remain consistent are used to label

assertions and thus each assertion has a valid justification. So the

assertions that do not have valid jurisdiction are pruned from

consideration by the problem solver. Now the size of the consistent

contexts as well as the set of assertions gets smaller and it is

consistently believed by the problem solver. The breadth first search

technique is applied to ATMS.

The job of problem solver that is used in conjunction with the

ATMS is:

1. First to create nodes that corresponds to assumptions.

2. To associate with each such node one or more justifications,

each describing the reasoning chain that led to the node.

3. The ATMS should be informed about the inconsistent

contexts.

Thus the role of ATMS can be described as below:

1. The inconsistencies should be propagated ruling out the

contexts including the set of assertions that are known to be

inconsistent.

2. Each node in the problem solver should be labelled with the

context with which it has valid jurisdictions. In particular,

given a jurisdiction of the form

 A1∧A2∧…∧An →C

assign as a context for the node corresponding to C the

intersection of the contexts corresponding to the nodes A1

through An.

172

Thus contexts gets eliminated due to inconsistencies and

new nodes are created by the problem solver to represent

possible components of a problem solution. They may be

considered to be pruned if all their context labels get pruned.

Thus a possible solution gradually evolves in this process.

Check Your Progress

1. The index in Indexing technique can be generated by any
reasonable ____________function

2. In many________, we need to compute the whole set of rules that
match the current state description.

3. ________maintains a network of rule conditions and uses the state
description to determine which new rules might be applied

4. Some conclusions in nonmonotonic reasoning can be invalidated if
some more information is added to the________

5. _____________provides a basis for default reasoning

6. ___________is a form of nonmonotonic reasoning where

assumptions are made to explain observations.

5.6 SUMMING UP

1. To choose a rule to be applied at a particular point of time for

solving a problem from the entire collection of rules requires some

kind of matching between the current state and the preconditions of

rules

2. Indexing is a technique that accomplishes this task by comparing

each rule’s preconditions with the current state and extracting the

ones that match.

173

3. To discover whether there is a match between a particular situation

and the preconditions of a given rule involve a significant search

process.

4. RETE is an efficient algorithm where many rules are matched

against many elements in the state description simultaneously.

5. The efficiency of RETE algorithm due to the temporal nature of

data, structural similarity of rules and persistence of variable binding

consistency.

6. Nonmonotonic reasoning is a technique that can solve problems

with incomplete and uncertain models.

7. In nonmonotonic reasoning the axioms or rules of inference are

extended to make it possible to reason with incomplete information.

8. Abduction is a form of nonmonotonic reasoning where

assumptions are made to explain observations.

9. Nonmonotonic reasoning supports the concept of inheritance by

inheriting attribute values from a prototype description of a class to

the individual entities that belong to the class.

10. Depth first search and Breadth first search helps in tracking the

nonmonotonic inferences so that the changes made in knowledge base

is handled properly.

5.7ANSWERS TO CHECK YOUR PROGRESS

1. Hashing

2. Rule-based system

3. RETE

4. Knowledge base

5. Nonmonotonic logic

6. Abduction

174

5.8 POSSIBLE QUESTIONS

1. What is matching?

2. What is the purpose of indexing?

3. Explain indexing with the help of an example.

4. What is a RETE algorithm?

5. What are the three major sources by which RETE gains

efficiency?

6. Why is nonmonotonic reasoning required?

7. What are the three main properties of a conventional reasoning

system?

8. What are the two nonmonotonic reasoning techniques? Explain

with the help of examples.

9. What are the main problems that arise in nonmonotonic

reasoning? Explain.

10. What are the two techniques two techniques that helps in tracking

the nonmonotonic inferences so that the changes made in

knowledge base is handled properly? Explain.

5.9 REFERENCES AND SUGGESTED READINGS

1. Rich, E., Knight, K., & Nair, S. B. (2010). Artificial intelligence.

2. https://www.javatpoint.com/reasoning-in-artificial-intelligence

175

BLOCK- III
DIFFERENT DOMAINS

OF
ARTIFICIAL INTELLIGENCE

UNIT 1: INTRODUCTION TO STATISTICAL
REASONING

UNIT 2: FUZZY LOGIC CONCEPT

UNIT 3: FUNDAMENTAL OF NATURAL
LANGUAGE PROCESSING

UNIT 4: CONCEPT OF EXPERT SYSTEMS

176

UNIT 1: INTRODUCTION TO STATISTICAL
REASONING

Unit Structure:

1.1 Introduction

1.2 Unit Objectives

1.3 Probability

1.4 Bayes Theorem

 1.4.1 Applications of Baye’s theorem in AI

 1.4.2 Bayesian Network

 1.4.3 Role of Bayesian networks in AI

1.5 Summing Up

1.6 Answers to Check Your Progress

1.7 Possible Questions

1.8 References and Suggested Readings

1.1 INTRODUCTION

In the earlier chapters we have learnt several representation

techniques that can be used to model belief system in which at any

moment, a particular fact is believed to be true, false or not considered

in one way or the other way. Sometimes for certain problems it is

important to be able to describe facts that may not have certainty but

might have supporting evidence. For such type of problems, statistical

measures serve a useful tool in describing the facts. In this unit we

will learn how statistical measures can be augmented with knowledge

representation techniques to describe the levels of evidence and

belief.

177

1.2 UNIT OBJECTIVES

After going through this unit, you will be able to-

 Understand the concept of uncertainty in knowledge

 Understand what is probability

 Learn prior, conditional and posterior probability

 Understand the Bayes theorem

 Learn to solve problems using Bayes theorem

 Learn the different applications of Bayes Theorem

 Understand the Bayesian Network.

1.3 PROBABILITY

Let us first try to understand the concept of uncertainty before

discussing probability. Suppose we have two statements A and B.

Now if the if-then rule is implemented then we might write like this

A→ B which implies that if A is true then B is also true or if A is false

then B is false or if A is true then B is false or if A is false then B is

true. This can only be implemented if we know the state of A. But

suppose we don’t know about A then we cannot say any of these.

Such kind of situation in which we can’t take a firm decision is called

uncertainty. To represent such type of uncertain knowledge, where

we are not sure about the predicates, we need uncertain reasoning or

probabilistic reasoning. The different causes of uncertainty might be

any one of the following reasons:

1. Information occurred from unreliable sources.

2. Experimental Errors

3. Equipment fault

4. Temperature variation

5. Climate change.

178

The need of probabilistic reasoning in AI is required due to
unpredictable outcomes, predicates are too large to handle and also for

occurrence of unknown errors.

Let’s now define probability

Probability: The way of representing knowledge by using the

concept of probability to indicate the uncertainty in knowledge is

called probability. Here in statistical reasoning, probability theory is

combined with logic to handle the uncertainty. We can have a lot of

examples in real life scenarios where certainty of something is not

confirmed such as predicting the weather like “It will rain today” or

behaviour of someone in a particular situation or predicting the

outcome of a match.

Probability can be defined as chance of occurrence of an uncertain

event. It is the numerical measure of the likelihood that an event will

occur. The value of probability always remains between 0 and 1. 0 ≤

P(X) ≤ 1, where P(X) is the probability of an event X.

 • P(X) = 0, indicates total uncertainty in an event X.

 • P(X) =1, indicates total certainty in an event X.

Probability of an uncertain event can be found out by using the

formula

 Probability of occurrence = ே௨ ௗ௦ௗ ௨௧௦்௧ ௨ ௨௧௦

Before we learn about Baye’s theorem, it is important to learn the

concepts given below:

Event: The set of each possible outcome of a variable is called event.

Sample space: Sample space is the collection of all possible events.

Random variables: To represent the events and objects in the real

world, random variables

179

Prior probability: The probability that is computed before observing

new information is called prior probability.

Posterior probability: The probability that is calculated after all

evidence or information are considered. It is a combination of prior

probability and new information.

Conditional probability: The conditional probability of an event B

is the probability that the event will occur if and only if it is given that

event A has already occurred.

Probability of event B given A is written as P(B|A) =
(∧)()

Where P(A⋀B)= Joint probability of A and B

P(B)= Marginal probability of B

Probability of event A given B is written as P (A|B) =
(∧)()

Example: In a party, there are 70% of the children who like pizza and

40% of the children who likes pizza and burger, and then what is the

percent of students those who like pizza also like burger?

Solution: Let, A is an event that a child likes burger

B is an event that a child likes pizza

 P(A|B) =
 (∧)() = .ସ. = 57%

Hence, 57% are the students who like pizza also like burger.

180

1.4 BAYE’S THEOREM

Baye’s theorem also known as Bayes' rule, Bayes' law, or Bayesian

reasoning in AI, is a fundamental concept in probability theory and

statistics. In probability theory, it relates the conditional probability

and marginal probabilities of two random events. Bayes' theorem was

named after the British mathematician Thomas Bayes. Here the value

of P(B|A) is calculated with the knowledge of P(A|B).By observing

new information of the real world the Baye’s theorem allows updating

the probability prediction of an event.

Baye’s theorem can be derived using product and the of event A with

known event B

Using product rule we can write:

P(A∧B) = P(A|B) P(B) ----------------------------------(1)

Again the probability of event B with known event A:

P(A∧B) = P(B|A) P(A)------------------------------------(2)

Now equating both the right hand sides of the equations 1 & 2 we get

P(B|A) =
൫𝐴ห𝐵൯()() -----------------------------------(3)

Check Your Progress

1.Probability is the numerical measure of the likelihood that an
____will occur.

2. The value of probability always remains between __ and __

3. Define sample space

4. What is the difference between prior and post probability?

181

This equation is called Baye’s rule or Baye’s theorem. This forms the

base of all modern AI systems for probabilistic inference. The

relationship between the joint and conditional probabilities is shown

in the simple equation above.

P(A|B) which we need to calculate is known as posterior and it will

be read as Probability of hypothesis A when we have occurred an

evidence B. P(B|A) is called the likelihood, in which we consider the

hypothesis to be true and then we proceed to calculate the probability

of evidence.P(A) is called the prior probability. It is the probability of

hypothesis before the evidence is being considered. P(B) is called

marginal probability which is the pure probability of an evidence. In

equation 3 we can write P(B) as

 P(B) = P(A) * P(B|Ai)

Hence the Baye’s rule can be written as

 P(Ai|B) =
()∗(|)∑಼సభ ()∗(|)

where A1,A2,A3,………..An is a set of mutually exclusive and

exhaustive events.

If we want to perceive the effect of some unknown cause, and want to

compute that cause, then the Bayes' rule becomes

P(cause | effect) =
𝑷 (𝒆𝒇𝒇𝒆𝒄𝒕 |𝒄𝒂𝒖𝒔𝒆).𝑷(𝒄𝒂𝒖𝒔𝒆)𝑷(𝒆𝒇𝒇𝒆𝒄𝒕)

Example: In a clinic 10% of patients are having liver disease and and

5% of the patients are alcoholic. Out of the patients suffering from

liver disease 7% are alcoholic. Find out the probability of a patient

having liver disease if they are alcoholic?

Ans: Let A be the event “ Patient having liver disease” .

 So P(A) = 10% = 0.10

 B be the event “ Patient who is alcoholic”

182

 So P(B) = 5% = 0.05

 As 7% of patients suffering from liver disease are alcoholic

 Hence we have P(B|A) = 7%

 Probability of a patient having liver disease if they are

 alcoholic

 P(A|B) =
𝑷 (𝑩 |𝑨).𝑷(𝑨)𝑷(𝑩)

 = (0.07 * 0.1)/0.05 = 0.14

Example: John is planning a picnic for his family. He is trying to

decide whether to postpone the picnic due to rain. The chance of rain

on any day is 15%. Now it’s cloudy in the morning of the picnic. The

probability of it being cloudy is 25% and on days where it rains, it’s

cloudy in the morning 80% of time. What should John do now?

Ans: Probability of rain on any day P(rain) = 0.15

Probability of being cloudy P (cloudy) = 0.25

Probability of being cloudy on days when it rains P(cloudy|rain) =

0.80

Hence probability of rain during picnic

P (rain | cloudy) =
(௨ௗ௬ |).()(௨ௗ௬)

 =
.଼ ..ଵହ.ଶହ

 = 0.48

Self-Assessment Question

From a standard deck of playing cards, a single card is drawn. The
probability that the card is king is 4/52, then calculate posterior
probability P(King|Face), which means the drawn face card is a king
card.

………………………………………………………………………
………………………………………………………………………
………………………………………………………………………

183

1.4.1 Applications of Bayes theorem in AI

 Spam Filtering: The use of electronic messaging system to send

unwanted or unrequested messages is called a spam. The nature

of a spam resembles with an advertisement or a promotional

campaign but in reality it is a way to deceive the users to acquire

their personal confidential information. The phrases used in

spam are recognized by the computer algorithm and can hence

judge the authenticity of the mail.

 Image Classification: In Image recognition systems

Bayes'theorem can be used to assign probabilities to place them

in the correct category.

 Recommendation Systems: By studying the user’s past

behavior and preferences, recommendation engines can utilize

Bayes' theorem to personalize suggestions.

 Financial Modelling: Bayes' theorem is used in financial

institutions to assess creditworthiness of loan applicants or

predict market trends by incorporating historical data and

economic indicators to calculate the probability of different

financial outcomes.

 Robot Navigation: Robots navigation uses Bayes' theorem to

update their understanding of the surroundings based on sensor

data. This helps them adapt to changes and avoid obstacles more

effectively.

 Self-Driving Cars: Autonomous vehicles or self-driving cars

have a very complex decision-making process by sensing the

data from the surroundings and then analyzing it. The sensors

use Bayes theoremto interpret data it has collected and make

real-time decisions about steering, braking, and lane changes

while considering uncertainties in the environment.

184

 Anomaly Detection: Bayes' theorem helps to calculate the

likelihood of an event being anomalous by identifying the

unusual patterns in data.

 Sentiment Analysis: Using Bayes theorem in analyzing the

sentiment of text data (positive, negative, neutral) can be

enhanced by considering the context and prior knowledge about

sentiment-related words.

 Natural Language Processing (NLP): Bayes theorem in NLP

helps in accomplishing tasks like machine translation and part-

of-speech tagging. It can be used for predicting the most

probable part of speech for a word based on surrounding words

and context.

 Medical Diagnosis: Bayes theorem can be helpful in predicting

a particular disease with the use of patient data and medical

history. This is definitely not a replacement for medical

expertise but can be used as an aid to help medical professionals

to diagnose the disease.

Let’s just go through a particular example to understand Bayes

theorem in details. We are going to see the use of Bayes theorem in

image classification. Image classification is a task in computer vision.

It helps to categorize images under a specific label. Bayes theorem

used in classification is named as Bayes optimal classifier. Suppose

we have a classification problem with idifferent classes. Here the

main concern is to find out the class probability for each class wi. So

the prior class probabilities will be p(wi) and posterior class

probabilities, after using data or observations will be p(wi|x).

Therefore Bayes formula for Bayes optimal classifier is

 P(wi|x) =
𝑷 (𝒙 |𝒘𝒊).𝑷(𝒘𝒊)𝑷(𝒙) -------------------------(4)

185

Here P(x) is the density function common to all the data

points, P(x|wi) is the density function of the data points belonging to

class wi, and P(wi) is the prior distribution of class wi. P(x|wi) is

calculated from the training data, assuming a certain distribution and

calculating a mean vector for each class and the covariance of the

features of the data points belonging to such class. The prior class

distributions P(wi) are estimated based on domain knowledge, expert

advice or previous works, like in the regression example.

1.4.2 Bayesian Networks

The main idea of Bayesian network is that to describe the real world,

it is not necessary to use a huge joint probability table in which we

list the probabilities of all conceivable combination of events. The

interaction of events that are conditionally independent of each other

actually need not be considered. Instead a more local representation

can be used that describe the cluster of events that interact. In this

representation we construct a model from data and expert opinion

consisting of two parts: Direct Acyclic Graph (DAG) and Conditional

Probability Table (CPT). In DAG, nodes correspond to random

variables which can be continuous or discrete. Each node is assigned

with a CPT. For problem-solving, this DAG is converted into the

undirected graph in which the arcs can be used to transmit

probabilities in either direction, depending on where evidence is

coming from. The only constraint or arcs allowed in Bayesian

Network is that there must not be any directed cycles. DAG mainly

represents causality relationships among variables.

Now let us understand Bayesian Network with the help of a Figure 1:

Burglars and earthquake problem. Let us assume that a house has an

alarm system against burglary. The house is situated in a seismically

active area and the alarm system can get occasionally set off by an

186

earthquake. The house has two neighbors who don’t know each other

namely Mary and John. If the alarm is heard by them they will call

you.

So for constructing the Bayesian Network first we need to identify the

variables:

Burglary (B), Earthquake (E), Alarm system (A), John calls (J) , and

Marry calls (M)

Fig 1: Burglar and Earthquake Problem

(Source:https://miro.medium.com/v2/resize:fit:640/format:webp/1*K

Aeo07om2Ehaa_dPHeJeqQ.png)

In the graph showed in Fig 1, there are two nodes Burglary and

Earthquake whose parent is Alarm. Earthquake is the ancestor of both

John calls and Mary calls. Again, John calls and Mary calls are the

children of Alarm and are descendants of both Burglars and

Earthquake.

Thus, Burglary and Earthquake are both root nodes, John calls and

Mary calls are leaf nodes while Alarm is an intermediate node.

187

 Suppose we need to find the probability when John calls and Mary

calls are true when the Alarm rang but no Burglary and Earthquake

occurred.

Now here we have three true events: J,M and A and two false events ∼B and ∼E

Going through the Fig 1 we get the probabilities as

 P(J) = 0.90

P(M) = 0.7

P(A) = 0.001

P(∼B) = 1- 0.001 = 0.999

P(∼E) = 1 – 0.002 = 0.998

So, the final probability will be like

= P (J ∩ M ∩ A ∩∼B ∩∼E)

= P(J/A) * P(M/A)*P(A/∼B, ∼E) * P(∼B) * P(∼E)

= 0.90 * 0.7*0.001*0.999*0.998

=0.000628

1.4.3 Role of Bayesian Networks in AI

Addressing uncertainty is the most significant impact of Bayesian

network in AI. Most of the models in AI suffer from uncertainty. Thus

the Bayesian network provides the necessary framework for

modelling and reasoning under uncertainty. Bayesian networks

represents explicitly the dependencies between variables, thus

incorporating probabilistic information. With the help of Bayesian

networks, complex systems can be made more more accurate and

robust. Thus, the application of Bayesian networks makes more

informed predictions and decisions, accounting for the inherent

uncertainty in the data.

188

Bayesian networks can also aid in optimal decision making

particularly when the decisions are to be made on limited or noisy

data. Another significant characteristic of Bayesian network is it’s

ability to learn from data. It accomplishes by augmenting the prior

knowledge it has and the present observed data. Thus, by doing this

it enhances it’s knowledge and also updates it’s belief based on the

new information. This increases the adaptability as well as also the

performance of the AI models.

Thus, Bayesian networks can be used in a wide variety of applications

thus making AI models robust, accurate, and interpretable.

1.5 SUMMING UP

1. The need of probabilistic reasoning in AI is required due to
unpredictable outcomes, predicates are too large to handle and also for

occurrence of unknown errors.

2. The way of representing knowledge by using the concept of

probability to indicate the uncertainty in knowledge is called

probability.

3. An event is a set of each possible outcome of a variable is called

event.

4. Sample space is the collection of all possible events.

5. Random variables are used to represent the events and objects in

the real world.

6. Prior probability is the probability that is computed before

observing new information.

7. Posterior probability is the probability that is calculated after all

evidence or information are considered. It is a combination of prior

probability and new information.

189

8. The conditional probability of an event B is the probability that the

event will occur if and only if it is given that event A has already

occurred.

9.Bayes theorem relates the conditional probability and marginal

probabilities of two random events.

10. The main idea of Bayesian network is that to describe the real

world, it is not necessary to use a huge joint probability table in

which we list the probabilities of all conceivable combination of

events.

1.6 ANSWERS TO CHECK YOUR PROGRESS

1. Event

2. 0,1

3. Sample space is the collection of all possible events

4. The probability that is computed before observing new information

is called prior probability and conditional probability is the

probability that is calculated after all evidence or information are

considered. It is a combination of prior probability and new

information.

1.7 PROBABLE QUESTIONS

1. What is statistical reasoning?

2. What is the necessity of probability in AI?

3. Define probability with the help of an example.

4. Define: event, sample space and random variable.

5. Explain prior, posterior and conditional probability with the help

of an example.

190

6. Explain Bayes theorem with the help of an example.

7.Mention some applications of Bayes theorem in AI.

8. Explain how Bayes theorem is applied in image classification.

9. Explain Bayesian network with the help of an example.

10. Describe the role of Bayesian network in AI.

1.8 REFERENCES AND SUGGESTED READINGS

1. https://www.cecmohali.org/public/documents/cse/material/ppt/ai-

ppt-3.pdf

2.https://www.lkouniv.ac.in/site/writereaddata/siteContent/2020040

21910158758chandrabhan_Artificial_Intelligence_Probabilistic_rea

soning.pdf

3. https://rashandeepsingh.medium.com/bayes-theorem-and-

bayesian-network-14b5a614ca26

4. https://www.leewayhertz.com/bayesian-networks-in-

ai/#indispensable-role-of-Bayesian-networks-and-probabilistic-

inference-in-machine-learning

5.https://www.lkouniv.ac.in/site/writereaddata/siteContent/2020040

21910158758chandrabhan_Artificial_Intelligence_Probabilistic_rea

soning.pdf

6. Rich, E. L. A. I. N. E., Knight, K., & Nair, S. B. (2009). Artificial

intelligence third edition.

191

UNIT-2: FUZZY LOGIC CONCEPT

Unit Structure:

2.1 Introduction

2.2 Unit Objectives

2.3 Introduction to Fuzzy Concept

2.3.1 Fuzzy Membership Function

2.4 Fuzzy Basic Terminology

2.5 Basic Fuzzy Operations

2.6 Summing Up

2.7 Check your progress

2.8 Possible Questions

2.9 References

2.1 INTRODUCTION

A computer consists of circuits and devices. There is no intelligence of its

own, but we can make it intelligent artificially. We can make it expert in

areas like medical diagnosis, robot movement, location of mineral deposits,

etc. Therefore, for this, a mathematical movement of vague concepts or

vague knowledge or imprecise data is required. Zadeh introduced Fuzzy set

concept in 1965. Since Zadeh initiated Fuzzy sets, many approaches and

theories treating imprecision and uncertainty have been proposed. The term

fuzzy implies things that are not clear or are vague. In the real world many

times we meet a situation when we can't decide whether the state is true or

false, there fuzzy logic gives very valuable flexibility for reasoning. In this

way, we can consider the inaccuracies and uncertainties of any

situation. Fuzzy Logic is a form of many-valued logic in which the truth

values of variables may be any real number between 0 and 1, instead of just

192

the traditional values of true or false. It is useful for dealing with imprecise

or uncertain information and is a mathematical method for representing

vagueness and uncertainty in decision-making problems.

2.2 UNIT OBJECTIVES

After going through this unit, you will be able to:

 Understand the Fuzzy set concept and Fuzzy membership function

 Explain the basic terms used in Fuzzy concept

 Analyze the basic operations of Fuzzy set

2.3 INTRODUCTION TO FUZZY CONCEPT

A computer consists of circuits and devices. There is no intelligence of its

own, but we can make it intelligent artificially. We can make it expert in

areas like medical diagnosis, robot movement, location of mineral deposits,

etc. Therefore, for this, a mathematical movement of vague concepts or

vague knowledge or imprecise data is required. In classical set theory, the

“integer numbers which are greater than or equal to 7 and less than or equal

to 13” can be represented as:

S = {x ∈ Z | 7 ≤ x ≤ 13}

i.e., S = {7, 8, 9, 10, 11, 12, 13}

 This representation is insufficient in the sense that we are not in a position

to answer somewhat vague concept e.g., “integers which are more or less

equal to 7.” The source of vagueness is ”more or less.”. In conventional set

theory, we have the characteristic function defined as:

µ : X → {0, 1}

which associates with each element of a universe of discourse X either 1 or

0 which means that a particular element either belongs to the set or does not,

respectively. As a result there is a clear difference of the elements

‘belonging and not belonging to the set’, or equivalently the conversion

from ‘belonging’ to ‘not belonging’ to the set is unexpected. But for the

193

“integers being more or less equal to 7”, such a exact distinction is artificial.

Here, it is impossible to fix any clear border line. Therefore, one of the most

important method for such information processing is fuzzy set theory.

In fuzzy set theory, we say the classical sets as crisp sets, in order to

differentiate them from fuzzy sets. Let C be a crisp set defined on the

universe X. Then for any element x of X, either x ∈ C or x ∉ C. In fuzzy set

theory, this property is generalized, therefore in a fuzzy set F, it is not

necessary that eitherx ∈ F or x ∉ F. In fuzzy set theory, the characteristic

function µc : X → {0, 1} defined in a crisp set is generalised to a

membership function that assign to every x ∈ X a value from the unit

interval [0, 1] instead from the two-element set {0,1}. The set that is defined

on the basis of such a membership function is called a fuzzy set.

2.3.1 Fuzzy Membership Function

A fuzzy set is made of elements and their respective membership grades in

the set. This membership grade refers to the degree to which that individual

is similar or well-matched with the concept represented by the fuzzy set.

The grade of membership of an element can be obtained by a subjectively

defined membership function. The value of the grade of membership of an

element can range from 0 to 1 .Here the value 1 means full membership,

and the closer the value is to 0, the weaker is the element having its

membership in the fuzzy set.

Definition 5.1: The membership function µிof a fuzzy set F is a

function: µ ∶ X → [0, 1]
Thus, every element x from X has a membership degreeµ(x) ∈ [0, 1],
and F is completely determined by the set of tuples: F = {(x, µ (x)) | x ∈ X}

Therefore a fuzzy set is a set of pairs having the particular element of the

universe and their membership grades. For example we can define a

194

possible membership function for the set of real numbers close to 0 as

follows: µ(𝑥) = 11 + 10𝑥ଶ

and graphically represent it as in Fig 5.1:

Figure 5.1 Possible membership function of the fuzzy set of real member

close to zero

If X = {xଵ, xଶ, … , x୬},then a fuzzy set A of X can be written as:

 A = ൛൫xଵ, µ(୶భ)൯, ൫xଶ, µ(୶మ)൯, … , ൫x୬, µ(୶)൯ൟ

which can sometimes be written as:

 A = ቄµఽ(౮భ)୶భ , µఽ(౮మ)୶మ , … , µఽ(౮)௫ ቅ

For example, if the real numbers 5, 1, and 0 have membership grades of 0.1,

0.09, and 1 can be written as:

A = {(5, 0.1),(1, 0.09),(0, 1)}

Or A = ൜0.15 , 0.091 , 10ൠ

Stop to Consider

Fuzzy Membership functions were first introduced by Lofti A. Zadeh

in his first research paper fuzzy sets in 1965. Fuzzy Membership

functions characterize fuzziness or vagueness (i.e., all the information

in fuzzy set), ie.whether the elements in fuzzy sets are discrete or

continuous. Fuzzy Membership functions can be defined as a method

195

to solve practical problems by experience rather than knowledge.

Fuzzy Membership functions can be represented by graphical forms.

It can be understood as Fuzzy rules for defining fuzziness are fuzzy

too.

2.4 FUZZY BASIC TERMINOLOGY

Some important terms used in Fuzzy Logics are discussed in this

section.

Definition 5.2: Subset

 Let X be a set (≠ ∅) and let A and B be two fuzzy sets on X with

membership functions µand µrespectively. We say that the fuzzy

set A is contained in the fuzzy set B iff: µ(୶) ≤ µ(୶)∀x ∈ X

Example 5.1: If X = {1, 2, 3} and A, B, C are three fuzzy sets given by: 𝐴 = ቄ.ଵଵ , .ହଶ , ଵଷቅ, 𝐵 = ቄ.ଵଵ , .ଷଶ , .ଷ ቅ, 𝐶 = ቄ.ଵଵ , .ଶ , .ହଷቅthen B ⊆ A, but C ⊈ A.

Definition 5.3: Normal Fuzzy Set

A fuzzy set A on the set X is called a normal fuzzy set if and only if: max୶∈ଡ଼ µ(୶) = 1

i.e., µA(x) = 1 for at least one x ∈ X otherwise A is subnormal .

Example 5.2: If X = {1, 3, 5, 7} and A = ቄ.ଵଵ , ଵଷ , .ଶହ , .ହቅ then we can say

A is a normal fuzzy set.

Definition 5.4: Support of a Fuzzy Set

 The support of a fuzzy set A on the set X is the crisp set that contains

all the elements of X that have a nonzero membership grade in A and

denoted by supp(A) i.e., supp(A) = {x ∈ X |µ(x) > 0}

196

The element x in X at which we get µA(x) = 0.5 is called the crossover
point. A fuzzy set whose support is a single element in X with µA(x)

= 1 is called a fuzzy singleton.

Example 5.3: Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let the fuzzy set A

on X be:

A = {(1, 0), (2, 0), (3, 0.5), (4, 0.7), (5, 0.2), (6, 0.8), (7, 0), (8, 0), (9, 0)}

Then:

supp(A) = {3, 4, 5, 6}

x = 3 is the crossover point. A special notation is often used for defining

fuzzy set with a finite support: A = µଵ|xଵ + µଶ|xଶ + … + µ|x୬

For the case in which a fuzzy set A is defined on a universal set that is finite

and countable, one may write

A = ∑ µ௫
Definition 5.5: α-Cut or α-Level Set

The α-level set is the crisp set of elements that belong to the fuzzy set A at

least to the degree α. Mathematically, we can write, A = {x ∈ X |µ(x) ≥ α}
The strong α-level set or strong α-cut is defined as: A =ᇱ {x ∈ X |µ(x) > 𝛼}

Example 5.4: Suppose X = { 2, 3, 4, 5, 6, 7}.Consider the fuzzy set A of X

given by:

 A = {(2, 0.2), (3, 0.5), (4, 0.7), (5, 1), (6, 0.8), (7, 0.3)}

Then all possible α-level sets are: A.ଶ = { 2, 3, 4, 5, 6,7}, A.ଷ = { 3, 4, 5, 6,7},A.ହ = {3, 4, 5,6}, A. = { 4, 5,6}, A.଼ = {5,6}, A1 = {5}

Clearly, A = X and A = ∅ for all α> 1.

197

2.5 BASIC FUZZY OPERATIONS

Generally, the basic operations in the theory of fuzzy sets are the

complement, union and intersection. In short, the definitions can be given

in terms of the respective membership functions.

Definition 5.6: Equal Fuzzy Sets

Two fuzzy sets A and B are equal if: µ(୶) = µ(୶)∀x ∈ X

Definition 5.7: Absolute and Relative Complements

The absolute complement of a fuzzy set A is represented by 𝐴and is

defined by: µ(x) = 1 − µ(୶), ∀x ∈ X

Thus, if an element has a membership grade of 0.6 in a fuzzy set A, its

membership grade in the complement of A will be 0.4.

 The relative complement of A with respect to B, denoted by B − A, is

defined by: µି(x) = µ(x) − µ(x) provided that µ(x) ≥ µ(x).

Example 5.5: Let A = {(0, 0.3),(1, 0.5),(2, 0.7),(3, 0.8)} and B = {(0,

0.4),(1, 0.6),(2, 0.8),(3, 0.8)}. Find 𝐴 and B − A.

Solution: 𝐴 = {(0, 1 − 0.3), (1, 1 − 0.5), (2, 1 − 0.7), (3, 1 − 0.8)} = {(0, 0.8), (1, 0.6), (2, 0.4), (3, 0.3)} B − A = {(0, 0.1), (1, 0.1), (2, 0.1), (3, 0)}.
Definition 5.8: Union of Fuzzy Sets

 The union of two fuzzy sets A and B is a fuzzy set C given by:

C= A ∪ B where µେ(x) = max൫µ(x), µ(x)൯, ∀x ∈ X.

198

Definition 5.9: The Intersection of Fuzzy Sets

 The intersection of two fuzzy sets A and B is a fuzzy set C given by: C =

A∩B

 Where µେ(x) = min൫µ(x), µ(x)൯, ∀x ∈ X.
Example 5.6:

Let: A = {(4, 0.2),(6, 0.2),(8, 0.4),(10, 0.5)},

 B = {(0, 0.3),(2, 0.5),(4, 0.7),(5, 0.9),(8, 0.7)} are two fuzzy sets.

Then we have A ∩ B = min[0, 0.3]/0 + min[0, 0.5]/2 + min[0.2, 0.7]/4 +

min[0, 0.9]/5 + min[0.2, 0]/6 +min[0.4, 0.7]/8 + min[0.5, 0]/10

= 0/0 + 0/2 + 0.2/4 + 0/5 + 0/6 + 0.4/8 + 0/10

 = {(4, 0.2),(8, 0.4)}

We can give the graphs that represent the membership function as in Fig.

5.2:

Figure: 5.2. Fuzzy Basic Operations

Stop to Consider

Fuzzy logic is a generalization from standard logic, in which all statements

have a truth value of one or zero. In fuzzy logic, statements can have a value

of partial truth, such as 0.9 or 0.5. Theoretically, this gives the approach

more opportunity to mimic real-life circumstances, where statements of

absolute truth or falsehood are rare.

199

2.6 SUMMING UP

In summary, Fuzzy Logic is one of the most important method for

processing vagueness and uncertainty in decision-making is fuzzy set theory

mathematical method for representing, it allows for partial truths, and it is

used in a wide range of applications. It is based on the concept of

membership function and its implementation is done using Fuzzy rules.

2.7 CHECK YOUR PROGRESS

1. State True or False:

a) The fuzzy set A is contained in the fuzzy set B iff:µ(୶) ≤ µ(୶)∀x ∈ X

b) An empty Fuzzy set has an empty support.

c)The crossover point has membership function value equals to 1.

d) There is no difference between Absolute and Relative complement of a

Fuzzy set.

e)Two fuzzy sets are called equal if they have equal number of elements

2. Fill in the blanks:

a) In Fuzzy set theory classical sets are called ______.

b)The grade of membership of an element is given by ______ function.

c)A fuzzy set which is not normal is called ________.

d) A = _____ for all α> 1.

e) A fuzzy set consists of elements and their respective grades of_______

in the set.

Answers to check your progress

1. a) True b) True c) False d) False e) False

2. a) Crisp sets b) Membership c) Subnormal d) ∅ e) membership

200

2.8 POSSIBLE QUESTIONS

1. Describe Fuzzy Membership function. Give example with graphical

representation.

2. Define the terms:

 i) Crossover point

ii) Fuzzy Singleton

iii) α-level set

3. Discuss the basic operations of Fuzzy set with examples

4. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } and let the fuzzy set A on X be:

A = {(1, 0.1), (2, 0.2), (3, 0.3), (4, 0.4), (5, 0.5), (6, 0), (7, 0), (8, 0), (9, 0)}

Find supp(A) . Also find the crossover point.

5. Suppose X = {3, 4, 5, 6, 7, 8}.Consider the fuzzy set A of X given by:

 A = {(3, 0.3), (4, 0.6), (5, 0.7), (6, 1), (7, 0.1), (8, 0.9)}

Find α-level sets: A. , A.ଽ , A .
6. Let A = {(1, 0.3),(2, 0.5),(3, 0.7),(4, 0.8)} and B = {(1, 0.4),(2, 0.6),(3,

0.8),(4, 0.8)}. Find 𝐴 , AC and B − A.

7. Let: A = {(4, 0.1),(6, 0.5),(8, 0.6),(10, 0.7)},

 B = {(0, 0.4),(2, 0.6),(4, 1),(6, 1),(8, 0.6),(10, 0.5)} are two fuzzy sets.

Then find A ∪ B and A ∩ B.

8. If X= {51, 52, 53, 54}

A = {(51, 0.1),(52, 0.5),(53, 0.6),(54, 0.7)} and B = {(51, 0.4),(52,

0.6),(53, 1),(54, 1}. Then find A ∪ B and A ∩ B.

2.9 REFERENCES AND SUGGESTED READINGS

[1]. https://www.techtarget.com/searchenterpriseai/definition/fuzzy-

logic

[2]. James K. Peckol (2021). Introduction to Fuzzy Logic

[3]. https://plato.stanford.edu/entries/logic-fuzzy/

201

UNIT 3: FUNDAMENTAL OF NATURAL
LANGUAGE PROCESSING

Unit Structure:
3.1 Introduction

3.2 Objectives

3.3 What is Natural Language Processing (NLP)?

3.4 Knowledge required for NLP

3.5 Morphology

3.6 Syntactic Processing

 3.6.1 Parsing of natural language

3.7 Semantic Analysis

 3.7.1 Lexical Processing

 3.7.2 Sentence level processing

3.8 Discourse and Pragmatic Processing

3.9 Summing Up

3.10 Answer to Check Your Progresses

3.11 Possible Questions

3.12 References and Suggested Readings

3.1 INTRODUCTION

Language is the communicating medium in the world. By studying or

learning languages one can understand more about the world. Natural

language processing is a subfield of Artificial Intelligence. It studied

the automatic generated problems in natural language processing and

understanding the natural human languages. Here in this unit we will

discuss the different language processing problems like processing

written text and spoken languages. Here we also discuss about several

components of the natural language understanding process like

202

morphological analysis, syntactic analysis and semantic analysis,

discourse integration and pragmatic analysis.

3.2 OBJECTIVES

After going through this unit learner will able to

 Understand the basic concept of natural language processing

 Learn about different natural language understanding process

 Understand the morphological analysis and syntactic analysis

of language

 Understand the concept of Semantic analysis of a sentence in

a language

 Learn about the discourse integration and pragmatic analysis

of a sentence

3.3 WHAT IS NATURAL LANGUAGE
PROCESSING (NLP)?

A natural language is a language that is spoken, written by humans

for general purpose communication. Natural language is different

from the other formal language like computer-programming language

or the language which are used in the study of formal logic. The term

natural language refers to the language that people speak, like

English, Assamese, Hindi etc. The goal of natural language

processing is to design and build software that will understand,

analyze and generate languages that human use naturally. The

computational activities required for enabling a computer to carry out

information processing using natural language is called natural

language processing. There are many challenges are involves in NLP

such as enabling the computer to derive meaning from human or some

203

natural language input. In computer science taxonomy, NLP can be

categorized as in the Figure 3.1

Figure 3.1 Natural Language Processing in Computer Science
Taxonomy

General people have not any problem for understanding a language

because of the following reasons

 Common sense knowledge

 Reasoning capacity

 Experience

But computer have no common sense knowledge and reasoning

capacity. An application may require NLP for processing natural

language input or producing natural language output or both. For

achieving or gaining human like language processing capabilities is a

difficult task for a machine and these difficulties are as follows

 Ambiguity

 Interpreting or adding partial information in the language.

 There are many inputs can mean same thing.

204

The application of natural language can be divided into two

categories and these are as follows

 Text based applications: The text based involves the

processing of written text, such as books, newspapers, reports,

manuals, email-messages etc. These all are the reading based

tasks.

 Dialogue based applications: It involves the communication

between machine and the human like a spoken language.

3.4 KNOWLEDGE REQUIRED FOR NLP

Natural language uses the knowledge about the structure of the

language itself which includes the structure of the sentences,

structure of the words and how these words forms a sentence, how

the meaning of individual word helps to form the sentence meaning

etc. The different forms of knowledge related to natural language

are

Phonological knowledge: This includes how words are related to

the sounds that realized them.

Morphological knowledge: It concerns how words are formed

using the morphemes. Morpheme is the primitive unit of a meaning

in a language. For example the meaning of the word friendly is

derivable from the meaning of the word friend which is a noun and

its suffix –ly, which transform the word from noun to adjective.

Syntactic knowledge: The syntactic knowledge concerns how

words can be put together to form a sentence and determine what

type of structure role played by each word in the sentence. Some

word sequences may be rejected if it break or violate the word

formation rules of the language. For example an English syntactic

analyzer would reject the sentence “Girl the go the to school”.

205

Semantic knowledge: It concerns what is the meaning of a word and

how these meaning combine in sentence meaning. The most famous

example “Colorless green ideas sleep furiously” is syntactically

correct but rejected semantically.

Discourse knowledge: It concerns how the immediately preceding

sentences affect the interpretation of the next sentence. For example

the word “it” in the sentence, “Ram wanted it”, depends on the prior

discourse context, while the word “Ram” may influence the meaning

of the later sentences such as “He always had”.

Pragmatic Knowledge: It concerns how sentences are used in

different situations and how use affects the interpretation of the

sentence. For example, the sentence “Do you know what time it is?”

should be interpreted as a request to be told the time.

The following examples may help you to understand the distinction

between syntax, semantics, and pragmatics.

(1) Language is one of the fundamental aspects of human

behavior and is a crucial component of our lives.

(2) Green frogs have large ears.

(3) Green ideas have large ears.

(4) Large have green ideas ear.

The above sentence (1) “Language is one of the fundamental aspects

of human behavior and is a crucial component of our lives is

semantically, syntactically and pragmatically correct. The sentence

(2) “Green frogs have large ears” is both syntactically and

semantically correct, but not pragmatically. The sentence (3) “Green

ideas have large ears” is in ill-formed in pragmatically and

semantically, but the sentence maintain a structure. Now let us

discuss what is wrong in the sentence: the idea cannot be green, even

if they could, they cannot have large ears. The sentence (4) “Large

206

have green ideas ear” uses the same words as the sentence (3) but it

is ill-formed in syntactically. Thus the sentence (4) is syntactically,

semantically and pragmatically incorrect.

3.5 MORPHOLOGY

Morphology is a process that deals with the study of form and

structure. In terms of language morphology refers to the structure of

word on that language. Morphology is the study of the way, where

words are built up from smaller meaning bearing units called

morphemes. For example the word “foxes” is the combination of two

morphemes fox and es. The problems recognizing, foxes breaks down

into two words fox and es is known as morphological parsing or

morphological analysis. If we consider the two word “dog” and

“dogs” , dog has only one morpheme and dogs has two morphemes

“dog” and “s”. Morpheme can be classified into two categories

(i) Stem - the main morpheme of the word and

(ii) Affixes - add additional meaning to the main morpheme.

Check Your Progress - I

1. State True or False
(i) Artificial Intelligence is the sub-field of natural

language.
(ii) Natural language and formal language both are

same.
(iii) Phonological knowledge includes how words are

related to the sounds that realized them.
(iv) Morphological knowledge concerns how words

are formed using the morphemes.
(v) Syntactic and semantic knowledge are same.

207

Affixes can further divided into the following categories

(i) Prefixes: prefixes precede the stem. For example the word

unhappy is composed of a stem “happy” with the prefix

“un”.

(ii) Suffixes: suffixes follow the stem. For example the word

“eats” is composed of a stem “eat” with the suffix “s”.

(iii) Infixes: in infixes the morpheme is inserted in the middle

of the word. This occurs very commonly, for example in

the Philippines language Tagalog.

(iv) Circumfixes: In circumfixes both prefix and suffix occurs

in the stem. The word unbelievable is composed of the

stem believe; prefix un- and suffix –able.

3.6 SYNTACTIC PROCESSING

In the syntactic processing steps a flat input sentence is converted into

hierarchical structure which corresponds to the units of meaning in

the sentence. This process is called the parsing. Parsing plays an

important role in many natural language understanding systems for

two reasons

 Semantic processing must operate on sentence constituents. If

there is no any syntactic parsing step, then the semantic

system of the language must decide on its own language

structure. Syntactic parsing is computationally less expensive

than semantic processing. Thus it plays a significant role in

reducing overall complexity of the system.

 Although it is possible to extract the meaning of sentence

without using the grammatical facts, but it is not possible to

do always.

208

3.6.1 Parsing of Natural Language

Parsing is a process which automatically building syntactic analysis

of a sentence in terms of a given grammar. So in the parsing analysis,

it produces grammatical structure according to the input sentences. A

parser is a computer program that carries the parsing task. The output

of parsing is logically equivalent to a tree. The sentence is

grammatically correct if parsing of a sentence successfully generates

a parse tree and the leaf nodes of the tree are the tokens of input

sentence, otherwise there are some grammatical errors in the

sentence.

There are two requirements to examine the syntactic structure of a

sentence. These two requirements are as follows

 The grammar: This is the formal specification of the structures

which are allowed in the language.

 Parsing Technique: Parsing is a method that analyzing

sentence to determine its structure according to its grammar.

Context free grammar is used in natural language processing.

For example “ I saw a man in the road”. Consider the following

context free grammar

1. S NP VP

2. S S PP

3. NP n

4. NP art n

5. NP NP PP

6. PP p NP

7. VP v NP

8. n I

9. n man

10. n road

209

11. v saw

12. art a

13. art the

14. p in

In the above grammar the left hand side of each rule is called “non

terminals” and the symbols that are not appeared in the left hand side

are called “terminal symbols”. The non terminal symbols which

directly produce terminals called “Pre terminal” symbol. Here in this

above example “S” is the start symbol and the parse tree generating

for the sentence “I saw the man in the road” is shown in the Figure

3.2.

Figure 3.2: Example of parse tree

There are two basic techniques of parsing which are as follows

 Top-Down Parsing- Top-down parsing always begins with the

start symbol and applies the grammar rules forward until the

symbols at the terminals of the tree correspond to the

components of the sentence being parsed.

210

 Bottom-Up Parsing- Bottom-Up parsing always begins with

the sentence to be parsed and apply the grammar rule back-

ward until a single tree whose terminals are the words of the

sentence and whose top node is the start symbol has been

produced.

If we consider the same grammar rule, the possible top-down parser

action for the sentence “I saw a man in the road” is as follows

Grammar rule:

1. S NP VP

2. S S PP

3. NP n

4. NP art n

5. NP NP PP

6. PP p NP

7. VP v NP

8. n I

9. n man

10. n road

11. v saw

12. art a

13. art the

14. p in

S [S S PP]

S PP [S NP VP]

NP VP PP [NP n]

n VP PP [n I]

“I” VP PP [VP v NP]

“I” v NP PP [v saw]

“I” “saw” NP PP [NP art n]

“I” “saw” art n PP [art a]

211

“I” “saw” “a” n PP [n man]

“I” “saw” “a” “man” PP [PP p NP]

“I” “saw” “a” “man” p NP [p in]

“I” “saw” “a” “man” “in” NP [NP art n]

“I” “saw” “a” “man” “in” art n [art the]

“I” “saw” “a” “man” “in” the n [n road]

“I” “saw” “a” “man” “in” “the” “road”

The possible bottom-up parser action for the sentence “I saw a man

in the road” is as follows

“I” “saw” “a” “man” “in” “the” “road”

n “saw” “a” “man” “in” “the” “road” [n I]

NP “saw” “a” “man” “in” “the” “road” [NP n]

NP v “a” “man” “in” “the” “road” [v saw]

NP v art “man” “in” “the” “road” [art a]

NP v art n “in” “the” “road” [n man]

NP v NP “in” “the” “road” [NP art n]

NP VP “in” “the” “road” [VP v NP]

S “in” “the” “road” [S NP VP]

S p “the” “road” [p in]

S p art “road” [art the]

S p art n [n road]

S p NP [NP art n]

S PP [PP p NP]

S [S S PP]

212

The selection between top-down and bottom-up parsing is similar to

the choice between forward and backward reasoning as other problem

solving task. The branching factor is the important consideration for

this purpose. In some cases these two parsing techniques combined

into a single method which is generally termed as bottom-up parsing

with top-down filtering. In this method the grammar rules are applied

in backward that means it proceeds essentially bottom-up parsing.

The process of understanding a sentence is a search process to find

one that meets all constraints imposed by a particular sentence. There

are four ways of handling sentence and these are as follows

 All paths- here follow all possible paths and construct all the

possible intermediate components. Many of the

interpretations ignored because these interpretations will not

appear at the later time. The major disadvantage of this

approach is that many spurious constitutions being built and

many deadend paths being followed. It is not an efficient way

of handling sentences.

 Best path with Backtracking- In this handling, follow only one

path at a time but record every choice point. The recorded

choice point will be considered if the previous chosen path

fails to interpretation of the sentence. The implementation of

the parser is more complex in this handling approach.

 Best Path with Patchup- It will follow only one path at a time

but error is occurred, it will explicitly shuffle around the

components that have already been formed. This approach is

usually more efficient than the previous two techniques. The

major disadvantage of this approach is that, it requires

interactions among the rules of the grammar to be made

explicit in the rules for moving components from one place to

another.

213

 Wait and see- In this approach follow only one path. But

making a final decision about the function of each component

it will wait until enough information is available to make the

decision correctly. It uses a small fixed size buffer in which

the constituents can be stored until the final decision can be

taken. This approach is very efficient in comparison to the

other approaches. The main disadvantage of this approach is

that if the amount of storage of constituents is greater than the

size of the buffer, then the interpreter will fail.

3.7 SEMANTIC ANALYSIS

The first step of understanding a language is producing the syntactic

parse on that sentence. After that we still produce a representation of

the meaning of the sentence. There is no single, definitive language

in which all the sentence meaning can be described. The main purpose

of semantic processing is the creation of a target language

representation of a sentence’s meaning.

3.7.1 Lexical Processing:

The first step of semantic processing is to look up individual words

in a dictionary or lexicon and extract their meaning. But in a language

one word have different meanings and it is may not be possible to

identify the correct word only by seeing the word. For example the

word “diamond” might have the following meaning

 A geometrical shape

 A baseball field

 A valuable gemstone

214

To select the correct meaning of the “diamond” in the sentence,

“Hari buy a diamond ring for her”. Here it is necessary to know that

neither geometrical shape nor base ball field is appropriate for the

sentence whereas a valuable gemstone is perfect meaning for the

sentence. So there is lexical ambiguity is often in everyday English.

If we consider the word “mean” – the word is ambiguous at least three

ways. It can be “to signify” as verb meaning, as adjective meaning

“unpleasant” or “cheap” and as noun meaning “statistical average”.

So lexical ambiguity is a serious problem, even domain of discourse

is severely constrained. The process of determining the correct

meaning of an individual word is called lexical disambiguation or

word sense disambiguation.

3.7.2 Sentence Level Processing:

In sentence level processing, several approaches to the problem of

creating a semantic representation of sentence have been developed,

including the following:

 Semantic grammars, the semantic grammar combine the

syntactic, semantic and pragmatic knowledge into single set

of rules in the form of a grammar. The semantic grammar is a

context context-free grammar. Here the choices are the non

terminal and the production rules are controlled by semantic

and syntactic functions. In a sentence applying all the

associated semantic actions reflects the meaning of the

sentence.

 Case grammar, case grammar contains some semantic

information although it will require further interpretation may

also be necessary. Parsing using a case grammar is usually

exception-driven.

215

 Conceptual parsing, in conceptual parsing syntactic and

semantic knowledge are combined into a single interpretation

system that is driven by the semantic knowledge. Conceptual

parsing is done on the basis of dictionary that describes the

meaning of words as conceptual dependency structure. It is

similar to the process of parsing using a case grammar.

 Approximately, compositional semantic interpretation, in this

section semantic processing is applied to the result of

performing a syntactic parse. If a syntactic parse of a sentence

is produced, then the way of generating semantic

interpretation is as following-

- Check each word in a lexicon that contains one or more

definitions for that particular word. These definitions must

describe how the idea that corresponds to the word is to

be represented. It also described how the idea represented

by the word may combine with ideas represented by other

words in the sentence.

- Use the structure information contained in the output of

the parser to give additional restriction beyond those

extracted from the lexicon, on the way that a single word

meaning may combine to form larger meaning units.

3.8 DISCOURSE AND PRAGMATIC PROCESSING

 It is necessary to consider the discourse and pragmatic context to

understand a sentence. The discourse and pragmatic processing is

more important when one needed to understand the text and

Stop to Consider

Parsing into a case representation, directed by the lexical
entries associated with to each verb.

216

dialogues. There are different relationships that may hold between the

phrases and parts of their discourse context. The following are the

some examples in English language

 Identical entities. For this purpose consider the text

-Ram had a blue balloon

-Hari wanted it

 The word “it” should be identified as referring the blue

balloon. Such type of references is called anaphoric

references or anaphora.

 Parts of entities. Consider the following sentences

- Ram opened the book he just bought

- The title page was torn

The “the title page” should be recognized as the part of the

 book that was just bought.

 Parts of actions. Consider the text

- Pranab went on a business trip to Guwahati

- He left on an early morning bus.

Here taking a bus should be recognized as part of going on a

trip.

 Entities involved in actions. Consider the text

- My car was broken on last week.

- they took the head light and stereo

The pronoun “they” should be recognized as the persons who

broke the car on last week.

In order to be able these types of relationships among sentences, a

vast discussion is required about the knowledgebase. The way this

knowledge is organized is important to the success of the

understanding a sentence. For this purpose we always focus on the

use of the following kinds of knowledge

217

 The current focus of the dialogue

 A model of each participant’s current beliefs

 The goal-driven character of dialogue and

 The rules of conversation shared by all participants

Check Your Progress - II

1. State True or False
(i) The main morpheme is called the stem.

(ii) Prefixes always follow the stem.

(iii) Suffixes always precede the stem.

(iv) Parsing produces grammatical structure according to the input

sentences.

(v) In top-down parsing, grammar rules are applies in forward

directions.

2. Fill in the blanks
(i) _____________ processing must operate on sentence

constituents.

(ii) A _____________ is a computer program that carries the parsing

task.

(iii) ________________is the formal specification of the structures

which are allowed in the language.

(iv) ________________ parsing always begins with the sentence to

be parsed.

(v) The process of determining the correct meaning of an individual

word is called______________.

218

3.9 SUMMING UP

 Natural language processing is a subfield of Artificial

Intelligence.

 Natural language studied the automatic generated problems in

natural language processing and understanding the natural

human languages.

 The term natural language refers to the language that people

speak, like English, Assamese, Hindi etc.

 The computational activities required for enabling a computer

to carry out information processing using natural language is

called natural language processing.

 Phonological knowledge includes how words are related to

the sounds that realized them.

 Morphological knowledge concerns how words are formed

using the morphemes.

 The syntactic knowledge concerns how words can be put

together to form a sentence and determine what type of

structure role played by each word in the sentence.

 Semantic knowledge concerns what is the meaning of a word

and how these meaning combine in sentence meaning.

 Discourse knowledge concerns how the immediately

preceding sentences affect the interpretation of the next

sentence.

 Morphology is the study of the way, where words are built up

from smaller meaning bearing units called morphemes.

 Stem is the main morpheme of the word and affixes add

additional meaning to the main morpheme.

219

 Parsing is a process which automatically building syntactic

analysis of a sentence in terms of a given grammar.

 The discourse and pragmatic processing is more important

when one needed to understand the text and dialogues in a

natural language.

3.10 ANSWER TO CHECK YOUR PROGRESSES

1. (i) False (ii) False (iii) True (iv) True (v) False

2. (i) True (ii) False (iii) False (iv) True (v) False

3. (i) semantic (ii) parser (iii) grammar (iv) bottom-up

(v) lexical disambiguation

3.11 POSSIBLE QUESTIONS

1. What is NLP? Explain its benefits.

2. What is the goal of NLP?

3. Explain the different applications of natural language.

4. What is morphological knowledge related to natural

language?

5. What is Syntactic knowledge related to natural language?

6. Differentiate between syntactic and semantic knowledge

related to natural language.

7. Explain the syntax, semantics, and pragmatics in a language

with some suitable examples

8. What is morpheme? Explain its classifications.

9. What is parsing in natural language?

10. Explain the top-down and bottom-up parsing techniques.

11. What is lexical processing? Explain it with a suitable

example.

220

12. Explain the discourse and pragmatic processing in a

sentence.

3.12 REFERENCES AND SUGGESTED READINGS

 Rich, E., & Knight, K. Artificial intelligence, Second Edition,

Ed.

 Luger, G. F. (2004). Artificial Intelligence: Structures and

Strategies for Complex Problem Solving, 5/e. Pearson

Education India.

 Nilsson, N. J. (2014). Principles of artificial intelligence.

Morgan Kaufmann.

 NOC: Natural Language Processing

https://nptel.ac.in/courses/106105158

221

UNIT 4: CONCEPT OF EXPERT SYSTEMS

Unit Structure:
4.1 Introduction

4.2 Objective

4.3 Expert System History

4.4 Advantages of Expert System

4.5 Principles of Expert System

4.6 Expert System Architecture

4.7 Architectural Variations

4.8 Expert System VS Algorithmic Programs

4.9 Knowledge Acquisition

4.9.1 Knowledge Acquisition Techniques

4.10 Knowledge Representation

4.10.1 Semantic Networks

4.10.2 Frames

4.10.3 Production Rules

4.11 Inference Engines

4.11.1 Forward Chaining Techniques

4.11.2 Backward Chaining Techniques

4.11.3 Hybrid Technique

4.12 Expert System Shells/Tools

4.12.1 ES Shell Components

4.12.2 Examples of ES Shells

4.13 Summing Up

4.14 Answers to Check Your Progress

4.15 Possible Questions

4.16 References and Suggested Readings

222

4.1 INTRODUCTION

An expert system is a branch of Artificial Intelligence that uses

specialized knowledge to solve problems in a specific area. It is an

intelligent computer program designed to make decisions and solve

complex issues that usually require human expertise. Essentially, an

expert system tries to mimic the decision-making abilities of a human

expert in a particular field.

The knowledge used by an expert system is gathered from various

sources, such as books, magazines, and conversations with

experienced professionals. This knowledge is not general but focused

on solving problems within a specific domain.

So, an expert system aims to replicate some of the intelligent

behaviours of a human expert to provide solutions in a specific area

of expertise. In this unit, we will briefly explore the concept of expert

systems.

4.2 OBJECTIVE

After going through this unit, you will be able to

 Understand the history and applications of expert systems.

 Learn the principles of expert systems (ES).

 Understand the architecture of expert systems and its different

variations.

 Gain knowledge about the techniques used for knowledge

acquisition and representation in expert systems.

 Understand various inference techniques used in expert

systems.

 Learn about expert system shells and their uses in building

expert systems.

223

4.3 EXPERT SYSTEM HISTORY

Expert systems that capture the knowledge of human experts in their

own fields of expertise were a success story for artificial intelligence

research in the 1970s and 1980s. Early, successful expert systems

were built around rules (sometimes called heuristics) for medical

diagnosis, engineering, chemistry, and computer sales. One of the

early expert system successes was MYCIN2, a program for

diagnosing bacterial infections of the blood. Expert systems had a

number of perceived advantages over human experts. For instance,

unlike people, they could perform at peak efficiency, 24 hours a day,

forever. Over time, of course, the drama receded, and it became clear

that researchers had vastly underestimated the complexity of the

common-sense knowledge that underpins general human reasoning.

Nevertheless, excellent applications for expert systems remain to this

day. Modern expert systems advise sales people, scientists, medical

technicians, engineers, and financiers, among others.

4.4 ADVANTAGES OF EXPERT SYSTEM

An expert system and a conventional programme can both present to

the user a series of options on the screen in the form of questions, and

answers, which would be given depending on the user responses to

those answers. However, there are a number of advantages of expert

systems over conventional programs:

(i) Expert systems usually deal with large amounts of knowledge

since it has the ability to handle qualitative information.

(ii) The knowledge of multiple experts can be made available to work

simultaneously and continuously on a problem at any time. The level

of expertise combined from several experts may exceed that of a

single human expert.

224

(iii) Increased availability: Web based expert system can give

expertise to the end user removing any physical constraints if the

system is made available online through Internet.

(iv) Expert systems are not confined by rigid mathematical or

analogue schemes and can handle factual or heuristic knowledge;

(v) The knowledge base can be continuously augmented as necessary

with accumulating experience.

4.5 PRINCIPLES OF EXPERT SYSTEM

The principles of a knowledge-based expert system are described in

figure 4.1. Most expert systems operate through the user supplying

facts and different information to the expert system and in return the

user obtains expert advice. The expert system consists of two main

internal parts, the knowledge base and the inference engine; the

knowledge-base which contains the knowledge helps the inference

engine in drawing the related conclusions. These conclusions are

considered to be the expert system's responses to the user's queries

for expertise.

Figure 4.1: Basic concepts of an expert system function

225

Another vital factor to understand in any expert system is the

relationship between the problem domain and the knowledge domain.

Giarratano and Riley (1989) discuss this relationship as follows: all

knowledge domains are usually presented within the problem

domain. As can be seen from figure 4.2 the section outside the

knowledge domain symbolises an area in which there is inadequate

knowledge about the problem. The knowledge acquired in most

expert systems are usually obtained from published materials, project

records and directly from experts in the field that the expert system is

being built.

Figure 4.2: A possible problem and domain knowledge Relationship

4.6 EXPERT SYSTEM ARCHITECTURE

In order to get an understanding of how expert systems function, it is

appropriate to look at the expert system architecture and examine the

different components that contribute to presenting the expert's

knowledge in such a system. The architecture of an expert system is

difficult to define, as languages and system build up tools can vary in

their development stage and are therefore illustrated through

examples. An example of expert system architecture is shown below

226

in figure 4.3. The example illustrates all different components of the

expert system architecture. The basic architecture shows a separation

of domain knowledge, control knowledge and knowledge which deals

with the problem in hand which needs to be solved. This highlights

three important components of an expert system which are: the

knowledge base, the context, and the inference mechanism. Other

components that can be part of the expert system architecture are user

interface and an explanation facility. Finally, a knowledge acquisition

facility is also considered to be useful in many expert systems. Maher

(1987) explains further the expert system components as:

(a) Knowledge Base: The knowledge base is the component of an

expert system that contains the facts about the subject which is being

dealt with. The facts could be presented in the form of rules and sub

rules. Since knowledge is continually changing and expanding it is

considered to be important that the knowledge base is clearly

structured and can easily be modified if required to do so.

(b) Context: The context is the component which is responsible for

providing the information on the problem which is being solved. As

the problem solving procedure continues the context will expand to

provide more information on the problem in order to continue to solve

it.

(c) Inference mechanism: The inference mechanism is the part of the

expert system which contains the control information. It does that by

using the knowledge base to modify and expand the context. The

inference mechanism's main task is to relate rules or sub-rules to the

facts and execute the most appropriate rules that can satisfy the facts.

(d) Explanation facility: The explanation facility in an expert system

varies from a trace of execution to the ability to give the user the

reasons behind reaching a particular solution. It will demonstrate this

227

by showing the user the path that was followed in order to reach a

certain conclusion.

(e) Knowledge acquisition: The knowledge acquisition facility in an

expert system is the component which is responsible for entering the

knowledge to the knowledge base. This facility acts as an editor and

knowledge is entered directly in a form acceptable to the way in

which the expert system was structured. Editing the knowledge can

be carried out in two ways: either the knowledge engineer uses a

screen editor to create and modify a file of rules, or the editor is itself

an expert system, and that would be used in building more complex

expert systems.

Figure 4.3: Architecture of an expert system

 (f) User interface: The expert system user interface is the component

which is responsible for the communication mechanism between the

user and the system. In addition to being highly interactive, an expert

system interface requires a transparency of dialogue, whereby some

228

form of an explanation facility indicates the inference process that is

being used.

4.7 ARCHITECTURAL VARIATIONS

Two of the most commonly used variations on the basic architecture

are the blackboard model and the production system model. The two

models will be looked at in more detail below.

(a) Blackboard model:

As can be seen in figure 4.4, the blackboard model is based upon the

separation of the knowledge base into knowledge sources. It also

provides a means of communication between knowledge sources. The

circles and lines represent the communication between knowledge

sources and the current state of the problem solved which takes place

within the blackboard (Maher, 1987). Blackboard architectures are

explicitly designed to permit multiple knowledge sources to address

a problem simultaneously. Provided its pre-conditions are satisfied,

each knowledge source can post recommendations for action to a

shared data termed a "blackboard".

Figure 4.4: Black board Model

229

(b) Production system model

The production system model classifies the knowledge base as a

series of rules, usually known as production memory. Normally the

rules would be developed by the expert, and there would be no need

to specify them in any certain order. The context in a production

system model is known as the working memory. The inference

mechanism in such a system is expected to identify the production

rules that would be executed and perform the selection operation to

choose the most suitable rule to solve the problem. The production

system model is illustrated in figure 4.5 below.

Figure 4.5: Production system Model

4.8 EXPERT SYSTEM VS ALGORITHMIC
PROGRAMS

The important features of expert systems when compared to other

mathematical models are pointed out by Jackson (1986) as:

(a) Expert systems are not confined by rigid mathematical or analogue

schemes and can handle factual or heuristic knowledge.

(b) The knowledge base can be continuously augmented as necessary

with accumulating experience. As the knowledge advances the expert

system can be easily upgraded to cope with the changes in

technology.

230

(c) Ability to handle qualitative information. This can be clearly

experienced if the system to be built is expected to contain a large

amount of information as for example in many management areas.

(d) Coping with uncertain, unreliable or even missing data. Dealing

with uncertainty in data and inference is a feature of expert systems.

When pieces of the knowledge base and context are less than certain,

then a new level of complexity is introduced into expert systems.

Some expert system shells have adopted Bayesian probability in

coping with uncertainties within the knowledge base.

(e) The reflection of decision patterns of the users. This is a function

which is sometimes referred to as an explanation facility. It explains

the reasons behind giving a certain conclusion that has been reached

by the expert system.

4.9 KNOWLEDGE ACQUISITION

There are several steps in knowledge engineering process. All the

steps need to be completed for an effective expert system design.

Domain identification is the first step. It is an important step as better

domain knowledge may yield a better expert system design. In this

process, Knowledge Acquisition process is the next important step.

This step is not only time consuming but also known as the greatest

bottleneck in the expert system development process. This step

requires knowledge engineers to extract data, information and

knowledge from experts of the identified domain or from other

resources like books and journals. After obtaining data, information

and knowledge, knowledge engineering present them in a machine-

usable form. All these steps, starting from domain identification to

presentation is referred to as knowledge acquisition and presentation

process. How to acquire knowledge efficiently from a domain and

represent it in an appropriate computer format is an extremely

231

difficult and challenging task. As a result, huge efforts can be seen in

this research, and over the years many knowledge acquisition

methods have been discovered. Although, studies suggest that there

is no perfect method but there are suitable methods for almost every

domain. However, a technique that is suitable for one domain may

not necessarily work for other domains. As a knowledge engineer one

must discover a suitable method for his application domain.

Moreover, we must understand that knowledge elicitation has certain

issues we must be aware of. Such as that even if we extract knowledge

from books, journals, and other written resources, it is not enough,

our knowledge base will still be lacking the knowledge that remains

locked up inside the experts’ heads’. We must also keep in mind that

experts time is valuable thus it is hard to keep him away from his

work for long periods of time to extract the knowledge he has.

Another couple of issues we must understand are that even though

experts have immense knowledge, yet they do not have all the

knowledge of that domain, and that knowledge when extracted has a

“shelf-life”. As if to say, the knowledge has an expiration date in

certain domains, where the information must be updated or it is of no

use to the system.

Another important issue in this process is the unclear or tacit

knowledge that we must extract from the experts, who cannot explain

to us this type of knowledge, it is a hard process and in some cases

impossible.

With these issues in mind, engineers must learn to adapt or work

around them. For example, since experts are too busy, why not take

them out of their current jobs for a period of time, also, do not depend

on a single expert, interview more than one expert, and try and extract

as much knowledge as possible, also make sure the knowledge is well

maintained and validated on regular basis.

232

4.9.1Knowledge Acquisition Techniques

Some of the knowledge acquisition techniques are:

(a) Protocol-generation techniques which include a variety of types

that range from interviews (unstructured, semi-structured and

structured), to reporting techniques and observational techniques.

(b) Protocol analysis techniques are used with transcripts of

interviews or other text-based information to discover the different

types of knowledge, such as goals, decisions, relationships and

attributes.

(c) Hierarchy-generation techniques, such as laddering, are used to

build taxonomies and other hierarchical structures such as goal trees

and decision networks. Laddering means the creation, reviewing, and

modification of hierarchal knowledge.

(d) Matrix-based techniques are about constructing grids in which

they indicate things such as problems encountered against possible

solutions or hypotheses against diagnostic techniques. Frames are

considered an important type used with these types of techniques

because we can represent properties of concepts. Matrices are mostly

used to validate knowledge rather than elicit it.

(e) Sorting techniques are used for capturing how people compare and

order concepts, and can lead to the revelation of knowledge about

classes, properties and priorities.

(f) Limited-information and constrained-processing tasks are

techniques that either limits the time and/or information available to

the expert when performing tasks.

(g) Diagram-based techniques include the generation and use of

concept maps, state transition networks, event diagrams and process

maps. The use of these is particularly important in capturing the

“what, how, when, who and why" of tasks and events.

233

4.10 KNOWLEDGE REPRESENTATION

Knowledge Representation (KR) can be defined as “The encoding

and storage of knowledge in computational models of cognition.”

Algorithms + Data Structures = Programs

For expert system, we can say that

Knowledge + Inference = Expert Systems

Representation of Knowledge in computational models is a complex

problem. Its complexity makes it difficult to devise good KR

techniques. However, there are criteria for judging their goodness.

The knowledge representation technique should not only be

functional but also should able to explain the functionality and have

provisions to store the pertinent data that may be needed to justify

decisions at a given point of time. Among many, semantic networks,

production rules and frames are the three main structures that more or

less meet these criteria. Their properties and usage have been

thoroughly investigated for encoding and storage of knowledge

which is referred to Knowledge Representation techniques in

computational models of cognition.

A good system for the representation of knowledge in a particular

domain should possess the following four properties:

(a) Representation Adequacy: the ability to represent all

kinds of knowledge that are needed in the domain.

(b) Inferential Adequacy: the ability to manipulate the

representational structures in such a way as to derive new

structures corresponding to new knowledge inferred from

old.

(c) Inferential efficiency: the ability to incorporate

additional information into the knowledge structure that

234

can be used to focus the attention of the inference

mechanisms in the most promising directions.

(d) Acquisitional Efficiency: the ability to acquire new

information easily. The simplest case involves direct

insertion, by a person, of new knowledge into the

database. Ideally, the program itself would be able to

control knowledge acquisition.

Unfortunately, no single system that optimizes all of the capabilities

for all kinds of knowledge has yet been found. As a result, multiple

techniques for knowledge acquisition exist.

The prevalent KR techniques are briefly reviewed next.

4.10.1 Semantic Networks

It has been used mainly to transform the natural language into a graph

structure where nodes and edges correspond to concepts and

relationships respectively. In this representation, nodes represent

entities and classes of entities as well.

It is easy to use semantic representation if we are implementing

simple relationships between objects and classes.

4.10.2 Frames

Frames are useful for simulating common sense knowledge, which is

a very difficult area for computers to masters. Semantic nets are

basically two-dimensional representations of knowledge; frames add

a third dimension by allowing nodes to have structures. These

structures can be simple values or other frames. While semantic nets

lack description of objects, frame representation fills that void. While

Frames represent objects, the slots represent the description. Frames

235

are known for their perfect reflection of domain knowledge,

efficiency, default reasoning, and support for procedural knowledge.

4.10.3 Production Rules

The simplest form of representation made of simple IF-THEN rules.

They are condition-action, if a condition is met, corresponding rule is

fired and action is taken. If more than one condition is met,

corresponding rules are fired, and due to this conflict, no action is

taken until a conflict resolution method result in selecting one rule,

and then it performs the action of that rule. Their modularity,

simplicity, and good performance are what make them most often

used in simple domains. Moreover, when dealing with domains that

contain complex relationships, rule base is not the best representation

type since it is hard to deal with uncertainty as well.

Check Your Progress 1:

I. Multiple-Choice Questions (MCQs)

1. What was one of the early successful expert systems used for
medical diagnosis?
a) DENDRAL
b) MYCIN
c) PROSPECTOR
d) XCON

2. Which component of an expert system is responsible for drawing
conclusions based on the knowledge base?
a) User Interface
b) Knowledge Base
c) Inference Mechanism
d) Context

236

3. Which of the following is an advantage of expert systems over
conventional programs?
a) They require constant human supervision
b) They cannot handle heuristic knowledge
c) They can incorporate the knowledge of multiple experts
d) They work only with rigid mathematical models

4. What is the main function of the explanation facility in an expert
system?
a) To acquire knowledge from experts
b) To communicate between users and the system
c) To explain the reasoning behind the conclusions
d) To expand the knowledge base

5. What is a key characteristic of the blackboard model in expert
systems?
a) It relies on a single knowledge source
b) It allows multiple knowledge sources to address a problem
simultaneously
c) It follows a strict sequence of rules
d) It does not support communication between knowledge
sources

II. True/False Questions
1. Expert systems were a major success in AI research during the

1970s and 1980s.
2. The knowledge base of an expert system remains static and

cannot be modified over time.
3. The production system model organizes the knowledge base as a

set of predefined rules without requiring a specific execution
order.

4. Expert systems cannot handle uncertain, unreliable, or missing
data.

5. Knowledge acquisition is considered one of the most challenging
steps in developing an expert system.

237

4.11 INFERENCE ENGINES

In expert systems, an inference engine deduces new knowledge from

available knowledge and observations. In principle, an inference

engine accepts observations in the form of user inputs and using its

knowledge-base it deduces new knowledge by applying logical rules

as illustrated in figure 4.6. In addition to knowledge discovery, an

expert system is also expected to provide a justification and

explanation about its decision. Therefore, an inference engine should

not only produce expert-level decisions but also back it up with the

reasoning process that leads to such decisions.

Figure 4.6: Inference Engine infers new facts from available knowledge

Knowledge bases are an essential component in an expert system as

they contain facts and rules about the knowledge domain. The

knowledge core is acquired from experts in the domain, and

additional knowledge can be obtained from text books, manuals and

other resources. The acquired knowledge is then organized as a

collection of rules known as production rules. The production rules

are in an IF-THEN format known as condition and action. A simple

example:

IF (traffic_light is red) THEN (slowdown)

To explain this simple rule, traffic_light is the premise, which means

the hypothesis, and slowdown is the consequent, known as the action

to perform. So if the traffic light is red, the rule is fired, and the action

is completed, i.e. the car will slow down.

The inference engines are built using different reasoning techniques.

The backward-chaining and forward-chaining are the most frequently

238

used techniques. However, hybrid techniques that use a mixture of

both techniques have been developed for improved accuracy and

efficiency.

4.11.1 Forward-chaining Technique

In a rule-based expert system, the domain knowledge is represented

by a set of IF-THEN production rules and data is represented by a set

of facts about the current situation. The inference engine compares

each rule stored in the knowledge base with facts contained in the

database. When the IF (condition) part of the rule matches a fact, the

rule is fired and its THEN (action) part is executed. The fired rule

may change the set of facts by adding a new fact as shown in figure

4.7. Letters in the database and the knowledge base are used to

represent situations or concepts.

Figure 4.7: The Inference Engine cycles via a match-fire procedure

The matching of the rule IF parts to the facts produce inference

chains. The inference chain indicates how an expert system applies

the rules to reach a conclusion. To illustrate chaining inference

techniques, consider a simple example.

239

Suppose the database initially includes facts A, B, C, D and E and the

knowledge base contains only three rules:

Rule 1: IF Y is true

 AND D is true

 THEN Z is true

Rule 2: IF X is true

 AND B is true

 AND E is true

 THEN Y is true

Rule 2: IF A is true

 THEN X is true

The inference chain shown in figure 4.8 indicates how the expert

system applies the rules to infer fact Z. First Rule 3 is fired to deduce

new fact X from given fact A. Then Rule 2 is executed to infer fact Y

from initially known fat B and E, and already known fact X. Finally,

Rule 1 applies initially known fact D and just-obtained fact Y to arrive

at conclusion Z.

Figure 4.8: An example of inference chain

There are two principal ways in which rules are executed: (a) forward

chaining and (b) backward chaining

240

The example discussed above, uses forward chaining. Forward

chaining is the data driven reasoning. The reasoning starts from the

known data and proceeds forward with that data. Each time only the

top-most rule is executed. When fired, the rule adds a new fact in the

database. Any rule can be executed only once. The match-fire cycle

stops when no further rules can be fired.

4.11.2 Backward-chaining Technique

Backward chaining is the goal-driven reasoning. In backward

chaining, an expert system has the goal (a hypothetical solution) and

the inference engine attempts to find the evidence to prove it. First,

the knowledge base is searched to find rules that might lead to the

desired solution. Such rules must have the goal in their THEN (action)

parts. If such a rule is found and the IF (condition) part matches data

in the database, then the rule is fired and the goal is proved. However,

this is rarely the case. Thus the inference engine puts aside the rule it

is working with (the rule is said to be in the stack) and sets up a new

goal, a sub-goal, to prove the IF part of this rule. Then the knowledge

base is searched again for rules that can prove the sub-goal. The

inference engine repeats the process of stacking the rules until no

rules are found in the knowledge base to prove the current sub-goal.

4.11.3 Hybrid Technique

Hybrid techniques combine forward and backward chaining

techniques. This indicates that the inference engine will perform

forward-chaining and then backward-chaining. This is used to

confirm a diagnosis or a hypothesis which has reached through

forward chaining.

241

4.12 EXPERT SYSTEM SHELLS/TOOLS

Designing an Expert System (ES) from scratch is a time consuming

and costlier process. The alternative approach is the use of expert

system shells/tools. Expert System shells are the tools for

construction of expert systems which provides knowledge

representation facilities and inference mechanisms. The knowledge

engineer must gain detailed knowledge about a particular problem

domain from an expert and other information source. Hence, ES shell

can be considered as an expert system with all the domain specific

knowledge removed and a facility for entering a new knowledge base

provided. An ES shell is the software skeleton which provides an

inference engine and reasoning techniques and can be customized

through user interface to add knowledge of a domain. It results of a

tailored expert system that matches user requirements.

Inference methods vary significantly from one domain to another and

expert system shells have developed to allow the designer more

flexibility during the development of the expert system.

Bourbakis (1993) states some of the advantages that arise from using

an ES tool include the following:

 Use of an ES tool can improve the quality and reliability of

the resulting expert system

 Tools relieve the expert system builder from having to deal

with low level programming.

 It allows the expert system builder to focus on the modelling

of the expert system domain.

 Tools offer facilities for the acquisition and modification of

the expert system’s knowledge.

242

4.12.1 ES Shell Components

The generic components of ES shell: the knowledge acquisition, the

knowledge base, the reasoning engine, the explanation and the user interface

are shown in figure 4.9

Figure 4.9 Components of ES Shell

There are several approaches in developing expert systems in terms

of what kind of ES tools to use. These tools are normally classified

as: languages, environments or shells, while some tools may fall

between any two categories.

(a) Languages can be either special purpose languages for symbolic

programming, such as LISP or PROLOG, or a conventional one, such

as PASCAL, C or Java.

(b) Environments contain various types of knowledge representation,

inference mechanisms, user interface and development aids. These

tools also give access to the underlying language the environment is

written in. This enables the developer to incorporate special tasks.

KEE, ART and EDSS are all environments.

(c) Shells provide a more specific set of knowledge representation

languages and inference mechanisms, geared to handle a particular

class of problems.

Both shells and environments differ from the languages in the fact

that they already contain control mechanisms that determine how they

reach conclusions.

243

ES shells differ in many aspects such as programming language

knowledge, domain knowledge, and development time.

4.12.2 Examples of ES Shells

Lots of ES shells are available, some are commercial and some are

open source and free. Let us take an overview of some of the ES shells

that are used worldwide in most of the research and development

projects.

CLIPS: CLIPS is a productive development and delivery expert

system tool which provides a complete environment for the

construction of rule and/or object based expert systems. Created in

1985, CLIPS is now widely used throughout the government,

industry, and academia. Its key features are:

Knowledge Representation: CLIPS provides a cohesive tool for

handling a wide variety of knowledge with support for three different

programming paradigms: rule-based, object-oriented and procedural.

Rule-based programming allows knowledge to be represented as

heuristics, or "rules of thumb," which specify a set of actions to be

performed for a given situation. Object-oriented programming allows

complex systems to be modelled as modular components (which can

be easily reused to model other systems or to create new components).

The procedural programming capabilities provided by CLIPS are

similar to capabilities found in languages such as C, Java, Ada, and

LISP.

Portability: CLIPS is written in C for portability and speed and has

been installed on many different operating systems without code

changes. Operating systems on which CLIPS has been tested include

Windows XP, MacOS X, and Unix. CLIPS can be ported to any

system which has an ANSI compliant C or C++ compiler. CLIPS

244

comes with all source code which can be modified or tailored to meet

a user's specific needs.

Integration/Extensibility: CLIPS can be embedded within

procedural code, called as a subroutine, and integrated with languages

such as C, Java, FORTRAN and ADA. CLIPS can be easily extended

by a user through the use of several well-defined protocols.

Interactive Development: The standard version of CLIPS provides

an interactive, text oriented development environment, including

debugging aids, on-line help, and an integrated editor. Interfaces

providing features such as pull down menus, integrated editors, and

multiple windows have been developed for the MacOS, Windows

XP, and X Window environments.

Verification/Validation: CLIPS includes a number of features to

support the verification and validation of expert systems including

support for modular design and partitioning of a knowledge base,

static and dynamic constraint checking of slot values and function

arguments, and semantic analysis of rule patterns to determine if

inconsistencies could prevent a rule from firing or generate an error.

Fully Documented: CLIPS comes with extensive documentation

including a Reference Manual and a User's Guide.

Low Cost: CLIPS is maintained as public domain software.

JESS: Jess is a rule engine and scripting language developed at Sandia

National Laboratories in Livermore, California in the late 1990s. It is

written in Java, so it is an ideal tool for adding rules technology to

Java-based software systems. The CLIPS expert system shell, an

open-source rule engine written in C, was the original inspiration for

Jess. Jess and CLIPS were written by entirely different groups of

people; however their implementations have always been very

different. Jess is dynamic and Java centric, so it automatically gives

you access to all of Java’s powerful APIs for networking, graphics,

245

database access, and so on; CLIPS has none of these facilities built

in. Still, there is a strong similarity between the rule languages

supported by these two systems. Many of the core concepts of Jess

were originally derived from CLIPS, which was itself influenced by

early rule engines like OPS5 and ART.

Check Your Progress 2

Choose the correct option from the followings:
1. What is the primary function of an inference engine in an expert

system?

 a) Storing large amounts of data

 b) Applying logical rules to deduce new knowledge

 c) Performing low-level programming tasks

 d) Managing the user interface

2. Which of the following best describes forward chaining in an

expert system?

 a) A goal-driven reasoning technique

 b) A method that starts with known data and proceeds forward

 c) A hybrid reasoning approach combining multiple techniques

 d) A process that ignores new facts after the first rule is fired

3. In the context of expert systems, what is the purpose of production

rules?

 a) To store large datasets efficiently

 b) To establish logical IF-THEN conditions for decision-making

 c) To enhance the graphical interface of the system

 d) To replace human decision-making entirely

4. What distinguishes expert system shells from languages used in

expert system development?

 a) Shells contain predefined control mechanisms for inference

 b) Shells require extensive low-level programming

 c) Languages are more specific to a single problem domain

 d) Expert system shells do not include inference mechanisms

246

5. Which expert system shell is written in Java and is ideal for

integrating with Java applications?

 a) CLIPS

 b) PROLOG

 c) JESS

 d) LISP

4.13 SUMMING UP

 Expert system is a branch of Artificial Intelligence that makes

extensive use of specialised knowledge to solve a problem in

a specific domain.

 Expert system exhibits some intelligent behaviour of a human

expert while taking some kind of decisions to solve a problem

in a specific domain.

 The knowledge base is the component of an expert system that

contains the facts about the subject which is being dealt with.

 The inference mechanism's main task is to relate rules or sub-

rules to the facts and execute the most appropriate rules that

can satisfy the facts.

 The explanation facility in an expert system varies from a

trace of execution to the ability to give the user the reasons

behind reaching a particular solution.

 The knowledge acquisition facility in an expert system is the

component which is responsible for entering the knowledge

to the knowledge base.

 The expert system user interface is the component which is

responsible for the communication mechanism between the

user and the system.

247

 Expert systems are not confined by rigid mathematical or

analogue schemes and can handle factual or heuristic

knowledge.

 Knowledge Representation (KR) can be defined as the

encoding and storage of knowledge in computational models

of cognition.

 In expert systems, an inference engine deduces new

knowledge from available knowledge and observations.

 Expert System shells are the tools for construction of expert

systems which provides knowledge representation facilities

and inference mechanisms.

4.14 ANSWERS TO CHECK YOUR PROGRESS

I.

1.(c) 2.(b) 3.(d) 4.(a) 5.(b)

II.

1.True 2.False 3.True 4.False

5.True

III. 1. b) Applying logical rules to deduce new knowledge

2. b) A method that starts with known data and proceeds

 forward

3. b) To establish logical IF-THEN conditions for decision-

 making

4. a) Shells contain predefined control mechanisms for

 inference

5. c) JESS

248

4.15 POSSIBLE QUESTIONS

Short answer type questions:

1. What is expert system?

2. How expert system differs from any algorithmic approach?

3. What is fact?

4. What is rule?

5. What are the advantages of expert system?

6. What is inference engine?

7. What is agenda?

8. What is conflict resolution?

9. What is ES shell?

Long answer type questions:

1. Explain the architecture of expert system.

2. What are the different knowledge acquisition techniques

used in ES?

3. How knowledge is represented in ES? Explain.

4. Explain backward chaining technique?

5. Explain forward chaining technique?

6. Explain the architecture of ES tool? Compare different ES

tools.

4.16 REFERENCES AND SUGGESTED READINGS

 Expert Systems Principles and Programming, Giarratano &

Riley, China Machine Press

 http://clipsrules.sourceforge.net/
